Home | History | Annotate | Line # | Download | only in kern
sysv_shm.c revision 1.135.2.2
      1 /*	$NetBSD: sysv_shm.c,v 1.135.2.2 2019/09/13 06:25:26 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1994 Adam Glass and Charles M. Hannum.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by Adam Glass and Charles M.
     47  *	Hannum.
     48  * 4. The names of the authors may not be used to endorse or promote products
     49  *    derived from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     53  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     54  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     55  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     60  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.135.2.2 2019/09/13 06:25:26 martin Exp $");
     65 
     66 #ifdef _KERNEL_OPT
     67 #include "opt_sysv.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/kernel.h>
     72 #include <sys/kmem.h>
     73 #include <sys/shm.h>
     74 #include <sys/mutex.h>
     75 #include <sys/mman.h>
     76 #include <sys/stat.h>
     77 #include <sys/sysctl.h>
     78 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
     79 #include <sys/syscallargs.h>
     80 #include <sys/queue.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <uvm/uvm_extern.h>
     84 #include <uvm/uvm_object.h>
     85 
     86 struct shmmap_entry {
     87 	SLIST_ENTRY(shmmap_entry) next;
     88 	vaddr_t va;
     89 	int shmid;
     90 };
     91 
     92 int			shm_nused		__cacheline_aligned;
     93 struct shmid_ds *	shmsegs			__read_mostly;
     94 
     95 static kmutex_t		shm_lock		__cacheline_aligned;
     96 static kcondvar_t *	shm_cv			__cacheline_aligned;
     97 static int		shm_last_free		__cacheline_aligned;
     98 static size_t		shm_committed		__cacheline_aligned;
     99 static int		shm_use_phys		__read_mostly;
    100 
    101 static kcondvar_t	shm_realloc_cv;
    102 static bool		shm_realloc_state;
    103 static u_int		shm_realloc_disable;
    104 
    105 struct shmmap_state {
    106 	unsigned int nitems;
    107 	unsigned int nrefs;
    108 	SLIST_HEAD(, shmmap_entry) entries;
    109 };
    110 
    111 extern int kern_has_sysvshm;
    112 
    113 SYSCTL_SETUP_PROTO(sysctl_ipc_shm_setup);
    114 
    115 #ifdef SHMDEBUG
    116 #define SHMPRINTF(a) printf a
    117 #else
    118 #define SHMPRINTF(a)
    119 #endif
    120 
    121 static int shmrealloc(int);
    122 
    123 /*
    124  * Find the shared memory segment permission by the index. Only used by
    125  * compat_linux to implement SHM_STAT.
    126  */
    127 int
    128 shm_find_segment_perm_by_index(int index, struct ipc_perm *perm)
    129 {
    130 	struct shmid_ds *shmseg;
    131 
    132 	mutex_enter(&shm_lock);
    133 	if (index < 0 || index >= shminfo.shmmni) {
    134 		mutex_exit(&shm_lock);
    135 		return EINVAL;
    136 	}
    137 	shmseg = &shmsegs[index];
    138 	memcpy(perm, &shmseg->shm_perm, sizeof(*perm));
    139 	mutex_exit(&shm_lock);
    140 	return 0;
    141 }
    142 
    143 /*
    144  * Find the shared memory segment by the identifier.
    145  *  => must be called with shm_lock held;
    146  */
    147 static struct shmid_ds *
    148 shm_find_segment_by_shmid(int shmid)
    149 {
    150 	int segnum;
    151 	struct shmid_ds *shmseg;
    152 
    153 	KASSERT(mutex_owned(&shm_lock));
    154 
    155 	segnum = IPCID_TO_IX(shmid);
    156 	if (segnum < 0 || segnum >= shminfo.shmmni)
    157 		return NULL;
    158 	shmseg = &shmsegs[segnum];
    159 	if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
    160 		return NULL;
    161 	if ((shmseg->shm_perm.mode &
    162 	    (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
    163 		return NULL;
    164 	if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
    165 		return NULL;
    166 
    167 	return shmseg;
    168 }
    169 
    170 /*
    171  * Free memory segment.
    172  *  => must be called with shm_lock held;
    173  */
    174 static void
    175 shm_free_segment(int segnum)
    176 {
    177 	struct shmid_ds *shmseg;
    178 	size_t size;
    179 	bool wanted;
    180 
    181 	KASSERT(mutex_owned(&shm_lock));
    182 
    183 	shmseg = &shmsegs[segnum];
    184 	SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
    185 	    shmseg->shm_perm._key, shmseg->shm_perm._seq));
    186 
    187 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
    188 	wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
    189 
    190 	shmseg->_shm_internal = NULL;
    191 	shm_committed -= btoc(size);
    192 	shm_nused--;
    193 	shmseg->shm_perm.mode = SHMSEG_FREE;
    194 	shm_last_free = segnum;
    195 	if (wanted == true)
    196 		cv_broadcast(&shm_cv[segnum]);
    197 }
    198 
    199 /*
    200  * Delete entry from the shm map.
