sysv_sem.c revision 1.89 1 /* $NetBSD: sysv_sem.c,v 1.89 2012/03/13 18:40:54 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Implementation of SVID semaphores
35 *
36 * Author: Daniel Boulet
37 *
38 * This software is provided ``AS IS'' without any warranties of any kind.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.89 2012/03/13 18:40:54 elad Exp $");
43
44 #define SYSVSEM
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
52 #include <sys/syscallargs.h>
53 #include <sys/kauth.h>
54
55 /*
56 * Memory areas:
57 * 1st: Pool of semaphore identifiers
58 * 2nd: Semaphores
59 * 3rd: Conditional variables
60 * 4th: Undo structures
61 */
62 struct semid_ds * sema __read_mostly;
63 static struct __sem * sem __read_mostly;
64 static kcondvar_t * semcv __read_mostly;
65 static int * semu __read_mostly;
66
67 static kmutex_t semlock __cacheline_aligned;
68 static bool sem_realloc_state __read_mostly;
69 static kcondvar_t sem_realloc_cv;
70
71 /*
72 * List of active undo structures, total number of semaphores,
73 * and total number of semop waiters.
74 */
75 static struct sem_undo *semu_list __read_mostly;
76 static u_int semtot __cacheline_aligned;
77 static u_int sem_waiters __cacheline_aligned;
78
79 /* Macro to find a particular sem_undo vector */
80 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
81
82 #ifdef SEM_DEBUG
83 #define SEM_PRINTF(a) printf a
84 #else
85 #define SEM_PRINTF(a)
86 #endif
87
88 struct sem_undo *semu_alloc(struct proc *);
89 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
90 void semundo_clear(int, int);
91
92 void
93 seminit(void)
94 {
95 int i, sz;
96 vaddr_t v;
97
98 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
99 cv_init(&sem_realloc_cv, "semrealc");
100 sem_realloc_state = false;
101 semtot = 0;
102 sem_waiters = 0;
103
104 /* Allocate the wired memory for our structures */
105 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
106 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
107 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
108 ALIGN(seminfo.semmnu * seminfo.semusz);
109 sz = round_page(sz);
110 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
111 if (v == 0)
112 panic("sysv_sem: cannot allocate memory");
113 sema = (void *)v;
114 sem = (void *)((uintptr_t)sema +
115 ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
116 semcv = (void *)((uintptr_t)sem +
117 ALIGN(seminfo.semmns * sizeof(struct __sem)));
118 semu = (void *)((uintptr_t)semcv +
119 ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
120
121 for (i = 0; i < seminfo.semmni; i++) {
122 sema[i]._sem_base = 0;
123 sema[i].sem_perm.mode = 0;
124 cv_init(&semcv[i], "semwait");
125 }
126 for (i = 0; i < seminfo.semmnu; i++) {
127 struct sem_undo *suptr = SEMU(semu, i);
128 suptr->un_proc = NULL;
129 }
130 semu_list = NULL;
131 exithook_establish(semexit, NULL);
132
133 sysvipcinit();
134 }
135
136 static int
137 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
138 {
139 struct semid_ds *new_sema, *old_sema;
140 struct __sem *new_sem;
141 struct sem_undo *new_semu_list, *suptr, *nsuptr;
142 int *new_semu;
143 kcondvar_t *new_semcv;
144 vaddr_t v;
145 int i, j, lsemid, nmnus, sz;
146
147 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
148 return EINVAL;
149
150 /* Allocate the wired memory for our structures */
151 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
152 ALIGN(newsemmns * sizeof(struct __sem)) +
153 ALIGN(newsemmni * sizeof(kcondvar_t)) +
154 ALIGN(newsemmnu * seminfo.semusz);
155 sz = round_page(sz);
156 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
157 if (v == 0)
158 return ENOMEM;
159
160 mutex_enter(&semlock);
161 if (sem_realloc_state) {
162 mutex_exit(&semlock);
163 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
164 return EBUSY;
165 }
166 sem_realloc_state = true;
167 if (sem_waiters) {
168 /*
169 * Mark reallocation state, wake-up all waiters,
170 * and wait while they will all exit.
