sysv_shm.c revision 1.107.2.1 1 /* $NetBSD: sysv_shm.c,v 1.107.2.1 2008/05/10 23:49:05 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by Adam Glass and Charles M.
47 * Hannum.
48 * 4. The names of the authors may not be used to endorse or promote products
49 * derived from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
54 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
55 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
60 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.107.2.1 2008/05/10 23:49:05 wrstuden Exp $");
65
66 #define SYSVSHM
67
68 #include <sys/param.h>
69 #include <sys/kernel.h>
70 #include <sys/kmem.h>
71 #include <sys/shm.h>
72 #include <sys/mutex.h>
73 #include <sys/mman.h>
74 #include <sys/stat.h>
75 #include <sys/sysctl.h>
76 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
77 #include <sys/sa.h>
78 #include <sys/syscallargs.h>
79 #include <sys/queue.h>
80 #include <sys/pool.h>
81 #include <sys/kauth.h>
82
83 #include <uvm/uvm_extern.h>
84 #include <uvm/uvm_object.h>
85
86 int shm_nused;
87 struct shmid_ds *shmsegs;
88
89 struct shmmap_entry {
90 SLIST_ENTRY(shmmap_entry) next;
91 vaddr_t va;
92 int shmid;
93 };
94
95 static kmutex_t shm_lock;
96 static kcondvar_t * shm_cv;
97 static struct pool shmmap_entry_pool;
98 static int shm_last_free, shm_use_phys;
99 static size_t shm_committed;
100
101 static kcondvar_t shm_realloc_cv;
102 static bool shm_realloc_state;
103 static u_int shm_realloc_disable;
104
105 struct shmmap_state {
106 unsigned int nitems;
107 unsigned int nrefs;
108 SLIST_HEAD(, shmmap_entry) entries;
109 };
110
111 #ifdef SHMDEBUG
112 #define SHMPRINTF(a) printf a
113 #else
114 #define SHMPRINTF(a)
115 #endif
116
117 static int shmrealloc(int);
118
119 /*
120 * Find the shared memory segment by the identifier.
121 * => must be called with shm_lock held;
122 */
123 static struct shmid_ds *
124 shm_find_segment_by_shmid(int shmid)
125 {
126 int segnum;
127 struct shmid_ds *shmseg;
128
129 KASSERT(mutex_owned(&shm_lock));
130
131 segnum = IPCID_TO_IX(shmid);
132 if (segnum < 0 || segnum >= shminfo.shmmni)
133 return NULL;
134 shmseg = &shmsegs[segnum];
135 if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
136 return NULL;
137 if ((shmseg->shm_perm.mode &
138 (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
139 return NULL;
140 if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
141 return NULL;
142
143 return shmseg;
144 }
145
146 /*
147 * Free memory segment.
148 * => must be called with shm_lock held;
149 */
150 static void
151 shm_free_segment(int segnum)
152 {
153 struct shmid_ds *shmseg;
154 size_t size;
155 bool wanted;
156
157 KASSERT(mutex_owned(&shm_lock));
158
159 shmseg = &shmsegs[segnum];
160 SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
161 shmseg->shm_perm._key, shmseg->shm_perm._seq));
162
163 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
164 wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
165
166 shmseg->_shm_internal = NULL;
167 shm_committed -= btoc(size);
168 shm_nused--;
169 shmseg->shm_perm.mode = SHMSEG_FREE;
170 shm_last_free = segnum;
171 if (wanted == true)
172 cv_broadcast(&shm_cv[segnum]);
173 }
174
175 /*
176 * Delete entry from the shm map.
