sysv_shm.c revision 1.105 1 /* $NetBSD: sysv_shm.c,v 1.105 2008/01/30 21:09:41 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Adam Glass and Charles M.
54 * Hannum.
55 * 4. The names of the authors may not be used to endorse or promote products
56 * derived from this software without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
59 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
60 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
61 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
62 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
63 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
64 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
65 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
66 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
67 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.105 2008/01/30 21:09:41 njoly Exp $");
72
73 #define SYSVSHM
74
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77 #include <sys/kmem.h>
78 #include <sys/shm.h>
79 #include <sys/mutex.h>
80 #include <sys/mman.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
84 #include <sys/syscallargs.h>
85 #include <sys/queue.h>
86 #include <sys/pool.h>
87 #include <sys/kauth.h>
88
89 #include <uvm/uvm_extern.h>
90 #include <uvm/uvm_object.h>
91
92 int shm_nused;
93 struct shmid_ds *shmsegs;
94
95 struct shmmap_entry {
96 SLIST_ENTRY(shmmap_entry) next;
97 vaddr_t va;
98 int shmid;
99 };
100
101 static kmutex_t shm_lock;
102 static kcondvar_t * shm_cv;
103 static struct pool shmmap_entry_pool;
104 static int shm_last_free, shm_committed, shm_use_phys;
105
106 static kcondvar_t shm_realloc_cv;
107 static bool shm_realloc_state;
108 static u_int shm_realloc_disable;
109
110 struct shmmap_state {
111 unsigned int nitems;
112 unsigned int nrefs;
113 SLIST_HEAD(, shmmap_entry) entries;
114 };
115
116 #ifdef SHMDEBUG
117 #define SHMPRINTF(a) printf a
118 #else
119 #define SHMPRINTF(a)
120 #endif
121
122 static int shmrealloc(int);
123
124 /*
125 * Find the shared memory segment by the identifier.
126 * => must be called with shm_lock held;
127 */
128 static struct shmid_ds *
129 shm_find_segment_by_shmid(int shmid)
130 {
131 int segnum;
132 struct shmid_ds *shmseg;
133
134 KASSERT(mutex_owned(&shm_lock));
135
136 segnum = IPCID_TO_IX(shmid);
137 if (segnum < 0 || segnum >= shminfo.shmmni)
138 return NULL;
139 shmseg = &shmsegs[segnum];
140 if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
141 return NULL;
142 if ((shmseg->shm_perm.mode &
143 (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
144 return NULL;
145 if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
146 return NULL;
147
148 return shmseg;
149 }
150
151 /*
152 * Free memory segment.
153 * => must be called with shm_lock held;
154 */
155 static void
156 shm_free_segment(int segnum)
157 {
158 struct shmid_ds *shmseg;
159 size_t size;
160 bool wanted;
161
162 KASSERT(mutex_owned(&shm_lock));
163
164 shmseg = &shmsegs[segnum];
165 SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
166 shmseg->shm_perm._key, shmseg->shm_perm._seq));
167
168 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
169 wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
170
171 shmseg->_shm_internal = NULL;
172 shm_committed -= btoc(size);
173 shm_nused--;
174 shmseg->shm_perm.mode = SHMSEG_FREE;
175 shm_last_free = segnum;
176 if (wanted == true)
177 cv_broadcast(&shm_cv[segnum]);
178 }
179
180 /*
181 * Delete entry from the shm map.
182 * => must be called with shm_lock held;
183 */
184 static struct uvm_object *
185 shm_delete_mapping(struct shmmap_state *shmmap_s,
186 struct shmmap_entry *shmmap_se)
187 {
188 struct uvm_object *uobj = NULL;
189 struct shmid_ds *shmseg;
190 int segnum;
191
192 KASSERT(mutex_owned(&shm_lock));
193
194 segnum = IPCID_TO_IX(shmmap_se->shmid);
195 shmseg = &shmsegs[segnum];
196 SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
197 shmmap_s->nitems--;
198 shmseg->shm_dtime = time_second;
199 if ((--shmseg->shm_nattch <= 0) &&
200 (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
201 uobj = shmseg->_shm_internal;
202 shm_free_segment(segnum);
203 }
204
205 return uobj;
206 }
207
208 /*
209 * Get a non-shared shm map for that vmspace. Note, that memory
210 * allocation might be performed with lock held.