171 */
172 for (i = 0; i < seminfo.semmni; i++)
173 cv_broadcast(&semcv[i]);
174 while (sem_waiters)
175 cv_wait(&sem_realloc_cv, &semlock);
176 }
177 old_sema = sema;
178
179 /* Get the number of last slot */
180 lsemid = 0;
181 for (i = 0; i < seminfo.semmni; i++)
182 if (sema[i].sem_perm.mode & SEM_ALLOC)
183 lsemid = i;
184
185 /* Get the number of currently used undo structures */
186 nmnus = 0;
187 for (i = 0; i < seminfo.semmnu; i++) {
188 suptr = SEMU(semu, i);
189 if (suptr->un_proc == NULL)
190 continue;
191 nmnus++;
192 }
193
194 /* We cannot reallocate less memory than we use */
195 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
196 mutex_exit(&semlock);
197 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
198 return EBUSY;
199 }
200
201 new_sema = (void *)v;
202 new_sem = (void *)((uintptr_t)new_sema +
203 ALIGN(newsemmni * sizeof(struct semid_ds)));
204 new_semcv = (void *)((uintptr_t)new_sem +
205 ALIGN(newsemmns * sizeof(struct __sem)));
206 new_semu = (void *)((uintptr_t)new_semcv +
207 ALIGN(newsemmni * sizeof(kcondvar_t)));
208
209 /* Initialize all semaphore identifiers and condvars */
210 for (i = 0; i < newsemmni; i++) {
211 new_sema[i]._sem_base = 0;
212 new_sema[i].sem_perm.mode = 0;
213 cv_init(&new_semcv[i], "semwait");
214 }
215 for (i = 0; i < newsemmnu; i++) {
216 nsuptr = SEMU(new_semu, i);
217 nsuptr->un_proc = NULL;
218 }
219
220 /*
221 * Copy all identifiers, semaphores and list of the
222 * undo structures to the new memory allocation.
223 */
224 j = 0;
225 for (i = 0; i <= lsemid; i++) {
226 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
227 continue;
228 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
229 new_sema[i]._sem_base = &new_sem[j];
230 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
231 (sizeof(struct __sem) * sema[i].sem_nsems));
232 j += sema[i].sem_nsems;
233 }
234 KASSERT(j == semtot);
235
236 j = 0;
237 new_semu_list = NULL;
238 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
239 KASSERT(j < newsemmnu);
240 nsuptr = SEMU(new_semu, j);
241 memcpy(nsuptr, suptr, SEMUSZ);
242 nsuptr->un_next = new_semu_list;
243 new_semu_list = nsuptr;
244 j++;
245 }
246
247 for (i = 0; i < seminfo.semmni; i++) {
248 KASSERT(cv_has_waiters(&semcv[i]) == false);
249 cv_destroy(&semcv[i]);
250 }
251
252 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
253 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
254 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
255 ALIGN(seminfo.semmnu * seminfo.semusz);
256 sz = round_page(sz);
257
258 /* Set the pointers and update the new values */
259 sema = new_sema;
260 sem = new_sem;
261 semcv = new_semcv;
262 semu = new_semu;
263 semu_list = new_semu_list;
264
265 seminfo.semmni = newsemmni;
266 seminfo.semmns = newsemmns;
267 seminfo.semmnu = newsemmnu;
268
269 /* Reallocation completed - notify all waiters, if any */
270 sem_realloc_state = false;
271 cv_broadcast(&sem_realloc_cv);
272 mutex_exit(&semlock);
273
274 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
275 return 0;
276 }
277
278 /*
279 * Placebo.
280 */
281
282 int
283 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
284 {
285
286 *retval = 0;
287 return 0;
288 }
289
290 /*
291 * Allocate a new sem_undo structure for a process.
292 * => Returns NULL on failure.
