Home | History | Annotate | Line # | Download | only in kern
sysv_sem.c revision 1.96
      1 /*	$NetBSD: sysv_sem.c,v 1.96 2019/02/21 03:37:19 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Implementation of SVID semaphores
     35  *
     36  * Author: Daniel Boulet
     37  *
     38  * This software is provided ``AS IS'' without any warranties of any kind.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.96 2019/02/21 03:37:19 mrg Exp $");
     43 
     44 #ifdef _KERNEL_OPT
     45 #include "opt_sysv.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/kernel.h>
     50 #include <sys/sem.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/kmem.h>
     53 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     54 #include <sys/syscallargs.h>
     55 #include <sys/kauth.h>
     56 #include <sys/once.h>
     57 
     58 /*
     59  * Memory areas:
     60  *  1st: Pool of semaphore identifiers
     61  *  2nd: Semaphores
     62  *  3rd: Conditional variables
     63  *  4th: Undo structures
     64  */
     65 struct semid_ds *	sema			__read_mostly;
     66 static struct __sem *	sem			__read_mostly;
     67 static kcondvar_t *	semcv			__read_mostly;
     68 static int *		semu			__read_mostly;
     69 
     70 static kmutex_t		semlock			__cacheline_aligned;
     71 static bool		sem_realloc_state	__read_mostly;
     72 static kcondvar_t	sem_realloc_cv;
     73 
     74 /*
     75  * List of active undo structures, total number of semaphores,
     76  * and total number of semop waiters.
     77  */
     78 static struct sem_undo *semu_list		__read_mostly;
     79 static u_int		semtot			__cacheline_aligned;
     80 static u_int		sem_waiters		__cacheline_aligned;
     81 
     82 /* Macro to find a particular sem_undo vector */
     83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
     84 
     85 #ifdef SEM_DEBUG
     86 #define SEM_PRINTF(a) printf a
     87 #else
     88 #define SEM_PRINTF(a)
     89 #endif
     90 
     91 void *hook;	/* cookie from exithook_establish() */
     92 
     93 extern int kern_has_sysvsem;
     94 
     95 SYSCTL_SETUP_PROTO(sysctl_ipc_sem_setup);
     96 
     97 struct sem_undo *semu_alloc(struct proc *);
     98 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
     99 void semundo_clear(int, int);
    100 
    101 static ONCE_DECL(exithook_control);
    102 static int seminit_exithook(void);
    103 
    104 void
    105 seminit(struct sysctllog **clog)
    106 {
    107 	int i, sz;
    108 	vaddr_t v;
    109 
    110 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
    111 	cv_init(&sem_realloc_cv, "semrealc");
    112 	sem_realloc_state = false;
    113 	semtot = 0;
    114 	sem_waiters = 0;
    115 
    116 	/* Allocate the wired memory for our structures */
    117 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    118 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    119 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    120 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    121 	sz = round_page(sz);
    122 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    123 	if (v == 0)
    124 		panic("sysv_sem: cannot allocate memory");
    125 	sema = (void *)v;
    126 	sem = (void *)((uintptr_t)sema +
    127 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
    128 	semcv = (void *)((uintptr_t)sem +
    129 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
    130 	semu = (void *)((uintptr_t)semcv +
    131 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
    132 
    133 	for (i = 0; i < seminfo.semmni; i++) {
    134 		sema[i]._sem_base = 0;
    135 		sema[i].sem_perm.mode = 0;
    136 		cv_init(&semcv[i], "semwait");
    137 	}
    138 	for (i = 0; i < seminfo.semmnu; i++) {
    139 		struct sem_undo *suptr = SEMU(semu, i);
    140 		suptr->un_proc = NULL;
    141 	}
    142 	semu_list = NULL;
    143 
    144 	kern_has_sysvsem = 1;
    145 
    146 #ifdef _MODULE
    147 	if (clog)
    148 		sysctl_ipc_sem_setup(clog);
    149 #endif
    150 }
    151 
    152 static int
    153 seminit_exithook(void)
    154 {
    155 
    156 	hook = exithook_establish(semexit, NULL);
    157 	return 0;
    158 }
    159 
    160 int
    161 semfini(void)
    162 {
    163 	int i, sz;
    164 	vaddr_t v = (vaddr_t)sema;
    165 
    166 	/* Don't allow module unload if we're busy */
    167 	mutex_enter(&semlock);
    168 	if (semtot) {
    169 		mutex_exit(&semlock);
    170 		return 1;
    171 	}
    172 
    173 	/* Remove the exit hook */
    174 	if (hook)
    175 		exithook_disestablish(hook);
    176 
    177 	/* Destroy all our condvars */
    178 	for (i = 0; i < seminfo.semmni; i++) {
    179 		cv_destroy(&semcv[i]);
    180 	}
    181 
    182 	/* Free the wired memory that we allocated */
    183 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    184 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    185 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    186 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    187 	sz = round_page(sz);
    188 	uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    189 
    190 	/* Destroy the last cv and mutex */
    191 	cv_destroy(&sem_realloc_cv);
    192 	mutex_exit(&semlock);
    193 	mutex_destroy(&semlock);
    194 
    195 	kern_has_sysvsem = 0;
    196 
    197 	return 0;
    198 }
    199 
    200 static int
    201 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
    202 {
    203 	struct semid_ds *new_sema, *old_sema;
    204 	struct __sem *new_sem;
    205 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
    206 	int *new_semu;
    207 	kcondvar_t *new_semcv;
    208 	vaddr_t v;
    209 	int i, j, lsemid, nmnus, sz;
    210 
    211 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
    212 		return EINVAL;
    213 
    214 	/* Allocate the wired memory for our structures */
    215 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
    216 	    ALIGN(newsemmns * sizeof(struct __sem)) +
    217 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
    218 	    ALIGN(newsemmnu * seminfo.semusz);
    219 	sz = round_page(sz);
    220 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    221 	if (v == 0)
    222 		return ENOMEM;
    223 
    224 	mutex_enter(&semlock);
    225 	if (sem_realloc_state) {
    226 		mutex_exit(&semlock);
    227 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    228 		return EBUSY;
    229 	}
    230 	sem_realloc_state = true;
    231 	if (sem_waiters) {
    232 		/*
    233 		 * Mark reallocation state, wake-up all waiters,
    234 		 * and wait while they will all exit.
