sysv_sem.c revision 1.94 1 /* $NetBSD: sysv_sem.c,v 1.94 2015/05/13 01:16:15 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Implementation of SVID semaphores
35 *
36 * Author: Daniel Boulet
37 *
38 * This software is provided ``AS IS'' without any warranties of any kind.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.94 2015/05/13 01:16:15 pgoyette Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_sysv.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/sem.h>
51 #include <sys/sysctl.h>
52 #include <sys/kmem.h>
53 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
54 #include <sys/syscallargs.h>
55 #include <sys/kauth.h>
56
57 /*
58 * Memory areas:
59 * 1st: Pool of semaphore identifiers
60 * 2nd: Semaphores
61 * 3rd: Conditional variables
62 * 4th: Undo structures
63 */
64 struct semid_ds * sema __read_mostly;
65 static struct __sem * sem __read_mostly;
66 static kcondvar_t * semcv __read_mostly;
67 static int * semu __read_mostly;
68
69 static kmutex_t semlock __cacheline_aligned;
70 static bool sem_realloc_state __read_mostly;
71 static kcondvar_t sem_realloc_cv;
72
73 /*
74 * List of active undo structures, total number of semaphores,
75 * and total number of semop waiters.
76 */
77 static struct sem_undo *semu_list __read_mostly;
78 static u_int semtot __cacheline_aligned;
79 static u_int sem_waiters __cacheline_aligned;
80
81 /* Macro to find a particular sem_undo vector */
82 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
83
84 #ifdef SEM_DEBUG
85 #define SEM_PRINTF(a) printf a
86 #else
87 #define SEM_PRINTF(a)
88 #endif
89
90 void *hook; /* cookie from exithook_establish() */
91
92 extern int kern_has_sysvsem;
93
94 struct sem_undo *semu_alloc(struct proc *);
95 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
96 void semundo_clear(int, int);
97
98 void
99 seminit(void)
100 {
101 int i, sz;
102 vaddr_t v;
103
104 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
105 cv_init(&sem_realloc_cv, "semrealc");
106 sem_realloc_state = false;
107 semtot = 0;
108 sem_waiters = 0;
109
110 /* Allocate the wired memory for our structures */
111 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
112 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
113 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
114 ALIGN(seminfo.semmnu * seminfo.semusz);
115 sz = round_page(sz);
116 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
117 if (v == 0)
118 panic("sysv_sem: cannot allocate memory");
119 sema = (void *)v;
120 sem = (void *)((uintptr_t)sema +
121 ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
122 semcv = (void *)((uintptr_t)sem +
123 ALIGN(seminfo.semmns * sizeof(struct __sem)));
124 semu = (void *)((uintptr_t)semcv +
125 ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
126
127 for (i = 0; i < seminfo.semmni; i++) {
128 sema[i]._sem_base = 0;
129 sema[i].sem_perm.mode = 0;
130 cv_init(&semcv[i], "semwait");
131 }
132 for (i = 0; i < seminfo.semmnu; i++) {
133 struct sem_undo *suptr = SEMU(semu, i);
134 suptr->un_proc = NULL;
135 }
136 semu_list = NULL;
137 hook = exithook_establish(semexit, NULL);
138
139 kern_has_sysvsem = 1;
140
141 kern_has_sysvsem = 1;
142
143 sysvipcinit();
144 }
145
146 int
147 semfini(void)
148 {
149 int i, sz;
150 vaddr_t v = (vaddr_t)sema;
151
152 /* Don't allow module unload if we're busy */
153 mutex_enter(&semlock);
154 if (semtot) {
155 mutex_exit(&semlock);
156 return 1;
157 }
158
159 /* Remove the exit hook */
160 exithook_disestablish(hook);
161
162 /* Destroy all our condvars */
163 for (i = 0; i < seminfo.semmni; i++) {
164 cv_destroy(&semcv[i]);
165 }
166
167 /* Free the wired memory that we allocated */
168 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
169 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
170 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
171 ALIGN(seminfo.semmnu * seminfo.semusz);
172 sz = round_page(sz);
173 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
174
175 /* Destroy the last cv and mutex */
176 cv_destroy(&sem_realloc_cv);
177 mutex_exit(&semlock);
178 mutex_destroy(&semlock);
179
180 kern_has_sysvsem = 0;
181
182 return 0;
183 }
184
185 static int
186 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
187 {
188 struct semid_ds *new_sema, *old_sema;
189 struct __sem *new_sem;
190 struct sem_undo *new_semu_list, *suptr, *nsuptr;
191 int *new_semu;
192 kcondvar_t *new_semcv;
193 vaddr_t v;
194 int i, j, lsemid, nmnus, sz;
195
196 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
197 return EINVAL;
198
199 /* Allocate the wired memory for our structures */
200 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
201 ALIGN(newsemmns * sizeof(struct __sem)) +
202 ALIGN(newsemmni * sizeof(kcondvar_t)) +
203 ALIGN(newsemmnu * seminfo.semusz);
204 sz = round_page(sz);
205 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
206 if (v == 0)
207 return ENOMEM;
208
209 mutex_enter(&semlock);
210 if (sem_realloc_state) {
211 mutex_exit(&semlock);
212 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
213 return EBUSY;
214 }
215 sem_realloc_state = true;
216 if (sem_waiters) {
217 /*
218 * Mark reallocation state, wake-up all waiters,
219 * and wait while they will all exit.
