sysv_sem.c revision 1.96 1 /* $NetBSD: sysv_sem.c,v 1.96 2019/02/21 03:37:19 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Implementation of SVID semaphores
35 *
36 * Author: Daniel Boulet
37 *
38 * This software is provided ``AS IS'' without any warranties of any kind.
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.96 2019/02/21 03:37:19 mrg Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_sysv.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/sem.h>
51 #include <sys/sysctl.h>
52 #include <sys/kmem.h>
53 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
54 #include <sys/syscallargs.h>
55 #include <sys/kauth.h>
56 #include <sys/once.h>
57
58 /*
59 * Memory areas:
60 * 1st: Pool of semaphore identifiers
61 * 2nd: Semaphores
62 * 3rd: Conditional variables
63 * 4th: Undo structures
64 */
65 struct semid_ds * sema __read_mostly;
66 static struct __sem * sem __read_mostly;
67 static kcondvar_t * semcv __read_mostly;
68 static int * semu __read_mostly;
69
70 static kmutex_t semlock __cacheline_aligned;
71 static bool sem_realloc_state __read_mostly;
72 static kcondvar_t sem_realloc_cv;
73
74 /*
75 * List of active undo structures, total number of semaphores,
76 * and total number of semop waiters.
77 */
78 static struct sem_undo *semu_list __read_mostly;
79 static u_int semtot __cacheline_aligned;
80 static u_int sem_waiters __cacheline_aligned;
81
82 /* Macro to find a particular sem_undo vector */
83 #define SEMU(s, ix) ((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
84
85 #ifdef SEM_DEBUG
86 #define SEM_PRINTF(a) printf a
87 #else
88 #define SEM_PRINTF(a)
89 #endif
90
91 void *hook; /* cookie from exithook_establish() */
92
93 extern int kern_has_sysvsem;
94
95 SYSCTL_SETUP_PROTO(sysctl_ipc_sem_setup);
96
97 struct sem_undo *semu_alloc(struct proc *);
98 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
99 void semundo_clear(int, int);
100
101 static ONCE_DECL(exithook_control);
102 static int seminit_exithook(void);
103
104 void
105 seminit(struct sysctllog **clog)
106 {
107 int i, sz;
108 vaddr_t v;
109
110 mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
111 cv_init(&sem_realloc_cv, "semrealc");
112 sem_realloc_state = false;
113 semtot = 0;
114 sem_waiters = 0;
115
116 /* Allocate the wired memory for our structures */
117 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
118 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
119 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
120 ALIGN(seminfo.semmnu * seminfo.semusz);
121 sz = round_page(sz);
122 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
123 if (v == 0)
124 panic("sysv_sem: cannot allocate memory");
125 sema = (void *)v;
126 sem = (void *)((uintptr_t)sema +
127 ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
128 semcv = (void *)((uintptr_t)sem +
129 ALIGN(seminfo.semmns * sizeof(struct __sem)));
130 semu = (void *)((uintptr_t)semcv +
131 ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
132
133 for (i = 0; i < seminfo.semmni; i++) {
134 sema[i]._sem_base = 0;
135 sema[i].sem_perm.mode = 0;
136 cv_init(&semcv[i], "semwait");
137 }
138 for (i = 0; i < seminfo.semmnu; i++) {
139 struct sem_undo *suptr = SEMU(semu, i);
140 suptr->un_proc = NULL;
141 }
142 semu_list = NULL;
143
144 kern_has_sysvsem = 1;
145
146 #ifdef _MODULE
147 if (clog)
148 sysctl_ipc_sem_setup(clog);
149 #endif
150 }
151
152 static int
153 seminit_exithook(void)
154 {
155
156 hook = exithook_establish(semexit, NULL);
157 return 0;
158 }
159
160 int
161 semfini(void)
162 {
163 int i, sz;
164 vaddr_t v = (vaddr_t)sema;
165
166 /* Don't allow module unload if we're busy */
167 mutex_enter(&semlock);
168 if (semtot) {
169 mutex_exit(&semlock);
170 return 1;
171 }
172
173 /* Remove the exit hook */
174 if (hook)
175 exithook_disestablish(hook);
176
177 /* Destroy all our condvars */
178 for (i = 0; i < seminfo.semmni; i++) {
179 cv_destroy(&semcv[i]);
180 }
181
182 /* Free the wired memory that we allocated */
183 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
184 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
185 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
186 ALIGN(seminfo.semmnu * seminfo.semusz);
187 sz = round_page(sz);
188 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
189
190 /* Destroy the last cv and mutex */