211 */
212 static struct shmmap_state *
213 shmmap_getprivate(struct proc *p)
214 {
215 struct shmmap_state *oshmmap_s, *shmmap_s;
216 struct shmmap_entry *oshmmap_se, *shmmap_se;
217
218 KASSERT(mutex_owned(&shm_lock));
219
220 /* 1. A shm map with refcnt = 1, used by ourselves, thus return */
221 oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
222 if (oshmmap_s && oshmmap_s->nrefs == 1)
223 return oshmmap_s;
224
225 /* 2. No shm map preset - create a fresh one */
226 shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
227 shmmap_s->nrefs = 1;
228 SLIST_INIT(&shmmap_s->entries);
229 p->p_vmspace->vm_shm = (void *)shmmap_s;
230
231 if (oshmmap_s == NULL)
232 return shmmap_s;
233
234 SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
235 p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
236
237 /* 3. A shared shm map, copy to a fresh one and adjust refcounts */
238 SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
239 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
240 shmmap_se->va = oshmmap_se->va;
241 shmmap_se->shmid = oshmmap_se->shmid;
242 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
243 }
244 shmmap_s->nitems = oshmmap_s->nitems;
245 oshmmap_s->nrefs--;
246
247 return shmmap_s;
248 }
249
250 /*
251 * Lock/unlock the memory.
252 * => must be called with shm_lock held;
253 * => called from one place, thus, inline;
254 */
255 static inline int
256 shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd)
257 {
258 struct proc *p = l->l_proc;
259 struct shmmap_entry *shmmap_se;
260 struct shmmap_state *shmmap_s;
261 size_t size;
262 int error;
263
264 KASSERT(mutex_owned(&shm_lock));
265 shmmap_s = shmmap_getprivate(p);
266
267 /* Find our shared memory address by shmid */
268 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
269 if (shmmap_se->shmid != shmid)
270 continue;
271
272 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
273
274 if (cmd == SHM_LOCK &&
275 (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
276 /* Wire the object and map, then tag it */
277 error = uobj_wirepages(shmseg->_shm_internal, 0,
278 round_page(shmseg->shm_segsz));
279 if (error)
280 return EIO;
281 error = uvm_map_pageable(&p->p_vmspace->vm_map,
282 shmmap_se->va, shmmap_se->va + size, false, 0);
283 if (error) {
284 uobj_unwirepages(shmseg->_shm_internal, 0,
285 round_page(shmseg->shm_segsz));
286 if (error == EFAULT)
287 error = ENOMEM;
288 return error;
289 }
290 shmseg->shm_perm.mode |= SHMSEG_WIRED;
291
292 } else if (cmd == SHM_UNLOCK &&
293 (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
294 /* Unwire the object and map, then untag it */
295 uobj_unwirepages(shmseg->_shm_internal, 0,
296 round_page(shmseg->shm_segsz));
297 error = uvm_map_pageable(&p->p_vmspace->vm_map,
298 shmmap_se->va, shmmap_se->va + size, true, 0);
299 if (error)
300 return EIO;
301 shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
302 }
303 }
304
305 return 0;
306 }
307
308 /*
309 * Unmap shared memory.