293 */
294 struct sem_undo *
295 semu_alloc(struct proc *p)
296 {
297 struct sem_undo *suptr, **supptr;
298 bool attempted = false;
299 int i;
300
301 KASSERT(mutex_owned(&semlock));
302 again:
303 /* Look for a free structure. */
304 for (i = 0; i < seminfo.semmnu; i++) {
305 suptr = SEMU(semu, i);
306 if (suptr->un_proc == NULL) {
307 /* Found. Fill it in and return. */
308 suptr->un_next = semu_list;
309 semu_list = suptr;
310 suptr->un_cnt = 0;
311 suptr->un_proc = p;
312 return suptr;
313 }
314 }
315
316 /* Not found. Attempt to free some structures. */
317 if (!attempted) {
318 bool freed = false;
319
320 attempted = true;
321 supptr = &semu_list;
322 while ((suptr = *supptr) != NULL) {
323 if (suptr->un_cnt == 0) {
324 suptr->un_proc = NULL;
325 *supptr = suptr->un_next;
326 freed = true;
327 } else {
328 supptr = &suptr->un_next;
329 }
330 }
331 if (freed) {
332 goto again;
333 }
334 }
335 return NULL;
336 }
337
338 /*
339 * Adjust a particular entry for a particular proc
340 */
341
342 int
343 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
344 int adjval)
345 {
346 struct sem_undo *suptr;
347 struct undo *sunptr;
348 int i;
349
350 KASSERT(mutex_owned(&semlock));
351
352 /*
353 * Look for and remember the sem_undo if the caller doesn't
354 * provide it
355 */
356
357 suptr = *supptr;
358 if (suptr == NULL) {
359 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
360 if (suptr->un_proc == p)
361 break;
362
363 if (suptr == NULL) {
364 suptr = semu_alloc(p);
365 if (suptr == NULL)
366 return (ENOSPC);
367 }
368 *supptr = suptr;
369 }
370
371 /*
372 * Look for the requested entry and adjust it (delete if
373 * adjval becomes 0).
374 */
375 sunptr = &suptr->un_ent[0];
376 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
377 if (sunptr->un_id != semid || sunptr->un_num != semnum)
378 continue;
379 sunptr->un_adjval += adjval;
380 if (sunptr->un_adjval == 0) {
381 suptr->un_cnt--;
382 if (i < suptr->un_cnt)
383 suptr->un_ent[i] =
384 suptr->un_ent[suptr->un_cnt];
385 }
386 return (0);
387 }
388
389 /* Didn't find the right entry - create it */
390 if (suptr->un_cnt == SEMUME)
391 return (EINVAL);
392
393 sunptr = &suptr->un_ent[suptr->un_cnt];
394 suptr->un_cnt++;
395 sunptr->un_adjval = adjval;
396 sunptr->un_id = semid;
397 sunptr->un_num = semnum;
398 return (0);
399 }
400
401 void
402 semundo_clear(int semid, int semnum)
403 {
404 struct sem_undo *suptr;
405 struct undo *sunptr, *sunend;
406
407 KASSERT(mutex_owned(&semlock));
408
409 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
410 for (sunptr = &suptr->un_ent[0],
411 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
412 if (sunptr->un_id == semid) {
413 if (semnum == -1 || sunptr->un_num == semnum) {
414 suptr->un_cnt--;
415 sunend--;
416 if (sunptr != sunend)
417 *sunptr = *sunend;
418 if (semnum != -1)
419 break;
420 else
421 continue;
422 }
423 }
424 sunptr++;
425 }
426 }
427
428 int
429 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
430 register_t *retval)
431 {
432 /* {
433 syscallarg(int) semid;
434 syscallarg(int) semnum;
435 syscallarg(int) cmd;
436 syscallarg(union __semun *) arg;
437 } */
438 struct semid_ds sembuf;
439 int cmd, error;
440 void *pass_arg;
441 union __semun karg;
442
443 cmd = SCARG(uap, cmd);
444
445 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
446
447 if (pass_arg) {
448 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
449 if (error)
450 return error;
451 if (cmd == IPC_SET) {
452 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
453 if (error)
454 return (error);
455 }
456 }
457
458 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
459 pass_arg, retval);
460
461 if (error == 0 && cmd == IPC_STAT)
462 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
463
464 return (error);
465 }
466
467 int
468 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
469 register_t *retval)
470 {
471 kauth_cred_t cred = l->l_cred;
472 union __semun *arg = v;
473 struct semid_ds *sembuf = v, *semaptr;
474 int i, error, ix;
475
476 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
477 semid, semnum, cmd, v));
478
479 mutex_enter(&semlock);
480
481 ix = IPCID_TO_IX(semid);
482 if (ix < 0 || ix >= seminfo.semmni) {
483 mutex_exit(&semlock);
484 return (EINVAL);
485 }
486
487 semaptr = &sema[ix];
488 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
489 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