177 * => must be called with shm_lock held;
178 */
179 static struct uvm_object *
180 shm_delete_mapping(struct shmmap_state *shmmap_s,
181 struct shmmap_entry *shmmap_se)
182 {
183 struct uvm_object *uobj = NULL;
184 struct shmid_ds *shmseg;
185 int segnum;
186
187 KASSERT(mutex_owned(&shm_lock));
188
189 segnum = IPCID_TO_IX(shmmap_se->shmid);
190 shmseg = &shmsegs[segnum];
191 SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
192 shmmap_s->nitems--;
193 shmseg->shm_dtime = time_second;
194 if ((--shmseg->shm_nattch <= 0) &&
195 (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
196 uobj = shmseg->_shm_internal;
197 shm_free_segment(segnum);
198 }
199
200 return uobj;
201 }
202
203 /*
204 * Get a non-shared shm map for that vmspace. Note, that memory
205 * allocation might be performed with lock held.
206 */
207 static struct shmmap_state *
208 shmmap_getprivate(struct proc *p)
209 {
210 struct shmmap_state *oshmmap_s, *shmmap_s;
211 struct shmmap_entry *oshmmap_se, *shmmap_se;
212
213 KASSERT(mutex_owned(&shm_lock));
214
215 /* 1. A shm map with refcnt = 1, used by ourselves, thus return */
216 oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
217 if (oshmmap_s && oshmmap_s->nrefs == 1)
218 return oshmmap_s;
219
220 /* 2. No shm map preset - create a fresh one */
221 shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
222 shmmap_s->nrefs = 1;
223 SLIST_INIT(&shmmap_s->entries);
224 p->p_vmspace->vm_shm = (void *)shmmap_s;
225
226 if (oshmmap_s == NULL)
227 return shmmap_s;
228
229 SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
230 p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
231
232 /* 3. A shared shm map, copy to a fresh one and adjust refcounts */
233 SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
234 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
235 shmmap_se->va = oshmmap_se->va;
236 shmmap_se->shmid = oshmmap_se->shmid;
237 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
238 }
239 shmmap_s->nitems = oshmmap_s->nitems;
240 oshmmap_s->nrefs--;
241
242 return shmmap_s;
243 }
244
245 /*
246 * Lock/unlock the memory.
247 * => must be called with shm_lock held;
248 * => called from one place, thus, inline;
249 */
250 static inline int
251 shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd)
252 {
253 struct proc *p = l->l_proc;
254 struct shmmap_entry *shmmap_se;
255 struct shmmap_state *shmmap_s;
256 size_t size;
257 int error;
258
259 KASSERT(mutex_owned(&shm_lock));
260 shmmap_s = shmmap_getprivate(p);
261
262 /* Find our shared memory address by shmid */
263 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
264 if (shmmap_se->shmid != shmid)
265 continue;
266
267 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
268
269 if (cmd == SHM_LOCK &&
270 (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
271 /* Wire the object and map, then tag it */
272 error = uobj_wirepages(shmseg->_shm_internal, 0,
273 round_page(shmseg->shm_segsz));
274 if (error)
275 return EIO;
276 error = uvm_map_pageable(&p->p_vmspace->vm_map,
277 shmmap_se->va, shmmap_se->va + size, false, 0);
278 if (error) {
279 uobj_unwirepages(shmseg->_shm_internal, 0,
280 round_page(shmseg->shm_segsz));
281 if (error == EFAULT)
282 error = ENOMEM;
283 return error;
284 }
285 shmseg->shm_perm.mode |= SHMSEG_WIRED;
286
287 } else if (cmd == SHM_UNLOCK &&
288 (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
289 /* Unwire the object and map, then untag it */
290 uobj_unwirepages(shmseg->_shm_internal, 0,
291 round_page(shmseg->shm_segsz));
292 error = uvm_map_pageable(&p->p_vmspace->vm_map,
293 shmmap_se->va, shmmap_se->va + size, true, 0);
294 if (error)
295 return EIO;
296 shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
297 }
298 }
299
300 return 0;
301 }
302
303 /*
304 * Unmap shared memory.
