Home | History | Annotate | Line # | Download | only in kern
sysv_sem.c revision 1.94
      1 /*	$NetBSD: sysv_sem.c,v 1.94 2015/05/13 01:16:15 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Implementation of SVID semaphores
     35  *
     36  * Author: Daniel Boulet
     37  *
     38  * This software is provided ``AS IS'' without any warranties of any kind.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.94 2015/05/13 01:16:15 pgoyette Exp $");
     43 
     44 #ifdef _KERNEL_OPT
     45 #include "opt_sysv.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/kernel.h>
     50 #include <sys/sem.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/kmem.h>
     53 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     54 #include <sys/syscallargs.h>
     55 #include <sys/kauth.h>
     56 
     57 /*
     58  * Memory areas:
     59  *  1st: Pool of semaphore identifiers
     60  *  2nd: Semaphores
     61  *  3rd: Conditional variables
     62  *  4th: Undo structures
     63  */
     64 struct semid_ds *	sema			__read_mostly;
     65 static struct __sem *	sem			__read_mostly;
     66 static kcondvar_t *	semcv			__read_mostly;
     67 static int *		semu			__read_mostly;
     68 
     69 static kmutex_t		semlock			__cacheline_aligned;
     70 static bool		sem_realloc_state	__read_mostly;
     71 static kcondvar_t	sem_realloc_cv;
     72 
     73 /*
     74  * List of active undo structures, total number of semaphores,
     75  * and total number of semop waiters.
     76  */
     77 static struct sem_undo *semu_list		__read_mostly;
     78 static u_int		semtot			__cacheline_aligned;
     79 static u_int		sem_waiters		__cacheline_aligned;
     80 
     81 /* Macro to find a particular sem_undo vector */
     82 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
     83 
     84 #ifdef SEM_DEBUG
     85 #define SEM_PRINTF(a) printf a
     86 #else
     87 #define SEM_PRINTF(a)
     88 #endif
     89 
     90 void *hook;	/* cookie from exithook_establish() */
     91 
     92 extern int kern_has_sysvsem;
     93 
     94 struct sem_undo *semu_alloc(struct proc *);
     95 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
     96 void semundo_clear(int, int);
     97 
     98 void
     99 seminit(void)
    100 {
    101 	int i, sz;
    102 	vaddr_t v;
    103 
    104 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
    105 	cv_init(&sem_realloc_cv, "semrealc");
    106 	sem_realloc_state = false;
    107 	semtot = 0;
    108 	sem_waiters = 0;
    109 
    110 	/* Allocate the wired memory for our structures */
    111 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    112 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    113 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    114 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    115 	sz = round_page(sz);
    116 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    117 	if (v == 0)
    118 		panic("sysv_sem: cannot allocate memory");
    119 	sema = (void *)v;
    120 	sem = (void *)((uintptr_t)sema +
    121 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
    122 	semcv = (void *)((uintptr_t)sem +
    123 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
    124 	semu = (void *)((uintptr_t)semcv +
    125 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
    126 
    127 	for (i = 0; i < seminfo.semmni; i++) {
    128 		sema[i]._sem_base = 0;
    129 		sema[i].sem_perm.mode = 0;
    130 		cv_init(&semcv[i], "semwait");
    131 	}
    132 	for (i = 0; i < seminfo.semmnu; i++) {
    133 		struct sem_undo *suptr = SEMU(semu, i);
    134 		suptr->un_proc = NULL;
    135 	}
    136 	semu_list = NULL;
    137 	hook = exithook_establish(semexit, NULL);
    138 
    139 	kern_has_sysvsem = 1;
    140 
    141 	kern_has_sysvsem = 1;
    142 
    143 	sysvipcinit();
    144 }
    145 
    146 int
    147 semfini(void)
    148 {
    149 	int i, sz;
    150 	vaddr_t v = (vaddr_t)sema;
    151 
    152 	/* Don't allow module unload if we're busy */
    153 	mutex_enter(&semlock);
    154 	if (semtot) {
    155 		mutex_exit(&semlock);
    156 		return 1;
    157 	}
    158 
    159 	/* Remove the exit hook */
    160 	exithook_disestablish(hook);
    161 
    162 	/* Destroy all our condvars */
    163 	for (i = 0; i < seminfo.semmni; i++) {
    164 		cv_destroy(&semcv[i]);
    165 	}
    166 
    167 	/* Free the wired memory that we allocated */
    168 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    169 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    170 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    171 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    172 	sz = round_page(sz);
    173 	uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    174 
    175 	/* Destroy the last cv and mutex */
    176 	cv_destroy(&sem_realloc_cv);
    177 	mutex_exit(&semlock);
    178 	mutex_destroy(&semlock);
    179 
    180 	kern_has_sysvsem = 0;
    181 
    182 	return 0;
    183 }
    184 
    185 static int
    186 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
    187 {
    188 	struct semid_ds *new_sema, *old_sema;
    189 	struct __sem *new_sem;
    190 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
    191 	int *new_semu;
    192 	kcondvar_t *new_semcv;
    193 	vaddr_t v;
    194 	int i, j, lsemid, nmnus, sz;
    195 
    196 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
    197 		return EINVAL;
    198 
    199 	/* Allocate the wired memory for our structures */
    200 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
    201 	    ALIGN(newsemmns * sizeof(struct __sem)) +
    202 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
    203 	    ALIGN(newsemmnu * seminfo.semusz);
    204 	sz = round_page(sz);
    205 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    206 	if (v == 0)
    207 		return ENOMEM;
    208 
    209 	mutex_enter(&semlock);
    210 	if (sem_realloc_state) {
    211 		mutex_exit(&semlock);
    212 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    213 		return EBUSY;
    214 	}
    215 	sem_realloc_state = true;
    216 	if (sem_waiters) {
    217 		/*
    218 		 * Mark reallocation state, wake-up all waiters,
    219 		 * and wait while they will all exit.
