sysv_sem.c revision 1.83.2.1 1 /* $NetBSD: sysv_sem.c,v 1.83.2.1 2008/05/10 23:49:05 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Implementation of SVID semaphores
35 *
36 * Author: Daniel Boulet
37 *
38 * This software is provided ``AS IS'' without any warranties of any kind.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.83.2.1 2008/05/10 23:49:05 wrstuden Exp $");
43
44 #define SYSVSEM
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
52 #include <sys/sa.h>
53 #include <sys/syscallargs.h>
54 #include <sys/kauth.h>
55
56 /*
57 * Memory areas:
58 * 1st: Pool of semaphore identifiers
59 * 2nd: Semaphores
60 * 3rd: Conditional variables
61 * 4th: Undo structures
62 */
63 struct semid_ds *sema;
64 static struct __sem *sem;
65 static kcondvar_t *semcv;
66 static int *semu;
67
68 static kmutex_t semlock;
69 static struct sem_undo *semu_list; /* list of active undo structures */
70 static u_int semtot = 0; /* total number of semaphores */
71
72 static u_int sem_waiters = 0; /* total number of semop waiters */
73 static bool sem_realloc_state;
74 static kcondvar_t sem_realloc_cv;
75
76 /* Macro to find a particular sem_undo vector */
77 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
78
79 #ifdef SEM_DEBUG
80 #define SEM_PRINTF(a) printf a
81 #else
82 #define SEM_PRINTF(a)
83 #endif
84
85 struct sem_undo *semu_alloc(struct proc *);
86 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
87 void semundo_clear(int, int);
88
89 void
90 seminit(void)
91 {
92 int i, sz;
93 vaddr_t v;
94
95 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
96 cv_init(&sem_realloc_cv, "semrealc");
97 sem_realloc_state = false;
98
99 /* Allocate the wired memory for our structures */
100 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
101 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
102 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
103 ALIGN(seminfo.semmnu * seminfo.semusz);
104 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
105 UVM_KMF_WIRED|UVM_KMF_ZERO);
106 if (v == 0)
107 panic("sysv_sem: cannot allocate memory");
108 sema = (void *)v;
109 sem = (void *)(ALIGN(sema) +
110 seminfo.semmni * sizeof(struct semid_ds));
111 semcv = (void *)(ALIGN(sem) +
112 seminfo.semmns * sizeof(struct __sem));
113 semu = (void *)(ALIGN(semcv) +
114 seminfo.semmni * sizeof(kcondvar_t));
115
116 for (i = 0; i < seminfo.semmni; i++) {
117 sema[i]._sem_base = 0;
118 sema[i].sem_perm.mode = 0;
119 cv_init(&semcv[i], "semwait");
120 }
121 for (i = 0; i < seminfo.semmnu; i++) {
122 struct sem_undo *suptr = SEMU(semu, i);
123 suptr->un_proc = NULL;
124 }
125 semu_list = NULL;
126 exithook_establish(semexit, NULL);
127 }
128
129 static int
130 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
131 {
132 struct semid_ds *new_sema, *old_sema;
133 struct __sem *new_sem;
134 struct sem_undo *new_semu_list, *suptr, *nsuptr;
135 int *new_semu;
136 kcondvar_t *new_semcv;
137 vaddr_t v;
138 int i, j, lsemid, nmnus, sz;
139
140 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
141 return EINVAL;
142
143 /* Allocate the wired memory for our structures */
144 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
145 ALIGN(newsemmns * sizeof(struct __sem)) +
146 ALIGN(newsemmni * sizeof(kcondvar_t)) +
147 ALIGN(newsemmnu * seminfo.semusz);
148 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
149 UVM_KMF_WIRED|UVM_KMF_ZERO);
150 if (v == 0)
151 return ENOMEM;
152
153 mutex_enter(&semlock);
154 if (sem_realloc_state) {
155 mutex_exit(&semlock);
156 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
157 return EBUSY;
158 }
159 sem_realloc_state = true;
160 if (sem_waiters) {
161 /*
162 * Mark reallocation state, wake-up all waiters,
163 * and wait while they will all exit.