191 cv_destroy(&sem_realloc_cv);
192 mutex_exit(&semlock);
193 mutex_destroy(&semlock);
194
195 kern_has_sysvsem = 0;
196
197 return 0;
198 }
199
200 static int
201 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
202 {
203 struct semid_ds *new_sema, *old_sema;
204 struct __sem *new_sem;
205 struct sem_undo *new_semu_list, *suptr, *nsuptr;
206 int *new_semu;
207 kcondvar_t *new_semcv;
208 vaddr_t v;
209 int i, j, lsemid, nmnus, sz;
210
211 if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
212 return EINVAL;
213
214 /* Allocate the wired memory for our structures */
215 sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
216 ALIGN(newsemmns * sizeof(struct __sem)) +
217 ALIGN(newsemmni * sizeof(kcondvar_t)) +
218 ALIGN(newsemmnu * seminfo.semusz);
219 sz = round_page(sz);
220 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
221 if (v == 0)
222 return ENOMEM;
223
224 mutex_enter(&semlock);
225 if (sem_realloc_state) {
226 mutex_exit(&semlock);
227 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
228 return EBUSY;
229 }
230 sem_realloc_state = true;
231 if (sem_waiters) {
232 /*
233 * Mark reallocation state, wake-up all waiters,
234 * and wait while they will all exit.
235 */
236 for (i = 0; i < seminfo.semmni; i++)
237 cv_broadcast(&semcv[i]);
238 while (sem_waiters)
239 cv_wait(&sem_realloc_cv, &semlock);
240 }
241 old_sema = sema;
242
243 /* Get the number of last slot */
244 lsemid = 0;
245 for (i = 0; i < seminfo.semmni; i++)
246 if (sema[i].sem_perm.mode & SEM_ALLOC)
247 lsemid = i;
248
249 /* Get the number of currently used undo structures */
250 nmnus = 0;
251 for (i = 0; i < seminfo.semmnu; i++) {
252 suptr = SEMU(semu, i);
253 if (suptr->un_proc == NULL)
254 continue;
255 nmnus++;
256 }
257
258 /* We cannot reallocate less memory than we use */
259 if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
260 mutex_exit(&semlock);
261 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
262 return EBUSY;
263 }
264
265 new_sema = (void *)v;
266 new_sem = (void *)((uintptr_t)new_sema +
267 ALIGN(newsemmni * sizeof(struct semid_ds)));
268 new_semcv = (void *)((uintptr_t)new_sem +
269 ALIGN(newsemmns * sizeof(struct __sem)));
270 new_semu = (void *)((uintptr_t)new_semcv +
271 ALIGN(newsemmni * sizeof(kcondvar_t)));
272
273 /* Initialize all semaphore identifiers and condvars */
274 for (i = 0; i < newsemmni; i++) {
275 new_sema[i]._sem_base = 0;
276 new_sema[i].sem_perm.mode = 0;
277 cv_init(&new_semcv[i], "semwait");
278 }
279 for (i = 0; i < newsemmnu; i++) {
280 nsuptr = SEMU(new_semu, i);
281 nsuptr->un_proc = NULL;
282 }
283
284 /*
285 * Copy all identifiers, semaphores and list of the
286 * undo structures to the new memory allocation.
287 */
288 j = 0;
289 for (i = 0; i <= lsemid; i++) {
290 if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
291 continue;
292 memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
293 new_sema[i]._sem_base = &new_sem[j];
294 memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
295 (sizeof(struct __sem) * sema[i].sem_nsems));
296 j += sema[i].sem_nsems;
297 }
298 KASSERT(j == semtot);
299
300 j = 0;
301 new_semu_list = NULL;
302 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
303 KASSERT(j < newsemmnu);
304 nsuptr = SEMU(new_semu, j);
305 memcpy(nsuptr, suptr, SEMUSZ);
306 nsuptr->un_next = new_semu_list;
307 new_semu_list = nsuptr;
308 j++;
309 }
310
311 for (i = 0; i < seminfo.semmni; i++) {
312 KASSERT(cv_has_waiters(&semcv[i]) == false);
313 cv_destroy(&semcv[i]);
314 }
315
316 sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
317 ALIGN(seminfo.semmns * sizeof(struct __sem)) +
318 ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
319 ALIGN(seminfo.semmnu * seminfo.semusz);
320 sz = round_page(sz);
321
322 /* Set the pointers and update the new values */
323 sema = new_sema;
324 sem = new_sem;
325 semcv = new_semcv;
326 semu = new_semu;
327 semu_list = new_semu_list;
328
329 seminfo.semmni = newsemmni;
330 seminfo.semmns = newsemmns;
331 seminfo.semmnu = newsemmnu;
332
333 /* Reallocation completed - notify all waiters, if any */
334 sem_realloc_state = false;
335 cv_broadcast(&sem_realloc_cv);
336 mutex_exit(&semlock);
337
338 uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
339 return 0;
340 }
341
342 /*
343 * Placebo.
