sysv_shm.c revision 1.134 1 /* $NetBSD: sysv_shm.c,v 1.134 2019/04/10 10:03:50 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by Adam Glass and Charles M.
47 * Hannum.
48 * 4. The names of the authors may not be used to endorse or promote products
49 * derived from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
54 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
55 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
60 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.134 2019/04/10 10:03:50 pgoyette Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_sysv.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/shm.h>
74 #include <sys/mutex.h>
75 #include <sys/mman.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */
79 #include <sys/syscallargs.h>
80 #include <sys/queue.h>
81 #include <sys/kauth.h>
82
83 #include <uvm/uvm_extern.h>
84 #include <uvm/uvm_object.h>
85
86 struct shmmap_entry {
87 SLIST_ENTRY(shmmap_entry) next;
88 vaddr_t va;
89 int shmid;
90 };
91
92 int shm_nused __cacheline_aligned;
93 struct shmid_ds * shmsegs __read_mostly;
94
95 static kmutex_t shm_lock __cacheline_aligned;
96 static kcondvar_t * shm_cv __cacheline_aligned;
97 static int shm_last_free __cacheline_aligned;
98 static size_t shm_committed __cacheline_aligned;
99 static int shm_use_phys __read_mostly;
100
101 static kcondvar_t shm_realloc_cv;
102 static bool shm_realloc_state;
103 static u_int shm_realloc_disable;
104
105 struct shmmap_state {
106 unsigned int nitems;
107 unsigned int nrefs;
108 SLIST_HEAD(, shmmap_entry) entries;
109 };
110
111 extern int kern_has_sysvshm;
112
113 SYSCTL_SETUP_PROTO(sysctl_ipc_shm_setup);
114
115 #ifdef SHMDEBUG
116 #define SHMPRINTF(a) printf a
117 #else
118 #define SHMPRINTF(a)
119 #endif
120
121 static int shmrealloc(int);
122
123 /*
124 * Find the shared memory segment by the identifier.
125 * => must be called with shm_lock held;
126 */
127 static struct shmid_ds *
128 shm_find_segment_by_shmid(int shmid)
129 {
130 int segnum;
131 struct shmid_ds *shmseg;
132
133 KASSERT(mutex_owned(&shm_lock));
134
135 segnum = IPCID_TO_IX(shmid);
136 if (segnum < 0 || segnum >= shminfo.shmmni)
137 return NULL;
138 shmseg = &shmsegs[segnum];
139 if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
140 return NULL;
141 if ((shmseg->shm_perm.mode &
142 (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
143 return NULL;
144 if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
145 return NULL;
146
147 return shmseg;
148 }
149
150 /*
151 * Free memory segment.
152 * => must be called with shm_lock held;
153 */
154 static void
155 shm_free_segment(int segnum)
156 {
157 struct shmid_ds *shmseg;
158 size_t size;
159 bool wanted;
160
161 KASSERT(mutex_owned(&shm_lock));
162
163 shmseg = &shmsegs[segnum];
164 SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
165 shmseg->shm_perm._key, shmseg->shm_perm._seq));
166
167 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
168 wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
169
170 shmseg->_shm_internal = NULL;
171 shm_committed -= btoc(size);
172 shm_nused--;
173 shmseg->shm_perm.mode = SHMSEG_FREE;
174 shm_last_free = segnum;
175 if (wanted == true)
176 cv_broadcast(&shm_cv[segnum]);
177 }
178
179 /*
180 * Delete entry from the shm map.
181 * => must be called with shm_lock held;
182 */
183 static struct uvm_object *
184 shm_delete_mapping(struct shmmap_state *shmmap_s,
185 struct shmmap_entry *shmmap_se)
186 {
187 struct uvm_object *uobj = NULL;
188 struct shmid_ds *shmseg;
189 int segnum;
190
191 KASSERT(mutex_owned(&shm_lock));
192
193 segnum = IPCID_TO_IX(shmmap_se->shmid);
194 shmseg = &shmsegs[segnum];
195 SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
196 shmmap_s->nitems--;
197 shmseg->shm_dtime = time_second;
198 if ((--shmseg->shm_nattch <= 0) &&
199 (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
200 uobj = shmseg->_shm_internal;
201 shm_free_segment(segnum);
202 }
203
204 return uobj;
205 }
206
207 /*
208 * Get a non-shared shm map for that vmspace. Note, that memory
209 * allocation might be performed with lock held.
