Home | History | Annotate | Line # | Download | only in kern
sysv_sem.c revision 1.99
      1 /*	$NetBSD: sysv_sem.c,v 1.99 2024/10/03 16:50:52 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Implementation of SVID semaphores
     35  *
     36  * Author: Daniel Boulet
     37  *
     38  * This software is provided ``AS IS'' without any warranties of any kind.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.99 2024/10/03 16:50:52 christos Exp $");
     43 
     44 #ifdef _KERNEL_OPT
     45 #include "opt_sysv.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/kernel.h>
     50 #include <sys/sem.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/kmem.h>
     53 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     54 #include <sys/syscallargs.h>
     55 #include <sys/kauth.h>
     56 #include <sys/once.h>
     57 
     58 /*
     59  * Memory areas:
     60  *  1st: Pool of semaphore identifiers
     61  *  2nd: Semaphores
     62  *  3rd: Conditional variables
     63  *  4th: Undo structures
     64  */
     65 struct semid_ds *	sema			__read_mostly;
     66 static struct __sem *	sem			__read_mostly;
     67 static kcondvar_t *	semcv			__read_mostly;
     68 static int *		semu			__read_mostly;
     69 
     70 static kmutex_t		semlock			__cacheline_aligned;
     71 static bool		sem_realloc_state	__read_mostly;
     72 static kcondvar_t	sem_realloc_cv;
     73 
     74 /*
     75  * List of active undo structures, total number of semaphores,
     76  * and total number of semop waiters.
     77  */
     78 static struct sem_undo *semu_list		__read_mostly;
     79 static u_int		semtot			__cacheline_aligned;
     80 static u_int		sem_waiters		__cacheline_aligned;
     81 
     82 /* Macro to find a particular sem_undo vector */
     83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
     84 
     85 #ifdef SEM_DEBUG
     86 #define SEM_PRINTF(a) printf a
     87 #else
     88 #define SEM_PRINTF(a)
     89 #endif
     90 
     91 void *hook;	/* cookie from exithook_establish() */
     92 
     93 extern int kern_has_sysvsem;
     94 
     95 SYSCTL_SETUP_PROTO(sysctl_ipc_sem_setup);
     96 
     97 struct sem_undo *semu_alloc(struct proc *);
     98 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
     99 void semundo_clear(int, int);
    100 
    101 static ONCE_DECL(exithook_control);
    102 static int seminit_exithook(void);
    103 
    104 int
    105 seminit(void)
    106 {
    107 	int i, sz;
    108 	vaddr_t v;
    109 
    110 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
    111 	cv_init(&sem_realloc_cv, "semrealc");
    112 	sem_realloc_state = false;
    113 	semtot = 0;
    114 	sem_waiters = 0;
    115 
    116 	/* Allocate the wired memory for our structures */
    117 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    118 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    119 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    120 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    121 	sz = round_page(sz);
    122 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    123 	if (v == 0) {
    124 		printf("sysv_sem: cannot allocate memory");
    125 		return ENOMEM;
    126 	}
    127 	sema = (void *)v;
    128 	sem = (void *)((uintptr_t)sema +
    129 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
    130 	semcv = (void *)((uintptr_t)sem +
    131 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
    132 	semu = (void *)((uintptr_t)semcv +
    133 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
    134 
    135 	for (i = 0; i < seminfo.semmni; i++) {
    136 		sema[i]._sem_base = 0;
    137 		sema[i].sem_perm.mode = 0;
    138 		cv_init(&semcv[i], "semwait");
    139 	}
    140 	for (i = 0; i < seminfo.semmnu; i++) {
    141 		struct sem_undo *suptr = SEMU(semu, i);
    142 		suptr->un_proc = NULL;
    143 	}
    144 	semu_list = NULL;
    145 
    146 	kern_has_sysvsem = 1;
    147 
    148 	return 0;
    149 }
    150 
    151 static int
    152 seminit_exithook(void)
    153 {
    154 
    155 	hook = exithook_establish(semexit, NULL);
    156 	return 0;
    157 }
    158 
    159 int
    160 semfini(void)
    161 {
    162 	int i, sz;
    163 	vaddr_t v = (vaddr_t)sema;
    164 
    165 	/* Don't allow module unload if we're busy */
    166 	mutex_enter(&semlock);
    167 	if (semtot) {
    168 		mutex_exit(&semlock);
    169 		return 1;
    170 	}
    171 
    172 	/* Remove the exit hook */
    173 	if (hook)
    174 		exithook_disestablish(hook);
    175 
    176 	/* Destroy all our condvars */
    177 	for (i = 0; i < seminfo.semmni; i++) {
    178 		cv_destroy(&semcv[i]);
    179 	}
    180 
    181 	/* Free the wired memory that we allocated */
    182 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    183 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    184 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    185 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    186 	sz = round_page(sz);
    187 	uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    188 
    189 	/* Destroy the last cv and mutex */
    190 	cv_destroy(&sem_realloc_cv);
    191 	mutex_exit(&semlock);
    192 	mutex_destroy(&semlock);
    193 
    194 	kern_has_sysvsem = 0;
    195 
    196 	return 0;
    197 }
    198 
    199 static int
    200 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
    201 {
    202 	struct semid_ds *new_sema, *old_sema;
    203 	struct __sem *new_sem;
    204 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
    205 	int *new_semu;
    206 	kcondvar_t *new_semcv;
    207 	vaddr_t v;
    208 	int i, j, lsemid, nmnus, sz;
    209 
    210 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
    211 		return EINVAL;
    212 
    213 	/* Allocate the wired memory for our structures */
    214 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
    215 	    ALIGN(newsemmns * sizeof(struct __sem)) +
    216 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
    217 	    ALIGN(newsemmnu * seminfo.semusz);
    218 	sz = round_page(sz);
    219 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    220 	if (v == 0)
    221 		return ENOMEM;
    222 
    223 	mutex_enter(&semlock);
    224 	if (sem_realloc_state) {
    225 		mutex_exit(&semlock);
    226 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    227 		return EBUSY;
    228 	}
    229 	sem_realloc_state = true;
    230 	if (sem_waiters) {
    231 		/*
    232 		 * Mark reallocation state, wake-up all waiters,
    233 		 * and wait while they will all exit.