344 */
345
346 int
347 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
348 {
349
350 RUN_ONCE(&exithook_control, seminit_exithook);
351
352 *retval = 0;
353 return 0;
354 }
355
356 /*
357 * Allocate a new sem_undo structure for a process.
358 * => Returns NULL on failure.
359 */
360 struct sem_undo *
361 semu_alloc(struct proc *p)
362 {
363 struct sem_undo *suptr, **supptr;
364 bool attempted = false;
365 int i;
366
367 KASSERT(mutex_owned(&semlock));
368 again:
369 /* Look for a free structure. */
370 for (i = 0; i < seminfo.semmnu; i++) {
371 suptr = SEMU(semu, i);
372 if (suptr->un_proc == NULL) {
373 /* Found. Fill it in and return. */
374 suptr->un_next = semu_list;
375 semu_list = suptr;
376 suptr->un_cnt = 0;
377 suptr->un_proc = p;
378 return suptr;
379 }
380 }
381
382 /* Not found. Attempt to free some structures. */
383 if (!attempted) {
384 bool freed = false;
385
386 attempted = true;
387 supptr = &semu_list;
388 while ((suptr = *supptr) != NULL) {
389 if (suptr->un_cnt == 0) {
390 suptr->un_proc = NULL;
391 *supptr = suptr->un_next;
392 freed = true;
393 } else {
394 supptr = &suptr->un_next;
395 }
396 }
397 if (freed) {
398 goto again;
399 }
400 }
401 return NULL;
402 }
403
404 /*
405 * Adjust a particular entry for a particular proc
406 */
407
408 int
409 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
410 int adjval)
411 {
412 struct sem_undo *suptr;
413 struct sem_undo_entry *sunptr;
414 int i;
415
416 KASSERT(mutex_owned(&semlock));
417
418 /*
419 * Look for and remember the sem_undo if the caller doesn't
420 * provide it
421 */
422
423 suptr = *supptr;
424 if (suptr == NULL) {
425 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
426 if (suptr->un_proc == p)
427 break;
428
429 if (suptr == NULL) {
430 suptr = semu_alloc(p);
431 if (suptr == NULL)
432 return (ENOSPC);
433 }
434 *supptr = suptr;
435 }
436
437 /*
438 * Look for the requested entry and adjust it (delete if
439 * adjval becomes 0).
440 */
441 sunptr = &suptr->un_ent[0];
442 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
443 if (sunptr->un_id != semid || sunptr->un_num != semnum)
444 continue;
445 sunptr->un_adjval += adjval;
446 if (sunptr->un_adjval == 0) {
447 suptr->un_cnt--;
448 if (i < suptr->un_cnt)
449 suptr->un_ent[i] =
450 suptr->un_ent[suptr->un_cnt];
451 }
452 return (0);
453 }
454
455 /* Didn't find the right entry - create it */
456 if (suptr->un_cnt == SEMUME)
457 return (EINVAL);
458
459 sunptr = &suptr->un_ent[suptr->un_cnt];
460 suptr->un_cnt++;
461 sunptr->un_adjval = adjval;
462 sunptr->un_id = semid;
463 sunptr->un_num = semnum;
464 return (0);
465 }
466
467 void
468 semundo_clear(int semid, int semnum)
469 {
470 struct sem_undo *suptr;
471 struct sem_undo_entry *sunptr, *sunend;
472
473 KASSERT(mutex_owned(&semlock));
474
475 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
476 for (sunptr = &suptr->un_ent[0],
477 sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
478 if (sunptr->un_id == semid) {
479 if (semnum == -1 || sunptr->un_num == semnum) {
480 suptr->un_cnt--;
481 sunend--;
482 if (sunptr != sunend)
483 *sunptr = *sunend;
484 if (semnum != -1)
485 break;
486 else
487 continue;
488 }
489 }
490 sunptr++;
491 }
492 }
493
494 int
495 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
496 register_t *retval)
497 {
498 /* {
499 syscallarg(int) semid;
500 syscallarg(int) semnum;
501 syscallarg(int) cmd;
502 syscallarg(union __semun *) arg;
503 } */
504 struct semid_ds sembuf;
505 int cmd, error;
506 void *pass_arg;
507 union __semun karg;
508
509 RUN_ONCE(&exithook_control, seminit_exithook);
510
511 cmd = SCARG(uap, cmd);
512
513 pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
514
515 if (pass_arg) {
516 error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
517 if (error)
518 return error;
519 if (cmd == IPC_SET) {
520 error = copyin(karg.buf, &sembuf, sizeof(sembuf));
521 if (error)
522 return (error);