490 mutex_exit(&semlock);
491 return (EINVAL);
492 }
493
494 switch (cmd) {
495 case IPC_RMID:
496 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
497 break;
498 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
499 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
500 semtot -= semaptr->sem_nsems;
501 for (i = semaptr->_sem_base - sem; i < semtot; i++)
502 sem[i] = sem[i + semaptr->sem_nsems];
503 for (i = 0; i < seminfo.semmni; i++) {
504 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
505 sema[i]._sem_base > semaptr->_sem_base)
506 sema[i]._sem_base -= semaptr->sem_nsems;
507 }
508 semaptr->sem_perm.mode = 0;
509 semundo_clear(ix, -1);
510 cv_broadcast(&semcv[ix]);
511 break;
512
513 case IPC_SET:
514 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
515 break;
516 KASSERT(sembuf != NULL);
517 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
518 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
519 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
520 (sembuf->sem_perm.mode & 0777);
521 semaptr->sem_ctime = time_second;
522 break;
523
524 case IPC_STAT:
525 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
526 break;
527 KASSERT(sembuf != NULL);
528 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
529 sembuf->sem_perm.mode &= 0777;
530 break;
531
532 case GETNCNT:
533 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
534 break;
535 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
536 error = EINVAL;
537 break;
538 }
539 *retval = semaptr->_sem_base[semnum].semncnt;
540 break;
541
542 case GETPID:
543 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
544 break;
545 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
546 error = EINVAL;
547 break;
548 }
549 *retval = semaptr->_sem_base[semnum].sempid;
550 break;
551
552 case GETVAL:
553 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
554 break;
555 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
556 error = EINVAL;
557 break;
558 }
559 *retval = semaptr->_sem_base[semnum].semval;
560 break;
561
562 case GETALL:
563 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
564 break;
565 KASSERT(arg != NULL);
566 for (i = 0; i < semaptr->sem_nsems; i++) {
567 error = copyout(&semaptr->_sem_base[i].semval,
568 &arg->array[i], sizeof(arg->array[i]));
569 if (error != 0)
570 break;
571 }
572 break;
573
574 case GETZCNT:
575 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
576 break;
577 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
578 error = EINVAL;
579 break;
580 }
581 *retval = semaptr->_sem_base[semnum].semzcnt;
582 break;
583
584 case SETVAL:
585 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
586 break;
587 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
588 error = EINVAL;
589 break;
590 }
591 KASSERT(arg != NULL);
592 if ((unsigned int)arg->val > seminfo.semvmx) {
593 error = ERANGE;
594 break;
595 }
596 semaptr->_sem_base[semnum].semval = arg->val;
597 semundo_clear(ix, semnum);
598 cv_broadcast(&semcv[ix]);
599 break;
600
601 case SETALL:
602 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
603 break;
604 KASSERT(arg != NULL);
605 for (i = 0; i < semaptr->sem_nsems; i++) {
606 unsigned short semval;
607 error = copyin(&arg->array[i], &semval,
608 sizeof(arg->array[i]));
609 if (error != 0)
610 break;
611 if ((unsigned int)semval > seminfo.semvmx) {
612 error = ERANGE;
613 break;
614 }
615 semaptr->_sem_base[i].semval = semval;
616 }
617 semundo_clear(ix, -1);
618 cv_broadcast(&semcv[ix]);
619 break;
620
621 default:
622 error = EINVAL;
623 break;
624 }
625
626 mutex_exit(&semlock);
627 return (error);
628 }
629
630 int
631 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
632 {
633 /* {
634 syscallarg(key_t) key;
635 syscallarg(int) nsems;
636 syscallarg(int) semflg;
637 } */
638 int semid, error = 0;
639 int key = SCARG(uap, key);
640 int nsems = SCARG(uap, nsems);
641 int semflg = SCARG(uap, semflg);
642 kauth_cred_t cred = l->l_cred;
643
644 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
645
646 mutex_enter(&semlock);
647
648 if (key != IPC_PRIVATE) {
649 for (semid = 0; semid < seminfo.semmni; semid++) {
650 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
651 sema[semid].sem_perm._key == key)
652 break;
653 }
654 if (semid < seminfo.semmni) {
655 SEM_PRINTF(("found public key\n"));
656 if ((error = ipcperm(cred, &sema[semid].sem_perm,