310 */
311 int
312 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
313 {
314 /* {
315 syscallarg(const void *) shmaddr;
316 } */
317 struct proc *p = l->l_proc;
318 struct shmmap_state *shmmap_s1, *shmmap_s;
319 struct shmmap_entry *shmmap_se;
320 struct uvm_object *uobj;
321 struct shmid_ds *shmseg;
322 size_t size;
323
324 mutex_enter(&shm_lock);
325 /* In case of reallocation, we will wait for completion */
326 while (__predict_false(shm_realloc_state))
327 cv_wait(&shm_realloc_cv, &shm_lock);
328
329 shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
330 if (shmmap_s1 == NULL) {
331 mutex_exit(&shm_lock);
332 return EINVAL;
333 }
334
335 /* Find the map entry */
336 SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
337 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
338 break;
339 if (shmmap_se == NULL) {
340 mutex_exit(&shm_lock);
341 return EINVAL;
342 }
343
344 shmmap_s = shmmap_getprivate(p);
345 if (shmmap_s != shmmap_s1) {
346 /* Map has been copied, lookup entry in new map */
347 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
348 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
349 break;
350 if (shmmap_se == NULL) {
351 mutex_exit(&shm_lock);
352 return EINVAL;
353 }
354 }
355
356 SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
357 p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
358
359 /* Delete the entry from shm map */
360 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
361 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
362 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
363 mutex_exit(&shm_lock);
364
365 uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
366 if (uobj != NULL)
367 uao_detach(uobj);
368 pool_put(&shmmap_entry_pool, shmmap_se);
369
370 return 0;
371 }
372
373 /*
374 * Map shared memory.
375 */
376 int
377 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
378 {
379 /* {
380 syscallarg(int) shmid;
381 syscallarg(const void *) shmaddr;
382 syscallarg(int) shmflg;
383 } */
384 int error, flags = 0;
385 struct proc *p = l->l_proc;
386 kauth_cred_t cred = l->l_cred;
387 struct shmid_ds *shmseg;
388 struct shmmap_state *shmmap_s;
389 struct shmmap_entry *shmmap_se;
390 struct uvm_object *uobj;
391 struct vmspace *vm;
392 vaddr_t attach_va;
393 vm_prot_t prot;
394 vsize_t size;
395
396 /* Allocate a new map entry and set it */
397 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
398
399 mutex_enter(&shm_lock);
400 /* In case of reallocation, we will wait for completion */
401 while (__predict_false(shm_realloc_state))
402 cv_wait(&shm_realloc_cv, &shm_lock);
403
404 shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
405 if (shmseg == NULL) {
406 error = EINVAL;
407 goto err;
408 }
409 error = ipcperm(cred, &shmseg->shm_perm,
410 (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
411 if (error)
412 goto err;
413
414 vm = p->p_vmspace;
415 shmmap_s = (struct shmmap_state *)vm->vm_shm;
416 if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
417 error = EMFILE;
418 goto err;
419 }
420
421 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
422 prot = VM_PROT_READ;
423 if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
424 prot |= VM_PROT_WRITE;
425 if (SCARG(uap, shmaddr)) {
426 flags |= UVM_FLAG_FIXED;
427 if (SCARG(uap, shmflg) & SHM_RND)
428 attach_va =
429 (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
430 else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
431 attach_va = (vaddr_t)SCARG(uap, shmaddr);
432 else {
433 error = EINVAL;
434 goto err;
435 }
436 } else {
437 /* This is just a hint to uvm_mmap() about where to put it. */
438 attach_va = p->p_emul->e_vm_default_addr(p,
439 (vaddr_t)vm->vm_daddr, size);
440 }
441
442 /*
443 * Create a map entry, add it to the list and increase the counters.
444 * The lock will be dropped before the mapping, disable reallocation.
445 */
446 shmmap_s = shmmap_getprivate(p);
447 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
448 shmmap_s->nitems++;
449 shmseg->shm_lpid = p->p_pid;
450 shmseg->shm_nattch++;
451 shm_realloc_disable++;
452 mutex_exit(&shm_lock);
453
454 /*
455 * Add a reference to the memory object, map it to the
456 * address space, and lock the memory, if needed.