305 */
306 int
307 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
308 {
309 /* {
310 syscallarg(const void *) shmaddr;
311 } */
312 struct proc *p = l->l_proc;
313 struct shmmap_state *shmmap_s1, *shmmap_s;
314 struct shmmap_entry *shmmap_se;
315 struct uvm_object *uobj;
316 struct shmid_ds *shmseg;
317 size_t size;
318
319 mutex_enter(&shm_lock);
320 /* In case of reallocation, we will wait for completion */
321 while (__predict_false(shm_realloc_state))
322 cv_wait(&shm_realloc_cv, &shm_lock);
323
324 shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
325 if (shmmap_s1 == NULL) {
326 mutex_exit(&shm_lock);
327 return EINVAL;
328 }
329
330 /* Find the map entry */
331 SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
332 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
333 break;
334 if (shmmap_se == NULL) {
335 mutex_exit(&shm_lock);
336 return EINVAL;
337 }
338
339 shmmap_s = shmmap_getprivate(p);
340 if (shmmap_s != shmmap_s1) {
341 /* Map has been copied, lookup entry in new map */
342 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
343 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
344 break;
345 if (shmmap_se == NULL) {
346 mutex_exit(&shm_lock);
347 return EINVAL;
348 }
349 }
350
351 SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
352 p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
353
354 /* Delete the entry from shm map */
355 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
356 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
357 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
358 mutex_exit(&shm_lock);
359
360 uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
361 if (uobj != NULL)
362 uao_detach(uobj);
363 pool_put(&shmmap_entry_pool, shmmap_se);
364
365 return 0;
366 }
367
368 /*
369 * Map shared memory.
370 */
371 int
372 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
373 {
374 /* {
375 syscallarg(int) shmid;
376 syscallarg(const void *) shmaddr;
377 syscallarg(int) shmflg;
378 } */
379 int error, flags = 0;
380 struct proc *p = l->l_proc;
381 kauth_cred_t cred = l->l_cred;
382 struct shmid_ds *shmseg;
383 struct shmmap_state *shmmap_s;
384 struct shmmap_entry *shmmap_se;
385 struct uvm_object *uobj;
386 struct vmspace *vm;
387 vaddr_t attach_va;
388 vm_prot_t prot;
389 vsize_t size;
390
391 /* Allocate a new map entry and set it */
392 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
393
394 mutex_enter(&shm_lock);
395 /* In case of reallocation, we will wait for completion */
396 while (__predict_false(shm_realloc_state))
397 cv_wait(&shm_realloc_cv, &shm_lock);
398
399 shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
400 if (shmseg == NULL) {
401 error = EINVAL;
402 goto err;
403 }
404 error = ipcperm(cred, &shmseg->shm_perm,
405 (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
406 if (error)
407 goto err;
408
409 vm = p->p_vmspace;
410 shmmap_s = (struct shmmap_state *)vm->vm_shm;
411 if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
412 error = EMFILE;
413 goto err;
414 }
415
416 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
417 prot = VM_PROT_READ;
418 if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
419 prot |= VM_PROT_WRITE;
420 if (SCARG(uap, shmaddr)) {
421 flags |= UVM_FLAG_FIXED;
422 if (SCARG(uap, shmflg) & SHM_RND)
423 attach_va =
424 (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
425 else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
426 attach_va = (vaddr_t)SCARG(uap, shmaddr);
427 else {
428 error = EINVAL;
429 goto err;
430 }
431 } else {
432 /* This is just a hint to uvm_mmap() about where to put it. */
433 attach_va = p->p_emul->e_vm_default_addr(p,
434 (vaddr_t)vm->vm_daddr, size);
435 }
436
437 /*
438 * Create a map entry, add it to the list and increase the counters.
439 * The lock will be dropped before the mapping, disable reallocation.
440 */
441 shmmap_s = shmmap_getprivate(p);
442 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
443 shmmap_s->nitems++;
444 shmseg->shm_lpid = p->p_pid;
445 shmseg->shm_nattch++;
446 shm_realloc_disable++;
447 mutex_exit(&shm_lock);
448
449 /*
450 * Add a reference to the memory object, map it to the
451 * address space, and lock the memory, if needed.