    235 		 */
    236 		for (i = 0; i < seminfo.semmni; i++)
    237 			cv_broadcast(&semcv[i]);
    238 		while (sem_waiters)
    239 			cv_wait(&sem_realloc_cv, &semlock);
    240 	}
    241 	old_sema = sema;
    242 
    243 	/* Get the number of last slot */
    244 	lsemid = 0;
    245 	for (i = 0; i < seminfo.semmni; i++)
    246 		if (sema[i].sem_perm.mode & SEM_ALLOC)
    247 			lsemid = i;
    248 
    249 	/* Get the number of currently used undo structures */
    250 	nmnus = 0;
    251 	for (i = 0; i < seminfo.semmnu; i++) {
    252 		suptr = SEMU(semu, i);
    253 		if (suptr->un_proc == NULL)
    254 			continue;
    255 		nmnus++;
    256 	}
    257 
    258 	/* We cannot reallocate less memory than we use */
    259 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
    260 		mutex_exit(&semlock);
    261 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    262 		return EBUSY;
    263 	}
    264 
    265 	new_sema = (void *)v;
    266 	new_sem = (void *)((uintptr_t)new_sema +
    267 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
    268 	new_semcv = (void *)((uintptr_t)new_sem +
    269 	    ALIGN(newsemmns * sizeof(struct __sem)));
    270 	new_semu = (void *)((uintptr_t)new_semcv +
    271 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
    272 
    273 	/* Initialize all semaphore identifiers and condvars */
    274 	for (i = 0; i < newsemmni; i++) {
    275 		new_sema[i]._sem_base = 0;
    276 		new_sema[i].sem_perm.mode = 0;
    277 		cv_init(&new_semcv[i], "semwait");
    278 	}
    279 	for (i = 0; i < newsemmnu; i++) {
    280 		nsuptr = SEMU(new_semu, i);
    281 		nsuptr->un_proc = NULL;
    282 	}
    283 
    284 	/*
    285 	 * Copy all identifiers, semaphores and list of the
    286 	 * undo structures to the new memory allocation.
    287 	 */
    288 	j = 0;
    289 	for (i = 0; i <= lsemid; i++) {
    290 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
    291 			continue;
    292 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
    293 		new_sema[i]._sem_base = &new_sem[j];
    294 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
    295 		    (sizeof(struct __sem) * sema[i].sem_nsems));
    296 		j += sema[i].sem_nsems;
    297 	}
    298 	KASSERT(j == semtot);
    299 
    300 	j = 0;
    301 	new_semu_list = NULL;
    302 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
    303 		KASSERT(j < newsemmnu);
    304 		nsuptr = SEMU(new_semu, j);
    305 		memcpy(nsuptr, suptr, SEMUSZ);
    306 		nsuptr->un_next = new_semu_list;
    307 		new_semu_list = nsuptr;
    308 		j++;
    309 	}
    310 
    311 	for (i = 0; i < seminfo.semmni; i++) {
    312 		KASSERT(cv_has_waiters(&semcv[i]) == false);
    313 		cv_destroy(&semcv[i]);
    314 	}
    315 
    316 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    317 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    318 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    319 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    320 	sz = round_page(sz);
    321 
    322 	/* Set the pointers and update the new values */
    323 	sema = new_sema;
    324 	sem = new_sem;
    325 	semcv = new_semcv;
    326 	semu = new_semu;
    327 	semu_list = new_semu_list;
    328 
    329 	seminfo.semmni = newsemmni;
    330 	seminfo.semmns = newsemmns;
    331 	seminfo.semmnu = newsemmnu;
    332 
    333 	/* Reallocation completed - notify all waiters, if any */
    334 	sem_realloc_state = false;
    335 	cv_broadcast(&sem_realloc_cv);
    336 	mutex_exit(&semlock);
    337 
    338 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
    339 	return 0;
    340 }
    341 
    342 /*
    343  * Placebo.
