uipc_mbuf.c revision 1.242 1 /* $NetBSD: uipc_mbuf.c,v 1.242 2021/03/04 01:35:31 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2001, 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and Maxime Villard.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_mbuf.c 8.4 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uipc_mbuf.c,v 1.242 2021/03/04 01:35:31 msaitoh Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_mbuftrace.h"
69 #include "opt_nmbclusters.h"
70 #include "opt_ddb.h"
71 #include "ether.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/atomic.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/mbuf.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 #include <sys/domain.h>
83 #include <sys/protosw.h>
84 #include <sys/percpu.h>
85 #include <sys/pool.h>
86 #include <sys/socket.h>
87 #include <sys/sysctl.h>
88
89 #include <net/if.h>
90
91 pool_cache_t mb_cache; /* mbuf cache */
92 static pool_cache_t mcl_cache; /* mbuf cluster cache */
93
94 struct mbstat mbstat;
95 int max_linkhdr;
96 int max_protohdr;
97 int max_hdr;
98 int max_datalen;
99
100 static void mb_drain(void *, int);
101 static int mb_ctor(void *, void *, int);
102
103 static void sysctl_kern_mbuf_setup(void);
104
105 static struct sysctllog *mbuf_sysctllog;
106
107 static struct mbuf *m_copy_internal(struct mbuf *, int, int, int, bool);
108 static struct mbuf *m_split_internal(struct mbuf *, int, int, bool);
109 static int m_copyback_internal(struct mbuf **, int, int, const void *,
110 int, int);
111
112 /* Flags for m_copyback_internal. */
113 #define CB_COPYBACK 0x0001 /* copyback from cp */
114 #define CB_PRESERVE 0x0002 /* preserve original data */
115 #define CB_COW 0x0004 /* do copy-on-write */
116 #define CB_EXTEND 0x0008 /* extend chain */
117
118 static const char mclpool_warnmsg[] =
119 "WARNING: mclpool limit reached; increase kern.mbuf.nmbclusters";
120
121 MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
122
123 void *watchpoint = (void *)0xdeadbeefdeadbeef;
124 static percpu_t *mbstat_percpu;
125
126 #ifdef MBUFTRACE
127 struct mownerhead mowners = LIST_HEAD_INITIALIZER(mowners);
128 struct mowner unknown_mowners[] = {
129 MOWNER_INIT("unknown", "free"),
130 MOWNER_INIT("unknown", "data"),
131 MOWNER_INIT("unknown", "header"),
132 MOWNER_INIT("unknown", "soname"),
133 MOWNER_INIT("unknown", "soopts"),
134 MOWNER_INIT("unknown", "ftable"),
135 MOWNER_INIT("unknown", "control"),
136 MOWNER_INIT("unknown", "oobdata"),
137 };
138 struct mowner revoked_mowner = MOWNER_INIT("revoked", "");
139 #endif
140
141 #define MEXT_ISEMBEDDED(m) ((m)->m_ext_ref == (m))
142
143 #define MCLADDREFERENCE(o, n) \
144 do { \
145 KASSERT(((o)->m_flags & M_EXT) != 0); \
146 KASSERT(((n)->m_flags & M_EXT) == 0); \
147 KASSERT((o)->m_ext.ext_refcnt >= 1); \
148 (n)->m_flags |= ((o)->m_flags & M_EXTCOPYFLAGS); \
149 atomic_inc_uint(&(o)->m_ext.ext_refcnt); \
150 (n)->m_ext_ref = (o)->m_ext_ref; \
151 mowner_ref((n), (n)->m_flags); \
152 } while (/* CONSTCOND */ 0)
153
154 static int
155 nmbclusters_limit(void)
156 {
157 #if defined(PMAP_MAP_POOLPAGE)
158 /* direct mapping, doesn't use space in kmem_arena */
159 vsize_t max_size = physmem / 4;
160 #else
161 vsize_t max_size = MIN(physmem / 4, nkmempages / 4);
162 #endif
163
164 max_size = max_size * PAGE_SIZE / MCLBYTES;
165 #ifdef NMBCLUSTERS_MAX
166 max_size = MIN(max_size, NMBCLUSTERS_MAX);
167 #endif
168
169 #ifdef NMBCLUSTERS
170 return MIN(max_size, NMBCLUSTERS);
171 #else
172 return max_size;
173 #endif
174 }
175
176 /*
177 * Initialize the mbuf allocator.