210 */
211 static struct shmmap_state *
212 shmmap_getprivate(struct proc *p)
213 {
214 struct shmmap_state *oshmmap_s, *shmmap_s;
215 struct shmmap_entry *oshmmap_se, *shmmap_se;
216
217 KASSERT(mutex_owned(&shm_lock));
218
219 /* 1. A shm map with refcnt = 1, used by ourselves, thus return */
220 oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
221 if (oshmmap_s && oshmmap_s->nrefs == 1)
222 return oshmmap_s;
223
224 /* 2. No shm map preset - create a fresh one */
225 shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
226 shmmap_s->nrefs = 1;
227 SLIST_INIT(&shmmap_s->entries);
228 p->p_vmspace->vm_shm = (void *)shmmap_s;
229
230 if (oshmmap_s == NULL)
231 return shmmap_s;
232
233 SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
234 p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
235
236 /* 3. A shared shm map, copy to a fresh one and adjust refcounts */
237 SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
238 shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
239 shmmap_se->va = oshmmap_se->va;
240 shmmap_se->shmid = oshmmap_se->shmid;
241 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
242 }
243 shmmap_s->nitems = oshmmap_s->nitems;
244 oshmmap_s->nrefs--;
245
246 return shmmap_s;
247 }
248
249 /*
250 * Lock/unlock the memory.
251 * => must be called with shm_lock held;
252 * => called from one place, thus, inline;
253 */
254 static inline int
255 shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd)
256 {
257 struct proc *p = l->l_proc;
258 struct shmmap_entry *shmmap_se;
259 struct shmmap_state *shmmap_s;
260 size_t size;
261 int error;
262
263 KASSERT(mutex_owned(&shm_lock));
264 shmmap_s = shmmap_getprivate(p);
265
266 /* Find our shared memory address by shmid */
267 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
268 if (shmmap_se->shmid != shmid)
269 continue;
270
271 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
272
273 if (cmd == SHM_LOCK &&
274 (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
275 /* Wire the object and map, then tag it */
276 error = uvm_obj_wirepages(shmseg->_shm_internal,
277 0, size, NULL);
278 if (error)
279 return EIO;
280 error = uvm_map_pageable(&p->p_vmspace->vm_map,
281 shmmap_se->va, shmmap_se->va + size, false, 0);
282 if (error) {
283 uvm_obj_unwirepages(shmseg->_shm_internal,
284 0, size);
285 if (error == EFAULT)
286 error = ENOMEM;
287 return error;
288 }
289 shmseg->shm_perm.mode |= SHMSEG_WIRED;
290
291 } else if (cmd == SHM_UNLOCK &&
292 (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
293 /* Unwire the object and map, then untag it */
294 uvm_obj_unwirepages(shmseg->_shm_internal, 0, size);
295 error = uvm_map_pageable(&p->p_vmspace->vm_map,
296 shmmap_se->va, shmmap_se->va + size, true, 0);
297 if (error)
298 return EIO;
299 shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
300 }
301 }
302
303 return 0;
304 }
305
306 /*
307 * Unmap shared memory.
308 */
309 int
310 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
311 {
312 /* {
313 syscallarg(const void *) shmaddr;
314 } */
315 struct proc *p = l->l_proc;
316 struct shmmap_state *shmmap_s1, *shmmap_s;
317 struct shmmap_entry *shmmap_se;
318 struct uvm_object *uobj;
319 struct shmid_ds *shmseg;
320 size_t size;
321
322 mutex_enter(&shm_lock);
323 /* In case of reallocation, we will wait for completion */
324 while (__predict_false(shm_realloc_state))
325 cv_wait(&shm_realloc_cv, &shm_lock);
326
327 shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
328 if (shmmap_s1 == NULL) {
329 mutex_exit(&shm_lock);
330 return EINVAL;
331 }
332
333 /* Find the map entry */
334 SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
335 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
336 break;
337 if (shmmap_se == NULL) {
338 mutex_exit(&shm_lock);
339 return EINVAL;
340 }
341
342 shmmap_s = shmmap_getprivate(p);
343 if (shmmap_s != shmmap_s1) {
344 /* Map has been copied, lookup entry in new map */
345 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
346 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
347 break;
348 if (shmmap_se == NULL) {
349 mutex_exit(&shm_lock);
350 return EINVAL;
351 }
352 }
353
354 SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
355 p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
356
357 /* Delete the entry from shm map */
358 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
359 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
360 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
361 mutex_exit(&shm_lock);
362
363 uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
364 if (uobj != NULL) {
365 uao_detach(uobj);
366 }
367 kmem_free(shmmap_se, sizeof(struct shmmap_entry));
368
369 return 0;
370 }
371
372 /*
373 * Map shared memory.