    344  */
    345 
    346 int
    347 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
    348 {
    349 
    350 	RUN_ONCE(&exithook_control, seminit_exithook);
    351 
    352 	*retval = 0;
    353 	return 0;
    354 }
    355 
    356 /*
    357  * Allocate a new sem_undo structure for a process.
    358  * => Returns NULL on failure.
    359  */
    360 struct sem_undo *
    361 semu_alloc(struct proc *p)
    362 {
    363 	struct sem_undo *suptr, **supptr;
    364 	bool attempted = false;
    365 	int i;
    366 
    367 	KASSERT(mutex_owned(&semlock));
    368 again:
    369 	/* Look for a free structure. */
    370 	for (i = 0; i < seminfo.semmnu; i++) {
    371 		suptr = SEMU(semu, i);
    372 		if (suptr->un_proc == NULL) {
    373 			/* Found.  Fill it in and return. */
    374 			suptr->un_next = semu_list;
    375 			semu_list = suptr;
    376 			suptr->un_cnt = 0;
    377 			suptr->un_proc = p;
    378 			return suptr;
    379 		}
    380 	}
    381 
    382 	/* Not found.  Attempt to free some structures. */
    383 	if (!attempted) {
    384 		bool freed = false;
    385 
    386 		attempted = true;
    387 		supptr = &semu_list;
    388 		while ((suptr = *supptr) != NULL) {
    389 			if (suptr->un_cnt == 0)  {
    390 				suptr->un_proc = NULL;
    391 				*supptr = suptr->un_next;
    392 				freed = true;
    393 			} else {
    394 				supptr = &suptr->un_next;
    395 			}
    396 		}
    397 		if (freed) {
    398 			goto again;
    399 		}
    400 	}
    401 	return NULL;
    402 }
    403 
    404 /*
    405  * Adjust a particular entry for a particular proc
    406  */
    407 
    408 int
    409 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
    410     int adjval)
    411 {
    412 	struct sem_undo *suptr;
    413 	struct sem_undo_entry *sunptr;
    414 	int i;
    415 
    416 	KASSERT(mutex_owned(&semlock));
    417 
    418 	/*
    419 	 * Look for and remember the sem_undo if the caller doesn't
    420 	 * provide it
    421 	 */
    422 
    423 	suptr = *supptr;
    424 	if (suptr == NULL) {
    425 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    426 			if (suptr->un_proc == p)
    427 				break;
    428 
    429 		if (suptr == NULL) {
    430 			suptr = semu_alloc(p);
    431 			if (suptr == NULL)
    432 				return (ENOSPC);
    433 		}
    434 		*supptr = suptr;
    435 	}
    436 
    437 	/*
    438 	 * Look for the requested entry and adjust it (delete if
    439 	 * adjval becomes 0).
    440 	 */
    441 	sunptr = &suptr->un_ent[0];
    442 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
    443 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
    444 			continue;
    445 		sunptr->un_adjval += adjval;
    446 		if (sunptr->un_adjval == 0) {
    447 			suptr->un_cnt--;
    448 			if (i < suptr->un_cnt)
    449 				suptr->un_ent[i] =
    450 				    suptr->un_ent[suptr->un_cnt];
    451 		}
    452 		return (0);
    453 	}
    454 
    455 	/* Didn't find the right entry - create it */
    456 	if (suptr->un_cnt == SEMUME)
    457 		return (EINVAL);
    458 
    459 	sunptr = &suptr->un_ent[suptr->un_cnt];
    460 	suptr->un_cnt++;
    461 	sunptr->un_adjval = adjval;
    462 	sunptr->un_id = semid;
    463 	sunptr->un_num = semnum;
    464 	return (0);
    465 }
    466 
    467 void
    468 semundo_clear(int semid, int semnum)
    469 {
    470 	struct sem_undo *suptr;
    471 	struct sem_undo_entry *sunptr, *sunend;
    472 
    473 	KASSERT(mutex_owned(&semlock));
    474 
    475 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    476 		for (sunptr = &suptr->un_ent[0],
    477 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
    478 			if (sunptr->un_id == semid) {
    479 				if (semnum == -1 || sunptr->un_num == semnum) {
    480 					suptr->un_cnt--;
    481 					sunend--;
    482 					if (sunptr != sunend)
    483 						*sunptr = *sunend;
    484 					if (semnum != -1)
    485 						break;
    486 					else
    487 						continue;
    488 				}
    489 			}
    490 			sunptr++;
    491 		}
    492 }
    493 
    494 int
    495 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
    496     register_t *retval)
    497 {
    498 	/* {
    499 		syscallarg(int) semid;
    500 		syscallarg(int) semnum;
    501 		syscallarg(int) cmd;
    502 		syscallarg(union __semun *) arg;
    503 	} */
    504 	struct semid_ds sembuf;
    505 	int cmd, error;
    506 	void *pass_arg;
    507 	union __semun karg;
    508 
    509 	RUN_ONCE(&exithook_control, seminit_exithook);
    510 
    511 	cmd = SCARG(uap, cmd);
    512 
    513 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
    514 
    515 	if (pass_arg) {
    516 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
    517 		if (error)
    518 			return error;
    519 		if (cmd == IPC_SET) {