    234 		 */
    235 		for (i = 0; i < seminfo.semmni; i++)
    236 			cv_broadcast(&semcv[i]);
    237 		while (sem_waiters)
    238 			cv_wait(&sem_realloc_cv, &semlock);
    239 	}
    240 	old_sema = sema;
    241 
    242 	/* Get the number of last slot */
    243 	lsemid = 0;
    244 	for (i = 0; i < seminfo.semmni; i++)
    245 		if (sema[i].sem_perm.mode & SEM_ALLOC)
    246 			lsemid = i;
    247 
    248 	/* Get the number of currently used undo structures */
    249 	nmnus = 0;
    250 	for (i = 0; i < seminfo.semmnu; i++) {
    251 		suptr = SEMU(semu, i);
    252 		if (suptr->un_proc == NULL)
    253 			continue;
    254 		nmnus++;
    255 	}
    256 
    257 	/* We cannot reallocate less memory than we use */
    258 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
    259 		mutex_exit(&semlock);
    260 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    261 		return EBUSY;
    262 	}
    263 
    264 	new_sema = (void *)v;
    265 	new_sem = (void *)((uintptr_t)new_sema +
    266 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
    267 	new_semcv = (void *)((uintptr_t)new_sem +
    268 	    ALIGN(newsemmns * sizeof(struct __sem)));
    269 	new_semu = (void *)((uintptr_t)new_semcv +
    270 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
    271 
    272 	/* Initialize all semaphore identifiers and condvars */
    273 	for (i = 0; i < newsemmni; i++) {
    274 		new_sema[i]._sem_base = 0;
    275 		new_sema[i].sem_perm.mode = 0;
    276 		cv_init(&new_semcv[i], "semwait");
    277 	}
    278 	for (i = 0; i < newsemmnu; i++) {
    279 		nsuptr = SEMU(new_semu, i);
    280 		nsuptr->un_proc = NULL;
    281 	}
    282 
    283 	/*
    284 	 * Copy all identifiers, semaphores and list of the
    285 	 * undo structures to the new memory allocation.
    286 	 */
    287 	j = 0;
    288 	for (i = 0; i <= lsemid; i++) {
    289 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
    290 			continue;
    291 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
    292 		new_sema[i]._sem_base = &new_sem[j];
    293 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
    294 		    (sizeof(struct __sem) * sema[i].sem_nsems));
    295 		j += sema[i].sem_nsems;
    296 	}
    297 	KASSERT(j == semtot);
    298 
    299 	j = 0;
    300 	new_semu_list = NULL;
    301 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
    302 		KASSERT(j < newsemmnu);
    303 		nsuptr = SEMU(new_semu, j);
    304 		memcpy(nsuptr, suptr, SEMUSZ);
    305 		nsuptr->un_next = new_semu_list;
    306 		new_semu_list = nsuptr;
    307 		j++;
    308 	}
    309 
    310 	for (i = 0; i < seminfo.semmni; i++) {
    311 		KASSERT(cv_has_waiters(&semcv[i]) == false);
    312 		cv_destroy(&semcv[i]);
    313 	}
    314 
    315 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
    316 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
    317 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
    318 	    ALIGN(seminfo.semmnu * seminfo.semusz);
    319 	sz = round_page(sz);
    320 
    321 	/* Set the pointers and update the new values */
    322 	sema = new_sema;
    323 	sem = new_sem;
    324 	semcv = new_semcv;
    325 	semu = new_semu;
    326 	semu_list = new_semu_list;
    327 
    328 	seminfo.semmni = newsemmni;
    329 	seminfo.semmns = newsemmns;
    330 	seminfo.semmnu = newsemmnu;
    331 
    332 	/* Reallocation completed - notify all waiters, if any */
    333 	sem_realloc_state = false;
    334 	cv_broadcast(&sem_realloc_cv);
    335 	mutex_exit(&semlock);
    336 
    337 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
    338 	return 0;
    339 }
    340 
    341 /*
    342  * Placebo.
    343  */
    344 
    345 int
    346 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
    347 {
    348 
    349 	RUN_ONCE(&exithook_control, seminit_exithook);
    350 
    351 	*retval = 0;
    352 	return 0;
    353 }
    354 
    355 /*
    356  * Allocate a new sem_undo structure for a process.