    220 		 */
    221 		for (i = 0; i < seminfo.semmni; i++)
    222 			cv_broadcast(&semcv[i]);
    223 		while (sem_waiters)
    224 			cv_wait(&sem_realloc_cv, &semlock);
    225 	}
    226 	old_sema = sema;
    227 
    228 	/* Get the number of last slot */
    229 	lsemid = 0;
    230 	for (i = 0; i < seminfo.semmni; i++)
    231 		if (sema[i].sem_perm.mode & SEM_ALLOC)
    232 			lsemid = i;
    233 
    234 	/* Get the number of currently used undo structures */
    235 	nmnus = 0;
    236 	for (i = 0; i < seminfo.semmnu; i++) {
    237 		suptr = SEMU(semu, i);
    238 		if (suptr->un_proc == NULL)
    239 			continue;
    240 		nmnus++;
    241 	}
    242 
    243 	/* We cannot reallocate less memory than we use */
    244 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
    245 		mutex_exit(&semlock);
    246 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    247 		return EBUSY;
    248 	}
    249 
    250 	new_sema = (void *)v;
    251 	new_sem = (void *)((uintptr_t)new_sema +
    252 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
    253 	new_semcv = (void *)((uintptr_t)new_sem +
    254 	    ALIGN(newsemmns * sizeof(struct __sem)));
    255 	new_semu = (void *)((uintptr_t)new_semcv +
    256 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
    257 
    258 	/* Initialize all semaphore identifiers and condvars */
    259 	for (i = 0; i < newsemmni; i++) {
    260 		new_sema[i]._sem_base = 0;
    261 		new_sema[i].sem_perm.mode = 0;
    262 		cv_init(&new_semcv[i], "semwait");
    263 	}
    264 	for (i = 0; i < newsemmnu; i++) {
    265 		nsuptr = SEMU(new_semu, i);
    266 		nsuptr->un_proc = NULL;
    267 	}
    268 
    269 	/*
    270 	 * Copy all identifiers, semaphores and list of the
    271 	 * undo structures to the new memory allocation.
    272 	 */
    273 	j = 0;
    274 	for (i = 0; i <= lsemid; i++) {
    275 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
    276 			continue;
    277 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
    278 		new_sema[i]._sem_base = &new_sem[j];
    279 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
    280 		    (sizeof(struct __sem) * sema[i].sem_nsems));
    281 		j += sema[i].sem_nsems;
    282 	}
    283 	KASSERT(j == semtot);
    284 
    285 	j = 0;
    286 	new_semu_list = NULL;
    287 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
    288 		KASSERT(j < newsemmnu);
    289 		nsuptr = SEMU(new_semu, j);
    290 		memcpy(nsuptr, suptr, SEMUSZ);
    291 		nsuptr->un_next = new_semu_list;
    292 		new_semu_list = nsuptr;
    293 		j++;
    294 	}
    295 
    296 	for (i = 0; i < seminfo.semmni; i++) {
    297 		KASSERT(cv_has_waiters(&semcv[i]) == false);
    298 		cv_destroy(&semcv[i]);
    299 	}
    300 
    301 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    302 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    303 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    304 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    305 	sz = round_page(sz);
    306 
    307 	/* Set the pointers and update the new values */
    308 	sema = new_sema;
    309 	sem = new_sem;
    310 	semcv = new_semcv;
    311 	semu = new_semu;
    312 	semu_list = new_semu_list;
    313 
    314 	seminfo.semmni = newsemmni;
    315 	seminfo.semmns = newsemmns;
    316 	seminfo.semmnu = newsemmnu;
    317 
    318 	/* Reallocation completed - notify all waiters, if any */
    319 	sem_realloc_state = false;
    320 	cv_broadcast(&sem_realloc_cv);
    321 	mutex_exit(&semlock);
    322 
    323 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
    324 	return 0;
    325 }
    326 
    327 /*
    328  * Placebo.
