sysv_sem.c revision 1.86.4.1 1 /* $NetBSD: sysv_sem.c,v 1.86.4.1 2011/05/31 03:05:03 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Implementation of SVID semaphores
35 *
36 * Author: Daniel Boulet
37 *
38 * This software is provided ``AS IS'' without any warranties of any kind.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.86.4.1 2011/05/31 03:05:03 rmind Exp $");
43
44 #define SYSVSEM
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
52 #include <sys/syscallargs.h>
53 #include <sys/kauth.h>
54
55 /*
56 * Memory areas:
57 * 1st: Pool of semaphore identifiers
58 * 2nd: Semaphores
59 * 3rd: Conditional variables
60 * 4th: Undo structures
61 */
62 struct semid_ds * sema __read_mostly;
63 static struct __sem * sem __read_mostly;
64 static kcondvar_t * semcv __read_mostly;
65 static int * semu __read_mostly;
66
67 static kmutex_t semlock __cacheline_aligned;
68 static bool sem_realloc_state __read_mostly;
69 static kcondvar_t sem_realloc_cv;
70
71 /*
72 * List of active undo structures, total number of semaphores,
73 * and total number of semop waiters.
74 */
75 static struct sem_undo *semu_list __read_mostly;
76 static u_int semtot __cacheline_aligned;
77 static u_int sem_waiters __cacheline_aligned;
78
79 /* Macro to find a particular sem_undo vector */
80 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
81
82 #ifdef SEM_DEBUG
83 #define SEM_PRINTF(a) printf a
84 #else
85 #define SEM_PRINTF(a)
86 #endif
87
88 struct sem_undo *semu_alloc(struct proc *);
89 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
90 void semundo_clear(int, int);
91
92 void
93 seminit(void)
94 {
95 int i, sz;
96 vaddr_t v;
97
98 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
99 cv_init(&sem_realloc_cv, "semrealc");
100 sem_realloc_state = false;
101 semtot = 0;
102 sem_waiters = 0;
103
104 /* Allocate the wired memory for our structures */
105 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
106 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
107 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
108 ALIGN(seminfo.semmnu * seminfo.semusz);
109 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
110 UVM_KMF_WIRED|UVM_KMF_ZERO);
111 if (v == 0)
112 panic("sysv_sem: cannot allocate memory");
113 sema = (void *)v;
114 sem = (void *)((uintptr_t)sema +
115 ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
116 semcv = (void *)((uintptr_t)sem +
117 ALIGN(seminfo.semmns * sizeof(struct __sem)));
118 semu = (void *)((uintptr_t)semcv +
119 ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
120
121 for (i = 0; i < seminfo.semmni; i++) {
122 sema[i]._sem_base = 0;
123 sema[i].sem_perm.mode = 0;
124 cv_init(&semcv[i], "semwait");
125 }
126 for (i = 0; i < seminfo.semmnu; i++) {
127 struct sem_undo *suptr = SEMU(semu, i);
128 suptr->un_proc = NULL;
129 }
130 semu_list = NULL;
131 exithook_establish(semexit, NULL);
132 }
133
134 static int
135 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
136 {
137 struct semid_ds *new_sema, *old_sema;
138 struct __sem *new_sem;
139 struct sem_undo *new_semu_list, *suptr, *nsuptr;
140 int *new_semu;
141 kcondvar_t *new_semcv;
142 vaddr_t v;
143 int i, j, lsemid, nmnus, sz;
144
145 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
146 return EINVAL;
147
148 /* Allocate the wired memory for our structures */
149 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
150 ALIGN(newsemmns * sizeof(struct __sem)) +
151 ALIGN(newsemmni * sizeof(kcondvar_t)) +
152 ALIGN(newsemmnu * seminfo.semusz);
153 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
154 UVM_KMF_WIRED|UVM_KMF_ZERO);
155 if (v == 0)
156 return ENOMEM;
157
158 mutex_enter(&semlock);
159 if (sem_realloc_state) {
160 mutex_exit(&semlock);
161 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
162 return EBUSY;
163 }
164 sem_realloc_state = true;
165 if (sem_waiters) {
166 /*
167 * Mark reallocation state, wake-up all waiters,
168 * and wait while they will all exit.