164 */
165 for (i = 0; i < seminfo.semmni; i++)
166 cv_broadcast(&semcv[i]);
167 while (sem_waiters)
168 cv_wait(&sem_realloc_cv, &semlock);
169 }
170 old_sema = sema;
171
172 /* Get the number of last slot */
173 lsemid = 0;
174 for (i = 0; i < seminfo.semmni; i++)
175 if (sema[i].sem_perm.mode & SEM_ALLOC)
176 lsemid = i;
177
178 /* Get the number of currently used undo structures */
179 nmnus = 0;
180 for (i = 0; i < seminfo.semmnu; i++) {
181 suptr = SEMU(semu, i);
182 if (suptr->un_proc == NULL)
183 continue;
184 nmnus++;
185 }
186
187 /* We cannot reallocate less memory than we use */
188 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
189 mutex_exit(&semlock);
190 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
191 return EBUSY;
192 }
193
194 new_sema = (void *)v;
195 new_sem = (void *)(ALIGN(new_sema) +
196 newsemmni * sizeof(struct semid_ds));
197 new_semcv = (void *)(ALIGN(new_sem) +
198 newsemmns * sizeof(struct __sem));
199 new_semu = (void *)(ALIGN(new_semcv) +
200 newsemmni * sizeof(kcondvar_t));
201
202 /* Initialize all semaphore identifiers and condvars */
203 for (i = 0; i < newsemmni; i++) {
204 new_sema[i]._sem_base = 0;
205 new_sema[i].sem_perm.mode = 0;
206 cv_init(&new_semcv[i], "semwait");
207 }
208 for (i = 0; i < newsemmnu; i++) {
209 nsuptr = SEMU(new_semu, i);
210 nsuptr->un_proc = NULL;
211 }
212
213 /*
214 * Copy all identifiers, semaphores and list of the
215 * undo structures to the new memory allocation.
216 */
217 j = 0;
218 for (i = 0; i <= lsemid; i++) {
219 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
220 continue;
221 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
222 new_sema[i]._sem_base = &new_sem[j];
223 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
224 (sizeof(struct __sem) * sema[i].sem_nsems));
225 j += sema[i].sem_nsems;
226 }
227 KASSERT(j == semtot);
228
229 j = 0;
230 new_semu_list = NULL;
231 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
232 KASSERT(j < newsemmnu);
233 nsuptr = SEMU(new_semu, j);
234 memcpy(nsuptr, suptr, SEMUSZ);
235 nsuptr->un_next = new_semu_list;
236 new_semu_list = nsuptr;
237 j++;
238 }
239
240 for (i = 0; i < seminfo.semmni; i++) {
241 KASSERT(cv_has_waiters(&semcv[i]) == false);
242 cv_destroy(&semcv[i]);
243 }
244
245 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
246 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
247 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
248 ALIGN(seminfo.semmnu * seminfo.semusz);
249
250 /* Set the pointers and update the new values */
251 sema = new_sema;
252 sem = new_sem;
253 semcv = new_semcv;
254 semu = new_semu;
255 semu_list = new_semu_list;
256
257 seminfo.semmni = newsemmni;
258 seminfo.semmns = newsemmns;
259 seminfo.semmnu = newsemmnu;
260
261 /* Reallocation completed - notify all waiters, if any */
262 sem_realloc_state = false;
263 cv_broadcast(&sem_realloc_cv);
264 mutex_exit(&semlock);
265
266 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
267 return 0;
268 }
269
270 /*
271 * Placebo.
272 */
273
274 int
275 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
276 {
277
278 *retval = 0;
279 return 0;
280 }
281
282 /*
283 * Allocate a new sem_undo structure for a process
284 * (returns ptr to structure or NULL if no more room)
285 */
286
287 struct sem_undo *
288 semu_alloc(struct proc *p)
289 {
290 int i;
291 struct sem_undo *suptr;
292 struct sem_undo **supptr;
293 int attempt;
294
295 KASSERT(mutex_owned(&semlock));
296
297 /*
298 * Try twice to allocate something.
299 * (we'll purge any empty structures after the first pass so
300 * two passes are always enough)
301 */
302
303 for (attempt = 0; attempt < 2; attempt++) {
304 /*
305 * Look for a free structure.