    520 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
    521 			if (error)
    522 				return (error);
    523 		}
    524 	}
    525 
    526 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
    527 	    pass_arg, retval);
    528 
    529 	if (error == 0 && cmd == IPC_STAT)
    530 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
    531 
    532 	return (error);
    533 }
    534 
    535 int
    536 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
    537     register_t *retval)
    538 {
    539 	kauth_cred_t cred = l->l_cred;
    540 	union __semun *arg = v;
    541 	struct semid_ds *sembuf = v, *semaptr;
    542 	int i, error, ix;
    543 
    544 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
    545 	    semid, semnum, cmd, v));
    546 
    547 	mutex_enter(&semlock);
    548 
    549 	ix = IPCID_TO_IX(semid);
    550 	if (ix < 0 || ix >= seminfo.semmni) {
    551 		mutex_exit(&semlock);
    552 		return (EINVAL);
    553 	}
    554 
    555 	semaptr = &sema[ix];
    556 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    557 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
    558 		mutex_exit(&semlock);
    559 		return (EINVAL);
    560 	}
    561 
    562 	switch (cmd) {
    563 	case IPC_RMID:
    564 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
    565 			break;
    566 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
    567 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
    568 		semtot -= semaptr->sem_nsems;
    569 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
    570 			sem[i] = sem[i + semaptr->sem_nsems];
    571 		for (i = 0; i < seminfo.semmni; i++) {
    572 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
    573 			    sema[i]._sem_base > semaptr->_sem_base)
    574 				sema[i]._sem_base -= semaptr->sem_nsems;
    575 		}
    576 		semaptr->sem_perm.mode = 0;
    577 		semundo_clear(ix, -1);
    578 		cv_broadcast(&semcv[ix]);
    579 		break;
    580 
    581 	case IPC_SET:
    582 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
    583 			break;
    584 		KASSERT(sembuf != NULL);
    585 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
    586 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
    587 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
    588 		    (sembuf->sem_perm.mode & 0777);
    589 		semaptr->sem_ctime = time_second;
    590 		break;
    591 
    592 	case IPC_STAT:
    593 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    594 			break;
    595 		KASSERT(sembuf != NULL);
    596 		memset(sembuf, 0, sizeof *sembuf);
    597 		sembuf->sem_perm = semaptr->sem_perm;
    598 		sembuf->sem_perm.mode &= 0777;
    599 		sembuf->sem_nsems = semaptr->sem_nsems;
    600 		sembuf->sem_otime = semaptr->sem_otime;
    601 		sembuf->sem_ctime = semaptr->sem_ctime;
    602 		break;
    603 
    604 	case GETNCNT:
    605 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    606 			break;
    607 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    608 			error = EINVAL;
    609 			break;
    610 		}
    611 		*retval = semaptr->_sem_base[semnum].semncnt;
    612 		break;
    613 
    614 	case GETPID:
    615 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    616 			break;
    617 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    618 			error = EINVAL;
    619 			break;
    620 		}
    621 		*retval = semaptr->_sem_base[semnum].sempid;
    622 		break;
    623 
    624 	case GETVAL:
    625 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    626 			break;
    627 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    628 			error = EINVAL;
    629 			break;
    630 		}
    631 		*retval = semaptr->_sem_base[semnum].semval;
    632 		break;
    633 
    634 	case GETALL:
    635 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    636 			break;
    637 		KASSERT(arg != NULL);
    638 		for (i = 0; i < semaptr->sem_nsems; i++) {
    639 			error = copyout(&semaptr->_sem_base[i].semval,
    640 			    &arg->array[i], sizeof(arg->array[i]));
    641 			if (error != 0)
    642 				break;
    643 		}
    644 		break;
    645 
    646 	case GETZCNT:
    647 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    648 			break;
    649 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    650 			error = EINVAL;
    651 			break;
    652 		}
    653 		*retval = semaptr->_sem_base[semnum].semzcnt;
    654 		break;
    655 
    656 	case SETVAL:
    657 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    658 			break;
    659 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    660 			error = EINVAL;
    661 			break;
    662 		}
    663 		KASSERT(arg != NULL);
    664 		if ((unsigned int)arg->val > seminfo.semvmx) {
    665 			error = ERANGE;