220 */
221 for (i = 0; i < seminfo.semmni; i++)
222 cv_broadcast(&semcv[i]);
223 while (sem_waiters)
224 cv_wait(&sem_realloc_cv, &semlock);
225 }
226 old_sema = sema;
227
228 /* Get the number of last slot */
229 lsemid = 0;
230 for (i = 0; i < seminfo.semmni; i++)
231 if (sema[i].sem_perm.mode & SEM_ALLOC)
232 lsemid = i;
233
234 /* Get the number of currently used undo structures */
235 nmnus = 0;
236 for (i = 0; i < seminfo.semmnu; i++) {
237 suptr = SEMU(semu, i);
238 if (suptr->un_proc == NULL)
239 continue;
240 nmnus++;
241 }
242
243 /* We cannot reallocate less memory than we use */
244 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
245 mutex_exit(&semlock);
246 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
247 return EBUSY;
248 }
249
250 new_sema = (void *)v;
251 new_sem = (void *)((uintptr_t)new_sema +
252 ALIGN(newsemmni * sizeof(struct semid_ds)));
253 new_semcv = (void *)((uintptr_t)new_sem +
254 ALIGN(newsemmns * sizeof(struct __sem)));
255 new_semu = (void *)((uintptr_t)new_semcv +
256 ALIGN(newsemmni * sizeof(kcondvar_t)));
257
258 /* Initialize all semaphore identifiers and condvars */
259 for (i = 0; i < newsemmni; i++) {
260 new_sema[i]._sem_base = 0;
261 new_sema[i].sem_perm.mode = 0;
262 cv_init(&new_semcv[i], "semwait");
263 }
264 for (i = 0; i < newsemmnu; i++) {
265 nsuptr = SEMU(new_semu, i);
266 nsuptr->un_proc = NULL;
267 }
268
269 /*
270 * Copy all identifiers, semaphores and list of the
271 * undo structures to the new memory allocation.
272 */
273 j = 0;
274 for (i = 0; i <= lsemid; i++) {
275 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
276 continue;
277 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
278 new_sema[i]._sem_base = &new_sem[j];
279 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
280 (sizeof(struct __sem) * sema[i].sem_nsems));
281 j += sema[i].sem_nsems;
282 }
283 KASSERT(j == semtot);
284
285 j = 0;
286 new_semu_list = NULL;
287 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
288 KASSERT(j < newsemmnu);
289 nsuptr = SEMU(new_semu, j);
290 memcpy(nsuptr, suptr, SEMUSZ);
291 nsuptr->un_next = new_semu_list;
292 new_semu_list = nsuptr;
293 j++;
294 }
295
296 for (i = 0; i < seminfo.semmni; i++) {
297 KASSERT(cv_has_waiters(&semcv[i]) == false);
298 cv_destroy(&semcv[i]);
299 }
300
301 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
302 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
303 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
304 ALIGN(seminfo.semmnu * seminfo.semusz);
305 sz = round_page(sz);
306
307 /* Set the pointers and update the new values */
308 sema = new_sema;
309 sem = new_sem;
310 semcv = new_semcv;
311 semu = new_semu;
312 semu_list = new_semu_list;
313
314 seminfo.semmni = newsemmni;
315 seminfo.semmns = newsemmns;
316 seminfo.semmnu = newsemmnu;
317
318 /* Reallocation completed - notify all waiters, if any */
319 sem_realloc_state = false;
320 cv_broadcast(&sem_realloc_cv);
321 mutex_exit(&semlock);
322
323 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
324 return 0;
325 }
326
327 /*
328 * Placebo.