169 */
170 for (i = 0; i < seminfo.semmni; i++)
171 cv_broadcast(&semcv[i]);
172 while (sem_waiters)
173 cv_wait(&sem_realloc_cv, &semlock);
174 }
175 old_sema = sema;
176
177 /* Get the number of last slot */
178 lsemid = 0;
179 for (i = 0; i < seminfo.semmni; i++)
180 if (sema[i].sem_perm.mode & SEM_ALLOC)
181 lsemid = i;
182
183 /* Get the number of currently used undo structures */
184 nmnus = 0;
185 for (i = 0; i < seminfo.semmnu; i++) {
186 suptr = SEMU(semu, i);
187 if (suptr->un_proc == NULL)
188 continue;
189 nmnus++;
190 }
191
192 /* We cannot reallocate less memory than we use */
193 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
194 mutex_exit(&semlock);
195 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
196 return EBUSY;
197 }
198
199 new_sema = (void *)v;
200 new_sem = (void *)((uintptr_t)new_sema +
201 ALIGN(newsemmni * sizeof(struct semid_ds)));
202 new_semcv = (void *)((uintptr_t)new_sem +
203 ALIGN(newsemmns * sizeof(struct __sem)));
204 new_semu = (void *)((uintptr_t)new_semcv +
205 ALIGN(newsemmni * sizeof(kcondvar_t)));
206
207 /* Initialize all semaphore identifiers and condvars */
208 for (i = 0; i < newsemmni; i++) {
209 new_sema[i]._sem_base = 0;
210 new_sema[i].sem_perm.mode = 0;
211 cv_init(&new_semcv[i], "semwait");
212 }
213 for (i = 0; i < newsemmnu; i++) {
214 nsuptr = SEMU(new_semu, i);
215 nsuptr->un_proc = NULL;
216 }
217
218 /*
219 * Copy all identifiers, semaphores and list of the
220 * undo structures to the new memory allocation.
221 */
222 j = 0;
223 for (i = 0; i <= lsemid; i++) {
224 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
225 continue;
226 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
227 new_sema[i]._sem_base = &new_sem[j];
228 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
229 (sizeof(struct __sem) * sema[i].sem_nsems));
230 j += sema[i].sem_nsems;
231 }
232 KASSERT(j == semtot);
233
234 j = 0;
235 new_semu_list = NULL;
236 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
237 KASSERT(j < newsemmnu);
238 nsuptr = SEMU(new_semu, j);
239 memcpy(nsuptr, suptr, SEMUSZ);
240 nsuptr->un_next = new_semu_list;
241 new_semu_list = nsuptr;
242 j++;
243 }
244
245 for (i = 0; i < seminfo.semmni; i++) {
246 KASSERT(cv_has_waiters(&semcv[i]) == false);
247 cv_destroy(&semcv[i]);
248 }
249
250 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
251 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
252 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
253 ALIGN(seminfo.semmnu * seminfo.semusz);
254
255 /* Set the pointers and update the new values */
256 sema = new_sema;
257 sem = new_sem;
258 semcv = new_semcv;
259 semu = new_semu;
260 semu_list = new_semu_list;
261
262 seminfo.semmni = newsemmni;
263 seminfo.semmns = newsemmns;
264 seminfo.semmnu = newsemmnu;
265
266 /* Reallocation completed - notify all waiters, if any */
267 sem_realloc_state = false;
268 cv_broadcast(&sem_realloc_cv);
269 mutex_exit(&semlock);
270
271 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
272 return 0;
273 }
274
275 /*
276 * Placebo.
277 */
278
279 int
280 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
281 {
282
283 *retval = 0;
284 return 0;
285 }
286
287 /*
288 * Allocate a new sem_undo structure for a process.
289 * => Returns NULL on failure.