    201  *  => must be called with shm_lock held;
    202  */
    203 static struct uvm_object *
    204 shm_delete_mapping(struct shmmap_state *shmmap_s,
    205     struct shmmap_entry *shmmap_se)
    206 {
    207 	struct uvm_object *uobj = NULL;
    208 	struct shmid_ds *shmseg;
    209 	int segnum;
    210 
    211 	KASSERT(mutex_owned(&shm_lock));
    212 
    213 	segnum = IPCID_TO_IX(shmmap_se->shmid);
    214 	shmseg = &shmsegs[segnum];
    215 	SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
    216 	shmmap_s->nitems--;
    217 	shmseg->shm_dtime = time_second;
    218 	if ((--shmseg->shm_nattch <= 0) &&
    219 	    (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
    220 		uobj = shmseg->_shm_internal;
    221 		shm_free_segment(segnum);
    222 	}
    223 
    224 	return uobj;
    225 }
    226 
    227 /*
    228  * Get a non-shared shm map for that vmspace.  Note, that memory
    229  * allocation might be performed with lock held.
    230  */
    231 static struct shmmap_state *
    232 shmmap_getprivate(struct proc *p)
    233 {
    234 	struct shmmap_state *oshmmap_s, *shmmap_s;
    235 	struct shmmap_entry *oshmmap_se, *shmmap_se;
    236 
    237 	KASSERT(mutex_owned(&shm_lock));
    238 
    239 	/* 1. A shm map with refcnt = 1, used by ourselves, thus return */
    240 	oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
    241 	if (oshmmap_s && oshmmap_s->nrefs == 1)
    242 		return oshmmap_s;
    243 
    244 	/* 2. No shm map preset - create a fresh one */
    245 	shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
    246 	shmmap_s->nrefs = 1;
    247 	SLIST_INIT(&shmmap_s->entries);
    248 	p->p_vmspace->vm_shm = (void *)shmmap_s;
    249 
    250 	if (oshmmap_s == NULL)
    251 		return shmmap_s;
    252 
    253 	SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
    254 	    p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
    255 
    256 	/* 3. A shared shm map, copy to a fresh one and adjust refcounts */
    257 	SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
    258 		shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
    259 		shmmap_se->va = oshmmap_se->va;
    260 		shmmap_se->shmid = oshmmap_se->shmid;
    261 		SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
    262 	}
    263 	shmmap_s->nitems = oshmmap_s->nitems;
    264 	oshmmap_s->nrefs--;
    265 
    266 	return shmmap_s;
    267 }
    268 
    269 /*
    270  * Lock/unlock the memory.
    271  *  => must be called with shm_lock held;
    272  */
    273 static int
    274 shm_memlock(struct shmid_ds *shmseg, int shmid, int cmd)
    275 {
    276 	size_t size;
    277 	int error;
    278 
    279 	KASSERT(mutex_owned(&shm_lock));
    280 
    281 	size = round_page(shmseg->shm_segsz);
    282 
    283 	if (cmd == SHM_LOCK && (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
    284 		/* Wire the object and map, then tag it */
    285 		error = uvm_obj_wirepages(shmseg->_shm_internal,
    286 		    0, size, NULL);
    287 		if (error)
    288 			return EIO;
    289 		shmseg->shm_perm.mode |= SHMSEG_WIRED;
    290 
    291 	} else if (cmd == SHM_UNLOCK &&
    292 	    (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
    293 		/* Unwire the object, then untag it */
    294 		uvm_obj_unwirepages(shmseg->_shm_internal, 0, size);
    295 		shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
    296 	}
    297 
    298 	return 0;
    299 }
    300 
    301 /*
    302  * Unmap shared memory.
    303  */
    304 int
    305 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
    306 {
    307 	/* {
    308 		syscallarg(const void *) shmaddr;
    309 	} */
    310 	struct proc *p = l->l_proc;
    311 	struct shmmap_state *shmmap_s1, *shmmap_s;
    312 	struct shmmap_entry *shmmap_se;
    313 	struct uvm_object *uobj;
    314 	struct shmid_ds *shmseg;
    315 	size_t size;
    316 
    317 	mutex_enter(&shm_lock);
    318 	/* In case of reallocation, we will wait for completion */
    319 	while (__predict_false(shm_realloc_state))
    320 		cv_wait(&shm_realloc_cv, &shm_lock);
    321 
    322 	shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
    323 	if (shmmap_s1 == NULL) {
    324 		mutex_exit(&shm_lock);
    325 		return EINVAL;
    326 	}
    327 
    328 	/* Find the map entry */
    329 	SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
    330 		if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
    331 			break;
    332 	if (shmmap_se == NULL) {
    333 		mutex_exit(&shm_lock);
    334 		return EINVAL;
    335 	}
    336 
    337 	shmmap_s = shmmap_getprivate(p);
    338 	if (shmmap_s != shmmap_s1) {
    339 		/* Map has been copied, lookup entry in new map */
    340 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
    341 			if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
    342 				break;
    343 		if (shmmap_se == NULL) {
    344 			mutex_exit(&shm_lock);
    345 			return EINVAL;
    346 		}
    347 	}
    348 
    349 	SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
    350 	    p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
    351 
    352 	/* Delete the entry from shm map */
    353 	uobj = shm_delete_mapping(shmmap_s, shmmap_se);
    354 	shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
    355 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
    356 	mutex_exit(&shm_lock);
    357 
    358 	uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
    359 	if (uobj != NULL) {
    360 		uao_detach(uobj);
    361 	}
    362 	kmem_free(shmmap_se, sizeof(struct shmmap_entry));
    363 
    364 	return 0;
    365 }
    366 
    367 /*
    368  * Map shared memory.