    357  * => Returns NULL on failure.
    358  */
    359 struct sem_undo *
    360 semu_alloc(struct proc *p)
    361 {
    362 	struct sem_undo *suptr, **supptr;
    363 	bool attempted = false;
    364 	int i;
    365 
    366 	KASSERT(mutex_owned(&semlock));
    367 again:
    368 	/* Look for a free structure. */
    369 	for (i = 0; i < seminfo.semmnu; i++) {
    370 		suptr = SEMU(semu, i);
    371 		if (suptr->un_proc == NULL) {
    372 			/* Found.  Fill it in and return. */
    373 			suptr->un_next = semu_list;
    374 			semu_list = suptr;
    375 			suptr->un_cnt = 0;
    376 			suptr->un_proc = p;
    377 			return suptr;
    378 		}
    379 	}
    380 
    381 	/* Not found.  Attempt to free some structures. */
    382 	if (!attempted) {
    383 		bool freed = false;
    384 
    385 		attempted = true;
    386 		supptr = &semu_list;
    387 		while ((suptr = *supptr) != NULL) {
    388 			if (suptr->un_cnt == 0)  {
    389 				suptr->un_proc = NULL;
    390 				*supptr = suptr->un_next;
    391 				freed = true;
    392 			} else {
    393 				supptr = &suptr->un_next;
    394 			}
    395 		}
    396 		if (freed) {
    397 			goto again;
    398 		}
    399 	}
    400 	return NULL;
    401 }
    402 
    403 /*
    404  * Adjust a particular entry for a particular proc
    405  */
    406 
    407 int
    408 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
    409     int adjval)
    410 {
    411 	struct sem_undo *suptr;
    412 	struct sem_undo_entry *sunptr;
    413 	int i;
    414 
    415 	KASSERT(mutex_owned(&semlock));
    416 
    417 	/*
    418 	 * Look for and remember the sem_undo if the caller doesn't
    419 	 * provide it
    420 	 */
    421 
    422 	suptr = *supptr;
    423 	if (suptr == NULL) {
    424 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    425 			if (suptr->un_proc == p)
    426 				break;
    427 
    428 		if (suptr == NULL) {
    429 			suptr = semu_alloc(p);
    430 			if (suptr == NULL)
    431 				return (ENOSPC);
    432 		}
    433 		*supptr = suptr;
    434 	}
    435 
    436 	/*
    437 	 * Look for the requested entry and adjust it (delete if
    438 	 * adjval becomes 0).
    439 	 */
    440 	sunptr = &suptr->un_ent[0];
    441 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
    442 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
    443 			continue;
    444 		sunptr->un_adjval += adjval;
    445 		if (sunptr->un_adjval == 0) {
    446 			suptr->un_cnt--;
    447 			if (i < suptr->un_cnt)
    448 				suptr->un_ent[i] =
    449 				    suptr->un_ent[suptr->un_cnt];
    450 		}
    451 		return (0);
    452 	}
    453 
    454 	/* Didn't find the right entry - create it */
    455 	if (suptr->un_cnt == SEMUME)
    456 		return (EINVAL);
    457 
    458 	sunptr = &suptr->un_ent[suptr->un_cnt];
    459 	suptr->un_cnt++;
    460 	sunptr->un_adjval = adjval;
    461 	sunptr->un_id = semid;
    462 	sunptr->un_num = semnum;
    463 	return (0);
    464 }
    465 
    466 void
    467 semundo_clear(int semid, int semnum)
    468 {
    469 	struct sem_undo *suptr;
    470 	struct sem_undo_entry *sunptr, *sunend;
    471 
    472 	KASSERT(mutex_owned(&semlock));
    473 
    474 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
    475 		for (sunptr = &suptr->un_ent[0],
    476 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
    477 			if (sunptr->un_id == semid) {
    478 				if (semnum == -1 || sunptr->un_num == semnum) {
    479 					suptr->un_cnt--;
    480 					sunend--;
    481 					if (sunptr != sunend)
    482 						*sunptr = *sunend;
    483 					if (semnum != -1)
    484 						break;
    485 					else
    486 						continue;
    487 				}
    488 			}
    489 			sunptr++;
    490 		}
    491 }
    492 
    493 int
    494 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
    495     register_t *retval)
    496 {
    497 	/* {
    498 		syscallarg(int) semid;
    499 		syscallarg(int) semnum;
    500 		syscallarg(int) cmd;
    501 		syscallarg(union __semun *) arg;
    502 	} */
    503 	struct semid_ds sembuf;
    504 	int cmd, error;
    505 	void *pass_arg;
    506 	union __semun karg;
    507 
    508 	RUN_ONCE(&exithook_control, seminit_exithook);
    509 
    510 	cmd = SCARG(uap, cmd);
    511 
    512 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
    513 
    514 	if (pass_arg) {
    515 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
    516 		if (error)
    517 			return error;
    518 		if (cmd == IPC_SET) {
    519 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
    520 			if (error)
    521 				return (error);
    522 		}
    523 	}
    524 
    525 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
    526 	    pass_arg, retval);
    527 
    528 	if (error == 0 && cmd == IPC_STAT)
    529 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
    530 
    531 	return (error);
    532 }
    533 
    534 int
    535 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
    536     register_t *retval)
    537 {
    538 	kauth_cred_t cred = l->l_cred;
    539 	union __semun *arg = v;
    540 	struct semid_ds *sembuf = v, *semaptr;
    541 	int i, error, ix;
    542 
    543 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
    544 	    semid, semnum, cmd, v));
    545 
    546 	mutex_enter(&semlock);
    547 
    548 	ix = IPCID_TO_IX(semid);
    549 	if (ix < 0 || ix >= seminfo.semmni) {
    550 		mutex_exit(&semlock);
    551 		return (EINVAL);
    552 	}
    553 
    554 	semaptr = &sema[ix];
    555 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    556 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