457 */
458 uobj = shmseg->_shm_internal;
459 uao_reference(uobj);
460 error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
461 UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
462 if (error)
463 goto err_detach;
464 if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) {
465 error = uvm_map_pageable(&vm->vm_map, attach_va,
466 attach_va + size, false, 0);
467 if (error) {
468 if (error == EFAULT)
469 error = ENOMEM;
470 uvm_deallocate(&vm->vm_map, attach_va, size);
471 goto err_detach;
472 }
473 }
474
475 /* Set the new address, and update the time */
476 mutex_enter(&shm_lock);
477 shmmap_se->va = attach_va;
478 shmmap_se->shmid = SCARG(uap, shmid);
479 shmseg->shm_atime = time_second;
480 shm_realloc_disable--;
481 retval[0] = attach_va;
482 SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
483 p->p_vmspace, shmmap_se->shmid, attach_va));
484 err:
485 cv_broadcast(&shm_realloc_cv);
486 mutex_exit(&shm_lock);
487 if (error && shmmap_se)
488 pool_put(&shmmap_entry_pool, shmmap_se);
489 return error;
490
491 err_detach:
492 uao_detach(uobj);
493 mutex_enter(&shm_lock);
494 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
495 shm_realloc_disable--;
496 cv_broadcast(&shm_realloc_cv);
497 mutex_exit(&shm_lock);
498 if (uobj != NULL)
499 uao_detach(uobj);
500 pool_put(&shmmap_entry_pool, shmmap_se);
501 return error;
502 }
503
504 /*
505 * Shared memory control operations.
506 */
507 int
508 sys___shmctl13(struct lwp *l, const struct sys___shmctl13_args *uap, register_t *retval)
509 {
510 /* {
511 syscallarg(int) shmid;
512 syscallarg(int) cmd;
513 syscallarg(struct shmid_ds *) buf;
514 } */
515 struct shmid_ds shmbuf;
516 int cmd, error;
517
518 cmd = SCARG(uap, cmd);
519 if (cmd == IPC_SET) {
520 error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
521 if (error)
522 return error;
523 }
524
525 error = shmctl1(l, SCARG(uap, shmid), cmd,
526 (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
527
528 if (error == 0 && cmd == IPC_STAT)
529 error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
530
531 return error;
532 }
533
534 int
535 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
536 {
537 struct uvm_object *uobj = NULL;
538 kauth_cred_t cred = l->l_cred;
539 struct shmid_ds *shmseg;
540 int error = 0;
541
542 mutex_enter(&shm_lock);
543 /* In case of reallocation, we will wait for completion */
544 while (__predict_false(shm_realloc_state))
545 cv_wait(&shm_realloc_cv, &shm_lock);
546
547 shmseg = shm_find_segment_by_shmid(shmid);
548 if (shmseg == NULL) {
549 mutex_exit(&shm_lock);
550 return EINVAL;
551 }
552
553 switch (cmd) {
554 case IPC_STAT:
555 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
556 break;
557 memcpy(shmbuf, shmseg, sizeof(struct shmid_ds));
558 break;
559 case IPC_SET:
560 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
561 break;
562 shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
563 shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
564 shmseg->shm_perm.mode =
565 (shmseg->shm_perm.mode & ~ACCESSPERMS) |
566 (shmbuf->shm_perm.mode & ACCESSPERMS);
567 shmseg->shm_ctime = time_second;
568 break;
569 case IPC_RMID:
570 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
571 break;
572 shmseg->shm_perm._key = IPC_PRIVATE;
573 shmseg->shm_perm.mode |= SHMSEG_REMOVED;
574 if (shmseg->shm_nattch <= 0) {
575 uobj = shmseg->_shm_internal;
576 shm_free_segment(IPCID_TO_IX(shmid));
577 }
578 break;
579 case SHM_LOCK:
580 case SHM_UNLOCK:
581 if ((error = kauth_authorize_generic(cred,
582 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
583 break;
584 error = shm_memlock(l, shmseg, shmid, cmd);
585 break;
586 default:
587 error = EINVAL;
588 }
589
590 mutex_exit(&shm_lock);
591 if (uobj != NULL)
592 uao_detach(uobj);
593 return error;
594 }
595
596 /*
597 * Try to take an already existing segment.