329 */
330
331 int
332 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
333 {
334
335 *retval = 0;
336 return 0;
337 }
338
339 /*
340 * Allocate a new sem_undo structure for a process.
341 * => Returns NULL on failure.
342 */
343 struct sem_undo *
344 semu_alloc(struct proc *p)
345 {
346 struct sem_undo *suptr, **supptr;
347 bool attempted = false;
348 int i;
349
350 KASSERT(mutex_owned(&semlock));
351 again:
352 /* Look for a free structure. */
353 for (i = 0; i < seminfo.semmnu; i++) {
354 suptr = SEMU(semu, i);
355 if (suptr->un_proc == NULL) {
356 /* Found. Fill it in and return. */
357 suptr->un_next = semu_list;
358 semu_list = suptr;
359 suptr->un_cnt = 0;
360 suptr->un_proc = p;
361 return suptr;
362 }
363 }
364
365 /* Not found. Attempt to free some structures. */
366 if (!attempted) {
367 bool freed = false;
368
369 attempted = true;
370 supptr = &semu_list;
371 while ((suptr = *supptr) != NULL) {
372 if (suptr->un_cnt == 0) {
373 suptr->un_proc = NULL;
374 *supptr = suptr->un_next;
375 freed = true;
376 } else {
377 supptr = &suptr->un_next;
378 }
379 }
380 if (freed) {
381 goto again;
382 }
383 }
384 return NULL;
385 }
386
387 /*
388 * Adjust a particular entry for a particular proc
389 */
390
391 int
392 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
393 int adjval)
394 {
395 struct sem_undo *suptr;
396 struct sem_undo_entry *sunptr;
397 int i;
398
399 KASSERT(mutex_owned(&semlock));
400
401 /*
402 * Look for and remember the sem_undo if the caller doesn't
403 * provide it
404 */
405
406 suptr = *supptr;
407 if (suptr == NULL) {
408 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
409 if (suptr->un_proc == p)
410 break;
411
412 if (suptr == NULL) {
413 suptr = semu_alloc(p);
414 if (suptr == NULL)
415 return (ENOSPC);
416 }
417 *supptr = suptr;
418 }
419
420 /*
421 * Look for the requested entry and adjust it (delete if
422 * adjval becomes 0).
423 */
424 sunptr = &suptr->un_ent[0];
425 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
426 if (sunptr->un_id != semid || sunptr->un_num != semnum)
427 continue;
428 sunptr->un_adjval += adjval;
429 if (sunptr->un_adjval == 0) {
430 suptr->un_cnt--;
431 if (i < suptr->un_cnt)
432 suptr->un_ent[i] =
433 suptr->un_ent[suptr->un_cnt];
434 }
435 return (0);
436 }
437
438 /* Didn't find the right entry - create it */
439 if (suptr->un_cnt == SEMUME)
440 return (EINVAL);
441
442 sunptr = &suptr->un_ent[suptr->un_cnt];
443 suptr->un_cnt++;
444 sunptr->un_adjval = adjval;
445 sunptr->un_id = semid;
446 sunptr->un_num = semnum;
447 return (0);
448 }
449
450 void
451 semundo_clear(int semid, int semnum)
452 {
453 struct sem_undo *suptr;
454 struct sem_undo_entry *sunptr, *sunend;
455
456 KASSERT(mutex_owned(&semlock));
457
458 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
459 for (sunptr = &suptr->un_ent[0],
460 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
461 if (sunptr->un_id == semid) {
462 if (semnum == -1 || sunptr->un_num == semnum) {
463 suptr->un_cnt--;
464 sunend--;
465 if (sunptr != sunend)
466 *sunptr = *sunend;
467 if (semnum != -1)
468 break;
469 else
470 continue;
471 }
472 }
473 sunptr++;
474 }
475 }
476
477 int
478 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
479 register_t *retval)
480 {
481 /* {
482 syscallarg(int) semid;
483 syscallarg(int) semnum;
484 syscallarg(int) cmd;
485 syscallarg(union __semun *) arg;
486 } */
487 struct semid_ds sembuf;
488 int cmd, error;
489 void *pass_arg;
490 union __semun karg;
491
492 cmd = SCARG(uap, cmd);
493
494 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
495
496 if (pass_arg) {
497 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
498 if (error)
499 return error;
500 if (cmd == IPC_SET) {
501 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
502 if (error)
503 return (error);
504 }
505 }
506
507 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
508 pass_arg, retval);
509
510 if (error == 0 && cmd == IPC_STAT)
511 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