    557 		mutex_exit(&semlock);
    558 		return (EINVAL);
    559 	}
    560 
    561 	switch (cmd) {
    562 	case IPC_RMID:
    563 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
    564 			break;
    565 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
    566 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
    567 		semtot -= semaptr->sem_nsems;
    568 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
    569 			sem[i] = sem[i + semaptr->sem_nsems];
    570 		for (i = 0; i < seminfo.semmni; i++) {
    571 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
    572 			    sema[i]._sem_base > semaptr->_sem_base)
    573 				sema[i]._sem_base -= semaptr->sem_nsems;
    574 		}
    575 		semaptr->sem_perm.mode = 0;
    576 		semundo_clear(ix, -1);
    577 		cv_broadcast(&semcv[ix]);
    578 		break;
    579 
    580 	case IPC_SET:
    581 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
    582 			break;
    583 		KASSERT(sembuf != NULL);
    584 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
    585 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
    586 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
    587 		    (sembuf->sem_perm.mode & 0777);
    588 		semaptr->sem_ctime = time_second;
    589 		break;
    590 
    591 	case IPC_STAT:
    592 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    593 			break;
    594 		KASSERT(sembuf != NULL);
    595 		memset(sembuf, 0, sizeof *sembuf);
    596 		sembuf->sem_perm = semaptr->sem_perm;
    597 		sembuf->sem_perm.mode &= 0777;
    598 		sembuf->sem_nsems = semaptr->sem_nsems;
    599 		sembuf->sem_otime = semaptr->sem_otime;
    600 		sembuf->sem_ctime = semaptr->sem_ctime;
    601 		break;
    602 
    603 	case GETNCNT:
    604 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    605 			break;
    606 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    607 			error = EINVAL;
    608 			break;
    609 		}
    610 		*retval = semaptr->_sem_base[semnum].semncnt;
    611 		break;
    612 
    613 	case GETPID:
    614 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    615 			break;
    616 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    617 			error = EINVAL;
    618 			break;
    619 		}
    620 		*retval = semaptr->_sem_base[semnum].sempid;
    621 		break;
    622 
    623 	case GETVAL:
    624 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    625 			break;
    626 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    627 			error = EINVAL;
    628 			break;
    629 		}
    630 		*retval = semaptr->_sem_base[semnum].semval;
    631 		break;
    632 
    633 	case GETALL:
    634 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    635 			break;
    636 		KASSERT(arg != NULL);
    637 		for (i = 0; i < semaptr->sem_nsems; i++) {
    638 			error = copyout(&semaptr->_sem_base[i].semval,
    639 			    &arg->array[i], sizeof(arg->array[i]));
    640 			if (error != 0)
    641 				break;
    642 		}
    643 		break;
    644 
    645 	case GETZCNT:
    646 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
    647 			break;
    648 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    649 			error = EINVAL;
    650 			break;
    651 		}
    652 		*retval = semaptr->_sem_base[semnum].semzcnt;
    653 		break;
    654 
    655 	case SETVAL:
    656 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    657 			break;
    658 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
    659 			error = EINVAL;
    660 			break;
    661 		}
    662 		KASSERT(arg != NULL);
    663 		if ((unsigned int)arg->val > seminfo.semvmx) {
    664 			error = ERANGE;
    665 			break;
    666 		}
    667 		semaptr->_sem_base[semnum].semval = arg->val;
    668 		semundo_clear(ix, semnum);
    669 		cv_broadcast(&semcv[ix]);
    670 		break;
    671 
    672 	case SETALL:
    673 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
    674 			break;
    675 		KASSERT(arg != NULL);
    676 		for (i = 0; i < semaptr->sem_nsems; i++) {
    677 			unsigned short semval;
    678 			error = copyin(&arg->array[i], &semval,
    679 			    sizeof(arg->array[i]));
    680 			if (error != 0)
    681 				break;
    682 			if ((unsigned int)semval > seminfo.semvmx) {
    683 				error = ERANGE;
    684 				break;
    685 			}
    686 			semaptr->_sem_base[i].semval = semval;
    687 		}
    688 		semundo_clear(ix, -1);
    689 		cv_broadcast(&semcv[ix]);
    690 		break;
    691 
    692 	default:
    693 		error = EINVAL;
    694 		break;
    695 	}
    696 
    697 	mutex_exit(&semlock);
    698 	return (error);
    699 }
    700 
    701 int
    702 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
    703 {
    704 	/* {
    705 		syscallarg(key_t) key;
    706 		syscallarg(int) nsems;
    707 		syscallarg(int) semflg;
    708 	} */
    709 	int semid, error = 0;
    710 	int key = SCARG(uap, key);
    711 	int nsems = SCARG(uap, nsems);
    712 	int semflg = SCARG(uap, semflg);
    713 	kauth_cred_t cred = l->l_cred;
    714 
    715 	RUN_ONCE(&exithook_control, seminit_exithook);
    716 
    717 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
    718 
    719 	mutex_enter(&semlock);
    720 
    721 	if (key != IPC_PRIVATE) {
    722 		for (semid = 0; semid < seminfo.semmni; semid++) {
    723 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
    724 			    sema[semid].sem_perm._key == key)
    725 				break;
    726 		}
    727 		if (semid < seminfo.semmni) {
    728 			SEM_PRINTF(("found public key\n"));
    729 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
    730 			    semflg & 0700)))
    731 			    	goto out;