657 semflg & 0700)))
658 goto out;
659 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
660 SEM_PRINTF(("too small\n"));
661 error = EINVAL;
662 goto out;
663 }
664 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
665 SEM_PRINTF(("not exclusive\n"));
666 error = EEXIST;
667 goto out;
668 }
669 goto found;
670 }
671 }
672
673 SEM_PRINTF(("need to allocate the semid_ds\n"));
674 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
675 if (nsems <= 0 || nsems > seminfo.semmsl) {
676 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
677 seminfo.semmsl));
678 error = EINVAL;
679 goto out;
680 }
681 if (nsems > seminfo.semmns - semtot) {
682 SEM_PRINTF(("not enough semaphores left "
683 "(need %d, got %d)\n",
684 nsems, seminfo.semmns - semtot));
685 error = ENOSPC;
686 goto out;
687 }
688 for (semid = 0; semid < seminfo.semmni; semid++) {
689 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
690 break;
691 }
692 if (semid == seminfo.semmni) {
693 SEM_PRINTF(("no more semid_ds's available\n"));
694 error = ENOSPC;
695 goto out;
696 }
697 SEM_PRINTF(("semid %d is available\n", semid));
698 sema[semid].sem_perm._key = key;
699 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
700 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
701 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
702 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
703 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
704 sema[semid].sem_perm._seq =
705 (sema[semid].sem_perm._seq + 1) & 0x7fff;
706 sema[semid].sem_nsems = nsems;
707 sema[semid].sem_otime = 0;
708 sema[semid].sem_ctime = time_second;
709 sema[semid]._sem_base = &sem[semtot];
710 semtot += nsems;
711 memset(sema[semid]._sem_base, 0,
712 sizeof(sema[semid]._sem_base[0]) * nsems);
713 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
714 &sem[semtot]));
715 } else {
716 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
717 error = ENOENT;
718 goto out;
719 }
720
721 found:
722 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
723 out:
724 mutex_exit(&semlock);
725 return (error);
726 }
727
728 #define SMALL_SOPS 8
729
730 int
731 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
732 {
733 /* {
734 syscallarg(int) semid;
735 syscallarg(struct sembuf *) sops;
736 syscallarg(size_t) nsops;
737 } */
738 struct proc *p = l->l_proc;
739 int semid = SCARG(uap, semid), seq;
740 size_t nsops = SCARG(uap, nsops);
741 struct sembuf small_sops[SMALL_SOPS];
742 struct sembuf *sops;
743 struct semid_ds *semaptr;
744 struct sembuf *sopptr = NULL;
745 struct __sem *semptr = NULL;
746 struct sem_undo *suptr = NULL;
747 kauth_cred_t cred = l->l_cred;
748 int i, error;
749 int do_wakeup, do_undos;
750
751 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
752
753 if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
754 mutex_enter(p->p_lock);
755 p->p_flag |= PK_SYSVSEM;
756 mutex_exit(p->p_lock);
757 }
758
759 restart:
760 if (nsops <= SMALL_SOPS) {
761 sops = small_sops;
762 } else if (nsops <= seminfo.semopm) {
763 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
764 } else {
765 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
766 seminfo.semopm, nsops));
767 return (E2BIG);
768 }
769
770 error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
771 if (error) {
772 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
773 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
774 if (sops != small_sops)
775 kmem_free(sops, nsops * sizeof(*sops));
776 return error;
777 }
778
779 mutex_enter(&semlock);
780 /* In case of reallocation, we will wait for completion */
781 while (__predict_false(sem_realloc_state))
782 cv_wait(&sem_realloc_cv, &semlock);
783
784 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
785 if (semid < 0 || semid >= seminfo.semmni) {
786 error = EINVAL;
787 goto out;
788 }
789
790 semaptr = &sema[semid];
791 seq = IPCID_TO_SEQ(SCARG(uap, semid));
792 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
793 semaptr->sem_perm._seq != seq) {
794 error = EINVAL;
795 goto out;
796 }
797
798 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
799 SEM_PRINTF(("error = %d from ipaccess\n", error));
800 goto out;
801 }
802
803 for (i = 0; i < nsops; i++)
804 if (sops[i].sem_num >= semaptr->sem_nsems) {
805 error = EFBIG;
806 goto out;
807 }
808
809 /*
810 * Loop trying to satisfy the vector of requests.