512
513 return (error);
514 }
515
516 int
517 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
518 register_t *retval)
519 {
520 kauth_cred_t cred = l->l_cred;
521 union __semun *arg = v;
522 struct semid_ds *sembuf = v, *semaptr;
523 int i, error, ix;
524
525 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
526 semid, semnum, cmd, v));
527
528 mutex_enter(&semlock);
529
530 ix = IPCID_TO_IX(semid);
531 if (ix < 0 || ix >= seminfo.semmni) {
532 mutex_exit(&semlock);
533 return (EINVAL);
534 }
535
536 semaptr = &sema[ix];
537 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
538 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
539 mutex_exit(&semlock);
540 return (EINVAL);
541 }
542
543 switch (cmd) {
544 case IPC_RMID:
545 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
546 break;
547 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
548 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
549 semtot -= semaptr->sem_nsems;
550 for (i = semaptr->_sem_base - sem; i < semtot; i++)
551 sem[i] = sem[i + semaptr->sem_nsems];
552 for (i = 0; i < seminfo.semmni; i++) {
553 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
554 sema[i]._sem_base > semaptr->_sem_base)
555 sema[i]._sem_base -= semaptr->sem_nsems;
556 }
557 semaptr->sem_perm.mode = 0;
558 semundo_clear(ix, -1);
559 cv_broadcast(&semcv[ix]);
560 break;
561
562 case IPC_SET:
563 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
564 break;
565 KASSERT(sembuf != NULL);
566 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
567 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
568 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
569 (sembuf->sem_perm.mode & 0777);
570 semaptr->sem_ctime = time_second;
571 break;
572
573 case IPC_STAT:
574 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
575 break;
576 KASSERT(sembuf != NULL);
577 memcpy(sembuf, semaptr, sizeof(struct semid_ds));
578 sembuf->sem_perm.mode &= 0777;
579 break;
580
581 case GETNCNT:
582 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
583 break;
584 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
585 error = EINVAL;
586 break;
587 }
588 *retval = semaptr->_sem_base[semnum].semncnt;
589 break;
590
591 case GETPID:
592 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
593 break;
594 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
595 error = EINVAL;
596 break;
597 }
598 *retval = semaptr->_sem_base[semnum].sempid;
599 break;
600
601 case GETVAL:
602 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
603 break;
604 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
605 error = EINVAL;
606 break;
607 }
608 *retval = semaptr->_sem_base[semnum].semval;
609 break;
610
611 case GETALL:
612 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
613 break;
614 KASSERT(arg != NULL);
615 for (i = 0; i < semaptr->sem_nsems; i++) {
616 error = copyout(&semaptr->_sem_base[i].semval,
617 &arg->array[i], sizeof(arg->array[i]));
618 if (error != 0)
619 break;
620 }
621 break;
622
623 case GETZCNT:
624 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
625 break;
626 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
627 error = EINVAL;
628 break;
629 }
630 *retval = semaptr->_sem_base[semnum].semzcnt;
631 break;
632
633 case SETVAL:
634 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
635 break;
636 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
637 error = EINVAL;
638 break;
639 }
640 KASSERT(arg != NULL);
641 if ((unsigned int)arg->val > seminfo.semvmx) {
642 error = ERANGE;
643 break;
644 }
645 semaptr->_sem_base[semnum].semval = arg->val;
646 semundo_clear(ix, semnum);
647 cv_broadcast(&semcv[ix]);
648 break;
649
650 case SETALL:
651 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
652 break;
653 KASSERT(arg != NULL);
654 for (i = 0; i < semaptr->sem_nsems; i++) {
655 unsigned short semval;
656 error = copyin(&arg->array[i], &semval,
657 sizeof(arg->array[i]));
658 if (error != 0)
659 break;
660 if ((unsigned int)semval > seminfo.semvmx) {