290 */
291 struct sem_undo *
292 semu_alloc(struct proc *p)
293 {
294 struct sem_undo *suptr, **supptr;
295 bool attempted = false;
296 int i;
297
298 KASSERT(mutex_owned(&semlock));
299 again:
300 /* Look for a free structure. */
301 for (i = 0; i < seminfo.semmnu; i++) {
302 suptr = SEMU(semu, i);
303 if (suptr->un_proc == NULL) {
304 /* Found. Fill it in and return. */
305 suptr->un_next = semu_list;
306 semu_list = suptr;
307 suptr->un_cnt = 0;
308 suptr->un_proc = p;
309 return suptr;
310 }
311 }
312
313 /* Not found. Attempt to free some structures. */
314 if (!attempted) {
315 bool freed = false;
316
317 attempted = true;
318 supptr = &semu_list;
319 while ((suptr = *supptr) != NULL) {
320 if (suptr->un_cnt == 0) {
321 suptr->un_proc = NULL;
322 *supptr = suptr->un_next;
323 freed = true;
324 } else {
325 supptr = &suptr->un_next;
326 }
327 }
328 if (freed) {
329 goto again;
330 }
331 }
332 return NULL;
333 }
334
335 /*
336 * Adjust a particular entry for a particular proc
337 */
338
339 int
340 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
341 int adjval)
342 {
343 struct sem_undo *suptr;
344 struct undo *sunptr;
345 int i;
346
347 KASSERT(mutex_owned(&semlock));
348
349 /*
350 * Look for and remember the sem_undo if the caller doesn't
351 * provide it
352 */
353
354 suptr = *supptr;
355 if (suptr == NULL) {
356 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
357 if (suptr->un_proc == p)
358 break;
359
360 if (suptr == NULL) {
361 suptr = semu_alloc(p);
362 if (suptr == NULL)
363 return (ENOSPC);
364 }
365 *supptr = suptr;
366 }
367
368 /*
369 * Look for the requested entry and adjust it (delete if
370 * adjval becomes 0).
371 */
372 sunptr = &suptr->un_ent[0];
373 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
374 if (sunptr->un_id != semid || sunptr->un_num != semnum)
375 continue;
376 sunptr->un_adjval += adjval;
377 if (sunptr->un_adjval == 0) {
378 suptr->un_cnt--;
379 if (i < suptr->un_cnt)
380 suptr->un_ent[i] =
381 suptr->un_ent[suptr->un_cnt];
382 }
383 return (0);
384 }
385
386 /* Didn't find the right entry - create it */
387 if (suptr->un_cnt == SEMUME)
388 return (EINVAL);
389
390 sunptr = &suptr->un_ent[suptr->un_cnt];
391 suptr->un_cnt++;
392 sunptr->un_adjval = adjval;
393 sunptr->un_id = semid;
394 sunptr->un_num = semnum;
395 return (0);
396 }
397
398 void
399 semundo_clear(int semid, int semnum)
400 {
401 struct sem_undo *suptr;
402 struct undo *sunptr, *sunend;
403
404 KASSERT(mutex_owned(&semlock));
405
406 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
407 for (sunptr = &suptr->un_ent[0],
408 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
409 if (sunptr->un_id == semid) {
410 if (semnum == -1 || sunptr->un_num == semnum) {
411 suptr->un_cnt--;
412 sunend--;
413 if (sunptr != sunend)
414 *sunptr = *sunend;
415 if (semnum != -1)
416 break;
417 else
418 continue;
419 }
420 }
421 sunptr++;
422 }
423 }
424
425 int
426 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
427 register_t *retval)
428 {
429 /* {
430 syscallarg(int) semid;
431 syscallarg(int) semnum;
432 syscallarg(int) cmd;
433 syscallarg(union __semun *) arg;
434 } */
435 struct semid_ds sembuf;
436 int cmd, error;
437 void *pass_arg;
438 union __semun karg;
439
440 cmd = SCARG(uap, cmd);
441
442 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
443
444 if (pass_arg) {
445 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
446 if (error)
447 return error;
448 if (cmd == IPC_SET) {
449 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
450 if (error)
451 return (error);
452 }
453 }
454
455 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
456 pass_arg, retval);
457
458 if (error == 0 && cmd == IPC_STAT)
459 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
460
461 return (error);
462 }
463
464 int
465 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
466 register_t *retval)
467 {
468 kauth_cred_t cred = l->l_cred;
469 union __semun *arg = v;
470 struct semid_ds *sembuf = v, *semaptr;
471 int i, error, ix;
472
473 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
474 semid, semnum, cmd, v));
475
476 mutex_enter(&semlock);
477
478 ix = IPCID_TO_IX(semid);
479 if (ix < 0 || ix >= seminfo.semmni) {
480 mutex_exit(&semlock);
481 return (EINVAL);
482 }
483
484 semaptr = &sema[ix];
485 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
486 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