811 * If we reach a point where we must wait, any requests already
812 * performed are rolled back and we go to sleep until some other
813 * process wakes us up. At this point, we start all over again.
814 *
815 * This ensures that from the perspective of other tasks, a set
816 * of requests is atomic (never partially satisfied).
817 */
818 do_undos = 0;
819
820 for (;;) {
821 do_wakeup = 0;
822
823 for (i = 0; i < nsops; i++) {
824 sopptr = &sops[i];
825 semptr = &semaptr->_sem_base[sopptr->sem_num];
826
827 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
828 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
829 semaptr, semaptr->_sem_base, semptr,
830 sopptr->sem_num, semptr->semval, sopptr->sem_op,
831 (sopptr->sem_flg & IPC_NOWAIT) ?
832 "nowait" : "wait"));
833
834 if (sopptr->sem_op < 0) {
835 if ((int)(semptr->semval +
836 sopptr->sem_op) < 0) {
837 SEM_PRINTF(("semop: "
838 "can't do it now\n"));
839 break;
840 } else {
841 semptr->semval += sopptr->sem_op;
842 if (semptr->semval == 0 &&
843 semptr->semzcnt > 0)
844 do_wakeup = 1;
845 }
846 if (sopptr->sem_flg & SEM_UNDO)
847 do_undos = 1;
848 } else if (sopptr->sem_op == 0) {
849 if (semptr->semval > 0) {
850 SEM_PRINTF(("semop: not zero now\n"));
851 break;
852 }
853 } else {
854 if (semptr->semncnt > 0)
855 do_wakeup = 1;
856 semptr->semval += sopptr->sem_op;
857 if (sopptr->sem_flg & SEM_UNDO)
858 do_undos = 1;
859 }
860 }
861
862 /*
863 * Did we get through the entire vector?
864 */
865 if (i >= nsops)
866 goto done;
867
868 /*
869 * No ... rollback anything that we've already done
870 */
871 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
872 while (i-- > 0)
873 semaptr->_sem_base[sops[i].sem_num].semval -=
874 sops[i].sem_op;
875
876 /*
877 * If the request that we couldn't satisfy has the
878 * NOWAIT flag set then return with EAGAIN.
879 */
880 if (sopptr->sem_flg & IPC_NOWAIT) {
881 error = EAGAIN;
882 goto out;
883 }
884
885 if (sopptr->sem_op == 0)
886 semptr->semzcnt++;
887 else
888 semptr->semncnt++;
889
890 sem_waiters++;
891 SEM_PRINTF(("semop: good night!\n"));
892 error = cv_wait_sig(&semcv[semid], &semlock);
893 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
894 sem_waiters--;
895
896 /* Notify reallocator, if it is waiting */
897 cv_broadcast(&sem_realloc_cv);
898
899 /*
900 * Make sure that the semaphore still exists
901 */
902 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
903 semaptr->sem_perm._seq != seq) {
904 error = EIDRM;
905 goto out;
906 }
907
908 /*
909 * The semaphore is still alive. Readjust the count of
910 * waiting processes.