523 }
524 }
525
526 error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
527 pass_arg, retval);
528
529 if (error == 0 && cmd == IPC_STAT)
530 error = copyout(&sembuf, karg.buf, sizeof(sembuf));
531
532 return (error);
533 }
534
535 int
536 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
537 register_t *retval)
538 {
539 kauth_cred_t cred = l->l_cred;
540 union __semun *arg = v;
541 struct semid_ds *sembuf = v, *semaptr;
542 int i, error, ix;
543
544 SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
545 semid, semnum, cmd, v));
546
547 mutex_enter(&semlock);
548
549 ix = IPCID_TO_IX(semid);
550 if (ix < 0 || ix >= seminfo.semmni) {
551 mutex_exit(&semlock);
552 return (EINVAL);
553 }
554
555 semaptr = &sema[ix];
556 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
557 semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
558 mutex_exit(&semlock);
559 return (EINVAL);
560 }
561
562 switch (cmd) {
563 case IPC_RMID:
564 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
565 break;
566 semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
567 semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
568 semtot -= semaptr->sem_nsems;
569 for (i = semaptr->_sem_base - sem; i < semtot; i++)
570 sem[i] = sem[i + semaptr->sem_nsems];
571 for (i = 0; i < seminfo.semmni; i++) {
572 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
573 sema[i]._sem_base > semaptr->_sem_base)
574 sema[i]._sem_base -= semaptr->sem_nsems;
575 }
576 semaptr->sem_perm.mode = 0;
577 semundo_clear(ix, -1);
578 cv_broadcast(&semcv[ix]);
579 break;
580
581 case IPC_SET:
582 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
583 break;
584 KASSERT(sembuf != NULL);
585 semaptr->sem_perm.uid = sembuf->sem_perm.uid;
586 semaptr->sem_perm.gid = sembuf->sem_perm.gid;
587 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
588 (sembuf->sem_perm.mode & 0777);
589 semaptr->sem_ctime = time_second;
590 break;
591
592 case IPC_STAT:
593 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
594 break;
595 KASSERT(sembuf != NULL);
596 memset(sembuf, 0, sizeof *sembuf);
597 sembuf->sem_perm = semaptr->sem_perm;
598 sembuf->sem_perm.mode &= 0777;
599 sembuf->sem_nsems = semaptr->sem_nsems;
600 sembuf->sem_otime = semaptr->sem_otime;
601 sembuf->sem_ctime = semaptr->sem_ctime;
602 break;
603
604 case GETNCNT:
605 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
606 break;
607 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
608 error = EINVAL;
609 break;
610 }
611 *retval = semaptr->_sem_base[semnum].semncnt;
612 break;
613
614 case GETPID:
615 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
616 break;
617 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
618 error = EINVAL;
619 break;
620 }
621 *retval = semaptr->_sem_base[semnum].sempid;
622 break;
623
624 case GETVAL:
625 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
626 break;
627 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
628 error = EINVAL;
629 break;
630 }
631 *retval = semaptr->_sem_base[semnum].semval;
632 break;
633
634 case GETALL:
635 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
636 break;
637 KASSERT(arg != NULL);
638 for (i = 0; i < semaptr->sem_nsems; i++) {
639 error = copyout(&semaptr->_sem_base[i].semval,
640 &arg->array[i], sizeof(arg->array[i]));
641 if (error != 0)
642 break;
643 }
644 break;
645
646 case GETZCNT:
647 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
648 break;
649 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
650 error = EINVAL;
651 break;
652 }
653 *retval = semaptr->_sem_base[semnum].semzcnt;
654 break;
655
656 case SETVAL:
657 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
658 break;
659 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
660 error = EINVAL;
661 break;
662 }
663 KASSERT(arg != NULL);
664 if ((unsigned int)arg->val > seminfo.semvmx) {
665 error = ERANGE;
666 break;
667 }