178 */
179 void
180 mbinit(void)
181 {
182
183 CTASSERT(sizeof(struct _m_ext) <= MHLEN);
184 CTASSERT(sizeof(struct mbuf) == MSIZE);
185
186 sysctl_kern_mbuf_setup();
187
188 mb_cache = pool_cache_init(msize, 0, 0, 0, "mbpl",
189 NULL, IPL_VM, mb_ctor, NULL, NULL);
190 KASSERT(mb_cache != NULL);
191
192 mcl_cache = pool_cache_init(mclbytes, COHERENCY_UNIT, 0, 0, "mclpl",
193 NULL, IPL_VM, NULL, NULL, NULL);
194 KASSERT(mcl_cache != NULL);
195
196 pool_cache_set_drain_hook(mb_cache, mb_drain, NULL);
197 pool_cache_set_drain_hook(mcl_cache, mb_drain, NULL);
198
199 /*
200 * Set an arbitrary default limit on the number of mbuf clusters.
201 */
202 #ifdef NMBCLUSTERS
203 nmbclusters = nmbclusters_limit();
204 #else
205 nmbclusters = MAX(1024,
206 (vsize_t)physmem * PAGE_SIZE / MCLBYTES / 16);
207 nmbclusters = MIN(nmbclusters, nmbclusters_limit());
208 #endif
209
210 /*
211 * Set the hard limit on the mclpool to the number of
212 * mbuf clusters the kernel is to support. Log the limit
213 * reached message max once a minute.
214 */
215 pool_cache_sethardlimit(mcl_cache, nmbclusters, mclpool_warnmsg, 60);
216
217 mbstat_percpu = percpu_alloc(sizeof(struct mbstat_cpu));
218
219 /*
220 * Set a low water mark for both mbufs and clusters. This should
221 * help ensure that they can be allocated in a memory starvation
222 * situation. This is important for e.g. diskless systems which
223 * must allocate mbufs in order for the pagedaemon to clean pages.
224 */
225 pool_cache_setlowat(mb_cache, mblowat);
226 pool_cache_setlowat(mcl_cache, mcllowat);
227
228 #ifdef MBUFTRACE
229 {
230 /*
231 * Attach the unknown mowners.
232 */
233 int i;
234 MOWNER_ATTACH(&revoked_mowner);
235 for (i = sizeof(unknown_mowners)/sizeof(unknown_mowners[0]);
236 i-- > 0; )
237 MOWNER_ATTACH(&unknown_mowners[i]);
238 }
239 #endif
240 }
241
242 static void
243 mb_drain(void *arg, int flags)
244 {
245 struct domain *dp;
246 const struct protosw *pr;
247 struct ifnet *ifp;
248 int s;
249
250 KERNEL_LOCK(1, NULL);
251 s = splvm();
252 DOMAIN_FOREACH(dp) {
253 for (pr = dp->dom_protosw;
254 pr < dp->dom_protoswNPROTOSW; pr++)
255 if (pr->pr_drain)
256 (*pr->pr_drain)();
257 }
258 /* XXX we cannot use psref in H/W interrupt */
259 if (!cpu_intr_p()) {
260 int bound = curlwp_bind();
261 IFNET_READER_FOREACH(ifp) {
262 struct psref psref;
263
264 if_acquire(ifp, &psref);
265
266 if (ifp->if_drain)
267 (*ifp->if_drain)(ifp);
268
269 if_release(ifp, &psref);
270 }
271 curlwp_bindx(bound);
272 }
273 splx(s);
274 mbstat.m_drain++;
275 KERNEL_UNLOCK_ONE(NULL);
276 }
277
278 /*
279 * sysctl helper routine for the kern.mbuf subtree.
280 * nmbclusters, mblowat and mcllowat need range
281 * checking and pool tweaking after being reset.