374 */
375 int
376 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
377 {
378 /* {
379 syscallarg(int) shmid;
380 syscallarg(const void *) shmaddr;
381 syscallarg(int) shmflg;
382 } */
383 int error, flags = 0;
384 struct proc *p = l->l_proc;
385 kauth_cred_t cred = l->l_cred;
386 struct shmid_ds *shmseg;
387 struct shmmap_state *shmmap_s;
388 struct shmmap_entry *shmmap_se;
389 struct uvm_object *uobj;
390 struct vmspace *vm;
391 vaddr_t attach_va;
392 vm_prot_t prot;
393 vsize_t size;
394
395 /* Allocate a new map entry and set it */
396 shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
397 shmmap_se->shmid = SCARG(uap, shmid);
398
399 mutex_enter(&shm_lock);
400 /* In case of reallocation, we will wait for completion */
401 while (__predict_false(shm_realloc_state))
402 cv_wait(&shm_realloc_cv, &shm_lock);
403
404 shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
405 if (shmseg == NULL) {
406 error = EINVAL;
407 goto err;
408 }
409 error = ipcperm(cred, &shmseg->shm_perm,
410 (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
411 if (error)
412 goto err;
413
414 vm = p->p_vmspace;
415 shmmap_s = (struct shmmap_state *)vm->vm_shm;
416 if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
417 error = EMFILE;
418 goto err;
419 }
420
421 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
422 prot = VM_PROT_READ;
423 if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
424 prot |= VM_PROT_WRITE;
425 if (SCARG(uap, shmaddr)) {
426 flags |= UVM_FLAG_FIXED;
427 if (SCARG(uap, shmflg) & SHM_RND)
428 attach_va =
429 (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
430 else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
431 attach_va = (vaddr_t)SCARG(uap, shmaddr);
432 else {
433 error = EINVAL;
434 goto err;
435 }
436 } else {
437 /* This is just a hint to uvm_map() about where to put it. */
438 attach_va = p->p_emul->e_vm_default_addr(p,
439 (vaddr_t)vm->vm_daddr, size,
440 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
441 }
442
443 /*
444 * Create a map entry, add it to the list and increase the counters.
445 * The lock will be dropped before the mapping, disable reallocation.
446 */
447 shmmap_s = shmmap_getprivate(p);
448 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
449 shmmap_s->nitems++;
450 shmseg->shm_lpid = p->p_pid;
451 shmseg->shm_nattch++;
452 shm_realloc_disable++;
453 mutex_exit(&shm_lock);
454
455 /*
456 * Add a reference to the memory object, map it to the
457 * address space, and lock the memory, if needed.
458 */
459 uobj = shmseg->_shm_internal;
460 uao_reference(uobj);
461 error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
462 UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
463 if (error)
464 goto err_detach;
465 if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) {
466 error = uvm_map_pageable(&vm->vm_map, attach_va,
467 attach_va + size, false, 0);
468 if (error) {
469 if (error == EFAULT)
470 error = ENOMEM;
471 uvm_deallocate(&vm->vm_map, attach_va, size);
472 goto err_detach;
473 }
474 }
475
476 /* Set the new address, and update the time */
477 mutex_enter(&shm_lock);
478 shmmap_se->va = attach_va;
479 shmseg->shm_atime = time_second;
480 shm_realloc_disable--;
481 retval[0] = attach_va;
482 SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
483 p->p_vmspace, shmmap_se->shmid, attach_va));
484 err:
485 cv_broadcast(&shm_realloc_cv);
486 mutex_exit(&shm_lock);
487 if (error && shmmap_se) {
488 kmem_free(shmmap_se, sizeof(struct shmmap_entry));
489 }
490 return error;
491
492 err_detach:
493 uao_detach(uobj);
494 mutex_enter(&shm_lock);
495 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
496 shm_realloc_disable--;
497 cv_broadcast(&shm_realloc_cv);
498 mutex_exit(&shm_lock);
499 if (uobj != NULL) {
500 uao_detach(uobj);
501 }
502 kmem_free(shmmap_se, sizeof(struct shmmap_entry));
503 return error;
504 }
505
506 /*
507 * Shared memory control operations.