    732 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
    733 				SEM_PRINTF(("too small\n"));
    734 				error = EINVAL;
    735 				goto out;
    736 			}
    737 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
    738 				SEM_PRINTF(("not exclusive\n"));
    739 				error = EEXIST;
    740 				goto out;
    741 			}
    742 			goto found;
    743 		}
    744 	}
    745 
    746 	SEM_PRINTF(("need to allocate the semid_ds\n"));
    747 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
    748 		if (nsems <= 0 || nsems > seminfo.semmsl) {
    749 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
    750 			    seminfo.semmsl));
    751 			error = EINVAL;
    752 			goto out;
    753 		}
    754 		if (nsems > seminfo.semmns - semtot) {
    755 			SEM_PRINTF(("not enough semaphores left "
    756 			    "(need %d, got %d)\n",
    757 			    nsems, seminfo.semmns - semtot));
    758 			error = ENOSPC;
    759 			goto out;
    760 		}
    761 		for (semid = 0; semid < seminfo.semmni; semid++) {
    762 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
    763 				break;
    764 		}
    765 		if (semid == seminfo.semmni) {
    766 			SEM_PRINTF(("no more semid_ds's available\n"));
    767 			error = ENOSPC;
    768 			goto out;
    769 		}
    770 		SEM_PRINTF(("semid %d is available\n", semid));
    771 		sema[semid].sem_perm._key = key;
    772 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
    773 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
    774 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
    775 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
    776 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
    777 		sema[semid].sem_perm._seq =
    778 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
    779 		sema[semid].sem_nsems = nsems;
    780 		sema[semid].sem_otime = 0;
    781 		sema[semid].sem_ctime = time_second;
    782 		sema[semid]._sem_base = &sem[semtot];
    783 		semtot += nsems;
    784 		memset(sema[semid]._sem_base, 0,
    785 		    sizeof(sema[semid]._sem_base[0]) * nsems);
    786 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
    787 		    &sem[semtot]));
    788 	} else {
    789 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
    790 		error = ENOENT;
    791 		goto out;
    792 	}
    793 
    794  found:
    795 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
    796  out:
    797 	mutex_exit(&semlock);
    798 	return (error);
    799 }
    800 
    801 #define SMALL_SOPS 8
    802 
    803 static int
    804 do_semop(struct lwp *l, int semid, struct sembuf *usops,
    805     size_t nsops, struct timespec *utimeout, register_t *retval)
    806 {
    807 	struct proc *p = l->l_proc;
    808 	int semid, seq;
    809 	struct sembuf small_sops[SMALL_SOPS];
    810 	struct sembuf *sops;
    811 	struct semid_ds *semaptr;
    812 	struct sembuf *sopptr = NULL;
    813 	struct __sem *semptr = NULL;
    814 	struct sem_undo *suptr = NULL;
    815 	kauth_cred_t cred = l->l_cred;
    816 	struct timespec timeout;
    817 	int timo = 0;
    818 	int i, error;
    819 	int do_wakeup, do_undos;
    820 
    821 	RUN_ONCE(&exithook_control, seminit_exithook);
    822 
    823 	SEM_PRINTF(("call to semop(%d, %p, %zu)\n", semid, usops, nsops));
    824 
    825 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
    826 		mutex_enter(p->p_lock);
    827 		p->p_flag |= PK_SYSVSEM;
    828 		mutex_exit(p->p_lock);
    829 	}
    830 
    831 restart:
    832 	if (nsops <= SMALL_SOPS) {
    833 		sops = small_sops;
    834 	} else if (nsops <= seminfo.semopm) {
    835 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
    836 	} else {
    837 		SEM_PRINTF(("too many sops (max=%d, nsops=%zu)\n",
    838 		    seminfo.semopm, nsops));
    839 		return (E2BIG);
    840 	}
    841 
    842 	error = copyin(usops, sops, nsops * sizeof(sops[0]));
    843 	if (error) {
    844 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zu)\n", error,
    845 		    usops, &sops, nsops * sizeof(sops[0])));
    846 		if (sops != small_sops)
    847 			kmem_free(sops, nsops * sizeof(*sops));
    848 		return error;
    849 	}
    850 
    851 	mutex_enter(&semlock);
    852 	/* In case of reallocation, we will wait for completion */
    853 	while (__predict_false(sem_realloc_state))
    854 		cv_wait(&sem_realloc_cv, &semlock);
    855 
    856 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
    857 	if (semid < 0 || semid >= seminfo.semmni) {
    858 		error = EINVAL;
    859 		goto out;
    860 	}
    861 
    862 	if (utimeout) {
    863 		error = copyin(utimeout, &timeout, sizeof(timeout));
    864 		if (error) {
    865 			SEM_PRINTF(("error = %d from copyin(%p, %p, %zu)\n",
    866 			    error, utimeout, &timeout, sizeof(timeout)));
    867 			return error;
    868 		}
    869 		error = ts2timo(CLOCK_MONOTONIC, TIMER_RELTIME, &timeout,
    870 		    &timo, NULL);
    871 		if (error)
    872 			return error;
    873 	}
    874 
    875 	semaptr = &sema[semid];
    876 	seq = IPCID_TO_SEQ(semid);
    877 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    878 	    semaptr->sem_perm._seq != seq) {
    879 		error = EINVAL;
    880 		goto out;
    881 	}
    882 
    883 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
    884 		SEM_PRINTF(("error = %d from ipaccess\n", error));
    885 		goto out;
    886 	}
    887 
    888 	for (i = 0; i < nsops; i++)
    889 		if (sops[i].sem_num >= semaptr->sem_nsems) {
    890 			error = EFBIG;
    891 			goto out;
    892 		}
    893 	/*
    894 	 * Loop trying to satisfy the vector of requests.