661 error = ERANGE;
662 break;
663 }
664 semaptr->_sem_base[i].semval = semval;
665 }
666 semundo_clear(ix, -1);
667 cv_broadcast(&semcv[ix]);
668 break;
669
670 default:
671 error = EINVAL;
672 break;
673 }
674
675 mutex_exit(&semlock);
676 return (error);
677 }
678
679 int
680 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
681 {
682 /* {
683 syscallarg(key_t) key;
684 syscallarg(int) nsems;
685 syscallarg(int) semflg;
686 } */
687 int semid, error = 0;
688 int key = SCARG(uap, key);
689 int nsems = SCARG(uap, nsems);
690 int semflg = SCARG(uap, semflg);
691 kauth_cred_t cred = l->l_cred;
692
693 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
694
695 mutex_enter(&semlock);
696
697 if (key != IPC_PRIVATE) {
698 for (semid = 0; semid < seminfo.semmni; semid++) {
699 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
700 sema[semid].sem_perm._key == key)
701 break;
702 }
703 if (semid < seminfo.semmni) {
704 SEM_PRINTF(("found public key\n"));
705 if ((error = ipcperm(cred, &sema[semid].sem_perm,
706 semflg & 0700)))
707 goto out;
708 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
709 SEM_PRINTF(("too small\n"));
710 error = EINVAL;
711 goto out;
712 }
713 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
714 SEM_PRINTF(("not exclusive\n"));
715 error = EEXIST;
716 goto out;
717 }
718 goto found;
719 }
720 }
721
722 SEM_PRINTF(("need to allocate the semid_ds\n"));
723 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
724 if (nsems <= 0 || nsems > seminfo.semmsl) {
725 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
726 seminfo.semmsl));
727 error = EINVAL;
728 goto out;
729 }
730 if (nsems > seminfo.semmns - semtot) {
731 SEM_PRINTF(("not enough semaphores left "
732 "(need %d, got %d)\n",
733 nsems, seminfo.semmns - semtot));
734 error = ENOSPC;
735 goto out;
736 }
737 for (semid = 0; semid < seminfo.semmni; semid++) {
738 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
739 break;
740 }
741 if (semid == seminfo.semmni) {
742 SEM_PRINTF(("no more semid_ds's available\n"));
743 error = ENOSPC;
744 goto out;
745 }
746 SEM_PRINTF(("semid %d is available\n", semid));
747 sema[semid].sem_perm._key = key;
748 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
749 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
750 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
751 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
752 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
753 sema[semid].sem_perm._seq =
754 (sema[semid].sem_perm._seq + 1) & 0x7fff;
755 sema[semid].sem_nsems = nsems;
756 sema[semid].sem_otime = 0;
757 sema[semid].sem_ctime = time_second;
758 sema[semid]._sem_base = &sem[semtot];
759 semtot += nsems;
760 memset(sema[semid]._sem_base, 0,
761 sizeof(sema[semid]._sem_base[0]) * nsems);
762 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
763 &sem[semtot]));
764 } else {
765 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
766 error = ENOENT;
767 goto out;
768 }
769
770 found:
771 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
772 out:
773 mutex_exit(&semlock);
774 return (error);
775 }
776
777 #define SMALL_SOPS 8
778
779 int
780 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
781 {
782 /* {
783 syscallarg(int) semid;
784 syscallarg(struct sembuf *) sops;
785 syscallarg(size_t) nsops;
786 } */
787 struct proc *p = l->l_proc;
788 int semid = SCARG(uap, semid), seq;
789 size_t nsops = SCARG(uap, nsops);
790 struct sembuf small_sops[SMALL_SOPS];
791 struct sembuf *sops;
792 struct semid_ds *semaptr;
793 struct sembuf *sopptr = NULL;
794 struct __sem *semptr = NULL;
795 struct sem_undo *suptr = NULL;
796 kauth_cred_t cred = l->l_cred;
797 int i, error;
798 int do_wakeup, do_undos;
799
800 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
801
802 if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
803 mutex_enter(p->p_lock);
804 p->p_flag |= PK_SYSVSEM;
805 mutex_exit(p->p_lock);
806 }
807
808 restart:
809 if (nsops <= SMALL_SOPS) {