    369  */
    370 int
    371 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
    372 {
    373 	/* {
    374 		syscallarg(int) shmid;
    375 		syscallarg(const void *) shmaddr;
    376 		syscallarg(int) shmflg;
    377 	} */
    378 	int error, flags = 0;
    379 	struct proc *p = l->l_proc;
    380 	kauth_cred_t cred = l->l_cred;
    381 	struct shmid_ds *shmseg;
    382 	struct shmmap_state *shmmap_s;
    383 	struct shmmap_entry *shmmap_se;
    384 	struct uvm_object *uobj;
    385 	struct vmspace *vm;
    386 	vaddr_t attach_va;
    387 	vm_prot_t prot;
    388 	vsize_t size;
    389 
    390 	/* Allocate a new map entry and set it */
    391 	shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP);
    392 	shmmap_se->shmid = SCARG(uap, shmid);
    393 
    394 	mutex_enter(&shm_lock);
    395 	/* In case of reallocation, we will wait for completion */
    396 	while (__predict_false(shm_realloc_state))
    397 		cv_wait(&shm_realloc_cv, &shm_lock);
    398 
    399 	shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
    400 	if (shmseg == NULL) {
    401 		error = EINVAL;
    402 		goto err;
    403 	}
    404 	error = ipcperm(cred, &shmseg->shm_perm,
    405 	    (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
    406 	if (error)
    407 		goto err;
    408 
    409 	vm = p->p_vmspace;
    410 	shmmap_s = (struct shmmap_state *)vm->vm_shm;
    411 	if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
    412 		error = EMFILE;
    413 		goto err;
    414 	}
    415 
    416 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
    417 	prot = VM_PROT_READ;
    418 	if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
    419 		prot |= VM_PROT_WRITE;
    420 	if (SCARG(uap, shmaddr)) {
    421 		flags |= UVM_FLAG_FIXED;
    422 		if (SCARG(uap, shmflg) & SHM_RND)
    423 			attach_va =
    424 			    (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
    425 		else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
    426 			attach_va = (vaddr_t)SCARG(uap, shmaddr);
    427 		else {
    428 			error = EINVAL;
    429 			goto err;
    430 		}
    431 	} else {
    432 		/* This is just a hint to uvm_map() about where to put it. */
    433 		attach_va = p->p_emul->e_vm_default_addr(p,
    434 		    (vaddr_t)vm->vm_daddr, size,
    435 		    p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
    436 	}
    437 
    438 	/*
    439 	 * Create a map entry, add it to the list and increase the counters.
    440 	 * The lock will be dropped before the mapping, disable reallocation.
    441 	 */
    442 	shmmap_s = shmmap_getprivate(p);
    443 	SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
    444 	shmmap_s->nitems++;
    445 	shmseg->shm_lpid = p->p_pid;
    446 	shmseg->shm_nattch++;
    447 	shm_realloc_disable++;
    448 
    449 	/*
    450 	 * Add a reference to the uvm object while we hold the
    451 	 * shm_lock.
    452 	 */
    453 	uobj = shmseg->_shm_internal;
    454 	uao_reference(uobj);
    455 	mutex_exit(&shm_lock);
    456 
    457 	/*
    458 	 * Drop the shm_lock to map it into the address space, and lock
    459 	 * the memory, if needed (XXX where does this lock memory?).
    460 	 */
    461 	error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
    462 	    UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
    463 	if (error)
    464 		goto err_detach;
    465 
    466 	/* Set the new address, and update the time */
    467 	mutex_enter(&shm_lock);
    468 	shmmap_se->va = attach_va;
    469 	shmseg->shm_atime = time_second;
    470 	shm_realloc_disable--;
    471 	retval[0] = attach_va;
    472 	SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
    473 	    p->p_vmspace, shmmap_se->shmid, attach_va));
    474 err:
    475 	cv_broadcast(&shm_realloc_cv);
    476 	mutex_exit(&shm_lock);
    477 	if (error && shmmap_se) {
    478 		kmem_free(shmmap_se, sizeof(struct shmmap_entry));
    479 	}
    480 	return error;
    481 
    482 err_detach:
    483 	uao_detach(uobj);
    484 	mutex_enter(&shm_lock);
    485 	uobj = shm_delete_mapping(shmmap_s, shmmap_se);
    486 	shm_realloc_disable--;
    487 	cv_broadcast(&shm_realloc_cv);
    488 	mutex_exit(&shm_lock);
    489 	if (uobj != NULL) {
    490 		uao_detach(uobj);
    491 	}
    492 	kmem_free(shmmap_se, sizeof(struct shmmap_entry));
    493 	return error;
    494 }
    495 
    496 /*
    497  * Shared memory control operations.