911 */
912 semptr = &semaptr->_sem_base[sopptr->sem_num];
913 if (sopptr->sem_op == 0)
914 semptr->semzcnt--;
915 else
916 semptr->semncnt--;
917
918 /* In case of such state, restart the call */
919 if (sem_realloc_state) {
920 mutex_exit(&semlock);
921 goto restart;
922 }
923
924 /* Is it really morning, or was our sleep interrupted? */
925 if (error != 0) {
926 error = EINTR;
927 goto out;
928 }
929 SEM_PRINTF(("semop: good morning!\n"));
930 }
931
932 done:
933 /*
934 * Process any SEM_UNDO requests.
935 */
936 if (do_undos) {
937 for (i = 0; i < nsops; i++) {
938 /*
939 * We only need to deal with SEM_UNDO's for non-zero
940 * op's.
941 */
942 int adjval;
943
944 if ((sops[i].sem_flg & SEM_UNDO) == 0)
945 continue;
946 adjval = sops[i].sem_op;
947 if (adjval == 0)
948 continue;
949 error = semundo_adjust(p, &suptr, semid,
950 sops[i].sem_num, -adjval);
951 if (error == 0)
952 continue;
953
954 /*
955 * Oh-Oh! We ran out of either sem_undo's or undo's.
956 * Rollback the adjustments to this point and then
957 * rollback the semaphore ups and down so we can return
958 * with an error with all structures restored. We
959 * rollback the undo's in the exact reverse order that
960 * we applied them. This guarantees that we won't run
961 * out of space as we roll things back out.
962 */
963 while (i-- > 0) {
964 if ((sops[i].sem_flg & SEM_UNDO) == 0)
965 continue;
966 adjval = sops[i].sem_op;
967 if (adjval == 0)
968 continue;
969 if (semundo_adjust(p, &suptr, semid,
970 sops[i].sem_num, adjval) != 0)
971 panic("semop - can't undo undos");
972 }
973
974 for (i = 0; i < nsops; i++)
975 semaptr->_sem_base[sops[i].sem_num].semval -=
976 sops[i].sem_op;
977
978 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
979 goto out;
980 } /* loop through the sops */
981 } /* if (do_undos) */
982
983 /* We're definitely done - set the sempid's */
984 for (i = 0; i < nsops; i++) {
985 sopptr = &sops[i];
986 semptr = &semaptr->_sem_base[sopptr->sem_num];
987 semptr->sempid = p->p_pid;
988 }
989
990 /* Update sem_otime */
991 semaptr->sem_otime = time_second;
992
993 /* Do a wakeup if any semaphore was up'd. */
994 if (do_wakeup) {
995 SEM_PRINTF(("semop: doing wakeup\n"));
996 cv_broadcast(&semcv[semid]);
997 SEM_PRINTF(("semop: back from wakeup\n"));
998 }
999 SEM_PRINTF(("semop: done\n"));
1000 *retval = 0;
1001
1002 out:
1003 mutex_exit(&semlock);
1004 if (sops != small_sops)
1005 kmem_free(sops, nsops * sizeof(*sops));
1006 return error;
1007 }
1008
1009 /*
1010 * Go through the undo structures for this process and apply the
1011 * adjustments to semaphores.
1012 */
1013 /*ARGSUSED*/
1014 void
1015 semexit(struct proc *p, void *v)
1016 {
1017 struct sem_undo *suptr;
1018 struct sem_undo **supptr;
1019
1020 if ((p->p_flag & PK_SYSVSEM) == 0)
1021 return;
1022
1023 mutex_enter(&semlock);
1024
1025 /*
1026 * Go through the chain of undo vectors looking for one
1027 * associated with this process.
1028 */
1029
1030 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1031 supptr = &suptr->un_next) {
1032 if (suptr->un_proc == p)
1033 break;
1034 }
1035
1036 /*
1037 * If there is no undo vector, skip to the end.
1038 */
1039
1040 if (suptr == NULL) {
1041 mutex_exit(&semlock);
1042 return;
1043 }
1044
1045 /*
1046 * We now have an undo vector for this process.
1047 */
1048
1049 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1050 suptr->un_cnt));
1051
1052 /*
1053 * If there are any active undo elements then process them.