    666 			break;
    667 		}
    668 		semaptr->_sem_base[semnum].semval = arg->val;
    669 		semundo_clear(ix, semnum);
    670 		cv_broadcast(&semcv[ix]);
    671 		break;
    672 
    673 	case SETALL:
    674 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    675 			break;
    676 		KASSERT(arg != NULL);
    677 		for (i = 0; i < semaptr->sem_nsems; i++) {
    678 			unsigned short semval;
    679 			error = copyin(&arg->array[i], &semval,
    680 			    sizeof(arg->array[i]));
    681 			if (error != 0)
    682 				break;
    683 			if ((unsigned int)semval > seminfo.semvmx) {
    684 				error = ERANGE;
    685 				break;
    686 			}
    687 			semaptr->_sem_base[i].semval = semval;
    688 		}
    689 		semundo_clear(ix, -1);
    690 		cv_broadcast(&semcv[ix]);
    691 		break;
    692 
    693 	default:
    694 		error = EINVAL;
    695 		break;
    696 	}
    697 
    698 	mutex_exit(&semlock);
    699 	return (error);
    700 }
    701 
    702 int
    703 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
    704 {
    705 	/* {
    706 		syscallarg(key_t) key;
    707 		syscallarg(int) nsems;
    708 		syscallarg(int) semflg;
    709 	} */
    710 	int semid, error = 0;
    711 	int key = SCARG(uap, key);
    712 	int nsems = SCARG(uap, nsems);
    713 	int semflg = SCARG(uap, semflg);
    714 	kauth_cred_t cred = l->l_cred;
    715 
    716 	RUN_ONCE(&exithook_control, seminit_exithook);
    717 
    718 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
    719 
    720 	mutex_enter(&semlock);
    721 
    722 	if (key != IPC_PRIVATE) {
    723 		for (semid = 0; semid < seminfo.semmni; semid++) {
    724 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
    725 			    sema[semid].sem_perm._key == key)
    726 				break;
    727 		}
    728 		if (semid < seminfo.semmni) {
    729 			SEM_PRINTF(("found public key\n"));
    730 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
    731 			    semflg & 0700)))
    732 			    	goto out;
    733 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
    734 				SEM_PRINTF(("too small\n"));
    735 				error = EINVAL;
    736 				goto out;
    737 			}
    738 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
    739 				SEM_PRINTF(("not exclusive\n"));
    740 				error = EEXIST;
    741 				goto out;
    742 			}
    743 			goto found;
    744 		}
    745 	}
    746 
    747 	SEM_PRINTF(("need to allocate the semid_ds\n"));
    748 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
    749 		if (nsems <= 0 || nsems > seminfo.semmsl) {
    750 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
    751 			    seminfo.semmsl));
    752 			error = EINVAL;
    753 			goto out;
    754 		}
    755 		if (nsems > seminfo.semmns - semtot) {
    756 			SEM_PRINTF(("not enough semaphores left "
    757 			    "(need %d, got %d)\n",
    758 			    nsems, seminfo.semmns - semtot));
    759 			error = ENOSPC;
    760 			goto out;
    761 		}
    762 		for (semid = 0; semid < seminfo.semmni; semid++) {
    763 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
    764 				break;
    765 		}
    766 		if (semid == seminfo.semmni) {
    767 			SEM_PRINTF(("no more semid_ds's available\n"));
    768 			error = ENOSPC;
    769 			goto out;
    770 		}
    771 		SEM_PRINTF(("semid %d is available\n", semid));
    772 		sema[semid].sem_perm._key = key;
    773 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
    774 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
    775 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
    776 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
    777 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
    778 		sema[semid].sem_perm._seq =
    779 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
    780 		sema[semid].sem_nsems = nsems;
    781 		sema[semid].sem_otime = 0;
    782 		sema[semid].sem_ctime = time_second;
    783 		sema[semid]._sem_base = &sem[semtot];
    784 		semtot += nsems;
    785 		memset(sema[semid]._sem_base, 0,
    786 		    sizeof(sema[semid]._sem_base[0]) * nsems);
    787 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
    788 		    &sem[semtot]));
    789 	} else {
    790 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
    791 		error = ENOENT;
    792 		goto out;
    793 	}
    794 
    795  found:
    796 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
    797  out:
    798 	mutex_exit(&semlock);
    799 	return (error);
    800 }
    801 
    802 #define SMALL_SOPS 8
    803 
    804 int
    805 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
    806 {
    807 	/* {
    808 		syscallarg(int) semid;
    809 		syscallarg(struct sembuf *) sops;
    810 		syscallarg(size_t) nsops;
    811 	} */
    812 	struct proc *p = l->l_proc;