810 sops = small_sops;
811 } else if (nsops <= seminfo.semopm) {
812 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
813 } else {
814 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
815 seminfo.semopm, nsops));
816 return (E2BIG);
817 }
818
819 error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
820 if (error) {
821 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
822 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
823 if (sops != small_sops)
824 kmem_free(sops, nsops * sizeof(*sops));
825 return error;
826 }
827
828 mutex_enter(&semlock);
829 /* In case of reallocation, we will wait for completion */
830 while (__predict_false(sem_realloc_state))
831 cv_wait(&sem_realloc_cv, &semlock);
832
833 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
834 if (semid < 0 || semid >= seminfo.semmni) {
835 error = EINVAL;
836 goto out;
837 }
838
839 semaptr = &sema[semid];
840 seq = IPCID_TO_SEQ(SCARG(uap, semid));
841 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
842 semaptr->sem_perm._seq != seq) {
843 error = EINVAL;
844 goto out;
845 }
846
847 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
848 SEM_PRINTF(("error = %d from ipaccess\n", error));
849 goto out;
850 }
851
852 for (i = 0; i < nsops; i++)
853 if (sops[i].sem_num >= semaptr->sem_nsems) {
854 error = EFBIG;
855 goto out;
856 }
857
858 /*
859 * Loop trying to satisfy the vector of requests.
860 * If we reach a point where we must wait, any requests already
861 * performed are rolled back and we go to sleep until some other
862 * process wakes us up. At this point, we start all over again.
863 *
864 * This ensures that from the perspective of other tasks, a set
865 * of requests is atomic (never partially satisfied).
866 */
867 do_undos = 0;
868
869 for (;;) {
870 do_wakeup = 0;
871
872 for (i = 0; i < nsops; i++) {
873 sopptr = &sops[i];
874 semptr = &semaptr->_sem_base[sopptr->sem_num];
875
876 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
877 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
878 semaptr, semaptr->_sem_base, semptr,
879 sopptr->sem_num, semptr->semval, sopptr->sem_op,
880 (sopptr->sem_flg & IPC_NOWAIT) ?
881 "nowait" : "wait"));
882
883 if (sopptr->sem_op < 0) {
884 if ((int)(semptr->semval +
885 sopptr->sem_op) < 0) {
886 SEM_PRINTF(("semop: "
887 "can't do it now\n"));
888 break;
889 } else {
890 semptr->semval += sopptr->sem_op;
891 if (semptr->semval == 0 &&
892 semptr->semzcnt > 0)
893 do_wakeup = 1;
894 }
895 if (sopptr->sem_flg & SEM_UNDO)
896 do_undos = 1;
897 } else if (sopptr->sem_op == 0) {
898 if (semptr->semval > 0) {
899 SEM_PRINTF(("semop: not zero now\n"));
900 break;
901 }
902 } else {
903 if (semptr->semncnt > 0)
904 do_wakeup = 1;
905 semptr->semval += sopptr->sem_op;
906 if (sopptr->sem_flg & SEM_UNDO)
907 do_undos = 1;
908 }
909 }
910
911 /*
912 * Did we get through the entire vector?
913 */
914 if (i >= nsops)
915 goto done;
916
917 /*
918 * No ... rollback anything that we've already done
919 */
920 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
921 while (i-- > 0)
922 semaptr->_sem_base[sops[i].sem_num].semval -=
923 sops[i].sem_op;
924
925 /*
926 * If the request that we couldn't satisfy has the
927 * NOWAIT flag set then return with EAGAIN.
928 */
929 if (sopptr->sem_flg & IPC_NOWAIT) {
930 error = EAGAIN;
931 goto out;
932 }
933
934 if (sopptr->sem_op == 0)
935 semptr->semzcnt++;
936 else
937 semptr->semncnt++;
938
939 sem_waiters++;
940 SEM_PRINTF(("semop: good night!\n"));
941 error = cv_wait_sig(&semcv[semid], &semlock);
942 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
943 sem_waiters--;
944
945 /* Notify reallocator, if it is waiting */
946 cv_broadcast(&sem_realloc_cv);
947
948 /*
949 * Make sure that the semaphore still exists
950 */
951 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
952 semaptr->sem_perm._seq != seq) {
953 error = EIDRM;
954 goto out;
955 }
956
957 /*
958 * The semaphore is still alive. Readjust the count of
959 * waiting processes.