598 * => must be called with shm_lock held;
599 * => called from one place, thus, inline;
600 */
601 static inline int
602 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
603 register_t *retval)
604 {
605 struct shmid_ds *shmseg;
606 kauth_cred_t cred = l->l_cred;
607 int segnum, error;
608 again:
609 KASSERT(mutex_owned(&shm_lock));
610
611 /* Find segment by key */
612 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
613 if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
614 shmsegs[segnum].shm_perm._key == SCARG(uap, key))
615 break;
616 if (segnum == shminfo.shmmni) {
617 /* Not found */
618 return -1;
619 }
620
621 shmseg = &shmsegs[segnum];
622 if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
623 /*
624 * This segment is in the process of being allocated. Wait
625 * until it's done, and look the key up again (in case the
626 * allocation failed or it was freed).
627 */
628 shmseg->shm_perm.mode |= SHMSEG_WANTED;
629 error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
630 if (error)
631 return error;
632 goto again;
633 }
634
635 /* Check the permission, segment size and appropriate flag */
636 error = ipcperm(cred, &shmseg->shm_perm, mode);
637 if (error)
638 return error;
639 if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
640 return EINVAL;
641 if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
642 (IPC_CREAT | IPC_EXCL))
643 return EEXIST;
644
645 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
646 return 0;
647 }
648
649 int
650 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
651 {
652 /* {
653 syscallarg(key_t) key;
654 syscallarg(size_t) size;
655 syscallarg(int) shmflg;
656 } */
657 struct shmid_ds *shmseg;
658 kauth_cred_t cred = l->l_cred;
659 key_t key = SCARG(uap, key);
660 size_t size;
661 int error, mode, segnum;
662 bool lockmem;
663
664 mode = SCARG(uap, shmflg) & ACCESSPERMS;
665 if (SCARG(uap, shmflg) & _SHM_RMLINGER)
666 mode |= SHMSEG_RMLINGER;
667
668 SHMPRINTF(("shmget: key 0x%lx size 0x%x shmflg 0x%x mode 0x%x\n",
669 SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
670
671 mutex_enter(&shm_lock);
672 /* In case of reallocation, we will wait for completion */
673 while (__predict_false(shm_realloc_state))
674 cv_wait(&shm_realloc_cv, &shm_lock);
675
676 if (key != IPC_PRIVATE) {
677 error = shmget_existing(l, uap, mode, retval);
678 if (error != -1) {
679 mutex_exit(&shm_lock);
680 return error;
681 }
682 if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
683 mutex_exit(&shm_lock);
684 return ENOENT;
685 }
686 }
687 error = 0;
688
689 /*
690 * Check the for the limits.
691 */
692 size = SCARG(uap, size);
693 if (size < shminfo.shmmin || size > shminfo.shmmax) {
694 mutex_exit(&shm_lock);
695 return EINVAL;
696 }
697 if (shm_nused >= shminfo.shmmni) {
698 mutex_exit(&shm_lock);
699 return ENOSPC;
700 }
701 size = (size + PGOFSET) & ~PGOFSET;
702 if (shm_committed + btoc(size) > shminfo.shmall) {
703 mutex_exit(&shm_lock);
704 return ENOMEM;
705 }
706
707 /* Find the first available segment */
708 if (shm_last_free < 0) {
709 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
710 if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
711 break;
712 KASSERT(segnum < shminfo.shmmni);
713 } else {
714 segnum = shm_last_free;
715 shm_last_free = -1;
716 }
717
718 /*
719 * Initialize the segment.
720 * We will drop the lock while allocating the memory, thus mark the
721 * segment present, but removed, that no other thread could take it.
722 * Also, disable reallocation, while lock is dropped.