487 mutex_exit(&semlock);
488 return (EINVAL);
489 }
490
491 switch (cmd) {
492 case IPC_RMID:
493 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
494 break;
495 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
496 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
497 semtot -= semaptr->sem_nsems;
498 for (i = semaptr->_sem_base - sem; i < semtot; i++)
499 sem[i] = sem[i + semaptr->sem_nsems];
500 for (i = 0; i < seminfo.semmni; i++) {
501 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
502 sema[i]._sem_base > semaptr->_sem_base)
503 sema[i]._sem_base -= semaptr->sem_nsems;
504 }
505 semaptr->sem_perm.mode = 0;
506 semundo_clear(ix, -1);
507 cv_broadcast(&semcv[ix]);
508 break;
509
510 case IPC_SET:
511 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
512 break;
513 KASSERT(sembuf != NULL);
514 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
515 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
516 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
517 (sembuf->sem_perm.mode & 0777);
518 semaptr->sem_ctime = time_second;
519 break;
520
521 case IPC_STAT:
522 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
523 break;
524 KASSERT(sembuf != NULL);
525 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
526 sembuf->sem_perm.mode &= 0777;
527 break;
528
529 case GETNCNT:
530 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
531 break;
532 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
533 error = EINVAL;
534 break;
535 }
536 *retval = semaptr->_sem_base[semnum].semncnt;
537 break;
538
539 case GETPID:
540 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
541 break;
542 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
543 error = EINVAL;
544 break;
545 }
546 *retval = semaptr->_sem_base[semnum].sempid;
547 break;
548
549 case GETVAL:
550 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
551 break;
552 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
553 error = EINVAL;
554 break;
555 }
556 *retval = semaptr->_sem_base[semnum].semval;
557 break;
558
559 case GETALL:
560 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
561 break;
562 KASSERT(arg != NULL);
563 for (i = 0; i < semaptr->sem_nsems; i++) {
564 error = copyout(&semaptr->_sem_base[i].semval,
565 &arg->array[i], sizeof(arg->array[i]));
566 if (error != 0)
567 break;
568 }
569 break;
570
571 case GETZCNT:
572 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
573 break;
574 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
575 error = EINVAL;
576 break;
577 }
578 *retval = semaptr->_sem_base[semnum].semzcnt;
579 break;
580
581 case SETVAL:
582 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
583 break;
584 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
585 error = EINVAL;
586 break;
587 }
588 KASSERT(arg != NULL);
589 if ((unsigned int)arg->val > seminfo.semvmx) {
590 error = ERANGE;
591 break;
592 }
593 semaptr->_sem_base[semnum].semval = arg->val;
594 semundo_clear(ix, semnum);
595 cv_broadcast(&semcv[ix]);
596 break;
597
598 case SETALL:
599 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
600 break;
601 KASSERT(arg != NULL);
602 for (i = 0; i < semaptr->sem_nsems; i++) {
603 unsigned short semval;
604 error = copyin(&arg->array[i], &semval,
605 sizeof(arg->array[i]));
606 if (error != 0)
607 break;
608 if ((unsigned int)semval > seminfo.semvmx) {
609 error = ERANGE;
610 break;
611 }
612 semaptr->_sem_base[i].semval = semval;
613 }
614 semundo_clear(ix, -1);
615 cv_broadcast(&semcv[ix]);
616 break;
617
618 default:
619 error = EINVAL;
620 break;
621 }
622
623 mutex_exit(&semlock);
624 return (error);
625 }
626
627 int
628 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
629 {
630 /* {
631 syscallarg(key_t) key;
632 syscallarg(int) nsems;
633 syscallarg(int) semflg;
634 } */
635 int semid, error = 0;
636 int key = SCARG(uap, key);
637 int nsems = SCARG(uap, nsems);
638 int semflg = SCARG(uap, semflg);
639 kauth_cred_t cred = l->l_cred;
640
641 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
642
643 mutex_enter(&semlock);
644
645 if (key != IPC_PRIVATE) {
646 for (semid = 0; semid < seminfo.semmni; semid++) {
647 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
648 sema[semid].sem_perm._key == key)
649 break;
650 }
651 if (semid < seminfo.semmni) {
652 SEM_PRINTF(("found public key\n"));
653 if ((error = ipcperm(cred, &sema[semid].sem_perm,