    329  */
    330 
    331 int
    332 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
    333 {
    334 
    335 	*retval = 0;
    336 	return 0;
    337 }
    338 
    339 /*
    340  * Allocate a new sem_undo structure for a process.
    341  * => Returns NULL on failure.
    342  */
    343 struct sem_undo *
    344 semu_alloc(struct proc *p)
    345 {
    346 	struct sem_undo *suptr, **supptr;
    347 	bool attempted = false;
    348 	int i;
    349 
    350 	KASSERT(mutex_owned(&semlock));
    351 again:
    352 	/* Look for a free structure. */
    353 	for (i = 0; i < seminfo.semmnu; i++) {
    354 		suptr = SEMU(semu, i);
    355 		if (suptr->un_proc == NULL) {
    356 			/* Found.  Fill it in and return. */
    357 			suptr->un_next = semu_list;
    358 			semu_list = suptr;
    359 			suptr->un_cnt = 0;
    360 			suptr->un_proc = p;
    361 			return suptr;
    362 		}
    363 	}
    364 
    365 	/* Not found.  Attempt to free some structures. */
    366 	if (!attempted) {
    367 		bool freed = false;
    368 
    369 		attempted = true;
    370 		supptr = &semu_list;
    371 		while ((suptr = *supptr) != NULL) {
    372 			if (suptr->un_cnt == 0)  {
    373 				suptr->un_proc = NULL;
    374 				*supptr = suptr->un_next;
    375 				freed = true;
    376 			} else {
    377 				supptr = &suptr->un_next;
    378 			}
    379 		}
    380 		if (freed) {
    381 			goto again;
    382 		}
    383 	}
    384 	return NULL;
    385 }
    386 
    387 /*
    388  * Adjust a particular entry for a particular proc
    389  */
    390 
    391 int
    392 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
    393     int adjval)
    394 {
    395 	struct sem_undo *suptr;
    396 	struct sem_undo_entry *sunptr;
    397 	int i;
    398 
    399 	KASSERT(mutex_owned(&semlock));
    400 
    401 	/*
    402 	 * Look for and remember the sem_undo if the caller doesn't
    403 	 * provide it
    404 	 */
    405 
    406 	suptr = *supptr;
    407 	if (suptr == NULL) {
    408 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    409 			if (suptr->un_proc == p)
    410 				break;
    411 
    412 		if (suptr == NULL) {
    413 			suptr = semu_alloc(p);
    414 			if (suptr == NULL)
    415 				return (ENOSPC);
    416 		}
    417 		*supptr = suptr;
    418 	}
    419 
    420 	/*
    421 	 * Look for the requested entry and adjust it (delete if
    422 	 * adjval becomes 0).
    423 	 */
    424 	sunptr = &suptr->un_ent[0];
    425 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
    426 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
    427 			continue;
    428 		sunptr->un_adjval += adjval;
    429 		if (sunptr->un_adjval == 0) {
    430 			suptr->un_cnt--;
    431 			if (i < suptr->un_cnt)
    432 				suptr->un_ent[i] =
    433 				    suptr->un_ent[suptr->un_cnt];
    434 		}
    435 		return (0);
    436 	}
    437 
    438 	/* Didn't find the right entry - create it */
    439 	if (suptr->un_cnt == SEMUME)
    440 		return (EINVAL);
    441 
    442 	sunptr = &suptr->un_ent[suptr->un_cnt];
    443 	suptr->un_cnt++;
    444 	sunptr->un_adjval = adjval;
    445 	sunptr->un_id = semid;
    446 	sunptr->un_num = semnum;
    447 	return (0);
    448 }
    449 
    450 void
    451 semundo_clear(int semid, int semnum)
    452 {
    453 	struct sem_undo *suptr;
    454 	struct sem_undo_entry *sunptr, *sunend;
    455 
    456 	KASSERT(mutex_owned(&semlock));
    457 
    458 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    459 		for (sunptr = &suptr->un_ent[0],
    460 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
    461 			if (sunptr->un_id == semid) {
    462 				if (semnum == -1 || sunptr->un_num == semnum) {
    463 					suptr->un_cnt--;
    464 					sunend--;
    465 					if (sunptr != sunend)
    466 						*sunptr = *sunend;
    467 					if (semnum != -1)
    468 						break;
    469 					else
    470 						continue;
    471 				}
    472 			}
    473 			sunptr++;
    474 		}
    475 }
    476 
    477 int
    478 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
    479     register_t *retval)
    480 {
    481 	/* {
    482 		syscallarg(int) semid;
    483 		syscallarg(int) semnum;
    484 		syscallarg(int) cmd;
    485 		syscallarg(union __semun *) arg;
    486 	} */
    487 	struct semid_ds sembuf;
    488 	int cmd, error;
    489 	void *pass_arg;
    490 	union __semun karg;
    491 
    492 	cmd = SCARG(uap, cmd);
    493 
    494 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
    495 
    496 	if (pass_arg) {
    497 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
    498 		if (error)
    499 			return error;
    500 		if (cmd == IPC_SET) {
    501 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
    502 			if (error)
    503 				return (error);
    504 		}
    505 	}
    506 
    507 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
    508 	    pass_arg, retval);
    509 