306 * Fill it in and return it if we find one.
307 */
308
309 for (i = 0; i < seminfo.semmnu; i++) {
310 suptr = SEMU(semu, i);
311 if (suptr->un_proc == NULL) {
312 suptr->un_next = semu_list;
313 semu_list = suptr;
314 suptr->un_cnt = 0;
315 suptr->un_proc = p;
316 return (suptr);
317 }
318 }
319
320 /*
321 * We didn't find a free one, if this is the first attempt
322 * then try to free some structures.
323 */
324
325 if (attempt == 0) {
326 /* All the structures are in use - try to free some */
327 int did_something = 0;
328
329 supptr = &semu_list;
330 while ((suptr = *supptr) != NULL) {
331 if (suptr->un_cnt == 0) {
332 suptr->un_proc = NULL;
333 *supptr = suptr->un_next;
334 did_something = 1;
335 } else
336 supptr = &suptr->un_next;
337 }
338
339 /* If we didn't free anything then just give-up */
340 if (!did_something)
341 return (NULL);
342 } else {
343 /*
344 * The second pass failed even though we freed
345 * something after the first pass!
346 * This is IMPOSSIBLE!
347 */
348 panic("semu_alloc - second attempt failed");
349 }
350 }
351 return NULL;
352 }
353
354 /*
355 * Adjust a particular entry for a particular proc
356 */
357
358 int
359 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
360 int adjval)
361 {
362 struct sem_undo *suptr;
363 struct undo *sunptr;
364 int i;
365
366 KASSERT(mutex_owned(&semlock));
367
368 /*
369 * Look for and remember the sem_undo if the caller doesn't
370 * provide it
371 */
372
373 suptr = *supptr;
374 if (suptr == NULL) {
375 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
376 if (suptr->un_proc == p)
377 break;
378
379 if (suptr == NULL) {
380 suptr = semu_alloc(p);
381 if (suptr == NULL)
382 return (ENOSPC);
383 }
384 *supptr = suptr;
385 }
386
387 /*
388 * Look for the requested entry and adjust it (delete if
389 * adjval becomes 0).
390 */
391 sunptr = &suptr->un_ent[0];
392 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
393 if (sunptr->un_id != semid || sunptr->un_num != semnum)
394 continue;
395 sunptr->un_adjval += adjval;
396 if (sunptr->un_adjval == 0) {
397 suptr->un_cnt--;
398 if (i < suptr->un_cnt)
399 suptr->un_ent[i] =
400 suptr->un_ent[suptr->un_cnt];
401 }
402 return (0);
403 }
404
405 /* Didn't find the right entry - create it */
406 if (suptr->un_cnt == SEMUME)
407 return (EINVAL);
408
409 sunptr = &suptr->un_ent[suptr->un_cnt];
410 suptr->un_cnt++;
411 sunptr->un_adjval = adjval;
412 sunptr->un_id = semid;
413 sunptr->un_num = semnum;
414 return (0);
415 }
416
417 void
418 semundo_clear(int semid, int semnum)
419 {
420 struct sem_undo *suptr;
421 struct undo *sunptr, *sunend;
422
423 KASSERT(mutex_owned(&semlock));
424
425 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
426 for (sunptr = &suptr->un_ent[0],
427 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
428 if (sunptr->un_id == semid) {
429 if (semnum == -1 || sunptr->un_num == semnum) {
430 suptr->un_cnt--;
431 sunend--;
432 if (sunptr != sunend)
433 *sunptr = *sunend;
434 if (semnum != -1)
435 break;
436 else
437 continue;
438 }
439 }
440 sunptr++;
441 }
442 }
443
444 int
445 sys_____semctl13(struct lwp *l, const struct sys_____semctl13_args *uap, register_t *retval)
446 {
447 /* {
448 syscallarg(int) semid;
449 syscallarg(int) semnum;
450 syscallarg(int) cmd;
451 syscallarg(union __semun *) arg;
452 } */
453 struct semid_ds sembuf;
454 int cmd, error;
455 void *pass_arg;
456 union __semun karg;
457
458 cmd = SCARG(uap, cmd);
459
460 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
461
462 if (pass_arg) {
463 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
464 if (error)
465 return error;
466 if (cmd == IPC_SET) {
467 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
468 if (error)
469 return (error);
470 }
471 }
472
473 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
474 pass_arg, retval);
475
476 if (error == 0 && cmd == IPC_STAT)
477 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
478
479 return (error);
480 }
481
482 int
483 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
484 register_t *retval)
485 {
486 kauth_cred_t cred = l->l_cred;
487 union __semun *arg = v;
488 struct semid_ds *sembuf = v, *semaptr;
489 int i, error, ix;
490
491 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
492 semid, semnum, cmd, v));
493
494 mutex_enter(&semlock);
495
496 ix = IPCID_TO_IX(semid);
497 if (ix < 0 || ix >= seminfo.semmni) {
498 mutex_exit(&semlock);
499 return (EINVAL);
500 }
501