508 */
509 int
510 sys___shmctl50(struct lwp *l, const struct sys___shmctl50_args *uap,
511 register_t *retval)
512 {
513 /* {
514 syscallarg(int) shmid;
515 syscallarg(int) cmd;
516 syscallarg(struct shmid_ds *) buf;
517 } */
518 struct shmid_ds shmbuf;
519 int cmd, error;
520
521 cmd = SCARG(uap, cmd);
522 if (cmd == IPC_SET) {
523 error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
524 if (error)
525 return error;
526 }
527
528 error = shmctl1(l, SCARG(uap, shmid), cmd,
529 (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
530
531 if (error == 0 && cmd == IPC_STAT)
532 error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
533
534 return error;
535 }
536
537 int
538 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
539 {
540 struct uvm_object *uobj = NULL;
541 kauth_cred_t cred = l->l_cred;
542 struct shmid_ds *shmseg;
543 int error = 0;
544
545 mutex_enter(&shm_lock);
546 /* In case of reallocation, we will wait for completion */
547 while (__predict_false(shm_realloc_state))
548 cv_wait(&shm_realloc_cv, &shm_lock);
549
550 shmseg = shm_find_segment_by_shmid(shmid);
551 if (shmseg == NULL) {
552 mutex_exit(&shm_lock);
553 return EINVAL;
554 }
555
556 switch (cmd) {
557 case IPC_STAT:
558 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
559 break;
560 memset(shmbuf, 0, sizeof *shmbuf);
561 shmbuf->shm_perm = shmseg->shm_perm;
562 shmbuf->shm_perm.mode &= 0777;
563 shmbuf->shm_segsz = shmseg->shm_segsz;
564 shmbuf->shm_lpid = shmseg->shm_lpid;
565 shmbuf->shm_cpid = shmseg->shm_cpid;
566 shmbuf->shm_nattch = shmseg->shm_nattch;
567 shmbuf->shm_atime = shmseg->shm_atime;
568 shmbuf->shm_dtime = shmseg->shm_dtime;
569 shmbuf->shm_ctime = shmseg->shm_ctime;
570 break;
571 case IPC_SET:
572 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
573 break;
574 shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
575 shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
576 shmseg->shm_perm.mode =
577 (shmseg->shm_perm.mode & ~ACCESSPERMS) |
578 (shmbuf->shm_perm.mode & ACCESSPERMS);
579 shmseg->shm_ctime = time_second;
580 break;
581 case IPC_RMID:
582 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
583 break;
584 shmseg->shm_perm._key = IPC_PRIVATE;
585 shmseg->shm_perm.mode |= SHMSEG_REMOVED;
586 if (shmseg->shm_nattch <= 0) {
587 uobj = shmseg->_shm_internal;
588 shm_free_segment(IPCID_TO_IX(shmid));
589 }
590 break;
591 case SHM_LOCK:
592 case SHM_UNLOCK:
593 if ((error = kauth_authorize_system(cred,
594 KAUTH_SYSTEM_SYSVIPC,
595 (cmd == SHM_LOCK) ? KAUTH_REQ_SYSTEM_SYSVIPC_SHM_LOCK :
596 KAUTH_REQ_SYSTEM_SYSVIPC_SHM_UNLOCK, NULL, NULL, NULL)) != 0)
597 break;
598 error = shm_memlock(l, shmseg, shmid, cmd);
599 break;
600 default:
601 error = EINVAL;
602 }
603
604 mutex_exit(&shm_lock);
605 if (uobj != NULL)
606 uao_detach(uobj);
607 return error;
608 }
609
610 /*
611 * Try to take an already existing segment.