    510 	if (error == 0 && cmd == IPC_STAT)
    511 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
    512 
    513 	return (error);
    514 }
    515 
    516 int
    517 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
    518     register_t *retval)
    519 {
    520 	kauth_cred_t cred = l->l_cred;
    521 	union __semun *arg = v;
    522 	struct semid_ds *sembuf = v, *semaptr;
    523 	int i, error, ix;
    524 
    525 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
    526 	    semid, semnum, cmd, v));
    527 
    528 	mutex_enter(&semlock);
    529 
    530 	ix = IPCID_TO_IX(semid);
    531 	if (ix < 0 || ix >= seminfo.semmni) {
    532 		mutex_exit(&semlock);
    533 		return (EINVAL);
    534 	}
    535 
    536 	semaptr = &sema[ix];
    537 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    538 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
    539 		mutex_exit(&semlock);
    540 		return (EINVAL);
    541 	}
    542 
    543 	switch (cmd) {
    544 	case IPC_RMID:
    545 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
    546 			break;
    547 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
    548 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
    549 		semtot -= semaptr->sem_nsems;
    550 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
    551 			sem[i] = sem[i + semaptr->sem_nsems];
    552 		for (i = 0; i < seminfo.semmni; i++) {
    553 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
    554 			    sema[i]._sem_base > semaptr->_sem_base)
    555 				sema[i]._sem_base -= semaptr->sem_nsems;
    556 		}
    557 		semaptr->sem_perm.mode = 0;
    558 		semundo_clear(ix, -1);
    559 		cv_broadcast(&semcv[ix]);
    560 		break;
    561 
    562 	case IPC_SET:
    563 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
    564 			break;
    565 		KASSERT(sembuf != NULL);
    566 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
    567 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
    568 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
    569 		    (sembuf->sem_perm.mode & 0777);
    570 		semaptr->sem_ctime = time_second;
    571 		break;
    572 
    573 	case IPC_STAT:
    574 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    575 			break;
    576 		KASSERT(sembuf != NULL);
    577 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
    578 		sembuf->sem_perm.mode &= 0777;
    579 		break;
    580 
    581 	case GETNCNT:
    582 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    583 			break;
    584 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    585 			error = EINVAL;
    586 			break;
    587 		}
    588 		*retval = semaptr->_sem_base[semnum].semncnt;
    589 		break;
    590 
    591 	case GETPID:
    592 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    593 			break;
    594 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    595 			error = EINVAL;
    596 			break;
    597 		}
    598 		*retval = semaptr->_sem_base[semnum].sempid;
    599 		break;
    600 
    601 	case GETVAL:
    602 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    603 			break;
    604 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    605 			error = EINVAL;
    606 			break;
    607 		}
    608 		*retval = semaptr->_sem_base[semnum].semval;
    609 		break;
    610 
    611 	case GETALL:
    612 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    613 			break;
    614 		KASSERT(arg != NULL);
    615 		for (i = 0; i < semaptr->sem_nsems; i++) {
    616 			error = copyout(&semaptr->_sem_base[i].semval,
    617 			    &arg->array[i], sizeof(arg->array[i]));
    618 			if (error != 0)
    619 				break;
    620 		}
    621 		break;
    622 
    623 	case GETZCNT:
    624 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    625 			break;
    626 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    627 			error = EINVAL;
    628 			break;
    629 		}
    630 		*retval = semaptr->_sem_base[semnum].semzcnt;
    631 		break;
    632 
    633 	case SETVAL:
    634 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    635 			break;
    636 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    637 			error = EINVAL;
    638 			break;
    639 		}
    640 		KASSERT(arg != NULL);
    641 		if ((unsigned int)arg->val > seminfo.semvmx) {
    642 			error = ERANGE;
    643 			break;
    644 		}
    645 		semaptr->_sem_base[semnum].semval = arg->val;
    646 		semundo_clear(ix, semnum);
    647 		cv_broadcast(&semcv[ix]);
    648 		break;
    649 
    650 	case SETALL:
    651 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    652 			break;
    653 		KASSERT(arg != NULL);
    654 		for (i = 0; i < semaptr->sem_nsems; i++) {
    655 			unsigned short semval;
    656 			error = copyin(&arg->array[i], &semval,
    657 			    sizeof(arg->array[i]));
    658 			if (error != 0)
    659 				break;
    660 			if ((unsigned int)semval > seminfo.semvmx) {