654 semflg & 0700)))
655 goto out;
656 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
657 SEM_PRINTF(("too small\n"));
658 error = EINVAL;
659 goto out;
660 }
661 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
662 SEM_PRINTF(("not exclusive\n"));
663 error = EEXIST;
664 goto out;
665 }
666 goto found;
667 }
668 }
669
670 SEM_PRINTF(("need to allocate the semid_ds\n"));
671 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
672 if (nsems <= 0 || nsems > seminfo.semmsl) {
673 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
674 seminfo.semmsl));
675 error = EINVAL;
676 goto out;
677 }
678 if (nsems > seminfo.semmns - semtot) {
679 SEM_PRINTF(("not enough semaphores left "
680 "(need %d, got %d)\n",
681 nsems, seminfo.semmns - semtot));
682 error = ENOSPC;
683 goto out;
684 }
685 for (semid = 0; semid < seminfo.semmni; semid++) {
686 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
687 break;
688 }
689 if (semid == seminfo.semmni) {
690 SEM_PRINTF(("no more semid_ds's available\n"));
691 error = ENOSPC;
692 goto out;
693 }
694 SEM_PRINTF(("semid %d is available\n", semid));
695 sema[semid].sem_perm._key = key;
696 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
697 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
698 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
699 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
700 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
701 sema[semid].sem_perm._seq =
702 (sema[semid].sem_perm._seq + 1) & 0x7fff;
703 sema[semid].sem_nsems = nsems;
704 sema[semid].sem_otime = 0;
705 sema[semid].sem_ctime = time_second;
706 sema[semid]._sem_base = &sem[semtot];
707 semtot += nsems;
708 memset(sema[semid]._sem_base, 0,
709 sizeof(sema[semid]._sem_base[0]) * nsems);
710 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
711 &sem[semtot]));
712 } else {
713 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
714 error = ENOENT;
715 goto out;
716 }
717
718 found:
719 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
720 out:
721 mutex_exit(&semlock);
722 return (error);
723 }
724
725 #define SMALL_SOPS 8
726
727 int
728 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
729 {
730 /* {
731 syscallarg(int) semid;
732 syscallarg(struct sembuf *) sops;
733 syscallarg(size_t) nsops;
734 } */
735 struct proc *p = l->l_proc;
736 int semid = SCARG(uap, semid), seq;
737 size_t nsops = SCARG(uap, nsops);
738 struct sembuf small_sops[SMALL_SOPS];
739 struct sembuf *sops;
740 struct semid_ds *semaptr;
741 struct sembuf *sopptr = NULL;
742 struct __sem *semptr = NULL;
743 struct sem_undo *suptr = NULL;
744 kauth_cred_t cred = l->l_cred;
745 int i, error;
746 int do_wakeup, do_undos;
747
748 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
749
750 if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
751 mutex_enter(p->p_lock);
752 p->p_flag |= PK_SYSVSEM;
753 mutex_exit(p->p_lock);
754 }
755
756 restart:
757 if (nsops <= SMALL_SOPS) {
758 sops = small_sops;
759 } else if (nsops <= seminfo.semopm) {
760 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
761 } else {
762 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
763 seminfo.semopm, nsops));
764 return (E2BIG);
765 }
766
767 error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
768 if (error) {
769 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
770 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
771 if (sops != small_sops)
772 kmem_free(sops, nsops * sizeof(*sops));
773 return error;
774 }
775
776 mutex_enter(&semlock);
777 /* In case of reallocation, we will wait for completion */
778 while (__predict_false(sem_realloc_state))
779 cv_wait(&sem_realloc_cv, &semlock);
780
781 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
782 if (semid < 0 || semid >= seminfo.semmni) {
783 error = EINVAL;
784 goto out;
785 }
786
787 semaptr = &sema[semid];
788 seq = IPCID_TO_SEQ(SCARG(uap, semid));
789 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
790 semaptr->sem_perm._seq != seq) {
791 error = EINVAL;
792 goto out;
793 }
794
795 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
796 SEM_PRINTF(("error = %d from ipaccess\n", error));
797 goto out;
798 }
799
800 for (i = 0; i < nsops; i++)
801 if (sops[i].sem_num >= semaptr->sem_nsems) {
802 error = EFBIG;
803 goto out;
804 }
805
806 /*
807 * Loop trying to satisfy the vector of requests.