612 * => must be called with shm_lock held;
613 * => called from one place, thus, inline;
614 */
615 static inline int
616 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
617 register_t *retval)
618 {
619 struct shmid_ds *shmseg;
620 kauth_cred_t cred = l->l_cred;
621 int segnum, error;
622 again:
623 KASSERT(mutex_owned(&shm_lock));
624
625 /* Find segment by key */
626 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
627 if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
628 shmsegs[segnum].shm_perm._key == SCARG(uap, key))
629 break;
630 if (segnum == shminfo.shmmni) {
631 /* Not found */
632 return -1;
633 }
634
635 shmseg = &shmsegs[segnum];
636 if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
637 /*
638 * This segment is in the process of being allocated. Wait
639 * until it's done, and look the key up again (in case the
640 * allocation failed or it was freed).
641 */
642 shmseg->shm_perm.mode |= SHMSEG_WANTED;
643 error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
644 if (error)
645 return error;
646 goto again;
647 }
648
649 /*
650 * First check the flags, to generate a useful error when a
651 * segment already exists.
652 */
653 if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
654 (IPC_CREAT | IPC_EXCL))
655 return EEXIST;
656
657 /* Check the permission and segment size. */
658 error = ipcperm(cred, &shmseg->shm_perm, mode);
659 if (error)
660 return error;
661 if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
662 return EINVAL;
663
664 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
665 return 0;
666 }
667
668 int
669 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
670 {
671 /* {
672 syscallarg(key_t) key;
673 syscallarg(size_t) size;
674 syscallarg(int) shmflg;
675 } */
676 struct shmid_ds *shmseg;
677 kauth_cred_t cred = l->l_cred;
678 key_t key = SCARG(uap, key);
679 size_t size;
680 int error, mode, segnum;
681 bool lockmem;
682
683 mode = SCARG(uap, shmflg) & ACCESSPERMS;
684 if (SCARG(uap, shmflg) & _SHM_RMLINGER)
685 mode |= SHMSEG_RMLINGER;
686
687 SHMPRINTF(("shmget: key 0x%lx size 0x%zx shmflg 0x%x mode 0x%x\n",
688 SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
689
690 mutex_enter(&shm_lock);
691 /* In case of reallocation, we will wait for completion */
692 while (__predict_false(shm_realloc_state))
693 cv_wait(&shm_realloc_cv, &shm_lock);
694
695 if (key != IPC_PRIVATE) {
696 error = shmget_existing(l, uap, mode, retval);
697 if (error != -1) {
698 mutex_exit(&shm_lock);
699 return error;
700 }
701 if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
702 mutex_exit(&shm_lock);
703 return ENOENT;
704 }
705 }
706 error = 0;
707
708 /*
709 * Check the for the limits.
710 */
711 size = SCARG(uap, size);
712 if (size < shminfo.shmmin || size > shminfo.shmmax) {
713 mutex_exit(&shm_lock);
714 return EINVAL;
715 }
716 if (shm_nused >= shminfo.shmmni) {
717 mutex_exit(&shm_lock);
718 return ENOSPC;
719 }
720 size = (size + PGOFSET) & ~PGOFSET;
721 if (shm_committed + btoc(size) > shminfo.shmall) {
722 mutex_exit(&shm_lock);
723 return ENOMEM;
724 }
725
726 /* Find the first available segment */
727 if (shm_last_free < 0) {
728 for (segnum = 0; segnum < shminfo.shmmni; segnum++)
729 if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
730 break;
731 KASSERT(segnum < shminfo.shmmni);
732 } else {
733 segnum = shm_last_free;
734 shm_last_free = -1;
735 }
736
737 /*
738 * Initialize the segment.
739 * We will drop the lock while allocating the memory, thus mark the
740 * segment present, but removed, that no other thread could take it.
741 * Also, disable reallocation, while lock is dropped.
742 */
743 shmseg = &shmsegs[segnum];
744 shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
745 shm_committed += btoc(size);
746 shm_nused++;
747 lockmem = shm_use_phys;
748 shm_realloc_disable++;
749 mutex_exit(&shm_lock);
750
751 /* Allocate the memory object and lock it if needed */
752 shmseg->_shm_internal = uao_create(size, 0);
753 if (lockmem) {
754 /* Wire the pages and tag it */
755 error = uvm_obj_wirepages(shmseg->_shm_internal, 0, size, NULL);
756 if (error) {
757 uao_detach(shmseg->_shm_internal);
758 mutex_enter(&shm_lock);
759 shm_free_segment(segnum);
760 shm_realloc_disable--;
761 mutex_exit(&shm_lock);
762 return error;
763 }
764 }
765
766 /*
767 * Please note, while segment is marked, there are no need to hold the
768 * lock, while setting it (except shm_perm.mode).