    661 				error = ERANGE;
    662 				break;
    663 			}
    664 			semaptr->_sem_base[i].semval = semval;
    665 		}
    666 		semundo_clear(ix, -1);
    667 		cv_broadcast(&semcv[ix]);
    668 		break;
    669 
    670 	default:
    671 		error = EINVAL;
    672 		break;
    673 	}
    674 
    675 	mutex_exit(&semlock);
    676 	return (error);
    677 }
    678 
    679 int
    680 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
    681 {
    682 	/* {
    683 		syscallarg(key_t) key;
    684 		syscallarg(int) nsems;
    685 		syscallarg(int) semflg;
    686 	} */
    687 	int semid, error = 0;
    688 	int key = SCARG(uap, key);
    689 	int nsems = SCARG(uap, nsems);
    690 	int semflg = SCARG(uap, semflg);
    691 	kauth_cred_t cred = l->l_cred;
    692 
    693 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
    694 
    695 	mutex_enter(&semlock);
    696 
    697 	if (key != IPC_PRIVATE) {
    698 		for (semid = 0; semid < seminfo.semmni; semid++) {
    699 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
    700 			    sema[semid].sem_perm._key == key)
    701 				break;
    702 		}
    703 		if (semid < seminfo.semmni) {
    704 			SEM_PRINTF(("found public key\n"));
    705 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
    706 			    semflg & 0700)))
    707 			    	goto out;
    708 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
    709 				SEM_PRINTF(("too small\n"));
    710 				error = EINVAL;
    711 				goto out;
    712 			}
    713 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
    714 				SEM_PRINTF(("not exclusive\n"));
    715 				error = EEXIST;
    716 				goto out;
    717 			}
    718 			goto found;
    719 		}
    720 	}
    721 
    722 	SEM_PRINTF(("need to allocate the semid_ds\n"));
    723 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
    724 		if (nsems <= 0 || nsems > seminfo.semmsl) {
    725 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
    726 			    seminfo.semmsl));
    727 			error = EINVAL;
    728 			goto out;
    729 		}
    730 		if (nsems > seminfo.semmns - semtot) {
    731 			SEM_PRINTF(("not enough semaphores left "
    732 			    "(need %d, got %d)\n",
    733 			    nsems, seminfo.semmns - semtot));
    734 			error = ENOSPC;
    735 			goto out;
    736 		}
    737 		for (semid = 0; semid < seminfo.semmni; semid++) {
    738 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
    739 				break;
    740 		}
    741 		if (semid == seminfo.semmni) {
    742 			SEM_PRINTF(("no more semid_ds's available\n"));
    743 			error = ENOSPC;
    744 			goto out;
    745 		}
    746 		SEM_PRINTF(("semid %d is available\n", semid));
    747 		sema[semid].sem_perm._key = key;
    748 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
    749 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
    750 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
    751 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
    752 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
    753 		sema[semid].sem_perm._seq =
    754 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
    755 		sema[semid].sem_nsems = nsems;
    756 		sema[semid].sem_otime = 0;
    757 		sema[semid].sem_ctime = time_second;
    758 		sema[semid]._sem_base = &sem[semtot];
    759 		semtot += nsems;
    760 		memset(sema[semid]._sem_base, 0,
    761 		    sizeof(sema[semid]._sem_base[0]) * nsems);
    762 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
    763 		    &sem[semtot]));
    764 	} else {
    765 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
    766 		error = ENOENT;
    767 		goto out;
    768 	}
    769 
    770  found:
    771 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
    772  out:
    773 	mutex_exit(&semlock);
    774 	return (error);
    775 }
    776 
    777 #define SMALL_SOPS 8
    778 
    779 int
    780 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
    781 {
    782 	/* {
    783 		syscallarg(int) semid;
    784 		syscallarg(struct sembuf *) sops;
    785 		syscallarg(size_t) nsops;
    786 	} */
    787 	struct proc *p = l->l_proc;
    788 	int semid = SCARG(uap, semid), seq;
    789 	size_t nsops = SCARG(uap, nsops);
    790 	struct sembuf small_sops[SMALL_SOPS];
    791 	struct sembuf *sops;
    792 	struct semid_ds *semaptr;
    793 	struct sembuf *sopptr = NULL;
    794 	struct __sem *semptr = NULL;
    795 	struct sem_undo *suptr = NULL;
    796 	kauth_cred_t cred = l->l_cred;
    797 	int i, error;
    798 	int do_wakeup, do_undos;
    799 
    800 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
    801 
    802 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
    803 		mutex_enter(p->p_lock);
    804 		p->p_flag |= PK_SYSVSEM;
    805 		mutex_exit(p->p_lock);
    806 	}
    807 
    808 restart:
    809 	if (nsops <= SMALL_SOPS) {
    810 		sops = small_sops;