502 semaptr = &sema[ix];
503 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
504 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
505 mutex_exit(&semlock);
506 return (EINVAL);
507 }
508
509 switch (cmd) {
510 case IPC_RMID:
511 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
512 break;
513 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
514 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
515 semtot -= semaptr->sem_nsems;
516 for (i = semaptr->_sem_base - sem; i < semtot; i++)
517 sem[i] = sem[i + semaptr->sem_nsems];
518 for (i = 0; i < seminfo.semmni; i++) {
519 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
520 sema[i]._sem_base > semaptr->_sem_base)
521 sema[i]._sem_base -= semaptr->sem_nsems;
522 }
523 semaptr->sem_perm.mode = 0;
524 semundo_clear(ix, -1);
525 cv_broadcast(&semcv[ix]);
526 break;
527
528 case IPC_SET:
529 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
530 break;
531 KASSERT(sembuf != NULL);
532 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
533 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
534 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
535 (sembuf->sem_perm.mode & 0777);
536 semaptr->sem_ctime = time_second;
537 break;
538
539 case IPC_STAT:
540 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
541 break;
542 KASSERT(sembuf != NULL);
543 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
544 sembuf->sem_perm.mode &= 0777;
545 break;
546
547 case GETNCNT:
548 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
549 break;
550 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
551 error = EINVAL;
552 break;
553 }
554 *retval = semaptr->_sem_base[semnum].semncnt;
555 break;
556
557 case GETPID:
558 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
559 break;
560 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
561 error = EINVAL;
562 break;
563 }
564 *retval = semaptr->_sem_base[semnum].sempid;
565 break;
566
567 case GETVAL:
568 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
569 break;
570 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
571 error = EINVAL;
572 break;
573 }
574 *retval = semaptr->_sem_base[semnum].semval;
575 break;
576
577 case GETALL:
578 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
579 break;
580 KASSERT(arg != NULL);
581 for (i = 0; i < semaptr->sem_nsems; i++) {
582 error = copyout(&semaptr->_sem_base[i].semval,
583 &arg->array[i], sizeof(arg->array[i]));
584 if (error != 0)
585 break;
586 }
587 break;
588
589 case GETZCNT:
590 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
591 break;
592 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
593 error = EINVAL;
594 break;
595 }
596 *retval = semaptr->_sem_base[semnum].semzcnt;
597 break;
598
599 case SETVAL:
600 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
601 break;
602 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
603 error = EINVAL;
604 break;
605 }
606 KASSERT(arg != NULL);
607 if ((unsigned int)arg->val > seminfo.semvmx) {
608 error = ERANGE;
609 break;
610 }
611 semaptr->_sem_base[semnum].semval = arg->val;
612 semundo_clear(ix, semnum);
613 cv_broadcast(&semcv[ix]);
614 break;
615
616 case SETALL:
617 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
618 break;
619 KASSERT(arg != NULL);
620 for (i = 0; i < semaptr->sem_nsems; i++) {
621 unsigned short semval;
622 error = copyin(&arg->array[i], &semval,
623 sizeof(arg->array[i]));
624 if (error != 0)
625 break;
626 if ((unsigned int)semval > seminfo.semvmx) {
627 error = ERANGE;
628 break;
629 }
630 semaptr->_sem_base[i].semval = semval;
631 }
632 semundo_clear(ix, -1);
633 cv_broadcast(&semcv[ix]);
634 break;
635
636 default:
637 error = EINVAL;
638 break;
639 }
640
641 mutex_exit(&semlock);
642 return (error);
643 }
644
645 int
646 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
647 {
648 /* {
649 syscallarg(key_t) key;
650 syscallarg(int) nsems;
651 syscallarg(int) semflg;
652 } */
653 int semid, error = 0;
654 int key = SCARG(uap, key);
655 int nsems = SCARG(uap, nsems);
656 int semflg = SCARG(uap, semflg);
657 kauth_cred_t cred = l->l_cred;
658
659 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
660
661 mutex_enter(&semlock);
662
663 if (key != IPC_PRIVATE) {
664 for (semid = 0; semid < seminfo.semmni; semid++) {
665 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
666 sema[semid].sem_perm._key == key)
667 break;
668 }
669 if (semid < seminfo.semmni) {
670 SEM_PRINTF(("found public key\n"));