808 * If we reach a point where we must wait, any requests already
809 * performed are rolled back and we go to sleep until some other
810 * process wakes us up. At this point, we start all over again.
811 *
812 * This ensures that from the perspective of other tasks, a set
813 * of requests is atomic (never partially satisfied).
814 */
815 do_undos = 0;
816
817 for (;;) {
818 do_wakeup = 0;
819
820 for (i = 0; i < nsops; i++) {
821 sopptr = &sops[i];
822 semptr = &semaptr->_sem_base[sopptr->sem_num];
823
824 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
825 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
826 semaptr, semaptr->_sem_base, semptr,
827 sopptr->sem_num, semptr->semval, sopptr->sem_op,
828 (sopptr->sem_flg & IPC_NOWAIT) ?
829 "nowait" : "wait"));
830
831 if (sopptr->sem_op < 0) {
832 if ((int)(semptr->semval +
833 sopptr->sem_op) < 0) {
834 SEM_PRINTF(("semop: "
835 "can't do it now\n"));
836 break;
837 } else {
838 semptr->semval += sopptr->sem_op;
839 if (semptr->semval == 0 &&
840 semptr->semzcnt > 0)
841 do_wakeup = 1;
842 }
843 if (sopptr->sem_flg & SEM_UNDO)
844 do_undos = 1;
845 } else if (sopptr->sem_op == 0) {
846 if (semptr->semval > 0) {
847 SEM_PRINTF(("semop: not zero now\n"));
848 break;
849 }
850 } else {
851 if (semptr->semncnt > 0)
852 do_wakeup = 1;
853 semptr->semval += sopptr->sem_op;
854 if (sopptr->sem_flg & SEM_UNDO)
855 do_undos = 1;
856 }
857 }
858
859 /*
860 * Did we get through the entire vector?
861 */
862 if (i >= nsops)
863 goto done;
864
865 /*
866 * No ... rollback anything that we've already done
867 */
868 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
869 while (i-- > 0)
870 semaptr->_sem_base[sops[i].sem_num].semval -=
871 sops[i].sem_op;
872
873 /*
874 * If the request that we couldn't satisfy has the
875 * NOWAIT flag set then return with EAGAIN.
876 */
877 if (sopptr->sem_flg & IPC_NOWAIT) {
878 error = EAGAIN;
879 goto out;
880 }
881
882 if (sopptr->sem_op == 0)
883 semptr->semzcnt++;
884 else
885 semptr->semncnt++;
886
887 sem_waiters++;
888 SEM_PRINTF(("semop: good night!\n"));
889 error = cv_wait_sig(&semcv[semid], &semlock);
890 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
891 sem_waiters--;
892
893 /* Notify reallocator, if it is waiting */
894 cv_broadcast(&sem_realloc_cv);
895
896 /*
897 * Make sure that the semaphore still exists
898 */
899 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
900 semaptr->sem_perm._seq != seq) {
901 error = EIDRM;
902 goto out;
903 }
904
905 /*
906 * The semaphore is still alive. Readjust the count of
907 * waiting processes.