769 */
770 shmseg->shm_perm._key = SCARG(uap, key);
771 shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
772 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
773
774 shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
775 shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
776 shmseg->shm_segsz = SCARG(uap, size);
777 shmseg->shm_cpid = l->l_proc->p_pid;
778 shmseg->shm_lpid = shmseg->shm_nattch = 0;
779 shmseg->shm_atime = shmseg->shm_dtime = 0;
780 shmseg->shm_ctime = time_second;
781
782 /*
783 * Segment is initialized.
784 * Enter the lock, mark as allocated, and notify waiters (if any).
785 * Also, unmark the state of reallocation.
786 */
787 mutex_enter(&shm_lock);
788 shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
789 (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
790 SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
791 if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
792 shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
793 cv_broadcast(&shm_cv[segnum]);
794 }
795 shm_realloc_disable--;
796 cv_broadcast(&shm_realloc_cv);
797 mutex_exit(&shm_lock);
798
799 return error;
800 }
801
802 void
803 shmfork(struct vmspace *vm1, struct vmspace *vm2)
804 {
805 struct shmmap_state *shmmap_s;
806 struct shmmap_entry *shmmap_se;
807
808 SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
809 mutex_enter(&shm_lock);
810 vm2->vm_shm = vm1->vm_shm;
811 if (vm1->vm_shm) {
812 shmmap_s = (struct shmmap_state *)vm1->vm_shm;
813 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
814 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
815 shmmap_s->nrefs++;
816 }
817 mutex_exit(&shm_lock);
818 }
819
820 void
821 shmexit(struct vmspace *vm)
822 {
823 struct shmmap_state *shmmap_s;
824 struct shmmap_entry *shmmap_se;
825
826 mutex_enter(&shm_lock);
827 shmmap_s = (struct shmmap_state *)vm->vm_shm;
828 if (shmmap_s == NULL) {
829 mutex_exit(&shm_lock);
830 return;
831 }
832 vm->vm_shm = NULL;
833
834 if (--shmmap_s->nrefs > 0) {
835 SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
836 vm, shmmap_s->nitems, shmmap_s->nrefs));
837 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
838 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
839 }
840 mutex_exit(&shm_lock);
841 return;
842 }
843
844 SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, shmmap_s->nitems));
845 if (shmmap_s->nitems == 0) {
846 mutex_exit(&shm_lock);
847 kmem_free(shmmap_s, sizeof(struct shmmap_state));
848 return;
849 }
850
851 /*
852 * Delete the entry from shm map.
853 */
854 for (;;) {
855 struct shmid_ds *shmseg;
856 struct uvm_object *uobj;
857 size_t sz;
858
859 shmmap_se = SLIST_FIRST(&shmmap_s->entries);
860 KASSERT(shmmap_se != NULL);
861
862 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
863 sz = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
864 /* shm_delete_mapping() removes from the list. */
865 uobj = shm_delete_mapping(shmmap_s, shmmap_se);
866 mutex_exit(&shm_lock);
867
868 uvm_deallocate(&vm->vm_map, shmmap_se->va, sz);
869 if (uobj != NULL) {
870 uao_detach(uobj);
871 }
872 kmem_free(shmmap_se, sizeof(struct shmmap_entry));
873
874 if (SLIST_EMPTY(&shmmap_s->entries)) {
875 break;
876 }
877 mutex_enter(&shm_lock);
878 KASSERT(!SLIST_EMPTY(&shmmap_s->entries));
879 }
880 kmem_free(shmmap_s, sizeof(struct shmmap_state));
881 }
882
883 static int
884 shmrealloc(int newshmni)
885 {
886 vaddr_t v;
887 struct shmid_ds *oldshmsegs, *newshmsegs;
888 kcondvar_t *newshm_cv, *oldshm_cv;
889 size_t sz;
890 int i, lsegid, oldshmni;
891
892 if (newshmni < 1)
893 return EINVAL;
894
895 /* Allocate new memory area */
896 sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
897 ALIGN(newshmni * sizeof(kcondvar_t));
898 sz = round_page(sz);
899 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
900 if (v == 0)
901 return ENOMEM;
902
903 mutex_enter(&shm_lock);
904 while (shm_realloc_state || shm_realloc_disable)
905 cv_wait(&shm_realloc_cv, &shm_lock);
906
907 /*
908 * Get the number of last segment. Fail we are trying to
909 * reallocate less memory than we use.