668 semaptr->_sem_base[semnum].semval = arg->val;
669 semundo_clear(ix, semnum);
670 cv_broadcast(&semcv[ix]);
671 break;
672
673 case SETALL:
674 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
675 break;
676 KASSERT(arg != NULL);
677 for (i = 0; i < semaptr->sem_nsems; i++) {
678 unsigned short semval;
679 error = copyin(&arg->array[i], &semval,
680 sizeof(arg->array[i]));
681 if (error != 0)
682 break;
683 if ((unsigned int)semval > seminfo.semvmx) {
684 error = ERANGE;
685 break;
686 }
687 semaptr->_sem_base[i].semval = semval;
688 }
689 semundo_clear(ix, -1);
690 cv_broadcast(&semcv[ix]);
691 break;
692
693 default:
694 error = EINVAL;
695 break;
696 }
697
698 mutex_exit(&semlock);
699 return (error);
700 }
701
702 int
703 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
704 {
705 /* {
706 syscallarg(key_t) key;
707 syscallarg(int) nsems;
708 syscallarg(int) semflg;
709 } */
710 int semid, error = 0;
711 int key = SCARG(uap, key);
712 int nsems = SCARG(uap, nsems);
713 int semflg = SCARG(uap, semflg);
714 kauth_cred_t cred = l->l_cred;
715
716 RUN_ONCE(&exithook_control, seminit_exithook);
717
718 SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
719
720 mutex_enter(&semlock);
721
722 if (key != IPC_PRIVATE) {
723 for (semid = 0; semid < seminfo.semmni; semid++) {
724 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
725 sema[semid].sem_perm._key == key)
726 break;
727 }
728 if (semid < seminfo.semmni) {
729 SEM_PRINTF(("found public key\n"));
730 if ((error = ipcperm(cred, &sema[semid].sem_perm,
731 semflg & 0700)))
732 goto out;
733 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
734 SEM_PRINTF(("too small\n"));
735 error = EINVAL;
736 goto out;
737 }
738 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
739 SEM_PRINTF(("not exclusive\n"));
740 error = EEXIST;
741 goto out;
742 }
743 goto found;
744 }
745 }
746
747 SEM_PRINTF(("need to allocate the semid_ds\n"));
748 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
749 if (nsems <= 0 || nsems > seminfo.semmsl) {
750 SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
751 seminfo.semmsl));
752 error = EINVAL;
753 goto out;
754 }
755 if (nsems > seminfo.semmns - semtot) {
756 SEM_PRINTF(("not enough semaphores left "
757 "(need %d, got %d)\n",
758 nsems, seminfo.semmns - semtot));
759 error = ENOSPC;
760 goto out;
761 }
762 for (semid = 0; semid < seminfo.semmni; semid++) {
763 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
764 break;
765 }
766 if (semid == seminfo.semmni) {
767 SEM_PRINTF(("no more semid_ds's available\n"));
768 error = ENOSPC;
769 goto out;
770 }
771 SEM_PRINTF(("semid %d is available\n", semid));
772 sema[semid].sem_perm._key = key;
773 sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
774 sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
775 sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
776 sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
777 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
778 sema[semid].sem_perm._seq =
779 (sema[semid].sem_perm._seq + 1) & 0x7fff;
780 sema[semid].sem_nsems = nsems;
781 sema[semid].sem_otime = 0;
782 sema[semid].sem_ctime = time_second;
783 sema[semid]._sem_base = &sem[semtot];
784 semtot += nsems;
785 memset(sema[semid]._sem_base, 0,
786 sizeof(sema[semid]._sem_base[0]) * nsems);
787 SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
788 &sem[semtot]));
789 } else {
790 SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
791 error = ENOENT;
792 goto out;
793 }
794
795 found:
796 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
797 out:
798 mutex_exit(&semlock);
799 return (error);
800 }
801
802 #define SMALL_SOPS 8
803
804 int
805 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
806 {
807 /* {
808 syscallarg(int) semid;
809 syscallarg(struct sembuf *) sops;
810 syscallarg(size_t) nsops;
811 } */
812 struct proc *p = l->l_proc;
813 int semid = SCARG(uap, semid), seq;