908 */
909 semptr = &semaptr->_sem_base[sopptr->sem_num];
910 if (sopptr->sem_op == 0)
911 semptr->semzcnt--;
912 else
913 semptr->semncnt--;
914
915 /* In case of such state, restart the call */
916 if (sem_realloc_state) {
917 mutex_exit(&semlock);
918 goto restart;
919 }
920
921 /* Is it really morning, or was our sleep interrupted? */
922 if (error != 0) {
923 error = EINTR;
924 goto out;
925 }
926 SEM_PRINTF(("semop: good morning!\n"));
927 }
928
929 done:
930 /*
931 * Process any SEM_UNDO requests.
932 */
933 if (do_undos) {
934 for (i = 0; i < nsops; i++) {
935 /*
936 * We only need to deal with SEM_UNDO's for non-zero
937 * op's.
938 */
939 int adjval;
940
941 if ((sops[i].sem_flg & SEM_UNDO) == 0)
942 continue;
943 adjval = sops[i].sem_op;
944 if (adjval == 0)
945 continue;
946 error = semundo_adjust(p, &suptr, semid,
947 sops[i].sem_num, -adjval);
948 if (error == 0)
949 continue;
950
951 /*
952 * Oh-Oh! We ran out of either sem_undo's or undo's.
953 * Rollback the adjustments to this point and then
954 * rollback the semaphore ups and down so we can return
955 * with an error with all structures restored. We
956 * rollback the undo's in the exact reverse order that
957 * we applied them. This guarantees that we won't run
958 * out of space as we roll things back out.
959 */
960 while (i-- > 0) {
961 if ((sops[i].sem_flg & SEM_UNDO) == 0)
962 continue;
963 adjval = sops[i].sem_op;
964 if (adjval == 0)
965 continue;
966 if (semundo_adjust(p, &suptr, semid,
967 sops[i].sem_num, adjval) != 0)
968 panic("semop - can't undo undos");
969 }
970
971 for (i = 0; i < nsops; i++)
972 semaptr->_sem_base[sops[i].sem_num].semval -=
973 sops[i].sem_op;
974
975 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
976 goto out;
977 } /* loop through the sops */
978 } /* if (do_undos) */
979
980 /* We're definitely done - set the sempid's */
981 for (i = 0; i < nsops; i++) {
982 sopptr = &sops[i];
983 semptr = &semaptr->_sem_base[sopptr->sem_num];
984 semptr->sempid = p->p_pid;
985 }
986
987 /* Update sem_otime */
988 semaptr->sem_otime = time_second;
989
990 /* Do a wakeup if any semaphore was up'd. */
991 if (do_wakeup) {
992 SEM_PRINTF(("semop: doing wakeup\n"));
993 cv_broadcast(&semcv[semid]);
994 SEM_PRINTF(("semop: back from wakeup\n"));
995 }
996 SEM_PRINTF(("semop: done\n"));
997 *retval = 0;
998
999 out:
1000 mutex_exit(&semlock);
1001 if (sops != small_sops)
1002 kmem_free(sops, nsops * sizeof(*sops));
1003 return error;
1004 }
1005
1006 /*
1007 * Go through the undo structures for this process and apply the
1008 * adjustments to semaphores.
1009 */
1010 /*ARGSUSED*/
1011 void
1012 semexit(struct proc *p, void *v)
1013 {
1014 struct sem_undo *suptr;
1015 struct sem_undo **supptr;
1016
1017 if ((p->p_flag & PK_SYSVSEM) == 0)
1018 return;
1019
1020 mutex_enter(&semlock);
1021
1022 /*
1023 * Go through the chain of undo vectors looking for one
1024 * associated with this process.
1025 */
1026
1027 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1028 supptr = &suptr->un_next) {
1029 if (suptr->un_proc == p)
1030 break;
1031 }
1032
1033 /*
1034 * If there is no undo vector, skip to the end.
1035 */
1036
1037 if (suptr == NULL) {
1038 mutex_exit(&semlock);
1039 return;
1040 }
1041
1042 /*
1043 * We now have an undo vector for this process.
1044 */
1045
1046 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1047 suptr->un_cnt));
1048
1049 /*
1050 * If there are any active undo elements then process them.