723 */
724 shmseg = &shmsegs[segnum];
725 shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
726 shm_committed += btoc(size);
727 shm_nused++;
728 lockmem = shm_use_phys;
729 shm_realloc_disable++;
730 mutex_exit(&shm_lock);
731
732 /* Allocate the memory object and lock it if needed */
733 shmseg->_shm_internal = uao_create(size, 0);
734 if (lockmem) {
735 /* Wire the pages and tag it */
736 error = uobj_wirepages(shmseg->_shm_internal, 0,
737 round_page(shmseg->shm_segsz));
738 if (error) {
739 mutex_enter(&shm_lock);
740 shm_free_segment(segnum);
741 shm_realloc_disable--;
742 mutex_exit(&shm_lock);
743 return error;
744 }
745 }
746
747 /*
748 * Please note, while segment is marked, there are no need to hold the
749 * lock, while setting it (except shm_perm.mode).
750 */
751 shmseg->shm_perm._key = SCARG(uap, key);
752 shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
753 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
754
755 shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
756 shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
757 shmseg->shm_segsz = SCARG(uap, size);
758 shmseg->shm_cpid = l->l_proc->p_pid;
759 shmseg->shm_lpid = shmseg->shm_nattch = 0;
760 shmseg->shm_atime = shmseg->shm_dtime = 0;
761 shmseg->shm_ctime = time_second;
762
763 /*
764 * Segment is initialized.
765 * Enter the lock, mark as allocated, and notify waiters (if any).
766 * Also, unmark the state of reallocation.
767 */
768 mutex_enter(&shm_lock);
769 shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
770 (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
771 SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
772 if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
773 shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
774 cv_broadcast(&shm_cv[segnum]);
775 }
776 shm_realloc_disable--;
777 cv_broadcast(&shm_realloc_cv);
778 mutex_exit(&shm_lock);
779
780 return error;
781 }
782
783 void
784 shmfork(struct vmspace *vm1, struct vmspace *vm2)
785 {
786 struct shmmap_state *shmmap_s;
787 struct shmmap_entry *shmmap_se;
788
789 SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
790 mutex_enter(&shm_lock);
791 vm2->vm_shm = vm1->vm_shm;
792 if (vm1->vm_shm) {
793 shmmap_s = (struct shmmap_state *)vm1->vm_shm;
794 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
795 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
796 shmmap_s->nrefs++;
797 }
798 mutex_exit(&shm_lock);
799 }
800
801 void
802 shmexit(struct vmspace *vm)
803 {
804 struct shmmap_state *shmmap_s;
805 struct shmmap_entry *shmmap_se;
806 struct uvm_object **uobj;
807 size_t *size;
808 u_int i, n;
809
810 SLIST_HEAD(, shmmap_entry) tmp_entries;
811
812 mutex_enter(&shm_lock);
813 shmmap_s = (struct shmmap_state *)vm->vm_shm;
814 if (shmmap_s == NULL) {
815 mutex_exit(&shm_lock);
816 return;
817 }
818
819 vm->vm_shm = NULL;
820
821 if (--shmmap_s->nrefs > 0) {
822 SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
823 vm, shmmap_s->nitems, shmmap_s->nrefs));
824 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
825 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
826 mutex_exit(&shm_lock);
827 return;
828 }
829
830 KASSERT(shmmap_s->nrefs == 0);
831 n = shmmap_s->nitems;
832 SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, n));
833 mutex_exit(&shm_lock);
834 if (n == 0) {
835 kmem_free(shmmap_s, sizeof(struct shmmap_state));
836 return;
837 }
838
839 /* Allocate the arrays */
840 SLIST_INIT(&tmp_entries);
841 uobj = kmem_zalloc(n * sizeof(void *), KM_SLEEP);