282 */
283 static int
284 sysctl_kern_mbuf(SYSCTLFN_ARGS)
285 {
286 int error, newval;
287 struct sysctlnode node;
288
289 node = *rnode;
290 node.sysctl_data = &newval;
291 switch (rnode->sysctl_num) {
292 case MBUF_NMBCLUSTERS:
293 case MBUF_MBLOWAT:
294 case MBUF_MCLLOWAT:
295 newval = *(int*)rnode->sysctl_data;
296 break;
297 default:
298 return EOPNOTSUPP;
299 }
300
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304 if (newval < 0)
305 return EINVAL;
306
307 switch (node.sysctl_num) {
308 case MBUF_NMBCLUSTERS:
309 if (newval < nmbclusters)
310 return EINVAL;
311 if (newval > nmbclusters_limit())
312 return EINVAL;
313 nmbclusters = newval;
314 pool_cache_sethardlimit(mcl_cache, nmbclusters,
315 mclpool_warnmsg, 60);
316 break;
317 case MBUF_MBLOWAT:
318 mblowat = newval;
319 pool_cache_setlowat(mb_cache, mblowat);
320 break;
321 case MBUF_MCLLOWAT:
322 mcllowat = newval;
323 pool_cache_setlowat(mcl_cache, mcllowat);
324 break;
325 }
326
327 return 0;
328 }
329
330 #ifdef MBUFTRACE
331 static void
332 mowner_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
333 {
334 struct mowner_counter *mc = v1;
335 struct mowner_user *mo_user = v2;
336 int i;
337
338 for (i = 0; i < MOWNER_COUNTER_NCOUNTERS; i++) {
339 mo_user->mo_counter[i] += mc->mc_counter[i];
340 }
341 }
342
343 static void
344 mowner_convert_to_user(struct mowner *mo, struct mowner_user *mo_user)
345 {
346
347 memset(mo_user, 0, sizeof(*mo_user));
348 CTASSERT(sizeof(mo_user->mo_name) == sizeof(mo->mo_name));
349 CTASSERT(sizeof(mo_user->mo_descr) == sizeof(mo->mo_descr));
350 memcpy(mo_user->mo_name, mo->mo_name, sizeof(mo->mo_name));
351 memcpy(mo_user->mo_descr, mo->mo_descr, sizeof(mo->mo_descr));
352 percpu_foreach(mo->mo_counters, mowner_convert_to_user_cb, mo_user);
353 }
354
355 static int
356 sysctl_kern_mbuf_mowners(SYSCTLFN_ARGS)
357 {
358 struct mowner *mo;
359 size_t len = 0;
360 int error = 0;
361
362 if (namelen != 0)
363 return EINVAL;
364 if (newp != NULL)
365 return EPERM;
366
367 LIST_FOREACH(mo, &mowners, mo_link) {
368 struct mowner_user mo_user;
369
370 mowner_convert_to_user(mo, &mo_user);
371
372 if (oldp != NULL) {
373 if (*oldlenp - len < sizeof(mo_user)) {
374 error = ENOMEM;
375 break;
376 }
377 error = copyout(&mo_user, (char *)oldp + len,
378 sizeof(mo_user));
379 if (error)
380 break;
381 }
382 len += sizeof(mo_user);
383 }
384
385 if (error == 0)
386 *oldlenp = len;
387
388 return error;
389 }
390 #endif /* MBUFTRACE */
391
392 void
393 mbstat_type_add(int type, int diff)
394 {
395 struct mbstat_cpu *mb;
396 int s;
397
398 s = splvm();
399 mb = percpu_getref(mbstat_percpu);
400 mb->m_mtypes[type] += diff;
401 percpu_putref(mbstat_percpu);
402 splx(s);
403 }
404
405 static void
406 mbstat_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
407 {
408 struct mbstat_cpu *mbsc = v1;
409 struct mbstat *mbs = v2;
410 int i;
411
412 for (i = 0; i < __arraycount(mbs->m_mtypes); i++) {
413 mbs->m_mtypes[i] += mbsc->m_mtypes[i];
414 }
415 }
416
417 static void
418 mbstat_convert_to_user(struct mbstat *mbs)
419 {
420
421 memset(mbs, 0, sizeof(*mbs));
422 mbs->m_drain = mbstat.m_drain;
423 percpu_foreach(mbstat_percpu, mbstat_convert_to_user_cb, mbs);
424 }
425
426 static int
427 sysctl_kern_mbuf_stats(SYSCTLFN_ARGS)
428 {
429 struct sysctlnode node;
430 struct mbstat mbs;
431
432 mbstat_convert_to_user(&mbs);
433 node = *rnode;
434 node.sysctl_data = &mbs;
435 node.sysctl_size = sizeof(mbs);
436 return sysctl_lookup(SYSCTLFN_CALL(&node));
437 }
438
439 static void
440 sysctl_kern_mbuf_setup(void)
441 {
442
443 KASSERT(mbuf_sysctllog == NULL);
444 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
445 CTLFLAG_PERMANENT,
446 CTLTYPE_NODE, "mbuf",
447 SYSCTL_DESCR("mbuf control variables"),
448 NULL, 0, NULL, 0,
449 CTL_KERN, KERN_MBUF, CTL_EOL);