814 size_t nsops = SCARG(uap, nsops);
815 struct sembuf small_sops[SMALL_SOPS];
816 struct sembuf *sops;
817 struct semid_ds *semaptr;
818 struct sembuf *sopptr = NULL;
819 struct __sem *semptr = NULL;
820 struct sem_undo *suptr = NULL;
821 kauth_cred_t cred = l->l_cred;
822 int i, error;
823 int do_wakeup, do_undos;
824
825 RUN_ONCE(&exithook_control, seminit_exithook);
826
827 SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
828
829 if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
830 mutex_enter(p->p_lock);
831 p->p_flag |= PK_SYSVSEM;
832 mutex_exit(p->p_lock);
833 }
834
835 restart:
836 if (nsops <= SMALL_SOPS) {
837 sops = small_sops;
838 } else if (nsops <= seminfo.semopm) {
839 sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
840 } else {
841 SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
842 seminfo.semopm, nsops));
843 return (E2BIG);
844 }
845
846 error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
847 if (error) {
848 SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
849 SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
850 if (sops != small_sops)
851 kmem_free(sops, nsops * sizeof(*sops));
852 return error;
853 }
854
855 mutex_enter(&semlock);
856 /* In case of reallocation, we will wait for completion */
857 while (__predict_false(sem_realloc_state))
858 cv_wait(&sem_realloc_cv, &semlock);
859
860 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
861 if (semid < 0 || semid >= seminfo.semmni) {
862 error = EINVAL;
863 goto out;
864 }
865
866 semaptr = &sema[semid];
867 seq = IPCID_TO_SEQ(SCARG(uap, semid));
868 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
869 semaptr->sem_perm._seq != seq) {
870 error = EINVAL;
871 goto out;
872 }
873
874 if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
875 SEM_PRINTF(("error = %d from ipaccess\n", error));
876 goto out;
877 }
878
879 for (i = 0; i < nsops; i++)
880 if (sops[i].sem_num >= semaptr->sem_nsems) {
881 error = EFBIG;
882 goto out;
883 }
884
885 /*
886 * Loop trying to satisfy the vector of requests.
887 * If we reach a point where we must wait, any requests already
888 * performed are rolled back and we go to sleep until some other
889 * process wakes us up. At this point, we start all over again.
890 *
891 * This ensures that from the perspective of other tasks, a set
892 * of requests is atomic (never partially satisfied).
893 */
894 do_undos = 0;
895
896 for (;;) {
897 do_wakeup = 0;
898
899 for (i = 0; i < nsops; i++) {
900 sopptr = &sops[i];
901 semptr = &semaptr->_sem_base[sopptr->sem_num];
902
903 SEM_PRINTF(("semop: semaptr=%p, sem_base=%p, "
904 "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
905 semaptr, semaptr->_sem_base, semptr,
906 sopptr->sem_num, semptr->semval, sopptr->sem_op,
907 (sopptr->sem_flg & IPC_NOWAIT) ?
908 "nowait" : "wait"));
909
910 if (sopptr->sem_op < 0) {
911 if ((int)(semptr->semval +
912 sopptr->sem_op) < 0) {
913 SEM_PRINTF(("semop: "
914 "can't do it now\n"));
915 break;
916 } else {
917 semptr->semval += sopptr->sem_op;
918 if (semptr->semval == 0 &&
919 semptr->semzcnt > 0)
920 do_wakeup = 1;
921 }
922 if (sopptr->sem_flg & SEM_UNDO)
923 do_undos = 1;
924 } else if (sopptr->sem_op == 0) {
925 if (semptr->semval > 0) {
926 SEM_PRINTF(("semop: not zero now\n"));
927 break;
928 }
929 } else {
930 if (semptr->semncnt > 0)
931 do_wakeup = 1;
932 semptr->semval += sopptr->sem_op;
933 if (sopptr->sem_flg & SEM_UNDO)
934 do_undos = 1;
935 }
936 }
937
938 /*
939 * Did we get through the entire vector?
940 */
941 if (i >= nsops)
942 goto done;
943
944 /*
945 * No ... rollback anything that we've already done
946 */
947 SEM_PRINTF(("semop: rollback 0 through %d\n", i - 1));
948 while (i-- > 0)
949 semaptr->_sem_base[sops[i].sem_num].semval -=
950 sops[i].sem_op;
951
952 /*
953 * If the request that we couldn't satisfy has the
954 * NOWAIT flag set then return with EAGAIN.