452 */
453 uobj = shmseg->_shm_internal;
454 uao_reference(uobj);
455 error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
456 UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
457 if (error)
458 goto err_detach;
459 if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) {
460 error = uvm_map_pageable(&vm->vm_map, attach_va,
461 attach_va + size, false, 0);
462 if (error) {
463 if (error == EFAULT)
464 error = ENOMEM;
465 uvm_deallocate(&vm->vm_map, attach_va, size);
466 goto err_detach;
467 }
468 }
469
470 /* Set the new address, and update the time */
471 mutex_enter(&shm_lock);
472 shmmap_se->va = attach_va;
473 shmmap_se->shmid = SCARG(uap, shmid);
474 shmseg->shm_atime = time_second;
475 shm_realloc_disable--;
476 retval[0] = attach_va;
477 SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
478 p->p_vmspace, shmmap_se->shmid, attach_va));
479 err:
480 cv_broadcast(&shm_realloc_cv);
481 mutex_exit(&shm_lock);
482 if (error && shmmap_se)
483 pool_put(&shmmap_entry_pool, shmmap_se);
484 return error;
485
486 err_detach:
487 uao_detach(uobj);
488 mutex_enter(&shm_lock);
489 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
490 shm_realloc_disable--;
491 cv_broadcast(&shm_realloc_cv);
492 mutex_exit(&shm_lock);
493 if (uobj != NULL)
494 uao_detach(uobj);
495 pool_put(&shmmap_entry_pool, shmmap_se);
496 return error;
497 }
498
499 /*
500 * Shared memory control operations.
501 */
502 int
503 sys___shmctl13(struct lwp *l, const struct sys___shmctl13_args *uap, register_t *retval)
504 {
505 /* {
506 syscallarg(int) shmid;
507 syscallarg(int) cmd;
508 syscallarg(struct shmid_ds *) buf;
509 } */
510 struct shmid_ds shmbuf;
511 int cmd, error;
512
513 cmd = SCARG(uap, cmd);
514 if (cmd == IPC_SET) {
515 error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
516 if (error)
517 return error;
518 }
519
520 error = shmctl1(l, SCARG(uap, shmid), cmd,
521 (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
522
523 if (error == 0 && cmd == IPC_STAT)
524 error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
525
526 return error;
527 }
528
529 int
530 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
531 {
532 struct uvm_object *uobj = NULL;
533 kauth_cred_t cred = l->l_cred;
534 struct shmid_ds *shmseg;
535 int error = 0;
536
537 mutex_enter(&shm_lock);
538 /* In case of reallocation, we will wait for completion */
539 while (__predict_false(shm_realloc_state))
540 cv_wait(&shm_realloc_cv, &shm_lock);
541
542 shmseg = shm_find_segment_by_shmid(shmid);
543 if (shmseg == NULL) {
544 mutex_exit(&shm_lock);
545 return EINVAL;
546 }
547
548 switch (cmd) {
549 case IPC_STAT:
550 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
551 break;
552 memcpy(shmbuf, shmseg, sizeof(struct shmid_ds));
553 break;
554 case IPC_SET:
555 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
556 break;
557 shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
558 shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
559 shmseg->shm_perm.mode =
560 (shmseg->shm_perm.mode & ~ACCESSPERMS) |
561 (shmbuf->shm_perm.mode & ACCESSPERMS);
562 shmseg->shm_ctime = time_second;
563 break;
564 case IPC_RMID:
565 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
566 break;
567 shmseg->shm_perm._key = IPC_PRIVATE;
568 shmseg->shm_perm.mode |= SHMSEG_REMOVED;
569 if (shmseg->shm_nattch <= 0) {
570 uobj = shmseg->_shm_internal;
571 shm_free_segment(IPCID_TO_IX(shmid));
572 }
573 break;
574 case SHM_LOCK:
575 case SHM_UNLOCK:
576 if ((error = kauth_authorize_generic(cred,
577 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
578 break;
579 error = shm_memlock(l, shmseg, shmid, cmd);
580 break;
581 default:
582 error = EINVAL;
583 }
584
585 mutex_exit(&shm_lock);
586 if (uobj != NULL)
587 uao_detach(uobj);
588 return error;
589 }
590
591 /*
592 * Try to take an already existing segment.