842 size = kmem_zalloc(n * sizeof(size_t), KM_SLEEP);
843
844 /* Delete the entry from shm map */
845 i = 0;
846 mutex_enter(&shm_lock);
847 while (!SLIST_EMPTY(&shmmap_s->entries)) {
848 struct shmid_ds *shmseg;
849
850 shmmap_se = SLIST_FIRST(&shmmap_s->entries);
851 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
852 size[i] = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
853 uobj[i] = shm_delete_mapping(shmmap_s, shmmap_se);
854 SLIST_INSERT_HEAD(&tmp_entries, shmmap_se, next);
855 i++;
856 }
857 mutex_exit(&shm_lock);
858
859 /* Unmap all segments, free the entries */
860 i = 0;
861 while (!SLIST_EMPTY(&tmp_entries)) {
862 KASSERT(i < n);
863 shmmap_se = SLIST_FIRST(&tmp_entries);
864 SLIST_REMOVE(&tmp_entries, shmmap_se, shmmap_entry, next);
865 uvm_deallocate(&vm->vm_map, shmmap_se->va, size[i]);
866 if (uobj[i] != NULL)
867 uao_detach(uobj[i]);
868 pool_put(&shmmap_entry_pool, shmmap_se);
869 i++;
870 }
871
872 kmem_free(uobj, n * sizeof(void *));
873 kmem_free(size, n * sizeof(size_t));
874 kmem_free(shmmap_s, sizeof(struct shmmap_state));
875 }
876
877 static int
878 shmrealloc(int newshmni)
879 {
880 vaddr_t v;
881 struct shmid_ds *oldshmsegs, *newshmsegs;
882 kcondvar_t *newshm_cv;
883 size_t sz;
884 int i, lsegid;
885
886 if (newshmni < 1)
887 return EINVAL;
888
889 /* Allocate new memory area */
890 sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
891 ALIGN(newshmni * sizeof(kcondvar_t));
892 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
893 UVM_KMF_WIRED|UVM_KMF_ZERO);
894 if (v == 0)
895 return ENOMEM;
896
897 mutex_enter(&shm_lock);
898 while (shm_realloc_state || shm_realloc_disable)
899 cv_wait(&shm_realloc_cv, &shm_lock);
900
901 /*
902 * Get the number of last segment. Fail we are trying to
903 * reallocate less memory than we use.
904 */
905 lsegid = 0;
906 for (i = 0; i < shminfo.shmmni; i++)
907 if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
908 lsegid = i;
909 if (lsegid >= newshmni) {
910 mutex_exit(&shm_lock);
911 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
912 return EBUSY;
913 }
914 shm_realloc_state = true;
915
916 newshmsegs = (void *)v;
917 newshm_cv = (void *)(ALIGN(newshmsegs) +
918 newshmni * sizeof(struct shmid_ds));
919
920 /* Copy all memory to the new area */
921 for (i = 0; i < shm_nused; i++)
922 (void)memcpy(&newshmsegs[i], &shmsegs[i],
923 sizeof(newshmsegs[0]));
924
925 /* Mark as free all new segments, if there is any */
926 for (; i < newshmni; i++) {
927 cv_init(&newshm_cv[i], "shmwait");
928 newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
929 newshmsegs[i].shm_perm._seq = 0;
930 }
931
932 oldshmsegs = shmsegs;
933 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
934 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
935
936 shminfo.shmmni = newshmni;
937 shmsegs = newshmsegs;
938 shm_cv = newshm_cv;
939
940 /* Reallocation completed - notify all waiters, if any */
941 shm_realloc_state = false;
942 cv_broadcast(&shm_realloc_cv);
943 mutex_exit(&shm_lock);
944
945 uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
946 return 0;
947 }
948
949 void
950 shminit(void)
951 {
952 vaddr_t v;
953 size_t sz;
954 int i;
955
956 mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
957 pool_init(&shmmap_entry_pool, sizeof(struct shmmap_entry), 0, 0, 0,
958 "shmmp", &pool_allocator_nointr, IPL_NONE);
959 cv_init(&shm_realloc_cv, "shmrealc");
960
961 /* Allocate the wired memory for our structures */