671 if ((error = ipcperm(cred, &sema[semid].sem_perm,
672 semflg & 0700)))
673 goto out;
674 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
675 SEM_PRINTF(("too small\n"));
676 error = EINVAL;
677 goto out;
678 }
679 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
680 SEM_PRINTF(("not exclusive\n"));
681 error = EEXIST;
682 goto out;
683 }
684 goto found;
685 }
686 }
687
688 SEM_PRINTF(("need to allocate the semid_ds\n"));
689 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
690 if (nsems <= 0 || nsems > seminfo.semmsl) {
691 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
692 seminfo.semmsl));
693 error = EINVAL;
694 goto out;
695 }
696 if (nsems > seminfo.semmns - semtot) {
697 SEM_PRINTF(("not enough semaphores left "
698 "(need %d, got %d)\n",
699 nsems, seminfo.semmns - semtot));
700 error = ENOSPC;
701 goto out;
702 }
703 for (semid = 0; semid < seminfo.semmni; semid++) {
704 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
705 break;
706 }
707 if (semid == seminfo.semmni) {
708 SEM_PRINTF(("no more semid_ds's available\n"));
709 error = ENOSPC;
710 goto out;
711 }
712 SEM_PRINTF(("semid %d is available\n", semid));
713 sema[semid].sem_perm._key = key;
714 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
715 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
716 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
717 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
718 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
719 sema[semid].sem_perm._seq =
720 (sema[semid].sem_perm._seq + 1) & 0x7fff;
721 sema[semid].sem_nsems = nsems;
722 sema[semid].sem_otime = 0;
723 sema[semid].sem_ctime = time_second;
724 sema[semid]._sem_base = &sem[semtot];
725 semtot += nsems;
726 memset(sema[semid]._sem_base, 0,
727 sizeof(sema[semid]._sem_base[0]) * nsems);
728 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
729 &sem[semtot]));
730 } else {
731 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
732 error = ENOENT;
733 goto out;
734 }
735
736 found:
737 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
738 out:
739 mutex_exit(&semlock);
740 return (error);
741 }
742
743 #define SMALL_SOPS 8
744
745 int
746 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
747 {
748 /* {
749 syscallarg(int) semid;
750 syscallarg(struct sembuf *) sops;
751 syscallarg(size_t) nsops;
752 } */
753 struct proc *p = l->l_proc;
754 int semid = SCARG(uap, semid), seq;
755 size_t nsops = SCARG(uap, nsops);
756 struct sembuf small_sops[SMALL_SOPS];
757 struct sembuf *sops;
758 struct semid_ds *semaptr;
759 struct sembuf *sopptr = NULL;
760 struct __sem *semptr = NULL;
761 struct sem_undo *suptr = NULL;
762 kauth_cred_t cred = l->l_cred;
763 int i, error;
764 int do_wakeup, do_undos;
765
766 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
767
768 if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
769 mutex_enter(p->p_lock);
770 p->p_flag |= PK_SYSVSEM;
771 mutex_exit(p->p_lock);
772 }
773
774 restart:
775 if (nsops <= SMALL_SOPS) {
776 sops = small_sops;
777 } else if (nsops <= seminfo.semopm) {
778 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
779 } else {
780 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
781 seminfo.semopm, nsops));
782 return (E2BIG);
783 }
784
785 error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
786 if (error) {
787 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
788 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
789 if (sops != small_sops)
790 kmem_free(sops, nsops * sizeof(*sops));
791 return error;
792 }
793
794 mutex_enter(&semlock);
795 /* In case of reallocation, we will wait for completion */
796 while (__predict_false(sem_realloc_state))
797 cv_wait(&sem_realloc_cv, &semlock);
798
799 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
800 if (semid < 0 || semid >= seminfo.semmni) {
801 error = EINVAL;
802 goto out;
803 }
804
805 semaptr = &sema[semid];
806 seq = IPCID_TO_SEQ(SCARG(uap, semid));
807 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
808 semaptr->sem_perm._seq != seq) {
809 error = EINVAL;
810 goto out;
811 }
812
813 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
814 SEM_PRINTF(("error = %d from ipaccess\n", error));
815 goto out;
816 }
817
818 for (i = 0; i < nsops; i++)
819 if (sops[i].sem_num >= semaptr->sem_nsems) {
820 error = EFBIG;
821 goto out;
822 }
823
824 /*
825 * Loop trying to satisfy the vector of requests.