593 * => must be called with shm_lock held;
594 * => called from one place, thus, inline;
595 */
596 static inline int
597 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
598 register_t *retval)
599 {
600 struct shmid_ds *shmseg;
601 kauth_cred_t cred = l->l_cred;
602 int segnum, error;
603 again:
604 KASSERT(mutex_owned(&shm_lock));
605
606 /* Find segment by key */
607 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
608 if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
609 shmsegs[segnum].shm_perm._key == SCARG(uap, key))
610 break;
611 if (segnum == shminfo.shmmni) {
612 /* Not found */
613 return -1;
614 }
615
616 shmseg = &shmsegs[segnum];
617 if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
618 /*
619 * This segment is in the process of being allocated. Wait
620 * until it's done, and look the key up again (in case the
621 * allocation failed or it was freed).
622 */
623 shmseg->shm_perm.mode |= SHMSEG_WANTED;
624 error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
625 if (error)
626 return error;
627 goto again;
628 }
629
630 /* Check the permission, segment size and appropriate flag */
631 error = ipcperm(cred, &shmseg->shm_perm, mode);
632 if (error)
633 return error;
634 if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
635 return EINVAL;
636 if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
637 (IPC_CREAT | IPC_EXCL))
638 return EEXIST;
639
640 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
641 return 0;
642 }
643
644 int
645 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
646 {
647 /* {
648 syscallarg(key_t) key;
649 syscallarg(size_t) size;
650 syscallarg(int) shmflg;
651 } */
652 struct shmid_ds *shmseg;
653 kauth_cred_t cred = l->l_cred;
654 key_t key = SCARG(uap, key);
655 size_t size;
656 int error, mode, segnum;
657 bool lockmem;
658
659 mode = SCARG(uap, shmflg) & ACCESSPERMS;
660 if (SCARG(uap, shmflg) & _SHM_RMLINGER)
661 mode |= SHMSEG_RMLINGER;
662
663 SHMPRINTF(("shmget: key 0x%lx size 0x%x shmflg 0x%x mode 0x%x\n",
664 SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
665
666 mutex_enter(&shm_lock);
667 /* In case of reallocation, we will wait for completion */
668 while (__predict_false(shm_realloc_state))
669 cv_wait(&shm_realloc_cv, &shm_lock);
670
671 if (key != IPC_PRIVATE) {
672 error = shmget_existing(l, uap, mode, retval);
673 if (error != -1) {
674 mutex_exit(&shm_lock);
675 return error;
676 }
677 if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
678 mutex_exit(&shm_lock);
679 return ENOENT;
680 }
681 }
682 error = 0;
683
684 /*
685 * Check the for the limits.
686 */
687 size = SCARG(uap, size);
688 if (size < shminfo.shmmin || size > shminfo.shmmax) {
689 mutex_exit(&shm_lock);
690 return EINVAL;
691 }
692 if (shm_nused >= shminfo.shmmni) {
693 mutex_exit(&shm_lock);
694 return ENOSPC;
695 }
696 size = (size + PGOFSET) & ~PGOFSET;
697 if (shm_committed + btoc(size) > shminfo.shmall) {
698 mutex_exit(&shm_lock);
699 return ENOMEM;
700 }
701
702 /* Find the first available segment */
703 if (shm_last_free < 0) {
704 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
705 if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
706 break;
707 KASSERT(segnum < shminfo.shmmni);
708 } else {
709 segnum = shm_last_free;
710 shm_last_free = -1;
711 }
712
713 /*
714 * Initialize the segment.
715 * We will drop the lock while allocating the memory, thus mark the
716 * segment present, but removed, that no other thread could take it.
717 * Also, disable reallocation, while lock is dropped.