960 */
961 semptr = &semaptr->_sem_base[sopptr->sem_num];
962 if (sopptr->sem_op == 0)
963 semptr->semzcnt--;
964 else
965 semptr->semncnt--;
966
967 /* In case of such state, restart the call */
968 if (sem_realloc_state) {
969 mutex_exit(&semlock);
970 goto restart;
971 }
972
973 /* Is it really morning, or was our sleep interrupted? */
974 if (error != 0) {
975 error = EINTR;
976 goto out;
977 }
978 SEM_PRINTF(("semop: good morning!\n"));
979 }
980
981 done:
982 /*
983 * Process any SEM_UNDO requests.
984 */
985 if (do_undos) {
986 for (i = 0; i < nsops; i++) {
987 /*
988 * We only need to deal with SEM_UNDO's for non-zero
989 * op's.
990 */
991 int adjval;
992
993 if ((sops[i].sem_flg & SEM_UNDO) == 0)
994 continue;
995 adjval = sops[i].sem_op;
996 if (adjval == 0)
997 continue;
998 error = semundo_adjust(p, &suptr, semid,
999 sops[i].sem_num, -adjval);
1000 if (error == 0)
1001 continue;
1002
1003 /*
1004 * Oh-Oh! We ran out of either sem_undo's or undo's.
1005 * Rollback the adjustments to this point and then
1006 * rollback the semaphore ups and down so we can return
1007 * with an error with all structures restored. We
1008 * rollback the undo's in the exact reverse order that
1009 * we applied them. This guarantees that we won't run
1010 * out of space as we roll things back out.
1011 */
1012 while (i-- > 0) {
1013 if ((sops[i].sem_flg & SEM_UNDO) == 0)
1014 continue;
1015 adjval = sops[i].sem_op;
1016 if (adjval == 0)
1017 continue;
1018 if (semundo_adjust(p, &suptr, semid,
1019 sops[i].sem_num, adjval) != 0)
1020 panic("semop - can't undo undos");
1021 }
1022
1023 for (i = 0; i < nsops; i++)
1024 semaptr->_sem_base[sops[i].sem_num].semval -=
1025 sops[i].sem_op;
1026
1027 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
1028 goto out;
1029 } /* loop through the sops */
1030 } /* if (do_undos) */
1031
1032 /* We're definitely done - set the sempid's */
1033 for (i = 0; i < nsops; i++) {
1034 sopptr = &sops[i];
1035 semptr = &semaptr->_sem_base[sopptr->sem_num];
1036 semptr->sempid = p->p_pid;
1037 }
1038
1039 /* Update sem_otime */
1040 semaptr->sem_otime = time_second;
1041
1042 /* Do a wakeup if any semaphore was up'd. */
1043 if (do_wakeup) {
1044 SEM_PRINTF(("semop: doing wakeup\n"));
1045 cv_broadcast(&semcv[semid]);
1046 SEM_PRINTF(("semop: back from wakeup\n"));
1047 }
1048 SEM_PRINTF(("semop: done\n"));
1049 *retval = 0;
1050
1051 out:
1052 mutex_exit(&semlock);
1053 if (sops != small_sops)
1054 kmem_free(sops, nsops * sizeof(*sops));
1055 return error;
1056 }
1057
1058 /*
1059 * Go through the undo structures for this process and apply the
1060 * adjustments to semaphores.
1061 */
1062 /*ARGSUSED*/
1063 void
1064 semexit(struct proc *p, void *v)
1065 {
1066 struct sem_undo *suptr;
1067 struct sem_undo **supptr;
1068
1069 if ((p->p_flag & PK_SYSVSEM) == 0)
1070 return;
1071
1072 mutex_enter(&semlock);
1073
1074 /*
1075 * Go through the chain of undo vectors looking for one
1076 * associated with this process.