1051 */
1052 if (suptr->un_cnt > 0) {
1053 int ix;
1054
1055 for (ix = 0; ix < suptr->un_cnt; ix++) {
1056 int semid = suptr->un_ent[ix].un_id;
1057 int semnum = suptr->un_ent[ix].un_num;
1058 int adjval = suptr->un_ent[ix].un_adjval;
1059 struct semid_ds *semaptr;
1060
1061 semaptr = &sema[semid];
1062 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1063 panic("semexit - semid not allocated");
1064 if (semnum >= semaptr->sem_nsems)
1065 panic("semexit - semnum out of range");
1066
1067 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1068 "sem=%d\n",
1069 suptr->un_proc, suptr->un_ent[ix].un_id,
1070 suptr->un_ent[ix].un_num,
1071 suptr->un_ent[ix].un_adjval,
1072 semaptr->_sem_base[semnum].semval));
1073
1074 if (adjval < 0 &&
1075 semaptr->_sem_base[semnum].semval < -adjval)
1076 semaptr->_sem_base[semnum].semval = 0;
1077 else
1078 semaptr->_sem_base[semnum].semval += adjval;
1079
1080 cv_broadcast(&semcv[semid]);
1081 SEM_PRINTF(("semexit: back from wakeup\n"));
1082 }
1083 }
1084
1085 /*
1086 * Deallocate the undo vector.
1087 */
1088 SEM_PRINTF(("removing vector\n"));
1089 suptr->un_proc = NULL;
1090 *supptr = suptr->un_next;
1091 mutex_exit(&semlock);
1092 }
1093
1094 /*
1095 * Sysctl initialization and nodes.
1096 */
1097
1098 static int
1099 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1100 {
1101 int newsize, error;
1102 struct sysctlnode node;
1103 node = *rnode;
1104 node.sysctl_data = &newsize;
1105
1106 newsize = seminfo.semmni;
1107 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1108 if (error || newp == NULL)
1109 return error;
1110
1111 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1112 }
1113
1114 static int
1115 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1116 {
1117 int newsize, error;
1118 struct sysctlnode node;
1119 node = *rnode;
1120 node.sysctl_data = &newsize;
1121
1122 newsize = seminfo.semmns;
1123 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1124 if (error || newp == NULL)
1125 return error;
1126
1127 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1128 }
1129
1130 static int
1131 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1132 {
1133 int newsize, error;
1134 struct sysctlnode node;
1135 node = *rnode;
1136 node.sysctl_data = &newsize;
1137
1138 newsize = seminfo.semmnu;
1139 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1140 if (error || newp == NULL)
1141 return error;
1142
1143 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1144 }
1145
1146 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1147 {
1148 const struct sysctlnode *node = NULL;
1149
1150 sysctl_createv(clog, 0, NULL, NULL,
1151 CTLFLAG_PERMANENT,
1152 CTLTYPE_NODE, "kern", NULL,
1153 NULL, 0, NULL, 0,
1154 CTL_KERN, CTL_EOL);
1155 sysctl_createv(clog, 0, NULL, &node,
1156 CTLFLAG_PERMANENT,
1157 CTLTYPE_NODE, "ipc",
1158 SYSCTL_DESCR("SysV IPC options"),
1159 NULL, 0, NULL, 0,
1160 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1161
1162 if (node == NULL)
1163 return;
1164
1165 sysctl_createv(clog, 0, &node, NULL,
1166 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1167 CTLTYPE_INT, "semmni",
1168 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1169 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1170 CTL_CREATE, CTL_EOL);
1171 sysctl_createv(clog, 0, &node, NULL,
1172 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1173 CTLTYPE_INT, "semmns",
1174 SYSCTL_DESCR("Max number of number of semaphores in system"),
1175 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1176 CTL_CREATE, CTL_EOL);
1177 sysctl_createv(clog, 0, &node, NULL,
1178 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1179 CTLTYPE_INT, "semmnu",
1180 SYSCTL_DESCR("Max number of undo structures in system"),
1181 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1182 CTL_CREATE, CTL_EOL);
1183 }
1184