718 */
719 shmseg = &shmsegs[segnum];
720 shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
721 shm_committed += btoc(size);
722 shm_nused++;
723 lockmem = shm_use_phys;
724 shm_realloc_disable++;
725 mutex_exit(&shm_lock);
726
727 /* Allocate the memory object and lock it if needed */
728 shmseg->_shm_internal = uao_create(size, 0);
729 if (lockmem) {
730 /* Wire the pages and tag it */
731 error = uobj_wirepages(shmseg->_shm_internal, 0,
732 round_page(shmseg->shm_segsz));
733 if (error) {
734 mutex_enter(&shm_lock);
735 shm_free_segment(segnum);
736 shm_realloc_disable--;
737 mutex_exit(&shm_lock);
738 return error;
739 }
740 }
741
742 /*
743 * Please note, while segment is marked, there are no need to hold the
744 * lock, while setting it (except shm_perm.mode).
745 */
746 shmseg->shm_perm._key = SCARG(uap, key);
747 shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
748 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
749
750 shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
751 shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
752 shmseg->shm_segsz = SCARG(uap, size);
753 shmseg->shm_cpid = l->l_proc->p_pid;
754 shmseg->shm_lpid = shmseg->shm_nattch = 0;
755 shmseg->shm_atime = shmseg->shm_dtime = 0;
756 shmseg->shm_ctime = time_second;
757
758 /*
759 * Segment is initialized.
760 * Enter the lock, mark as allocated, and notify waiters (if any).
761 * Also, unmark the state of reallocation.
762 */
763 mutex_enter(&shm_lock);
764 shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
765 (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
766 SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
767 if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
768 shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
769 cv_broadcast(&shm_cv[segnum]);
770 }
771 shm_realloc_disable--;
772 cv_broadcast(&shm_realloc_cv);
773 mutex_exit(&shm_lock);
774
775 return error;
776 }
777
778 void
779 shmfork(struct vmspace *vm1, struct vmspace *vm2)
780 {
781 struct shmmap_state *shmmap_s;
782 struct shmmap_entry *shmmap_se;
783
784 SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
785 mutex_enter(&shm_lock);
786 vm2->vm_shm = vm1->vm_shm;
787 if (vm1->vm_shm) {
788 shmmap_s = (struct shmmap_state *)vm1->vm_shm;
789 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
790 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
791 shmmap_s->nrefs++;
792 }
793 mutex_exit(&shm_lock);
794 }
795
796 void
797 shmexit(struct vmspace *vm)
798 {
799 struct shmmap_state *shmmap_s;
800 struct shmmap_entry *shmmap_se;
801 struct uvm_object **uobj;
802 size_t *size;
803 u_int i, n;
804
805 SLIST_HEAD(, shmmap_entry) tmp_entries;
806
807 mutex_enter(&shm_lock);
808 shmmap_s = (struct shmmap_state *)vm->vm_shm;
809 if (shmmap_s == NULL) {
810 mutex_exit(&shm_lock);
811 return;
812 }
813
814 vm->vm_shm = NULL;
815
816 if (--shmmap_s->nrefs > 0) {
817 SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
818 vm, shmmap_s->nitems, shmmap_s->nrefs));
819 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
820 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
821 mutex_exit(&shm_lock);
822 return;
823 }
824
825 KASSERT(shmmap_s->nrefs == 0);
826 n = shmmap_s->nitems;
827 SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, n));
828 mutex_exit(&shm_lock);
829 if (n == 0) {
830 kmem_free(shmmap_s, sizeof(struct shmmap_state));
831 return;
832 }
833
834 /* Allocate the arrays */
835 SLIST_INIT(&tmp_entries);