962 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
963 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
964 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
965 UVM_KMF_WIRED|UVM_KMF_ZERO);
966 if (v == 0)
967 panic("sysv_shm: cannot allocate memory");
968 shmsegs = (void *)v;
969 shm_cv = (void *)(ALIGN(shmsegs) +
970 shminfo.shmmni * sizeof(struct shmid_ds));
971
972 shminfo.shmmax *= PAGE_SIZE;
973
974 for (i = 0; i < shminfo.shmmni; i++) {
975 cv_init(&shm_cv[i], "shmwait");
976 shmsegs[i].shm_perm.mode = SHMSEG_FREE;
977 shmsegs[i].shm_perm._seq = 0;
978 }
979 shm_last_free = 0;
980 shm_nused = 0;
981 shm_committed = 0;
982 shm_realloc_disable = 0;
983 shm_realloc_state = false;
984 }
985
986 static int
987 sysctl_ipc_shmmni(SYSCTLFN_ARGS)
988 {
989 int newsize, error;
990 struct sysctlnode node;
991 node = *rnode;
992 node.sysctl_data = &newsize;
993
994 newsize = shminfo.shmmni;
995 error = sysctl_lookup(SYSCTLFN_CALL(&node));
996 if (error || newp == NULL)
997 return error;
998
999 sysctl_unlock();
1000 error = shmrealloc(newsize);
1001 sysctl_relock();
1002 return error;
1003 }
1004
1005 static int
1006 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
1007 {
1008 int newsize, error;
1009 struct sysctlnode node;
1010 node = *rnode;
1011 node.sysctl_data = &newsize;
1012
1013 newsize = shminfo.shmall;
1014 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1015 if (error || newp == NULL)
1016 return error;
1017
1018 if (newsize < 1)
1019 return EINVAL;
1020
1021 shminfo.shmall = newsize;
1022 shminfo.shmmax = shminfo.shmall * PAGE_SIZE;
1023
1024 return 0;
1025 }
1026
1027 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
1028 {
1029
1030 sysctl_createv(clog, 0, NULL, NULL,
1031 CTLFLAG_PERMANENT,
1032 CTLTYPE_NODE, "kern", NULL,
1033 NULL, 0, NULL, 0,
1034 CTL_KERN, CTL_EOL);
1035 sysctl_createv(clog, 0, NULL, NULL,
1036 CTLFLAG_PERMANENT,
1037 CTLTYPE_NODE, "ipc",
1038 SYSCTL_DESCR("SysV IPC options"),
1039 NULL, 0, NULL, 0,
1040 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1041 sysctl_createv(clog, 0, NULL, NULL,
1042 CTLFLAG_PERMANENT | CTLFLAG_READONLY,
1043 CTLTYPE_INT, "shmmax",
1044 SYSCTL_DESCR("Max shared memory segment size in bytes"),
1045 NULL, 0, &shminfo.shmmax, 0,
1046 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
1047 sysctl_createv(clog, 0, NULL, NULL,
1048 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1049 CTLTYPE_INT, "shmmni",
1050 SYSCTL_DESCR("Max number of shared memory identifiers"),
1051 sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
1052 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
1053 sysctl_createv(clog, 0, NULL, NULL,
1054 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1055 CTLTYPE_INT, "shmseg",
1056 SYSCTL_DESCR("Max shared memory segments per process"),
1057 NULL, 0, &shminfo.shmseg, 0,
1058 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
1059 sysctl_createv(clog, 0, NULL, NULL,
1060 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1061 CTLTYPE_INT, "shmmaxpgs",
1062 SYSCTL_DESCR("Max amount of shared memory in pages"),
1063 sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
1064 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
1065 sysctl_createv(clog, 0, NULL, NULL,
1066 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1067 CTLTYPE_INT, "shm_use_phys",
1068 SYSCTL_DESCR("Enable/disable locking of shared memory in "
1069 "physical memory"), NULL, 0, &shm_use_phys, 0,
1070 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
1071 }
1072