    811 	} else if (nsops <= seminfo.semopm) {
    812 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
    813 	} else {
    814 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
    815 		    seminfo.semopm, nsops));
    816 		return (E2BIG);
    817 	}
    818 
    819 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
    820 	if (error) {
    821 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
    822 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
    823 		if (sops != small_sops)
    824 			kmem_free(sops, nsops * sizeof(*sops));
    825 		return error;
    826 	}
    827 
    828 	mutex_enter(&semlock);
    829 	/* In case of reallocation, we will wait for completion */
    830 	while (__predict_false(sem_realloc_state))
    831 		cv_wait(&sem_realloc_cv, &semlock);
    832 
    833 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
    834 	if (semid < 0 || semid >= seminfo.semmni) {
    835 		error = EINVAL;
    836 		goto out;
    837 	}
    838 
    839 	semaptr = &sema[semid];
    840 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
    841 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    842 	    semaptr->sem_perm._seq != seq) {
    843 		error = EINVAL;
    844 		goto out;
    845 	}
    846 
    847 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
    848 		SEM_PRINTF(("error = %d from ipaccess\n", error));
    849 		goto out;
    850 	}
    851 
    852 	for (i = 0; i < nsops; i++)
    853 		if (sops[i].sem_num >= semaptr->sem_nsems) {
    854 			error = EFBIG;
    855 			goto out;
    856 		}
    857 
    858 	/*
    859 	 * Loop trying to satisfy the vector of requests.
    860 	 * If we reach a point where we must wait, any requests already
    861 	 * performed are rolled back and we go to sleep until some other
    862 	 * process wakes us up.  At this point, we start all over again.
    863 	 *
    864 	 * This ensures that from the perspective of other tasks, a set
    865 	 * of requests is atomic (never partially satisfied).
    866 	 */
    867 	do_undos = 0;
    868 
    869 	for (;;) {
    870 		do_wakeup = 0;
    871 
    872 		for (i = 0; i < nsops; i++) {
    873 			sopptr = &sops[i];
    874 			semptr = &semaptr->_sem_base[sopptr->sem_num];
    875 
    876 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
    877 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
    878 			    semaptr, semaptr->_sem_base, semptr,
    879 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
    880 			    (sopptr->sem_flg & IPC_NOWAIT) ?
    881 			    "nowait" : "wait"));
    882 
    883 			if (sopptr->sem_op < 0) {
    884 				if ((int)(semptr->semval +
    885 				    sopptr->sem_op) < 0) {
    886 					SEM_PRINTF(("semop:  "
    887 					    "can't do it now\n"));
    888 					break;
    889 				} else {
    890 					semptr->semval += sopptr->sem_op;
    891 					if (semptr->semval == 0 &&
    892 					    semptr->semzcnt > 0)
    893 						do_wakeup = 1;
    894 				}
    895 				if (sopptr->sem_flg & SEM_UNDO)
    896 					do_undos = 1;
    897 			} else if (sopptr->sem_op == 0) {
    898 				if (semptr->semval > 0) {
    899 					SEM_PRINTF(("semop:  not zero now\n"));
    900 					break;
    901 				}
    902 			} else {
    903 				if (semptr->semncnt > 0)
    904 					do_wakeup = 1;
    905 				semptr->semval += sopptr->sem_op;
    906 				if (sopptr->sem_flg & SEM_UNDO)
    907 					do_undos = 1;
    908 			}
    909 		}
    910 
    911 		/*
    912 		 * Did we get through the entire vector?
    913 		 */
    914 		if (i >= nsops)
    915 			goto done;
    916 
    917 		/*
    918 		 * No ... rollback anything that we've already done
    919 		 */
    920 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
    921 		while (i-- > 0)
    922 			semaptr->_sem_base[sops[i].sem_num].semval -=
    923 			    sops[i].sem_op;
    924 
    925 		/*
    926 		 * If the request that we couldn't satisfy has the
    927 		 * NOWAIT flag set then return with EAGAIN.
    928 		 */
    929 		if (sopptr->sem_flg & IPC_NOWAIT) {
    930 			error = EAGAIN;
    931 			goto out;
    932 		}
    933 
    934 		if (sopptr->sem_op == 0)
    935 			semptr->semzcnt++;
    936 		else
    937 			semptr->semncnt++;
    938 
    939 		sem_waiters++;
    940 		SEM_PRINTF(("semop:  good night!\n"));
    941 		error = cv_wait_sig(&semcv[semid], &semlock);
    942 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
    943 		sem_waiters--;
    944 
    945 		/* Notify reallocator, if it is waiting */
    946 		cv_broadcast(&sem_realloc_cv);
    947 
    948 		/*
    949 		 * Make sure that the semaphore still exists
    950 		 */
    951 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    952 		    semaptr->sem_perm._seq != seq) {
    953 			error = EIDRM;
    954 			goto out;
    955 		}
    956 
    957 		/*
    958 		 * The semaphore is still alive.  Readjust the count of
    959 		 * waiting processes.