826 * If we reach a point where we must wait, any requests already
827 * performed are rolled back and we go to sleep until some other
828 * process wakes us up. At this point, we start all over again.
829 *
830 * This ensures that from the perspective of other tasks, a set
831 * of requests is atomic (never partially satisfied).
832 */
833 do_undos = 0;
834
835 for (;;) {
836 do_wakeup = 0;
837
838 for (i = 0; i < nsops; i++) {
839 sopptr = &sops[i];
840 semptr = &semaptr->_sem_base[sopptr->sem_num];
841
842 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
843 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
844 semaptr, semaptr->_sem_base, semptr,
845 sopptr->sem_num, semptr->semval, sopptr->sem_op,
846 (sopptr->sem_flg & IPC_NOWAIT) ?
847 "nowait" : "wait"));
848
849 if (sopptr->sem_op < 0) {
850 if ((int)(semptr->semval +
851 sopptr->sem_op) < 0) {
852 SEM_PRINTF(("semop: "
853 "can't do it now\n"));
854 break;
855 } else {
856 semptr->semval += sopptr->sem_op;
857 if (semptr->semval == 0 &&
858 semptr->semzcnt > 0)
859 do_wakeup = 1;
860 }
861 if (sopptr->sem_flg & SEM_UNDO)
862 do_undos = 1;
863 } else if (sopptr->sem_op == 0) {
864 if (semptr->semval > 0) {
865 SEM_PRINTF(("semop: not zero now\n"));
866 break;
867 }
868 } else {
869 if (semptr->semncnt > 0)
870 do_wakeup = 1;
871 semptr->semval += sopptr->sem_op;
872 if (sopptr->sem_flg & SEM_UNDO)
873 do_undos = 1;
874 }
875 }
876
877 /*
878 * Did we get through the entire vector?
879 */
880 if (i >= nsops)
881 goto done;
882
883 /*
884 * No ... rollback anything that we've already done
885 */
886 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
887 while (i-- > 0)
888 semaptr->_sem_base[sops[i].sem_num].semval -=
889 sops[i].sem_op;
890
891 /*
892 * If the request that we couldn't satisfy has the
893 * NOWAIT flag set then return with EAGAIN.
894 */
895 if (sopptr->sem_flg & IPC_NOWAIT) {
896 error = EAGAIN;
897 goto out;
898 }
899
900 if (sopptr->sem_op == 0)
901 semptr->semzcnt++;
902 else
903 semptr->semncnt++;
904
905 sem_waiters++;
906 SEM_PRINTF(("semop: good night!\n"));
907 error = cv_wait_sig(&semcv[semid], &semlock);
908 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
909 sem_waiters--;
910
911 /* Notify reallocator, if it is waiting */
912 cv_broadcast(&sem_realloc_cv);
913
914 /*
915 * Make sure that the semaphore still exists
916 */
917 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
918 semaptr->sem_perm._seq != seq) {
919 error = EIDRM;
920 goto out;
921 }
922
923 /*
924 * The semaphore is still alive. Readjust the count of
925 * waiting processes.