    498  */
    499 int
    500 sys___shmctl50(struct lwp *l, const struct sys___shmctl50_args *uap,
    501     register_t *retval)
    502 {
    503 	/* {
    504 		syscallarg(int) shmid;
    505 		syscallarg(int) cmd;
    506 		syscallarg(struct shmid_ds *) buf;
    507 	} */
    508 	struct shmid_ds shmbuf;
    509 	int cmd, error;
    510 
    511 	cmd = SCARG(uap, cmd);
    512 	if (cmd == IPC_SET) {
    513 		error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
    514 		if (error)
    515 			return error;
    516 	}
    517 
    518 	error = shmctl1(l, SCARG(uap, shmid), cmd,
    519 	    (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
    520 
    521 	if (error == 0 && cmd == IPC_STAT)
    522 		error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
    523 
    524 	return error;
    525 }
    526 
    527 int
    528 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
    529 {
    530 	struct uvm_object *uobj = NULL;
    531 	kauth_cred_t cred = l->l_cred;
    532 	struct shmid_ds *shmseg;
    533 	int error = 0;
    534 
    535 	mutex_enter(&shm_lock);
    536 	/* In case of reallocation, we will wait for completion */
    537 	while (__predict_false(shm_realloc_state))
    538 		cv_wait(&shm_realloc_cv, &shm_lock);
    539 
    540 	shmseg = shm_find_segment_by_shmid(shmid);
    541 	if (shmseg == NULL) {
    542 		mutex_exit(&shm_lock);
    543 		return EINVAL;
    544 	}
    545 
    546 	switch (cmd) {
    547 	case IPC_STAT:
    548 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
    549 			break;
    550 		memset(shmbuf, 0, sizeof *shmbuf);
    551 		shmbuf->shm_perm = shmseg->shm_perm;
    552 		shmbuf->shm_perm.mode &= 0777;
    553 		shmbuf->shm_segsz = shmseg->shm_segsz;
    554 		shmbuf->shm_lpid = shmseg->shm_lpid;
    555 		shmbuf->shm_cpid = shmseg->shm_cpid;
    556 		shmbuf->shm_nattch = shmseg->shm_nattch;
    557 		shmbuf->shm_atime = shmseg->shm_atime;
    558 		shmbuf->shm_dtime = shmseg->shm_dtime;
    559 		shmbuf->shm_ctime = shmseg->shm_ctime;
    560 		break;
    561 	case IPC_SET:
    562 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
    563 			break;
    564 		shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
    565 		shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
    566 		shmseg->shm_perm.mode =
    567 		    (shmseg->shm_perm.mode & ~ACCESSPERMS) |
    568 		    (shmbuf->shm_perm.mode & ACCESSPERMS);
    569 		shmseg->shm_ctime = time_second;
    570 		break;
    571 	case IPC_RMID:
    572 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
    573 			break;
    574 		shmseg->shm_perm._key = IPC_PRIVATE;
    575 		shmseg->shm_perm.mode |= SHMSEG_REMOVED;
    576 		if (shmseg->shm_nattch <= 0) {
    577 			uobj = shmseg->_shm_internal;
    578 			shm_free_segment(IPCID_TO_IX(shmid));
    579 		}
    580 		break;
    581 	case SHM_LOCK:
    582 	case SHM_UNLOCK:
    583 		if ((error = kauth_authorize_system(cred,
    584 		    KAUTH_SYSTEM_SYSVIPC,
    585 		    (cmd == SHM_LOCK) ? KAUTH_REQ_SYSTEM_SYSVIPC_SHM_LOCK :
    586 		    KAUTH_REQ_SYSTEM_SYSVIPC_SHM_UNLOCK, NULL, NULL, NULL)) != 0)
    587 			break;
    588 		error = shm_memlock(shmseg, shmid, cmd);
    589 		break;
    590 	default:
    591 		error = EINVAL;
    592 	}
    593 
    594 	mutex_exit(&shm_lock);
    595 	if (uobj != NULL)
    596 		uao_detach(uobj);
    597 	return error;
    598 }
    599 
    600 /*
    601  * Try to take an already existing segment.