    813 	int semid = SCARG(uap, semid), seq;
    814 	size_t nsops = SCARG(uap, nsops);
    815 	struct sembuf small_sops[SMALL_SOPS];
    816 	struct sembuf *sops;
    817 	struct semid_ds *semaptr;
    818 	struct sembuf *sopptr = NULL;
    819 	struct __sem *semptr = NULL;
    820 	struct sem_undo *suptr = NULL;
    821 	kauth_cred_t cred = l->l_cred;
    822 	int i, error;
    823 	int do_wakeup, do_undos;
    824 
    825 	RUN_ONCE(&exithook_control, seminit_exithook);
    826 
    827 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
    828 
    829 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
    830 		mutex_enter(p->p_lock);
    831 		p->p_flag |= PK_SYSVSEM;
    832 		mutex_exit(p->p_lock);
    833 	}
    834 
    835 restart:
    836 	if (nsops <= SMALL_SOPS) {
    837 		sops = small_sops;
    838 	} else if (nsops <= seminfo.semopm) {
    839 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
    840 	} else {
    841 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
    842 		    seminfo.semopm, nsops));
    843 		return (E2BIG);
    844 	}
    845 
    846 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
    847 	if (error) {
    848 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
    849 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
    850 		if (sops != small_sops)
    851 			kmem_free(sops, nsops * sizeof(*sops));
    852 		return error;
    853 	}
    854 
    855 	mutex_enter(&semlock);
    856 	/* In case of reallocation, we will wait for completion */
    857 	while (__predict_false(sem_realloc_state))
    858 		cv_wait(&sem_realloc_cv, &semlock);
    859 
    860 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
    861 	if (semid < 0 || semid >= seminfo.semmni) {
    862 		error = EINVAL;
    863 		goto out;
    864 	}
    865 
    866 	semaptr = &sema[semid];
    867 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
    868 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    869 	    semaptr->sem_perm._seq != seq) {
    870 		error = EINVAL;
    871 		goto out;
    872 	}
    873 
    874 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
    875 		SEM_PRINTF(("error = %d from ipaccess\n", error));
    876 		goto out;
    877 	}
    878 
    879 	for (i = 0; i < nsops; i++)
    880 		if (sops[i].sem_num >= semaptr->sem_nsems) {
    881 			error = EFBIG;
    882 			goto out;
    883 		}
    884 
    885 	/*
    886 	 * Loop trying to satisfy the vector of requests.
    887 	 * If we reach a point where we must wait, any requests already
    888 	 * performed are rolled back and we go to sleep until some other
    889 	 * process wakes us up.  At this point, we start all over again.
    890 	 *
    891 	 * This ensures that from the perspective of other tasks, a set
    892 	 * of requests is atomic (never partially satisfied).
    893 	 */
    894 	do_undos = 0;
    895 
    896 	for (;;) {
    897 		do_wakeup = 0;
    898 
    899 		for (i = 0; i < nsops; i++) {
    900 			sopptr = &sops[i];
    901 			semptr = &semaptr->_sem_base[sopptr->sem_num];
    902 
    903 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
    904 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
    905 			    semaptr, semaptr->_sem_base, semptr,
    906 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
    907 			    (sopptr->sem_flg & IPC_NOWAIT) ?
    908 			    "nowait" : "wait"));
    909 
    910 			if (sopptr->sem_op < 0) {
    911 				if ((int)(semptr->semval +
    912 				    sopptr->sem_op) < 0) {
    913 					SEM_PRINTF(("semop:  "
    914 					    "can't do it now\n"));
    915 					break;
    916 				} else {
    917 					semptr->semval += sopptr->sem_op;
    918 					if (semptr->semval == 0 &&
    919 					    semptr->semzcnt > 0)
    920 						do_wakeup = 1;
    921 				}
    922 				if (sopptr->sem_flg & SEM_UNDO)
    923 					do_undos = 1;
    924 			} else if (sopptr->sem_op == 0) {
    925 				if (semptr->semval > 0) {
    926 					SEM_PRINTF(("semop:  not zero now\n"));
    927 					break;
    928 				}
    929 			} else {
    930 				if (semptr->semncnt > 0)
    931 					do_wakeup = 1;
    932 				semptr->semval += sopptr->sem_op;
    933 				if (sopptr->sem_flg & SEM_UNDO)
    934 					do_undos = 1;
    935 			}
    936 		}
    937 
    938 		/*
    939 		 * Did we get through the entire vector?
    940 		 */
    941 		if (i >= nsops)
    942 			goto done;
    943 
    944 		/*
    945 		 * No ... rollback anything that we've already done
    946 		 */
    947 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
    948 		while (i-- > 0)
    949 			semaptr->_sem_base[sops[i].sem_num].semval -=
    950 			    sops[i].sem_op;
    951 
    952 		/*
    953 		 * If the request that we couldn't satisfy has the
    954 		 * NOWAIT flag set then return with EAGAIN.