1054 */
1055 if (suptr->un_cnt > 0) {
1056 int ix;
1057
1058 for (ix = 0; ix < suptr->un_cnt; ix++) {
1059 int semid = suptr->un_ent[ix].un_id;
1060 int semnum = suptr->un_ent[ix].un_num;
1061 int adjval = suptr->un_ent[ix].un_adjval;
1062 struct semid_ds *semaptr;
1063
1064 semaptr = &sema[semid];
1065 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1066 panic("semexit - semid not allocated");
1067 if (semnum >= semaptr->sem_nsems)
1068 panic("semexit - semnum out of range");
1069
1070 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1071 "sem=%d\n",
1072 suptr->un_proc, suptr->un_ent[ix].un_id,
1073 suptr->un_ent[ix].un_num,
1074 suptr->un_ent[ix].un_adjval,
1075 semaptr->_sem_base[semnum].semval));
1076
1077 if (adjval < 0 &&
1078 semaptr->_sem_base[semnum].semval < -adjval)
1079 semaptr->_sem_base[semnum].semval = 0;
1080 else
1081 semaptr->_sem_base[semnum].semval += adjval;
1082
1083 cv_broadcast(&semcv[semid]);
1084 SEM_PRINTF(("semexit: back from wakeup\n"));
1085 }
1086 }
1087
1088 /*
1089 * Deallocate the undo vector.
1090 */
1091 SEM_PRINTF(("removing vector\n"));
1092 suptr->un_proc = NULL;
1093 *supptr = suptr->un_next;
1094 mutex_exit(&semlock);
1095 }
1096
1097 /*
1098 * Sysctl initialization and nodes.
1099 */
1100
1101 static int
1102 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1103 {
1104 int newsize, error;
1105 struct sysctlnode node;
1106 node = *rnode;
1107 node.sysctl_data = &newsize;
1108
1109 newsize = seminfo.semmni;
1110 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1111 if (error || newp == NULL)
1112 return error;
1113
1114 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1115 }
1116
1117 static int
1118 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1119 {
1120 int newsize, error;
1121 struct sysctlnode node;
1122 node = *rnode;
1123 node.sysctl_data = &newsize;
1124
1125 newsize = seminfo.semmns;
1126 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1127 if (error || newp == NULL)
1128 return error;
1129
1130 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1131 }
1132
1133 static int
1134 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1135 {
1136 int newsize, error;
1137 struct sysctlnode node;
1138 node = *rnode;
1139 node.sysctl_data = &newsize;
1140
1141 newsize = seminfo.semmnu;
1142 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1143 if (error || newp == NULL)
1144 return error;
1145
1146 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1147 }
1148
1149 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1150 {
1151 const struct sysctlnode *node = NULL;
1152
1153 sysctl_createv(clog, 0, NULL, NULL,
1154 CTLFLAG_PERMANENT,
1155 CTLTYPE_NODE, "kern", NULL,
1156 NULL, 0, NULL, 0,
1157 CTL_KERN, CTL_EOL);
1158 sysctl_createv(clog, 0, NULL, &node,
1159 CTLFLAG_PERMANENT,
1160 CTLTYPE_NODE, "ipc",
1161 SYSCTL_DESCR("SysV IPC options"),
1162 NULL, 0, NULL, 0,
1163 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1164
1165 if (node == NULL)
1166 return;
1167
1168 sysctl_createv(clog, 0, &node, NULL,
1169 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1170 CTLTYPE_INT, "semmni",
1171 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1172 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1173 CTL_CREATE, CTL_EOL);
1174 sysctl_createv(clog, 0, &node, NULL,
1175 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1176 CTLTYPE_INT, "semmns",
1177 SYSCTL_DESCR("Max number of number of semaphores in system"),
1178 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1179 CTL_CREATE, CTL_EOL);
1180 sysctl_createv(clog, 0, &node, NULL,
1181 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1182 CTLTYPE_INT, "semmnu",
1183 SYSCTL_DESCR("Max number of undo structures in system"),
1184 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1185 CTL_CREATE, CTL_EOL);
1186 }
1187