926 */
927 semptr = &semaptr->_sem_base[sopptr->sem_num];
928 if (sopptr->sem_op == 0)
929 semptr->semzcnt--;
930 else
931 semptr->semncnt--;
932
933 /* In case of such state, restart the call */
934 if (sem_realloc_state) {
935 mutex_exit(&semlock);
936 goto restart;
937 }
938
939 /* Is it really morning, or was our sleep interrupted? */
940 if (error != 0) {
941 error = EINTR;
942 goto out;
943 }
944 SEM_PRINTF(("semop: good morning!\n"));
945 }
946
947 done:
948 /*
949 * Process any SEM_UNDO requests.
950 */
951 if (do_undos) {
952 for (i = 0; i < nsops; i++) {
953 /*
954 * We only need to deal with SEM_UNDO's for non-zero
955 * op's.
956 */
957 int adjval;
958
959 if ((sops[i].sem_flg & SEM_UNDO) == 0)
960 continue;
961 adjval = sops[i].sem_op;
962 if (adjval == 0)
963 continue;
964 error = semundo_adjust(p, &suptr, semid,
965 sops[i].sem_num, -adjval);
966 if (error == 0)
967 continue;
968
969 /*
970 * Oh-Oh! We ran out of either sem_undo's or undo's.
971 * Rollback the adjustments to this point and then
972 * rollback the semaphore ups and down so we can return
973 * with an error with all structures restored. We
974 * rollback the undo's in the exact reverse order that
975 * we applied them. This guarantees that we won't run
976 * out of space as we roll things back out.
977 */
978 while (i-- > 0) {
979 if ((sops[i].sem_flg & SEM_UNDO) == 0)
980 continue;
981 adjval = sops[i].sem_op;
982 if (adjval == 0)
983 continue;
984 if (semundo_adjust(p, &suptr, semid,
985 sops[i].sem_num, adjval) != 0)
986 panic("semop - can't undo undos");
987 }
988
989 for (i = 0; i < nsops; i++)
990 semaptr->_sem_base[sops[i].sem_num].semval -=
991 sops[i].sem_op;
992
993 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
994 goto out;
995 } /* loop through the sops */
996 } /* if (do_undos) */
997
998 /* We're definitely done - set the sempid's */
999 for (i = 0; i < nsops; i++) {
1000 sopptr = &sops[i];
1001 semptr = &semaptr->_sem_base[sopptr->sem_num];
1002 semptr->sempid = p->p_pid;
1003 }
1004
1005 /* Update sem_otime */
1006 semaptr->sem_otime = time_second;
1007
1008 /* Do a wakeup if any semaphore was up'd. */
1009 if (do_wakeup) {
1010 SEM_PRINTF(("semop: doing wakeup\n"));
1011 cv_broadcast(&semcv[semid]);
1012 SEM_PRINTF(("semop: back from wakeup\n"));
1013 }
1014 SEM_PRINTF(("semop: done\n"));
1015 *retval = 0;
1016
1017 out:
1018 mutex_exit(&semlock);
1019 if (sops != small_sops)
1020 kmem_free(sops, nsops * sizeof(*sops));
1021 return error;
1022 }
1023
1024 /*
1025 * Go through the undo structures for this process and apply the
1026 * adjustments to semaphores.
1027 */
1028 /*ARGSUSED*/
1029 void
1030 semexit(struct proc *p, void *v)
1031 {
1032 struct sem_undo *suptr;
1033 struct sem_undo **supptr;
1034
1035 if ((p->p_flag & PK_SYSVSEM) == 0)
1036 return;
1037
1038 mutex_enter(&semlock);
1039
1040 /*
1041 * Go through the chain of undo vectors looking for one
1042 * associated with this process.
1043 */
1044
1045 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1046 supptr = &suptr->un_next) {
1047 if (suptr->un_proc == p)
1048 break;
1049 }
1050
1051 /*
1052 * If there is no undo vector, skip to the end.
1053 */
1054
1055 if (suptr == NULL) {
1056 mutex_exit(&semlock);
1057 return;
1058 }
1059
1060 /*
1061 * We now have an undo vector for this process.