    602  *  => must be called with shm_lock held;
    603  *  => called from one place, thus, inline;
    604  */
    605 static inline int
    606 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
    607     register_t *retval)
    608 {
    609 	struct shmid_ds *shmseg;
    610 	kauth_cred_t cred = l->l_cred;
    611 	int segnum, error;
    612 again:
    613 	KASSERT(mutex_owned(&shm_lock));
    614 
    615 	/* Find segment by key */
    616 	for (segnum = 0; segnum < shminfo.shmmni; segnum++)
    617 		if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
    618 		    shmsegs[segnum].shm_perm._key == SCARG(uap, key))
    619 			break;
    620 	if (segnum == shminfo.shmmni) {
    621 		/* Not found */
    622 		return -1;
    623 	}
    624 
    625 	shmseg = &shmsegs[segnum];
    626 	if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
    627 		/*
    628 		 * This segment is in the process of being allocated.  Wait
    629 		 * until it's done, and look the key up again (in case the
    630 		 * allocation failed or it was freed).
    631 		 */
    632 		shmseg->shm_perm.mode |= SHMSEG_WANTED;
    633 		error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
    634 		if (error)
    635 			return error;
    636 		goto again;
    637 	}
    638 
    639 	/*
    640 	 * First check the flags, to generate a useful error when a
    641 	 * segment already exists.
    642 	 */
    643 	if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
    644 	    (IPC_CREAT | IPC_EXCL))
    645 		return EEXIST;
    646 
    647 	/* Check the permission and segment size. */
    648 	error = ipcperm(cred, &shmseg->shm_perm, mode);
    649 	if (error)
    650 		return error;
    651 	if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
    652 		return EINVAL;
    653 
    654 	*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
    655 	return 0;
    656 }
    657 
    658 int
    659 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
    660 {
    661 	/* {
    662 		syscallarg(key_t) key;
    663 		syscallarg(size_t) size;
    664 		syscallarg(int) shmflg;
    665 	} */
    666 	struct shmid_ds *shmseg;
    667 	kauth_cred_t cred = l->l_cred;
    668 	key_t key = SCARG(uap, key);
    669 	size_t size;
    670 	int error, mode, segnum;
    671 	bool lockmem;
    672 
    673 	mode = SCARG(uap, shmflg) & ACCESSPERMS;
    674 	if (SCARG(uap, shmflg) & _SHM_RMLINGER)
    675 		mode |= SHMSEG_RMLINGER;
    676 
    677 	SHMPRINTF(("shmget: key 0x%lx size 0x%zx shmflg 0x%x mode 0x%x\n",
    678 	    SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
    679 
    680 	mutex_enter(&shm_lock);
    681 	/* In case of reallocation, we will wait for completion */
    682 	while (__predict_false(shm_realloc_state))
    683 		cv_wait(&shm_realloc_cv, &shm_lock);
    684 
    685 	if (key != IPC_PRIVATE) {
    686 		error = shmget_existing(l, uap, mode, retval);
    687 		if (error != -1) {
    688 			mutex_exit(&shm_lock);
    689 			return error;
    690 		}
    691 		if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
    692 			mutex_exit(&shm_lock);
    693 			return ENOENT;
    694 		}
    695 	}
    696 	error = 0;
    697 
    698 	/*
    699 	 * Check the for the limits.
    700 	 */
    701 	size = SCARG(uap, size);
    702 	if (size < shminfo.shmmin || size > shminfo.shmmax) {
    703 		mutex_exit(&shm_lock);
    704 		return EINVAL;
    705 	}
    706 	if (shm_nused >= shminfo.shmmni) {
    707 		mutex_exit(&shm_lock);
    708 		return ENOSPC;
    709 	}
    710 	size = round_page(size);
    711 	if (shm_committed + btoc(size) > shminfo.shmall) {
    712 		mutex_exit(&shm_lock);
    713 		return ENOMEM;
    714 	}
    715 
    716 	/* Find the first available segment */
    717 	if (shm_last_free < 0) {
    718 		for (segnum = 0; segnum < shminfo.shmmni; segnum++)
    719 			if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
    720 				break;
    721 		KASSERT(segnum < shminfo.shmmni);
    722 	} else {
    723 		segnum = shm_last_free;
    724 		shm_last_free = -1;
    725 	}
    726 
    727 	/*
    728 	 * Initialize the segment.
    729 	 * We will drop the lock while allocating the memory, thus mark the
    730 	 * segment present, but removed, that no other thread could take it.
    731 	 * Also, disable reallocation, while lock is dropped.
    732 	 */
    733 	shmseg = &shmsegs[segnum];
    734 	shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
    735 	shm_committed += btoc(size);
    736 	shm_nused++;
    737 	lockmem = shm_use_phys;
    738 	shm_realloc_disable++;
    739 	mutex_exit(&shm_lock);
    740 
    741 	/* Allocate the memory object and lock it if needed */
    742 	shmseg->_shm_internal = uao_create(size, 0);
    743 	if (lockmem) {
    744 		/* Wire the pages and tag it */
    745 		error = uvm_obj_wirepages(shmseg->_shm_internal, 0, size, NULL);
    746 		if (error) {
    747 			uao_detach(shmseg->_shm_internal);
    748 			mutex_enter(&shm_lock);
    749 			shm_free_segment(segnum);
    750 			shm_realloc_disable--;
    751 			mutex_exit(&shm_lock);
    752 			return error;
    753 		}
    754 	}
    755 
    756 	/*
    757 	 * Please note, while segment is marked, there are no need to hold the
    758 	 * lock, while setting it (except shm_perm.mode).