    955 		 */
    956 		if (sopptr->sem_flg & IPC_NOWAIT) {
    957 			error = EAGAIN;
    958 			goto out;
    959 		}
    960 
    961 		if (sopptr->sem_op == 0)
    962 			semptr->semzcnt++;
    963 		else
    964 			semptr->semncnt++;
    965 
    966 		sem_waiters++;
    967 		SEM_PRINTF(("semop:  good night!\n"));
    968 		error = cv_wait_sig(&semcv[semid], &semlock);
    969 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
    970 		sem_waiters--;
    971 
    972 		/* Notify reallocator, if it is waiting */
    973 		cv_broadcast(&sem_realloc_cv);
    974 
    975 		/*
    976 		 * Make sure that the semaphore still exists
    977 		 */
    978 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    979 		    semaptr->sem_perm._seq != seq) {
    980 			error = EIDRM;
    981 			goto out;
    982 		}
    983 
    984 		/*
    985 		 * The semaphore is still alive.  Readjust the count of
    986 		 * waiting processes.
    987 		 */
    988 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    989 		if (sopptr->sem_op == 0)
    990 			semptr->semzcnt--;
    991 		else
    992 			semptr->semncnt--;
    993 
    994 		/* In case of such state, restart the call */
    995 		if (sem_realloc_state) {
    996 			mutex_exit(&semlock);
    997 			goto restart;
    998 		}
    999 
   1000 		/* Is it really morning, or was our sleep interrupted? */
   1001 		if (error != 0) {
   1002 			error = EINTR;
   1003 			goto out;
   1004 		}
   1005 		SEM_PRINTF(("semop:  good morning!\n"));
   1006 	}
   1007 
   1008 done:
   1009 	/*
   1010 	 * Process any SEM_UNDO requests.
   1011 	 */
   1012 	if (do_undos) {
   1013 		for (i = 0; i < nsops; i++) {
   1014 			/*
   1015 			 * We only need to deal with SEM_UNDO's for non-zero
   1016 			 * op's.
   1017 			 */
   1018 			int adjval;
   1019 
   1020 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
   1021 				continue;
   1022 			adjval = sops[i].sem_op;
   1023 			if (adjval == 0)
   1024 				continue;
   1025 			error = semundo_adjust(p, &suptr, semid,
   1026 			    sops[i].sem_num, -adjval);
   1027 			if (error == 0)
   1028 				continue;
   1029 
   1030 			/*
   1031 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
   1032 			 * Rollback the adjustments to this point and then
   1033 			 * rollback the semaphore ups and down so we can return
   1034 			 * with an error with all structures restored.  We
   1035 			 * rollback the undo's in the exact reverse order that
   1036 			 * we applied them.  This guarantees that we won't run
   1037 			 * out of space as we roll things back out.
   1038 			 */
   1039 			while (i-- > 0) {
   1040 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
   1041 					continue;
   1042 				adjval = sops[i].sem_op;
   1043 				if (adjval == 0)
   1044 					continue;
   1045 				if (semundo_adjust(p, &suptr, semid,
   1046 				    sops[i].sem_num, adjval) != 0)
   1047 					panic("semop - can't undo undos");
   1048 			}
   1049 
   1050 			for (i = 0; i < nsops; i++)
   1051 				semaptr->_sem_base[sops[i].sem_num].semval -=
   1052 				    sops[i].sem_op;
   1053 
   1054 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
   1055 			goto out;
   1056 		} /* loop through the sops */
   1057 	} /* if (do_undos) */
   1058 
   1059 	/* We're definitely done - set the sempid's */
   1060 	for (i = 0; i < nsops; i++) {
   1061 		sopptr = &sops[i];
   1062 		semptr = &semaptr->_sem_base[sopptr->sem_num];
   1063 		semptr->sempid = p->p_pid;
   1064 	}
   1065 
   1066 	/* Update sem_otime */
   1067 	semaptr->sem_otime = time_second;
   1068 
   1069 	/* Do a wakeup if any semaphore was up'd. */
   1070 	if (do_wakeup) {
   1071 		SEM_PRINTF(("semop:  doing wakeup\n"));
   1072 		cv_broadcast(&semcv[semid]);
   1073 		SEM_PRINTF(("semop:  back from wakeup\n"));
   1074 	}
   1075 	SEM_PRINTF(("semop:  done\n"));
   1076 	*retval = 0;
   1077 
   1078  out:
   1079 	mutex_exit(&semlock);
   1080 	if (sops != small_sops)
   1081 		kmem_free(sops, nsops * sizeof(*sops));
   1082 	return error;
   1083 }
   1084 
   1085 /*
   1086  * Go through the undo structures for this process and apply the
   1087  * adjustments to semaphores.
   1088  */
   1089 /*ARGSUSED*/
   1090 void
   1091 semexit(struct proc *p, void *v)
   1092 {
   1093 	struct sem_undo *suptr;
   1094 	struct sem_undo **supptr;
   1095 
   1096 	if ((p->p_flag & PK_SYSVSEM) == 0)
   1097 		return;
   1098 
   1099 	mutex_enter(&semlock);
   1100 
   1101 	/*
   1102 	 * Go through the chain of undo vectors looking for one
   1103 	 * associated with this process.
   1104 	 */
   1105 
   1106 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
   1107 	    supptr = &suptr->un_next) {
   1108 		if (suptr->un_proc == p)
   1109 			break;
   1110 	}
   1111 
   1112 	/*
   1113 	 * If there is no undo vector, skip to the end.