955 */
956 if (sopptr->sem_flg & IPC_NOWAIT) {
957 error = EAGAIN;
958 goto out;
959 }
960
961 if (sopptr->sem_op == 0)
962 semptr->semzcnt++;
963 else
964 semptr->semncnt++;
965
966 sem_waiters++;
967 SEM_PRINTF(("semop: good night!\n"));
968 error = cv_wait_sig(&semcv[semid], &semlock);
969 SEM_PRINTF(("semop: good morning (error=%d)!\n", error));
970 sem_waiters--;
971
972 /* Notify reallocator, if it is waiting */
973 cv_broadcast(&sem_realloc_cv);
974
975 /*
976 * Make sure that the semaphore still exists
977 */
978 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
979 semaptr->sem_perm._seq != seq) {
980 error = EIDRM;
981 goto out;
982 }
983
984 /*
985 * The semaphore is still alive. Readjust the count of
986 * waiting processes.
987 */
988 semptr = &semaptr->_sem_base[sopptr->sem_num];
989 if (sopptr->sem_op == 0)
990 semptr->semzcnt--;
991 else
992 semptr->semncnt--;
993
994 /* In case of such state, restart the call */
995 if (sem_realloc_state) {
996 mutex_exit(&semlock);
997 goto restart;
998 }
999
1000 /* Is it really morning, or was our sleep interrupted? */
1001 if (error != 0) {
1002 error = EINTR;
1003 goto out;
1004 }
1005 SEM_PRINTF(("semop: good morning!\n"));
1006 }
1007
1008 done:
1009 /*
1010 * Process any SEM_UNDO requests.
1011 */
1012 if (do_undos) {
1013 for (i = 0; i < nsops; i++) {
1014 /*
1015 * We only need to deal with SEM_UNDO's for non-zero
1016 * op's.
1017 */
1018 int adjval;
1019
1020 if ((sops[i].sem_flg & SEM_UNDO) == 0)
1021 continue;
1022 adjval = sops[i].sem_op;
1023 if (adjval == 0)
1024 continue;
1025 error = semundo_adjust(p, &suptr, semid,
1026 sops[i].sem_num, -adjval);
1027 if (error == 0)
1028 continue;
1029
1030 /*
1031 * Oh-Oh! We ran out of either sem_undo's or undo's.
1032 * Rollback the adjustments to this point and then
1033 * rollback the semaphore ups and down so we can return
1034 * with an error with all structures restored. We
1035 * rollback the undo's in the exact reverse order that
1036 * we applied them. This guarantees that we won't run
1037 * out of space as we roll things back out.
1038 */
1039 while (i-- > 0) {
1040 if ((sops[i].sem_flg & SEM_UNDO) == 0)
1041 continue;
1042 adjval = sops[i].sem_op;
1043 if (adjval == 0)
1044 continue;
1045 if (semundo_adjust(p, &suptr, semid,
1046 sops[i].sem_num, adjval) != 0)
1047 panic("semop - can't undo undos");
1048 }
1049
1050 for (i = 0; i < nsops; i++)
1051 semaptr->_sem_base[sops[i].sem_num].semval -=
1052 sops[i].sem_op;
1053
1054 SEM_PRINTF(("error = %d from semundo_adjust\n", error));
1055 goto out;
1056 } /* loop through the sops */
1057 } /* if (do_undos) */
1058
1059 /* We're definitely done - set the sempid's */
1060 for (i = 0; i < nsops; i++) {
1061 sopptr = &sops[i];
1062 semptr = &semaptr->_sem_base[sopptr->sem_num];
1063 semptr->sempid = p->p_pid;
1064 }
1065
1066 /* Update sem_otime */
1067 semaptr->sem_otime = time_second;
1068
1069 /* Do a wakeup if any semaphore was up'd. */
1070 if (do_wakeup) {
1071 SEM_PRINTF(("semop: doing wakeup\n"));
1072 cv_broadcast(&semcv[semid]);
1073 SEM_PRINTF(("semop: back from wakeup\n"));
1074 }
1075 SEM_PRINTF(("semop: done\n"));
1076 *retval = 0;
1077
1078 out:
1079 mutex_exit(&semlock);
1080 if (sops != small_sops)
1081 kmem_free(sops, nsops * sizeof(*sops));
1082 return error;
1083 }
1084
1085 /*
1086 * Go through the undo structures for this process and apply the
1087 * adjustments to semaphores.
1088 */
1089 /*ARGSUSED*/
1090 void
1091 semexit(struct proc *p, void *v)
1092 {
1093 struct sem_undo *suptr;
1094 struct sem_undo **supptr;
1095
1096 if ((p->p_flag & PK_SYSVSEM) == 0)
1097 return;
1098
1099 mutex_enter(&semlock);
1100
1101 /*
1102 * Go through the chain of undo vectors looking for one
1103 * associated with this process.