    960 		 */
    961 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    962 		if (sopptr->sem_op == 0)
    963 			semptr->semzcnt--;
    964 		else
    965 			semptr->semncnt--;
    966 
    967 		/* In case of such state, restart the call */
    968 		if (sem_realloc_state) {
    969 			mutex_exit(&semlock);
    970 			goto restart;
    971 		}
    972 
    973 		/* Is it really morning, or was our sleep interrupted? */
    974 		if (error != 0) {
    975 			error = EINTR;
    976 			goto out;
    977 		}
    978 		SEM_PRINTF(("semop:  good morning!\n"));
    979 	}
    980 
    981 done:
    982 	/*
    983 	 * Process any SEM_UNDO requests.
    984 	 */
    985 	if (do_undos) {
    986 		for (i = 0; i < nsops; i++) {
    987 			/*
    988 			 * We only need to deal with SEM_UNDO's for non-zero
    989 			 * op's.
    990 			 */
    991 			int adjval;
    992 
    993 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
    994 				continue;
    995 			adjval = sops[i].sem_op;
    996 			if (adjval == 0)
    997 				continue;
    998 			error = semundo_adjust(p, &suptr, semid,
    999 			    sops[i].sem_num, -adjval);
   1000 			if (error == 0)
   1001 				continue;
   1002 
   1003 			/*
   1004 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
   1005 			 * Rollback the adjustments to this point and then
   1006 			 * rollback the semaphore ups and down so we can return
   1007 			 * with an error with all structures restored.  We
   1008 			 * rollback the undo's in the exact reverse order that
   1009 			 * we applied them.  This guarantees that we won't run
   1010 			 * out of space as we roll things back out.
   1011 			 */
   1012 			while (i-- > 0) {
   1013 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
   1014 					continue;
   1015 				adjval = sops[i].sem_op;
   1016 				if (adjval == 0)
   1017 					continue;
   1018 				if (semundo_adjust(p, &suptr, semid,
   1019 				    sops[i].sem_num, adjval) != 0)
   1020 					panic("semop - can't undo undos");
   1021 			}
   1022 
   1023 			for (i = 0; i < nsops; i++)
   1024 				semaptr->_sem_base[sops[i].sem_num].semval -=
   1025 				    sops[i].sem_op;
   1026 
   1027 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
   1028 			goto out;
   1029 		} /* loop through the sops */
   1030 	} /* if (do_undos) */
   1031 
   1032 	/* We're definitely done - set the sempid's */
   1033 	for (i = 0; i < nsops; i++) {
   1034 		sopptr = &sops[i];
   1035 		semptr = &semaptr->_sem_base[sopptr->sem_num];
   1036 		semptr->sempid = p->p_pid;
   1037 	}
   1038 
   1039 	/* Update sem_otime */
   1040 	semaptr->sem_otime = time_second;
   1041 
   1042 	/* Do a wakeup if any semaphore was up'd. */
   1043 	if (do_wakeup) {
   1044 		SEM_PRINTF(("semop:  doing wakeup\n"));
   1045 		cv_broadcast(&semcv[semid]);
   1046 		SEM_PRINTF(("semop:  back from wakeup\n"));
   1047 	}
   1048 	SEM_PRINTF(("semop:  done\n"));
   1049 	*retval = 0;
   1050 
   1051  out:
   1052 	mutex_exit(&semlock);
   1053 	if (sops != small_sops)
   1054 		kmem_free(sops, nsops * sizeof(*sops));
   1055 	return error;
   1056 }
   1057 
   1058 /*
   1059  * Go through the undo structures for this process and apply the
   1060  * adjustments to semaphores.
   1061  */
   1062 /*ARGSUSED*/
   1063 void
   1064 semexit(struct proc *p, void *v)
   1065 {
   1066 	struct sem_undo *suptr;
   1067 	struct sem_undo **supptr;
   1068 
   1069 	if ((p->p_flag & PK_SYSVSEM) == 0)
   1070 		return;
   1071 
   1072 	mutex_enter(&semlock);
   1073 
   1074 	/*
   1075 	 * Go through the chain of undo vectors looking for one
   1076 	 * associated with this process.
   1077 	 */
   1078 
   1079 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
   1080 	    supptr = &suptr->un_next) {
   1081 		if (suptr->un_proc == p)
   1082 			break;
   1083 	}
   1084 
   1085 	/*
   1086 	 * If there is no undo vector, skip to the end.
   1087 	 */
   1088 
   1089 	if (suptr == NULL) {
   1090 		mutex_exit(&semlock);
   1091 		return;
   1092 	}
   1093 
   1094 	/*
   1095 	 * We now have an undo vector for this process.