    895 	 * If we reach a point where we must wait, any requests already
    896 	 * performed are rolled back and we go to sleep until some other
    897 	 * process wakes us up.  At this point, we start all over again.
    898 	 *
    899 	 * This ensures that from the perspective of other tasks, a set
    900 	 * of requests is atomic (never partially satisfied).
    901 	 */
    902 	do_undos = 0;
    903 
    904 	for (;;) {
    905 		do_wakeup = 0;
    906 
    907 		for (i = 0; i < nsops; i++) {
    908 			sopptr = &sops[i];
    909 			semptr = &semaptr->_sem_base[sopptr->sem_num];
    910 
    911 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
    912 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
    913 			    semaptr, semaptr->_sem_base, semptr,
    914 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
    915 			    (sopptr->sem_flg & IPC_NOWAIT) ?
    916 			    "nowait" : "wait"));
    917 
    918 			if (sopptr->sem_op < 0) {
    919 				if ((int)(semptr->semval +
    920 				    sopptr->sem_op) < 0) {
    921 					SEM_PRINTF(("semop:  "
    922 					    "can't do it now\n"));
    923 					break;
    924 				} else {
    925 					semptr->semval += sopptr->sem_op;
    926 					if (semptr->semval == 0 &&
    927 					    semptr->semzcnt > 0)
    928 						do_wakeup = 1;
    929 				}
    930 				if (sopptr->sem_flg & SEM_UNDO)
    931 					do_undos = 1;
    932 			} else if (sopptr->sem_op == 0) {
    933 				if (semptr->semval > 0) {
    934 					SEM_PRINTF(("semop:  not zero now\n"));
    935 					break;
    936 				}
    937 			} else {
    938 				if (semptr->semncnt > 0)
    939 					do_wakeup = 1;
    940 				semptr->semval += sopptr->sem_op;
    941 				if (sopptr->sem_flg & SEM_UNDO)
    942 					do_undos = 1;
    943 			}
    944 		}
    945 
    946 		/*
    947 		 * Did we get through the entire vector?
    948 		 */
    949 		if (i >= nsops)
    950 			goto done;
    951 
    952 		/*
    953 		 * No ... rollback anything that we've already done
    954 		 */
    955 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
    956 		while (i-- > 0)
    957 			semaptr->_sem_base[sops[i].sem_num].semval -=
    958 			    sops[i].sem_op;
    959 
    960 		/*
    961 		 * If the request that we couldn't satisfy has the
    962 		 * NOWAIT flag set then return with EAGAIN.
    963 		 */
    964 		if (sopptr->sem_flg & IPC_NOWAIT) {
    965 			error = EAGAIN;
    966 			goto out;
    967 		}
    968 
    969 		if (sopptr->sem_op == 0)
    970 			semptr->semzcnt++;
    971 		else
    972 			semptr->semncnt++;
    973 
    974 		sem_waiters++;
    975 		SEM_PRINTF(("semop:  good night!\n"));
    976 		error = cv_timedwait_sig(&semcv[semid], &semlock, timo);
    977 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
    978 		sem_waiters--;
    979 
    980 		/* Notify reallocator, if it is waiting */
    981 		cv_broadcast(&sem_realloc_cv);
    982 
    983 		/*
    984 		 * Make sure that the semaphore still exists
    985 		 */
    986 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
    987 		    semaptr->sem_perm._seq != seq) {
    988 			error = EIDRM;
    989 			goto out;
    990 		}
    991 
    992 		/*
    993 		 * The semaphore is still alive.  Readjust the count of
    994 		 * waiting processes.