910 */
911 lsegid = 0;
912 for (i = 0; i < shminfo.shmmni; i++)
913 if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
914 lsegid = i;
915 if (lsegid >= newshmni) {
916 mutex_exit(&shm_lock);
917 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
918 return EBUSY;
919 }
920 shm_realloc_state = true;
921
922 newshmsegs = (void *)v;
923 newshm_cv = (void *)((uintptr_t)newshmsegs +
924 ALIGN(newshmni * sizeof(struct shmid_ds)));
925
926 /* Copy all memory to the new area */
927 for (i = 0; i < shm_nused; i++) {
928 cv_init(&newshm_cv[i], "shmwait");
929 (void)memcpy(&newshmsegs[i], &shmsegs[i],
930 sizeof(newshmsegs[0]));
931 }
932
933 /* Mark as free all new segments, if there is any */
934 for (; i < newshmni; i++) {
935 cv_init(&newshm_cv[i], "shmwait");
936 newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
937 newshmsegs[i].shm_perm._seq = 0;
938 }
939
940 oldshmsegs = shmsegs;
941 oldshmni = shminfo.shmmni;
942 shminfo.shmmni = newshmni;
943 shmsegs = newshmsegs;
944 shm_cv = newshm_cv;
945
946 /* Reallocation completed - notify all waiters, if any */
947 shm_realloc_state = false;
948 cv_broadcast(&shm_realloc_cv);
949 mutex_exit(&shm_lock);
950
951 /* Release now unused resources. */
952 oldshm_cv = (void *)((uintptr_t)oldshmsegs +
953 ALIGN(oldshmni * sizeof(struct shmid_ds)));
954 for (i = 0; i < oldshmni; i++)
955 cv_destroy(&oldshm_cv[i]);
956
957 sz = ALIGN(oldshmni * sizeof(struct shmid_ds)) +
958 ALIGN(oldshmni * sizeof(kcondvar_t));
959 sz = round_page(sz);
960 uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
961
962 return 0;
963 }
964
965 int
966 shminit(struct sysctllog **clog)
967 {
968 vaddr_t v;
969 size_t sz;
970 int i;
971
972 mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
973 cv_init(&shm_realloc_cv, "shmrealc");
974
975 /* Allocate the wired memory for our structures */
976 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
977 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
978 sz = round_page(sz);
979 v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
980 if (v == 0) {
981 printf("sysv_shm: cannot allocate memory");
982 return ENOMEM;
983 }
984 shmsegs = (void *)v;
985 shm_cv = (void *)((uintptr_t)shmsegs +
986 ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)));
987
988 if (shminfo.shmmax == 0)
989 shminfo.shmmax = uimax(physmem / 4, 1024) * PAGE_SIZE;
990 else
991 shminfo.shmmax *= PAGE_SIZE;
992 shminfo.shmall = shminfo.shmmax / PAGE_SIZE;
993
994 for (i = 0; i < shminfo.shmmni; i++) {
995 cv_init(&shm_cv[i], "shmwait");
996 shmsegs[i].shm_perm.mode = SHMSEG_FREE;
997 shmsegs[i].shm_perm._seq = 0;
998 }
999 shm_last_free = 0;
1000 shm_nused = 0;
1001 shm_committed = 0;
1002 shm_realloc_disable = 0;
1003 shm_realloc_state = false;
1004
1005 kern_has_sysvshm = 1;
1006
1007 /* Load the callback function pointers for the uvm subsystem */
1008 uvm_shmexit = shmexit;
1009 uvm_shmfork = shmfork;
1010
1011 #ifdef _MODULE
1012 if (clog)
1013 sysctl_ipc_shm_setup(clog);
1014 #endif
1015 return 0;
1016 }
1017
1018 int
1019 shmfini(void)
1020 {
1021 size_t sz;
1022 int i;
1023 vaddr_t v = (vaddr_t)shmsegs;
1024
1025 mutex_enter(&shm_lock);
1026 if (shm_nused) {
1027 mutex_exit(&shm_lock);
1028 return 1;
1029 }
1030
1031 /* Clear the callback function pointers for the uvm subsystem */
1032 uvm_shmexit = NULL;
1033 uvm_shmfork = NULL;
1034
1035 /* Destroy all condvars */
1036 for (i = 0; i < shminfo.shmmni; i++)
1037 cv_destroy(&shm_cv[i]);
1038 cv_destroy(&shm_realloc_cv);
1039
1040 /* Free the allocated/wired memory */
1041 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