   1096 	 */
   1097 
   1098 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
   1099 	    suptr->un_cnt));
   1100 
   1101 	/*
   1102 	 * If there are any active undo elements then process them.
   1103 	 */
   1104 	if (suptr->un_cnt > 0) {
   1105 		int ix;
   1106 
   1107 		for (ix = 0; ix < suptr->un_cnt; ix++) {
   1108 			int semid = suptr->un_ent[ix].un_id;
   1109 			int semnum = suptr->un_ent[ix].un_num;
   1110 			int adjval = suptr->un_ent[ix].un_adjval;
   1111 			struct semid_ds *semaptr;
   1112 
   1113 			semaptr = &sema[semid];
   1114 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
   1115 				panic("semexit - semid not allocated");
   1116 			if (semnum >= semaptr->sem_nsems)
   1117 				panic("semexit - semnum out of range");
   1118 
   1119 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
   1120 			    "sem=%d\n",
   1121 			    suptr->un_proc, suptr->un_ent[ix].un_id,
   1122 			    suptr->un_ent[ix].un_num,
   1123 			    suptr->un_ent[ix].un_adjval,
   1124 			    semaptr->_sem_base[semnum].semval));
   1125 
   1126 			if (adjval < 0 &&
   1127 			    semaptr->_sem_base[semnum].semval < -adjval)
   1128 				semaptr->_sem_base[semnum].semval = 0;
   1129 			else
   1130 				semaptr->_sem_base[semnum].semval += adjval;
   1131 
   1132 			cv_broadcast(&semcv[semid]);
   1133 			SEM_PRINTF(("semexit:  back from wakeup\n"));
   1134 		}
   1135 	}
   1136 
   1137 	/*
   1138 	 * Deallocate the undo vector.
   1139 	 */
   1140 	SEM_PRINTF(("removing vector\n"));
   1141 	suptr->un_proc = NULL;
   1142 	*supptr = suptr->un_next;
   1143 	mutex_exit(&semlock);
   1144 }
   1145 
   1146 /*
   1147  * Sysctl initialization and nodes.
   1148  */
   1149 
   1150 static int
   1151 sysctl_ipc_semmni(SYSCTLFN_ARGS)
   1152 {
   1153 	int newsize, error;
   1154 	struct sysctlnode node;
   1155 	node = *rnode;
   1156 	node.sysctl_data = &newsize;
   1157 
   1158 	newsize = seminfo.semmni;
   1159 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1160 	if (error || newp == NULL)
   1161 		return error;
   1162 
   1163 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
   1164 }
   1165 
   1166 static int
   1167 sysctl_ipc_semmns(SYSCTLFN_ARGS)
   1168 {
   1169 	int newsize, error;
   1170 	struct sysctlnode node;
   1171 	node = *rnode;
   1172 	node.sysctl_data = &newsize;
   1173 
   1174 	newsize = seminfo.semmns;
   1175 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1176 	if (error || newp == NULL)
   1177 		return error;
   1178 
   1179 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
   1180 }
   1181 
   1182 static int
   1183 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
   1184 {
   1185 	int newsize, error;
   1186 	struct sysctlnode node;
   1187 	node = *rnode;
   1188 	node.sysctl_data = &newsize;
   1189 
   1190 	newsize = seminfo.semmnu;
   1191 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1192 	if (error || newp == NULL)
   1193 		return error;
   1194 
   1195 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
   1196 }
   1197 
   1198 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
   1199 {
   1200 	const struct sysctlnode *node = NULL;
   1201 
   1202 	sysctl_createv(clog, 0, NULL, &node,
   1203 		CTLFLAG_PERMANENT,
   1204 		CTLTYPE_NODE, "ipc",
   1205 		SYSCTL_DESCR("SysV IPC options"),
   1206 		NULL, 0, NULL, 0,
   1207 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1208 
   1209 	if (node == NULL)
   1210 		return;
   1211 
   1212 	sysctl_createv(clog, 0, &node, NULL,
   1213 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1214 		CTLTYPE_INT, "semmni",
   1215 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
   1216 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
   1217 		CTL_CREATE, CTL_EOL);
   1218 	sysctl_createv(clog, 0, &node, NULL,
   1219 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1220 		CTLTYPE_INT, "semmns",
   1221 		SYSCTL_DESCR("Max number of number of semaphores in system"),
   1222 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
   1223 		CTL_CREATE, CTL_EOL);
   1224 	sysctl_createv(clog, 0, &node, NULL,
   1225 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1226 		CTLTYPE_INT, "semmnu",
   1227 		SYSCTL_DESCR("Max number of undo structures in system"),
   1228 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
   1229 		CTL_CREATE, CTL_EOL);
   1230 }
   1231