    995 		 */
    996 		semptr = &semaptr->_sem_base[sopptr->sem_num];
    997 		if (sopptr->sem_op == 0)
    998 			semptr->semzcnt--;
    999 		else
   1000 			semptr->semncnt--;
   1001 
   1002 		/* In case of such state, restart the call */
   1003 		if (sem_realloc_state) {
   1004 			mutex_exit(&semlock);
   1005 			goto restart;
   1006 		}
   1007 
   1008 		/* Is it really morning, or was our sleep interrupted? */
   1009 		if (error != 0) {
   1010 			if (error == ERESTART)
   1011 				error = EINTR;  // Simplify to just EINTR
   1012 			else if (error == EWOULDBLOCK)
   1013 				error = EAGAIN;  // Convert timeout to EAGAIN
   1014 			goto out;
   1015 		}
   1016 		SEM_PRINTF(("semop:  good morning!\n"));
   1017 	}
   1018 done:
   1019 	/*
   1020 	 * Process any SEM_UNDO requests.
   1021 	 */
   1022 	if (do_undos) {
   1023 		for (i = 0; i < nsops; i++) {
   1024 			/*
   1025 			 * We only need to deal with SEM_UNDO's for non-zero
   1026 			 * op's.
   1027 			 */
   1028 			int adjval;
   1029 
   1030 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
   1031 				continue;
   1032 			adjval = sops[i].sem_op;
   1033 			if (adjval == 0)
   1034 				continue;
   1035 			error = semundo_adjust(p, &suptr, semid,
   1036 			    sops[i].sem_num, -adjval);
   1037 			if (error == 0)
   1038 				continue;
   1039 
   1040 			/*
   1041 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
   1042 			 * Rollback the adjustments to this point and then
   1043 			 * rollback the semaphore ups and down so we can return
   1044 			 * with an error with all structures restored.  We
   1045 			 * rollback the undo's in the exact reverse order that
   1046 			 * we applied them.  This guarantees that we won't run
   1047 			 * out of space as we roll things back out.
   1048 			 */
   1049 			while (i-- > 0) {
   1050 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
   1051 					continue;
   1052 				adjval = sops[i].sem_op;
   1053 				if (adjval == 0)
   1054 					continue;
   1055 				if (semundo_adjust(p, &suptr, semid,
   1056 				    sops[i].sem_num, adjval) != 0)
   1057 					panic("semop - can't undo undos");
   1058 			}
   1059 
   1060 			for (i = 0; i < nsops; i++)
   1061 				semaptr->_sem_base[sops[i].sem_num].semval -=
   1062 				    sops[i].sem_op;
   1063 
   1064 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
   1065 			goto out;
   1066 		} /* loop through the sops */
   1067 	} /* if (do_undos) */
   1068 
   1069 	/* We're definitely done - set the sempid's */
   1070 	for (i = 0; i < nsops; i++) {
   1071 		sopptr = &sops[i];
   1072 		semptr = &semaptr->_sem_base[sopptr->sem_num];
   1073 		semptr->sempid = p->p_pid;
   1074 	}
   1075 
   1076 	/* Update sem_otime */
   1077 	semaptr->sem_otime = time_second;
   1078 
   1079 	/* Do a wakeup if any semaphore was up'd. */
   1080 	if (do_wakeup) {
   1081 		SEM_PRINTF(("semop:  doing wakeup\n"));
   1082 		cv_broadcast(&semcv[semid]);
   1083 		SEM_PRINTF(("semop:  back from wakeup\n"));
   1084 	}
   1085 	SEM_PRINTF(("semop:  done\n"));
   1086 	*retval = 0;
   1087 
   1088 out:
   1089 	mutex_exit(&semlock);
   1090 	if (sops != small_sops)
   1091 		kmem_free(sops, nsops * sizeof(*sops));
   1092 	return error;
   1093 }
   1094 
   1095 int
   1096 sys_semtimedop(struct lwp *l, const struct sys_semtimedop_args *uap,
   1097     register_t *retval)
   1098 {
   1099 	/* {
   1100 		syscallarg(int) semid;
   1101 		syscallarg(struct sembuf *) sops;
   1102 		syscallarg(size_t) nsops;
   1103 		syscallarg(struct timespec) timeout;
   1104 	} */
   1105 	int semid = SCARG(uap, semid);
   1106 	struct sembuf *sops = SCARG(uap, sops);
   1107 	size_t nsops = SCARG(uap, nsops);
   1108 	struct timespec *utimeout = SCARG(uap, timeout);
   1109 
   1110 	return do_semop(l, semid, sops, nsops, utimeout, retval);
   1111 }
   1112 
   1113 int
   1114 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
   1115 {
   1116 	/* {
   1117 		syscallarg(int) semid;
   1118 		syscallarg(struct sembuf *) sops;
   1119 		syscallarg(size_t) nsops;
   1120 	} */
   1121 	int semid = SCARG(uap, semid);
   1122 	struct sembuf *sops = SCARG(uap, sops);
   1123 	size_t nsops = SCARG(uap, nsops);
   1124 
   1125 	return do_semop(l, semid, sops, nsops, NULL, retval);
   1126 }
   1127 
   1128 /*
   1129  * Go through the undo structures for this process and apply the
   1130  * adjustments to semaphores.
   1131  */
   1132 /*ARGSUSED*/
   1133 void
   1134 semexit(struct proc *p, void *v)
   1135 {
   1136 	struct sem_undo *suptr;
   1137 	struct sem_undo **supptr;
   1138 
   1139 	if ((p->p_flag & PK_SYSVSEM) == 0)
   1140 		return;
   1141 
   1142 	mutex_enter(&semlock);
   1143 
   1144 	/*
   1145 	 * Go through the chain of undo vectors looking for one
   1146 	 * associated with this process.