836 uobj = kmem_zalloc(n * sizeof(void *), KM_SLEEP);
837 size = kmem_zalloc(n * sizeof(size_t), KM_SLEEP);
838
839 /* Delete the entry from shm map */
840 i = 0;
841 mutex_enter(&shm_lock);
842 while (!SLIST_EMPTY(&shmmap_s->entries)) {
843 struct shmid_ds *shmseg;
844
845 shmmap_se = SLIST_FIRST(&shmmap_s->entries);
846 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
847 size[i] = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
848 uobj[i] = shm_delete_mapping(shmmap_s, shmmap_se);
849 SLIST_INSERT_HEAD(&tmp_entries, shmmap_se, next);
850 i++;
851 }
852 mutex_exit(&shm_lock);
853
854 /* Unmap all segments, free the entries */
855 i = 0;
856 while (!SLIST_EMPTY(&tmp_entries)) {
857 KASSERT(i < n);
858 shmmap_se = SLIST_FIRST(&tmp_entries);
859 SLIST_REMOVE(&tmp_entries, shmmap_se, shmmap_entry, next);
860 uvm_deallocate(&vm->vm_map, shmmap_se->va, size[i]);
861 if (uobj[i] != NULL)
862 uao_detach(uobj[i]);
863 pool_put(&shmmap_entry_pool, shmmap_se);
864 i++;
865 }
866
867 kmem_free(uobj, n * sizeof(void *));
868 kmem_free(size, n * sizeof(size_t));
869 kmem_free(shmmap_s, sizeof(struct shmmap_state));
870 }
871
872 static int
873 shmrealloc(int newshmni)
874 {
875 vaddr_t v;
876 struct shmid_ds *oldshmsegs, *newshmsegs;
877 kcondvar_t *newshm_cv;
878 size_t sz;
879 int i, lsegid;
880
881 if (newshmni < 1)
882 return EINVAL;
883
884 /* Allocate new memory area */
885 sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
886 ALIGN(newshmni * sizeof(kcondvar_t));
887 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
888 UVM_KMF_WIRED|UVM_KMF_ZERO);
889 if (v == 0)
890 return ENOMEM;
891
892 mutex_enter(&shm_lock);
893 while (shm_realloc_state || shm_realloc_disable)
894 cv_wait(&shm_realloc_cv, &shm_lock);
895
896 /*
897 * Get the number of last segment. Fail we are trying to
898 * reallocate less memory than we use.
899 */
900 lsegid = 0;
901 for (i = 0; i < shminfo.shmmni; i++)
902 if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
903 lsegid = i;
904 if (lsegid >= newshmni) {
905 mutex_exit(&shm_lock);
906 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
907 return EBUSY;
908 }
909 shm_realloc_state = true;
910
911 newshmsegs = (void *)v;
912 newshm_cv = (void *)(ALIGN(newshmsegs) +
913 newshmni * sizeof(struct shmid_ds));
914
915 /* Copy all memory to the new area */
916 for (i = 0; i < shm_nused; i++)
917 (void)memcpy(&newshmsegs[i], &shmsegs[i],
918 sizeof(newshmsegs[0]));
919
920 /* Mark as free all new segments, if there is any */
921 for (; i < newshmni; i++) {
922 cv_init(&newshm_cv[i], "shmwait");
923 newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
924 newshmsegs[i].shm_perm._seq = 0;
925 }
926
927 oldshmsegs = shmsegs;
928 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
929 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
930
931 shminfo.shmmni = newshmni;
932 shmsegs = newshmsegs;
933 shm_cv = newshm_cv;
934
935 /* Reallocation completed - notify all waiters, if any */
936 shm_realloc_state = false;
937 cv_broadcast(&shm_realloc_cv);
938 mutex_exit(&shm_lock);
939
940 uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
941 return 0;
942 }
943
944 void
945 shminit(void)
946 {
947 vaddr_t v;
948 size_t sz;
949 int i;
950
951 mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
952 pool_init(&shmmap_entry_pool, sizeof(struct shmmap_entry), 0, 0, 0,
953 "shmmp", &pool_allocator_nointr, IPL_NONE);
954 cv_init(&shm_realloc_cv, "shmrealc");
955
956 /* Allocate the wired memory for our structures */