1062 */
1063
1064 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1065 suptr->un_cnt));
1066
1067 /*
1068 * If there are any active undo elements then process them.
1069 */
1070 if (suptr->un_cnt > 0) {
1071 int ix;
1072
1073 for (ix = 0; ix < suptr->un_cnt; ix++) {
1074 int semid = suptr->un_ent[ix].un_id;
1075 int semnum = suptr->un_ent[ix].un_num;
1076 int adjval = suptr->un_ent[ix].un_adjval;
1077 struct semid_ds *semaptr;
1078
1079 semaptr = &sema[semid];
1080 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1081 panic("semexit - semid not allocated");
1082 if (semnum >= semaptr->sem_nsems)
1083 panic("semexit - semnum out of range");
1084
1085 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1086 "sem=%d\n",
1087 suptr->un_proc, suptr->un_ent[ix].un_id,
1088 suptr->un_ent[ix].un_num,
1089 suptr->un_ent[ix].un_adjval,
1090 semaptr->_sem_base[semnum].semval));
1091
1092 if (adjval < 0 &&
1093 semaptr->_sem_base[semnum].semval < -adjval)
1094 semaptr->_sem_base[semnum].semval = 0;
1095 else
1096 semaptr->_sem_base[semnum].semval += adjval;
1097
1098 cv_broadcast(&semcv[semid]);
1099 SEM_PRINTF(("semexit: back from wakeup\n"));
1100 }
1101 }
1102
1103 /*
1104 * Deallocate the undo vector.
1105 */
1106 SEM_PRINTF(("removing vector\n"));
1107 suptr->un_proc = NULL;
1108 *supptr = suptr->un_next;
1109 mutex_exit(&semlock);
1110 }
1111
1112 /*
1113 * Sysctl initialization and nodes.
1114 */
1115
1116 static int
1117 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1118 {
1119 int newsize, error;
1120 struct sysctlnode node;
1121 node = *rnode;
1122 node.sysctl_data = &newsize;
1123
1124 newsize = seminfo.semmni;
1125 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1126 if (error || newp == NULL)
1127 return error;
1128
1129 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1130 }
1131
1132 static int
1133 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1134 {
1135 int newsize, error;
1136 struct sysctlnode node;
1137 node = *rnode;
1138 node.sysctl_data = &newsize;
1139
1140 newsize = seminfo.semmns;
1141 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1142 if (error || newp == NULL)
1143 return error;
1144
1145 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1146 }
1147
1148 static int
1149 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1150 {
1151 int newsize, error;
1152 struct sysctlnode node;
1153 node = *rnode;
1154 node.sysctl_data = &newsize;
1155
1156 newsize = seminfo.semmnu;
1157 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1158 if (error || newp == NULL)
1159 return error;
1160
1161 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1162 }
1163
1164 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1165 {
1166 const struct sysctlnode *node = NULL;
1167
1168 sysctl_createv(clog, 0, NULL, NULL,
1169 CTLFLAG_PERMANENT,
1170 CTLTYPE_NODE, "kern", NULL,
1171 NULL, 0, NULL, 0,
1172 CTL_KERN, CTL_EOL);
1173 sysctl_createv(clog, 0, NULL, &node,
1174 CTLFLAG_PERMANENT,
1175 CTLTYPE_NODE, "ipc",
1176 SYSCTL_DESCR("SysV IPC options"),
1177 NULL, 0, NULL, 0,
1178 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1179
1180 if (node == NULL)
1181 return;
1182
1183 sysctl_createv(clog, 0, &node, NULL,
1184 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1185 CTLTYPE_INT, "semmni",
1186 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1187 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1188 CTL_CREATE, CTL_EOL);
1189 sysctl_createv(clog, 0, &node, NULL,
1190 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1191 CTLTYPE_INT, "semmns",
1192 SYSCTL_DESCR("Max number of number of semaphores in system"),
1193 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1194 CTL_CREATE, CTL_EOL);
1195 sysctl_createv(clog, 0, &node, NULL,
1196 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1197 CTLTYPE_INT, "semmnu",
1198 SYSCTL_DESCR("Max number of undo structures in system"),
1199 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1200 CTL_CREATE, CTL_EOL);
1201 }
1202