1042 ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
1043 sz = round_page(sz);
1044 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
1045
1046 /* Release and destroy our mutex */
1047 mutex_exit(&shm_lock);
1048 mutex_destroy(&shm_lock);
1049
1050 kern_has_sysvshm = 0;
1051
1052 return 0;
1053 }
1054
1055 static int
1056 sysctl_ipc_shmmni(SYSCTLFN_ARGS)
1057 {
1058 int newsize, error;
1059 struct sysctlnode node;
1060 node = *rnode;
1061 node.sysctl_data = &newsize;
1062
1063 newsize = shminfo.shmmni;
1064 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1065 if (error || newp == NULL)
1066 return error;
1067
1068 sysctl_unlock();
1069 error = shmrealloc(newsize);
1070 sysctl_relock();
1071 return error;
1072 }
1073
1074 static int
1075 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
1076 {
1077 uint32_t newsize;
1078 int error;
1079 struct sysctlnode node;
1080 node = *rnode;
1081 node.sysctl_data = &newsize;
1082
1083 newsize = shminfo.shmall;
1084 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1085 if (error || newp == NULL)
1086 return error;
1087
1088 if (newsize < 1)
1089 return EINVAL;
1090
1091 shminfo.shmall = newsize;
1092 shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE;
1093
1094 return 0;
1095 }
1096
1097 static int
1098 sysctl_ipc_shmmax(SYSCTLFN_ARGS)
1099 {
1100 uint64_t newsize;
1101 int error;
1102 struct sysctlnode node;
1103 node = *rnode;
1104 node.sysctl_data = &newsize;
1105
1106 newsize = shminfo.shmmax;
1107 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1108 if (error || newp == NULL)
1109 return error;
1110
1111 if (newsize < PAGE_SIZE)
1112 return EINVAL;
1113
1114 shminfo.shmmax = round_page(newsize);
1115 shminfo.shmall = shminfo.shmmax >> PAGE_SHIFT;
1116
1117 return 0;
1118 }
1119
1120 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
1121 {
1122
1123 sysctl_createv(clog, 0, NULL, NULL,
1124 CTLFLAG_PERMANENT,
1125 CTLTYPE_NODE, "ipc",
1126 SYSCTL_DESCR("SysV IPC options"),
1127 NULL, 0, NULL, 0,
1128 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1129 sysctl_createv(clog, 0, NULL, NULL,
1130 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1131 CTLTYPE_QUAD, "shmmax",
1132 SYSCTL_DESCR("Max shared memory segment size in bytes"),
1133 sysctl_ipc_shmmax, 0, &shminfo.shmmax, 0,
1134 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
1135 sysctl_createv(clog, 0, NULL, NULL,
1136 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1137 CTLTYPE_INT, "shmmni",
1138 SYSCTL_DESCR("Max number of shared memory identifiers"),
1139 sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
1140 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
1141 sysctl_createv(clog, 0, NULL, NULL,
1142 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1143 CTLTYPE_INT, "shmseg",
1144 SYSCTL_DESCR("Max shared memory segments per process"),
1145 NULL, 0, &shminfo.shmseg, 0,
1146 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
1147 sysctl_createv(clog, 0, NULL, NULL,
1148 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1149 CTLTYPE_INT, "shmmaxpgs",
1150 SYSCTL_DESCR("Max amount of shared memory in pages"),
1151 sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
1152 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
1153 sysctl_createv(clog, 0, NULL, NULL,
1154 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1155 CTLTYPE_INT, "shm_use_phys",
1156 SYSCTL_DESCR("Enable/disable locking of shared memory in "
1157 "physical memory"), NULL, 0, &shm_use_phys, 0,
1158 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
1159 }
1160