   1147 	 */
   1148 
   1149 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
   1150 	    supptr = &suptr->un_next) {
   1151 		if (suptr->un_proc == p)
   1152 			break;
   1153 	}
   1154 
   1155 	/*
   1156 	 * If there is no undo vector, skip to the end.
   1157 	 */
   1158 
   1159 	if (suptr == NULL) {
   1160 		mutex_exit(&semlock);
   1161 		return;
   1162 	}
   1163 
   1164 	/*
   1165 	 * We now have an undo vector for this process.
   1166 	 */
   1167 
   1168 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
   1169 	    suptr->un_cnt));
   1170 
   1171 	/*
   1172 	 * If there are any active undo elements then process them.
   1173 	 */
   1174 	if (suptr->un_cnt > 0) {
   1175 		int ix;
   1176 
   1177 		for (ix = 0; ix < suptr->un_cnt; ix++) {
   1178 			int semid = suptr->un_ent[ix].un_id;
   1179 			int semnum = suptr->un_ent[ix].un_num;
   1180 			int adjval = suptr->un_ent[ix].un_adjval;
   1181 			struct semid_ds *semaptr;
   1182 
   1183 			semaptr = &sema[semid];
   1184 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
   1185 			if (semnum >= semaptr->sem_nsems)
   1186 				panic("semexit - semnum out of range");
   1187 
   1188 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
   1189 			    "sem=%d\n",
   1190 			    suptr->un_proc, suptr->un_ent[ix].un_id,
   1191 			    suptr->un_ent[ix].un_num,
   1192 			    suptr->un_ent[ix].un_adjval,
   1193 			    semaptr->_sem_base[semnum].semval));
   1194 
   1195 			if (adjval < 0 &&
   1196 			    semaptr->_sem_base[semnum].semval < -adjval)
   1197 				semaptr->_sem_base[semnum].semval = 0;
   1198 			else
   1199 				semaptr->_sem_base[semnum].semval += adjval;
   1200 
   1201 			cv_broadcast(&semcv[semid]);
   1202 			SEM_PRINTF(("semexit:  back from wakeup\n"));
   1203 		}
   1204 	}
   1205 
   1206 	/*
   1207 	 * Deallocate the undo vector.
   1208 	 */
   1209 	SEM_PRINTF(("removing vector\n"));
   1210 	suptr->un_proc = NULL;
   1211 	*supptr = suptr->un_next;
   1212 	mutex_exit(&semlock);
   1213 }
   1214 
   1215 /*
   1216  * Sysctl initialization and nodes.
   1217  */
   1218 
   1219 static int
   1220 sysctl_ipc_semmni(SYSCTLFN_ARGS)
   1221 {
   1222 	int newsize, error;
   1223 	struct sysctlnode node;
   1224 	node = *rnode;
   1225 	node.sysctl_data = &newsize;
   1226 
   1227 	newsize = seminfo.semmni;
   1228 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1229 	if (error || newp == NULL)
   1230 		return error;
   1231 
   1232 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
   1233 }
   1234 
   1235 static int
   1236 sysctl_ipc_semmns(SYSCTLFN_ARGS)
   1237 {
   1238 	int newsize, error;
   1239 	struct sysctlnode node;
   1240 	node = *rnode;
   1241 	node.sysctl_data = &newsize;
   1242 
   1243 	newsize = seminfo.semmns;
   1244 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1245 	if (error || newp == NULL)
   1246 		return error;
   1247 
   1248 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
   1249 }
   1250 
   1251 static int
   1252 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
   1253 {
   1254 	int newsize, error;
   1255 	struct sysctlnode node;
   1256 	node = *rnode;
   1257 	node.sysctl_data = &newsize;
   1258 
   1259 	newsize = seminfo.semmnu;
   1260 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1261 	if (error || newp == NULL)
   1262 		return error;
   1263 
   1264 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
   1265 }
   1266 
   1267 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
   1268 {
   1269 	const struct sysctlnode *node = NULL;
   1270 
   1271 	sysctl_createv(clog, 0, NULL, &node,
   1272 		CTLFLAG_PERMANENT,
   1273 		CTLTYPE_NODE, "ipc",
   1274 		SYSCTL_DESCR("SysV IPC options"),
   1275 		NULL, 0, NULL, 0,
   1276 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1277 
   1278 	if (node == NULL)
   1279 		return;
   1280 
   1281 	sysctl_createv(clog, 0, &node, NULL,
   1282 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1283 		CTLTYPE_INT, "semmni",
   1284 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
   1285 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
   1286 		CTL_CREATE, CTL_EOL);
   1287 	sysctl_createv(clog, 0, &node, NULL,
   1288 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1289 		CTLTYPE_INT, "semmns",
   1290 		SYSCTL_DESCR("Max number of number of semaphores in system"),
   1291 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
   1292 		CTL_CREATE, CTL_EOL);
   1293 	sysctl_createv(clog, 0, &node, NULL,
   1294 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1295 		CTLTYPE_INT, "semmnu",
   1296 		SYSCTL_DESCR("Max number of undo structures in system"),
   1297 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
   1298 		CTL_CREATE, CTL_EOL);
   1299 }
   1300