   1114 	 */
   1115 
   1116 	if (suptr == NULL) {
   1117 		mutex_exit(&semlock);
   1118 		return;
   1119 	}
   1120 
   1121 	/*
   1122 	 * We now have an undo vector for this process.
   1123 	 */
   1124 
   1125 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
   1126 	    suptr->un_cnt));
   1127 
   1128 	/*
   1129 	 * If there are any active undo elements then process them.
   1130 	 */
   1131 	if (suptr->un_cnt > 0) {
   1132 		int ix;
   1133 
   1134 		for (ix = 0; ix < suptr->un_cnt; ix++) {
   1135 			int semid = suptr->un_ent[ix].un_id;
   1136 			int semnum = suptr->un_ent[ix].un_num;
   1137 			int adjval = suptr->un_ent[ix].un_adjval;
   1138 			struct semid_ds *semaptr;
   1139 
   1140 			semaptr = &sema[semid];
   1141 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
   1142 			if (semnum >= semaptr->sem_nsems)
   1143 				panic("semexit - semnum out of range");
   1144 
   1145 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
   1146 			    "sem=%d\n",
   1147 			    suptr->un_proc, suptr->un_ent[ix].un_id,
   1148 			    suptr->un_ent[ix].un_num,
   1149 			    suptr->un_ent[ix].un_adjval,
   1150 			    semaptr->_sem_base[semnum].semval));
   1151 
   1152 			if (adjval < 0 &&
   1153 			    semaptr->_sem_base[semnum].semval < -adjval)
   1154 				semaptr->_sem_base[semnum].semval = 0;
   1155 			else
   1156 				semaptr->_sem_base[semnum].semval += adjval;
   1157 
   1158 			cv_broadcast(&semcv[semid]);
   1159 			SEM_PRINTF(("semexit:  back from wakeup\n"));
   1160 		}
   1161 	}
   1162 
   1163 	/*
   1164 	 * Deallocate the undo vector.
   1165 	 */
   1166 	SEM_PRINTF(("removing vector\n"));
   1167 	suptr->un_proc = NULL;
   1168 	*supptr = suptr->un_next;
   1169 	mutex_exit(&semlock);
   1170 }
   1171 
   1172 /*
   1173  * Sysctl initialization and nodes.
   1174  */
   1175 
   1176 static int
   1177 sysctl_ipc_semmni(SYSCTLFN_ARGS)
   1178 {
   1179 	int newsize, error;
   1180 	struct sysctlnode node;
   1181 	node = *rnode;
   1182 	node.sysctl_data = &newsize;
   1183 
   1184 	newsize = seminfo.semmni;
   1185 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1186 	if (error || newp == NULL)
   1187 		return error;
   1188 
   1189 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
   1190 }
   1191 
   1192 static int
   1193 sysctl_ipc_semmns(SYSCTLFN_ARGS)
   1194 {
   1195 	int newsize, error;
   1196 	struct sysctlnode node;
   1197 	node = *rnode;
   1198 	node.sysctl_data = &newsize;
   1199 
   1200 	newsize = seminfo.semmns;
   1201 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1202 	if (error || newp == NULL)
   1203 		return error;
   1204 
   1205 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
   1206 }
   1207 
   1208 static int
   1209 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
   1210 {
   1211 	int newsize, error;
   1212 	struct sysctlnode node;
   1213 	node = *rnode;
   1214 	node.sysctl_data = &newsize;
   1215 
   1216 	newsize = seminfo.semmnu;
   1217 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1218 	if (error || newp == NULL)
   1219 		return error;
   1220 
   1221 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
   1222 }
   1223 
   1224 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
   1225 {
   1226 	const struct sysctlnode *node = NULL;
   1227 
   1228 	sysctl_createv(clog, 0, NULL, &node,
   1229 		CTLFLAG_PERMANENT,
   1230 		CTLTYPE_NODE, "ipc",
   1231 		SYSCTL_DESCR("SysV IPC options"),
   1232 		NULL, 0, NULL, 0,
   1233 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1234 
   1235 	if (node == NULL)
   1236 		return;
   1237 
   1238 	sysctl_createv(clog, 0, &node, NULL,
   1239 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1240 		CTLTYPE_INT, "semmni",
   1241 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
   1242 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
   1243 		CTL_CREATE, CTL_EOL);
   1244 	sysctl_createv(clog, 0, &node, NULL,
   1245 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1246 		CTLTYPE_INT, "semmns",
   1247 		SYSCTL_DESCR("Max number of number of semaphores in system"),
   1248 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
   1249 		CTL_CREATE, CTL_EOL);
   1250 	sysctl_createv(clog, 0, &node, NULL,
   1251 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1252 		CTLTYPE_INT, "semmnu",
   1253 		SYSCTL_DESCR("Max number of undo structures in system"),
   1254 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
   1255 		CTL_CREATE, CTL_EOL);
   1256 }
   1257