1077 */
1078
1079 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1080 supptr = &suptr->un_next) {
1081 if (suptr->un_proc == p)
1082 break;
1083 }
1084
1085 /*
1086 * If there is no undo vector, skip to the end.
1087 */
1088
1089 if (suptr == NULL) {
1090 mutex_exit(&semlock);
1091 return;
1092 }
1093
1094 /*
1095 * We now have an undo vector for this process.
1096 */
1097
1098 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1099 suptr->un_cnt));
1100
1101 /*
1102 * If there are any active undo elements then process them.
1103 */
1104 if (suptr->un_cnt > 0) {
1105 int ix;
1106
1107 for (ix = 0; ix < suptr->un_cnt; ix++) {
1108 int semid = suptr->un_ent[ix].un_id;
1109 int semnum = suptr->un_ent[ix].un_num;
1110 int adjval = suptr->un_ent[ix].un_adjval;
1111 struct semid_ds *semaptr;
1112
1113 semaptr = &sema[semid];
1114 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1115 panic("semexit - semid not allocated");
1116 if (semnum >= semaptr->sem_nsems)
1117 panic("semexit - semnum out of range");
1118
1119 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1120 "sem=%d\n",
1121 suptr->un_proc, suptr->un_ent[ix].un_id,
1122 suptr->un_ent[ix].un_num,
1123 suptr->un_ent[ix].un_adjval,
1124 semaptr->_sem_base[semnum].semval));
1125
1126 if (adjval < 0 &&
1127 semaptr->_sem_base[semnum].semval < -adjval)
1128 semaptr->_sem_base[semnum].semval = 0;
1129 else
1130 semaptr->_sem_base[semnum].semval += adjval;
1131
1132 cv_broadcast(&semcv[semid]);
1133 SEM_PRINTF(("semexit: back from wakeup\n"));
1134 }
1135 }
1136
1137 /*
1138 * Deallocate the undo vector.
1139 */
1140 SEM_PRINTF(("removing vector\n"));
1141 suptr->un_proc = NULL;
1142 *supptr = suptr->un_next;
1143 mutex_exit(&semlock);
1144 }
1145
1146 /*
1147 * Sysctl initialization and nodes.
1148 */
1149
1150 static int
1151 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1152 {
1153 int newsize, error;
1154 struct sysctlnode node;
1155 node = *rnode;
1156 node.sysctl_data = &newsize;
1157
1158 newsize = seminfo.semmni;
1159 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1160 if (error || newp == NULL)
1161 return error;
1162
1163 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1164 }
1165
1166 static int
1167 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1168 {
1169 int newsize, error;
1170 struct sysctlnode node;
1171 node = *rnode;
1172 node.sysctl_data = &newsize;
1173
1174 newsize = seminfo.semmns;
1175 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1176 if (error || newp == NULL)
1177 return error;
1178
1179 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1180 }
1181
1182 static int
1183 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1184 {
1185 int newsize, error;
1186 struct sysctlnode node;
1187 node = *rnode;
1188 node.sysctl_data = &newsize;
1189
1190 newsize = seminfo.semmnu;
1191 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1192 if (error || newp == NULL)
1193 return error;
1194
1195 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1196 }
1197
1198 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1199 {
1200 const struct sysctlnode *node = NULL;
1201
1202 sysctl_createv(clog, 0, NULL, &node,
1203 CTLFLAG_PERMANENT,
1204 CTLTYPE_NODE, "ipc",
1205 SYSCTL_DESCR("SysV IPC options"),
1206 NULL, 0, NULL, 0,
1207 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1208
1209 if (node == NULL)
1210 return;
1211
1212 sysctl_createv(clog, 0, &node, NULL,
1213 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1214 CTLTYPE_INT, "semmni",
1215 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1216 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1217 CTL_CREATE, CTL_EOL);
1218 sysctl_createv(clog, 0, &node, NULL,
1219 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1220 CTLTYPE_INT, "semmns",
1221 SYSCTL_DESCR("Max number of number of semaphores in system"),
1222 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1223 CTL_CREATE, CTL_EOL);
1224 sysctl_createv(clog, 0, &node, NULL,
1225 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1226 CTLTYPE_INT, "semmnu",
1227 SYSCTL_DESCR("Max number of undo structures in system"),
1228 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1229 CTL_CREATE, CTL_EOL);
1230 }
1231