1104 */
1105
1106 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1107 supptr = &suptr->un_next) {
1108 if (suptr->un_proc == p)
1109 break;
1110 }
1111
1112 /*
1113 * If there is no undo vector, skip to the end.
1114 */
1115
1116 if (suptr == NULL) {
1117 mutex_exit(&semlock);
1118 return;
1119 }
1120
1121 /*
1122 * We now have an undo vector for this process.
1123 */
1124
1125 SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1126 suptr->un_cnt));
1127
1128 /*
1129 * If there are any active undo elements then process them.
1130 */
1131 if (suptr->un_cnt > 0) {
1132 int ix;
1133
1134 for (ix = 0; ix < suptr->un_cnt; ix++) {
1135 int semid = suptr->un_ent[ix].un_id;
1136 int semnum = suptr->un_ent[ix].un_num;
1137 int adjval = suptr->un_ent[ix].un_adjval;
1138 struct semid_ds *semaptr;
1139
1140 semaptr = &sema[semid];
1141 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1142 if (semnum >= semaptr->sem_nsems)
1143 panic("semexit - semnum out of range");
1144
1145 SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; "
1146 "sem=%d\n",
1147 suptr->un_proc, suptr->un_ent[ix].un_id,
1148 suptr->un_ent[ix].un_num,
1149 suptr->un_ent[ix].un_adjval,
1150 semaptr->_sem_base[semnum].semval));
1151
1152 if (adjval < 0 &&
1153 semaptr->_sem_base[semnum].semval < -adjval)
1154 semaptr->_sem_base[semnum].semval = 0;
1155 else
1156 semaptr->_sem_base[semnum].semval += adjval;
1157
1158 cv_broadcast(&semcv[semid]);
1159 SEM_PRINTF(("semexit: back from wakeup\n"));
1160 }
1161 }
1162
1163 /*
1164 * Deallocate the undo vector.
1165 */
1166 SEM_PRINTF(("removing vector\n"));
1167 suptr->un_proc = NULL;
1168 *supptr = suptr->un_next;
1169 mutex_exit(&semlock);
1170 }
1171
1172 /*
1173 * Sysctl initialization and nodes.
1174 */
1175
1176 static int
1177 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1178 {
1179 int newsize, error;
1180 struct sysctlnode node;
1181 node = *rnode;
1182 node.sysctl_data = &newsize;
1183
1184 newsize = seminfo.semmni;
1185 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1186 if (error || newp == NULL)
1187 return error;
1188
1189 return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1190 }
1191
1192 static int
1193 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1194 {
1195 int newsize, error;
1196 struct sysctlnode node;
1197 node = *rnode;
1198 node.sysctl_data = &newsize;
1199
1200 newsize = seminfo.semmns;
1201 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1202 if (error || newp == NULL)
1203 return error;
1204
1205 return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1206 }
1207
1208 static int
1209 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1210 {
1211 int newsize, error;
1212 struct sysctlnode node;
1213 node = *rnode;
1214 node.sysctl_data = &newsize;
1215
1216 newsize = seminfo.semmnu;
1217 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1218 if (error || newp == NULL)
1219 return error;
1220
1221 return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1222 }
1223
1224 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1225 {
1226 const struct sysctlnode *node = NULL;
1227
1228 sysctl_createv(clog, 0, NULL, &node,
1229 CTLFLAG_PERMANENT,
1230 CTLTYPE_NODE, "ipc",
1231 SYSCTL_DESCR("SysV IPC options"),
1232 NULL, 0, NULL, 0,
1233 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1234
1235 if (node == NULL)
1236 return;
1237
1238 sysctl_createv(clog, 0, &node, NULL,
1239 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1240 CTLTYPE_INT, "semmni",
1241 SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1242 sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1243 CTL_CREATE, CTL_EOL);
1244 sysctl_createv(clog, 0, &node, NULL,
1245 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1246 CTLTYPE_INT, "semmns",
1247 SYSCTL_DESCR("Max number of number of semaphores in system"),
1248 sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1249 CTL_CREATE, CTL_EOL);
1250 sysctl_createv(clog, 0, &node, NULL,
1251 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1252 CTLTYPE_INT, "semmnu",
1253 SYSCTL_DESCR("Max number of undo structures in system"),
1254 sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1255 CTL_CREATE, CTL_EOL);
1256 }
1257