    759 	 */
    760 	shmseg->shm_perm._key = SCARG(uap, key);
    761 	shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
    762 	*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
    763 
    764 	shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
    765 	shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
    766 	shmseg->shm_segsz = SCARG(uap, size);
    767 	shmseg->shm_cpid = l->l_proc->p_pid;
    768 	shmseg->shm_lpid = shmseg->shm_nattch = 0;
    769 	shmseg->shm_atime = shmseg->shm_dtime = 0;
    770 	shmseg->shm_ctime = time_second;
    771 
    772 	/*
    773 	 * Segment is initialized.
    774 	 * Enter the lock, mark as allocated, and notify waiters (if any).
    775 	 * Also, unmark the state of reallocation.
    776 	 */
    777 	mutex_enter(&shm_lock);
    778 	shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
    779 	    (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
    780 	    SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
    781 	if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
    782 		shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
    783 		cv_broadcast(&shm_cv[segnum]);
    784 	}
    785 	shm_realloc_disable--;
    786 	cv_broadcast(&shm_realloc_cv);
    787 	mutex_exit(&shm_lock);
    788 
    789 	return error;
    790 }
    791 
    792 void
    793 shmfork(struct vmspace *vm1, struct vmspace *vm2)
    794 {
    795 	struct shmmap_state *shmmap_s;
    796 	struct shmmap_entry *shmmap_se;
    797 
    798 	SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
    799 	mutex_enter(&shm_lock);
    800 	vm2->vm_shm = vm1->vm_shm;
    801 	if (vm1->vm_shm) {
    802 		shmmap_s = (struct shmmap_state *)vm1->vm_shm;
    803 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
    804 			shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
    805 		shmmap_s->nrefs++;
    806 	}
    807 	mutex_exit(&shm_lock);
    808 }
    809 
    810 void
    811 shmexit(struct vmspace *vm)
    812 {
    813 	struct shmmap_state *shmmap_s;
    814 	struct shmmap_entry *shmmap_se;
    815 
    816 	mutex_enter(&shm_lock);
    817 	shmmap_s = (struct shmmap_state *)vm->vm_shm;
    818 	if (shmmap_s == NULL) {
    819 		mutex_exit(&shm_lock);
    820 		return;
    821 	}
    822 	vm->vm_shm = NULL;
    823 
    824 	if (--shmmap_s->nrefs > 0) {
    825 		SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
    826 		    vm, shmmap_s->nitems, shmmap_s->nrefs));
    827 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
    828 			shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
    829 		}
    830 		mutex_exit(&shm_lock);
    831 		return;
    832 	}
    833 
    834 	SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, shmmap_s->nitems));
    835 	if (shmmap_s->nitems == 0) {
    836 		mutex_exit(&shm_lock);
    837 		kmem_free(shmmap_s, sizeof(struct shmmap_state));
    838 		return;
    839 	}
    840 
    841 	/*
    842 	 * Delete the entry from shm map.
    843 	 */
    844 	for (;;) {
    845 		struct shmid_ds *shmseg;
    846 		struct uvm_object *uobj;
    847 		size_t sz;
    848 
    849 		shmmap_se = SLIST_FIRST(&shmmap_s->entries);
    850 		KASSERT(shmmap_se != NULL);
    851 
    852 		shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
    853 		sz = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
    854 		/* shm_delete_mapping() removes from the list. */
    855 		uobj = shm_delete_mapping(shmmap_s, shmmap_se);
    856 		mutex_exit(&shm_lock);
    857 
    858 		uvm_deallocate(&vm->vm_map, shmmap_se->va, sz);
    859 		if (uobj != NULL) {
    860 			uao_detach(uobj);
    861 		}
    862 		kmem_free(shmmap_se, sizeof(struct shmmap_entry));
    863 
    864 		if (SLIST_EMPTY(&shmmap_s->entries)) {
    865 			break;
    866 		}
    867 		mutex_enter(&shm_lock);
    868 		KASSERT(!SLIST_EMPTY(&shmmap_s->entries));
    869 	}
    870 	kmem_free(shmmap_s, sizeof(struct shmmap_state));
    871 }
    872 
    873 static int
    874 shmrealloc(int newshmni)
    875 {
    876 	vaddr_t v;
    877 	struct shmid_ds *oldshmsegs, *newshmsegs;
    878 	kcondvar_t *newshm_cv, *oldshm_cv;
    879 	size_t sz;
    880 	int i, lsegid, oldshmni;
    881 
    882 	if (newshmni < 1)
    883 		return EINVAL;
    884 
    885 	/* Allocate new memory area */
    886 	sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
    887 	    ALIGN(newshmni * sizeof(kcondvar_t));
    888 	sz = round_page(sz);
    889 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    890 	if (v == 0)
    891 		return ENOMEM;
    892 
    893 	mutex_enter(&shm_lock);
    894 	while (shm_realloc_state || shm_realloc_disable)
    895 		cv_wait(&shm_realloc_cv, &shm_lock);
    896 
    897 	/*
    898 	 * Get the number of last segment.  Fail we are trying to
    899 	 * reallocate less memory than we use.