957 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
958 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
959 v = uvm_km_alloc(kernel_map, round_page(sz), 0,
960 UVM_KMF_WIRED|UVM_KMF_ZERO);
961 if (v == 0)
962 panic("sysv_shm: cannot allocate memory");
963 shmsegs = (void *)v;
964 shm_cv = (void *)(ALIGN(shmsegs) +
965 shminfo.shmmni * sizeof(struct shmid_ds));
966
967 shminfo.shmmax *= PAGE_SIZE;
968
969 for (i = 0; i < shminfo.shmmni; i++) {
970 cv_init(&shm_cv[i], "shmwait");
971 shmsegs[i].shm_perm.mode = SHMSEG_FREE;
972 shmsegs[i].shm_perm._seq = 0;
973 }
974 shm_last_free = 0;
975 shm_nused = 0;
976 shm_committed = 0;
977 shm_realloc_disable = 0;
978 shm_realloc_state = false;
979 }
980
981 static int
982 sysctl_ipc_shmmni(SYSCTLFN_ARGS)
983 {
984 int newsize, error;
985 struct sysctlnode node;
986 node = *rnode;
987 node.sysctl_data = &newsize;
988
989 newsize = shminfo.shmmni;
990 error = sysctl_lookup(SYSCTLFN_CALL(&node));
991 if (error || newp == NULL)
992 return error;
993
994 sysctl_unlock();
995 error = shmrealloc(newsize);
996 sysctl_relock();
997 return error;
998 }
999
1000 static int
1001 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
1002 {
1003 int newsize, error;
1004 struct sysctlnode node;
1005 node = *rnode;
1006 node.sysctl_data = &newsize;
1007
1008 newsize = shminfo.shmall;
1009 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1010 if (error || newp == NULL)
1011 return error;
1012
1013 if (newsize < 1)
1014 return EINVAL;
1015
1016 shminfo.shmall = newsize;
1017 shminfo.shmmax = shminfo.shmall * PAGE_SIZE;
1018
1019 return 0;
1020 }
1021
1022 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
1023 {
1024
1025 sysctl_createv(clog, 0, NULL, NULL,
1026 CTLFLAG_PERMANENT,
1027 CTLTYPE_NODE, "kern", NULL,
1028 NULL, 0, NULL, 0,
1029 CTL_KERN, CTL_EOL);
1030 sysctl_createv(clog, 0, NULL, NULL,
1031 CTLFLAG_PERMANENT,
1032 CTLTYPE_NODE, "ipc",
1033 SYSCTL_DESCR("SysV IPC options"),
1034 NULL, 0, NULL, 0,
1035 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1036 sysctl_createv(clog, 0, NULL, NULL,
1037 CTLFLAG_PERMANENT | CTLFLAG_READONLY,
1038 CTLTYPE_INT, "shmmax",
1039 SYSCTL_DESCR("Max shared memory segment size in bytes"),
1040 NULL, 0, &shminfo.shmmax, 0,
1041 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
1042 sysctl_createv(clog, 0, NULL, NULL,
1043 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1044 CTLTYPE_INT, "shmmni",
1045 SYSCTL_DESCR("Max number of shared memory identifiers"),
1046 sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
1047 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
1048 sysctl_createv(clog, 0, NULL, NULL,
1049 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1050 CTLTYPE_INT, "shmseg",
1051 SYSCTL_DESCR("Max shared memory segments per process"),
1052 NULL, 0, &shminfo.shmseg, 0,
1053 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
1054 sysctl_createv(clog, 0, NULL, NULL,
1055 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1056 CTLTYPE_INT, "shmmaxpgs",
1057 SYSCTL_DESCR("Max amount of shared memory in pages"),
1058 sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
1059 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
1060 sysctl_createv(clog, 0, NULL, NULL,
1061 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1062 CTLTYPE_INT, "shm_use_phys",
1063 SYSCTL_DESCR("Enable/disable locking of shared memory in "
1064 "physical memory"), NULL, 0, &shm_use_phys, 0,
1065 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
1066 }
1067