    900 	 */
    901 	lsegid = 0;
    902 	for (i = 0; i < shminfo.shmmni; i++)
    903 		if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
    904 			lsegid = i;
    905 	if (lsegid >= newshmni) {
    906 		mutex_exit(&shm_lock);
    907 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
    908 		return EBUSY;
    909 	}
    910 	shm_realloc_state = true;
    911 
    912 	newshmsegs = (void *)v;
    913 	newshm_cv = (void *)((uintptr_t)newshmsegs +
    914 	    ALIGN(newshmni * sizeof(struct shmid_ds)));
    915 
    916 	/* Copy all memory to the new area */
    917 	for (i = 0; i < shm_nused; i++) {
    918 		cv_init(&newshm_cv[i], "shmwait");
    919 		(void)memcpy(&newshmsegs[i], &shmsegs[i],
    920 		    sizeof(newshmsegs[0]));
    921 	}
    922 
    923 	/* Mark as free all new segments, if there is any */
    924 	for (; i < newshmni; i++) {
    925 		cv_init(&newshm_cv[i], "shmwait");
    926 		newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
    927 		newshmsegs[i].shm_perm._seq = 0;
    928 	}
    929 
    930 	oldshmsegs = shmsegs;
    931 	oldshmni = shminfo.shmmni;
    932 	shminfo.shmmni = newshmni;
    933 	shmsegs = newshmsegs;
    934 	shm_cv = newshm_cv;
    935 
    936 	/* Reallocation completed - notify all waiters, if any */
    937 	shm_realloc_state = false;
    938 	cv_broadcast(&shm_realloc_cv);
    939 	mutex_exit(&shm_lock);
    940 
    941 	/* Release now unused resources. */
    942 	oldshm_cv = (void *)((uintptr_t)oldshmsegs +
    943 	    ALIGN(oldshmni * sizeof(struct shmid_ds)));
    944 	for (i = 0; i < oldshmni; i++)
    945 		cv_destroy(&oldshm_cv[i]);
    946 
    947 	sz = ALIGN(oldshmni * sizeof(struct shmid_ds)) +
    948 	    ALIGN(oldshmni * sizeof(kcondvar_t));
    949 	sz = round_page(sz);
    950 	uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
    951 
    952 	return 0;
    953 }
    954 
    955 int
    956 shminit(struct sysctllog **clog)
    957 {
    958 	vaddr_t v;
    959 	size_t sz;
    960 	int i;
    961 
    962 	mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
    963 	cv_init(&shm_realloc_cv, "shmrealc");
    964 
    965 	/* Allocate the wired memory for our structures */
    966 	sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
    967 	    ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
    968 	sz = round_page(sz);
    969 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
    970 	if (v == 0) {
    971 		printf("sysv_shm: cannot allocate memory");
    972 		return ENOMEM;
    973 	}
    974 	shmsegs = (void *)v;
    975 	shm_cv = (void *)((uintptr_t)shmsegs +
    976 	    ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)));
    977 
    978 	if (shminfo.shmmax == 0)
    979 		shminfo.shmmax = uimax(physmem / 4, 1024) * PAGE_SIZE;
    980 	else
    981 		shminfo.shmmax *= PAGE_SIZE;
    982 	shminfo.shmall = shminfo.shmmax / PAGE_SIZE;
    983 
    984 	for (i = 0; i < shminfo.shmmni; i++) {
    985 		cv_init(&shm_cv[i], "shmwait");
    986 		shmsegs[i].shm_perm.mode = SHMSEG_FREE;
    987 		shmsegs[i].shm_perm._seq = 0;
    988 	}
    989 	shm_last_free = 0;
    990 	shm_nused = 0;
    991 	shm_committed = 0;
    992 	shm_realloc_disable = 0;
    993 	shm_realloc_state = false;
    994 
    995 	kern_has_sysvshm = 1;
    996 
    997 	/* Load the callback function pointers for the uvm subsystem */
    998 	uvm_shmexit = shmexit;
    999 	uvm_shmfork = shmfork;
   1000 
   1001 #ifdef _MODULE
   1002 	if (clog)
   1003 		sysctl_ipc_shm_setup(clog);
   1004 #endif
   1005 	return 0;
   1006 }
   1007 
   1008 int
   1009 shmfini(void)
   1010 {
   1011 	size_t sz;
   1012 	int i;
   1013 	vaddr_t v = (vaddr_t)shmsegs;
   1014 
   1015 	mutex_enter(&shm_lock);
   1016 	if (shm_nused) {
   1017 		mutex_exit(&shm_lock);
   1018 		return 1;
   1019 	}
   1020 
   1021 	/* Clear the callback function pointers for the uvm subsystem */
   1022 	uvm_shmexit = NULL;
   1023 	uvm_shmfork = NULL;
   1024 
   1025 	/* Destroy all condvars */
   1026 	for (i = 0; i < shminfo.shmmni; i++)
   1027 		cv_destroy(&shm_cv[i]);
   1028 	cv_destroy(&shm_realloc_cv);
   1029 
   1030 	/* Free the allocated/wired memory */
   1031 	sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
   1032 	    ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
   1033 	sz = round_page(sz);
   1034 	uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
   1035 
   1036 	/* Release and destroy our mutex */
   1037 	mutex_exit(&shm_lock);
   1038 	mutex_destroy(&shm_lock);
   1039 
   1040 	kern_has_sysvshm = 0;
   1041 
   1042 	return 0;
   1043 }
   1044 
   1045 static int
   1046 sysctl_ipc_shmmni(SYSCTLFN_ARGS)
   1047 {
   1048 	int newsize, error;
   1049 	struct sysctlnode node;
   1050 	node = *rnode;
   1051 	node.sysctl_data = &newsize;
   1052 
   1053 	newsize = shminfo.shmmni;
   1054 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1055 	if (error || newp == NULL)
   1056 		return error;
   1057 
   1058 	sysctl_unlock();
   1059 	error = shmrealloc(newsize);
   1060 	sysctl_relock();
   1061 	return error;
   1062 }
   1063 
   1064 static int
   1065 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
   1066 {
   1067 	uint32_t newsize;
   1068 	int error;
   1069 	struct sysctlnode node;
   1070 	node = *rnode;
   1071 	node.sysctl_data = &newsize;
   1072 
   1073 	newsize = shminfo.shmall;
   1074 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1075 	if (error || newp == NULL)
   1076 		return error;
   1077 
   1078 	if (newsize < 1)
   1079 		return EINVAL;
   1080 
   1081 	shminfo.shmall = newsize;
   1082 	shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE;
   1083 
   1084 	return 0;
   1085 }
   1086 
   1087 static int
   1088 sysctl_ipc_shmmax(SYSCTLFN_ARGS)
   1089 {
   1090 	uint64_t newsize;
   1091 	int error;
   1092 	struct sysctlnode node;
   1093 	node = *rnode;
   1094 	node.sysctl_data = &newsize;
   1095 
   1096 	newsize = shminfo.shmmax;
   1097 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1098 	if (error || newp == NULL)
   1099 		return error;
   1100 
   1101 	if (newsize < PAGE_SIZE)
   1102 		return EINVAL;
   1103 
   1104 	shminfo.shmmax = round_page(newsize);
   1105 	shminfo.shmall = shminfo.shmmax >> PAGE_SHIFT;
   1106 
   1107 	return 0;
   1108 }
   1109 
   1110 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
   1111 {
   1112 
   1113 	sysctl_createv(clog, 0, NULL, NULL,
   1114 		CTLFLAG_PERMANENT,
   1115 		CTLTYPE_NODE, "ipc",
   1116 		SYSCTL_DESCR("SysV IPC options"),
   1117 		NULL, 0, NULL, 0,
   1118 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
   1119 	sysctl_createv(clog, 0, NULL, NULL,
   1120 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1121 		CTLTYPE_QUAD, "shmmax",
   1122 		SYSCTL_DESCR("Max shared memory segment size in bytes"),
   1123 		sysctl_ipc_shmmax, 0, &shminfo.shmmax, 0,
   1124 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
   1125 	sysctl_createv(clog, 0, NULL, NULL,
   1126 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1127 		CTLTYPE_INT, "shmmni",
   1128 		SYSCTL_DESCR("Max number of shared memory identifiers"),
   1129 		sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
   1130 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
   1131 	sysctl_createv(clog, 0, NULL, NULL,
   1132 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1133 		CTLTYPE_INT, "shmseg",
   1134 		SYSCTL_DESCR("Max shared memory segments per process"),
   1135 		NULL, 0, &shminfo.shmseg, 0,
   1136 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
   1137 	sysctl_createv(clog, 0, NULL, NULL,
   1138 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1139 		CTLTYPE_INT, "shmmaxpgs",
   1140 		SYSCTL_DESCR("Max amount of shared memory in pages"),
   1141 		sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
   1142 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
   1143 	sysctl_createv(clog, 0, NULL, NULL,
   1144 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1145 		CTLTYPE_INT, "shm_use_phys",
   1146 		SYSCTL_DESCR("Enable/disable locking of shared memory in "
   1147 		    "physical memory"), NULL, 0, &shm_use_phys, 0,
   1148 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
   1149 }
   1150