450
451 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
452 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
453 CTLTYPE_INT, "msize",
454 SYSCTL_DESCR("mbuf base size"),
455 NULL, msize, NULL, 0,
456 CTL_KERN, KERN_MBUF, MBUF_MSIZE, CTL_EOL);
457 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
458 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
459 CTLTYPE_INT, "mclbytes",
460 SYSCTL_DESCR("mbuf cluster size"),
461 NULL, mclbytes, NULL, 0,
462 CTL_KERN, KERN_MBUF, MBUF_MCLBYTES, CTL_EOL);
463 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
465 CTLTYPE_INT, "nmbclusters",
466 SYSCTL_DESCR("Limit on the number of mbuf clusters"),
467 sysctl_kern_mbuf, 0, &nmbclusters, 0,
468 CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS, CTL_EOL);
469 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
470 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
471 CTLTYPE_INT, "mblowat",
472 SYSCTL_DESCR("mbuf low water mark"),
473 sysctl_kern_mbuf, 0, &mblowat, 0,
474 CTL_KERN, KERN_MBUF, MBUF_MBLOWAT, CTL_EOL);
475 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
476 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
477 CTLTYPE_INT, "mcllowat",
478 SYSCTL_DESCR("mbuf cluster low water mark"),
479 sysctl_kern_mbuf, 0, &mcllowat, 0,
480 CTL_KERN, KERN_MBUF, MBUF_MCLLOWAT, CTL_EOL);
481 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
482 CTLFLAG_PERMANENT,
483 CTLTYPE_STRUCT, "stats",
484 SYSCTL_DESCR("mbuf allocation statistics"),
485 sysctl_kern_mbuf_stats, 0, NULL, 0,
486 CTL_KERN, KERN_MBUF, MBUF_STATS, CTL_EOL);
487 #ifdef MBUFTRACE
488 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
489 CTLFLAG_PERMANENT,
490 CTLTYPE_STRUCT, "mowners",
491 SYSCTL_DESCR("Information about mbuf owners"),
492 sysctl_kern_mbuf_mowners, 0, NULL, 0,
493 CTL_KERN, KERN_MBUF, MBUF_MOWNERS, CTL_EOL);
494 #endif
495 }
496
497 static int
498 mb_ctor(void *arg, void *object, int flags)
499 {
500 struct mbuf *m = object;
501
502 #ifdef POOL_VTOPHYS
503 m->m_paddr = POOL_VTOPHYS(m);
504 #else
505 m->m_paddr = M_PADDR_INVALID;
506 #endif
507 return 0;
508 }
509
510 /*
511 * Add mbuf to the end of a chain
512 */
513 struct mbuf *
514 m_add(struct mbuf *c, struct mbuf *m)
515 {
516 struct mbuf *n;
517
518 if (c == NULL)
519 return m;
520
521 for (n = c; n->m_next != NULL; n = n->m_next)
522 continue;
523 n->m_next = m;
524 return c;
525 }
526
527 struct mbuf *
528 m_get(int how, int type)
529 {
530 struct mbuf *m;
531
532 KASSERT(type != MT_FREE);
533
534 m = pool_cache_get(mb_cache,
535 how == M_WAIT ? PR_WAITOK|PR_LIMITFAIL : PR_NOWAIT);
536 if (m == NULL)
537 return NULL;
538 KASSERT(((vaddr_t)m->m_dat & PAGE_MASK) + MLEN <= PAGE_SIZE);
539
540 mbstat_type_add(type, 1);
541
542 mowner_init(m, type);
543 m->m_ext_ref = m; /* default */
544 m->m_type = type;
545 m->m_len = 0;
546 m->m_next = NULL;
547 m->m_nextpkt = NULL; /* default */
548 m->m_data = m->m_dat;
549 m->m_flags = 0; /* default */
550
551 return m;
552 }
553
554 struct mbuf *
555 m_gethdr(int how, int type)
556 {
557 struct mbuf *m;
558
559 m = m_get(how, type);
560 if (m == NULL)
561 return NULL;
562
563 m->m_data = m->m_pktdat;
564 m->m_flags = M_PKTHDR;
565
566 m_reset_rcvif(m);
567 m->m_pkthdr.len = 0;
568 m->m_pkthdr.csum_flags = 0;
569 m->m_pkthdr.csum_data = 0;
570 m->m_pkthdr.segsz = 0;
571 m->m_pkthdr.ether_vtag = 0;
572 m->m_pkthdr.pkthdr_flags = 0;
573 SLIST_INIT(&m->m_pkthdr.tags);
574
575 m->m_pkthdr.pattr_class = NULL;
576 m->m_pkthdr.pattr_af = AF_UNSPEC;
577 m->m_pkthdr.pattr_hdr = NULL;
578
579 return m;
580 }
581
582 void
583 m_clget(struct mbuf *m, int how)
584 {
585 m->m_ext_storage.ext_buf = (char *)pool_cache_get_paddr(mcl_cache,
586 how == M_WAIT ? (PR_WAITOK|PR_LIMITFAIL) : PR_NOWAIT,
587 &m->m_ext_storage.ext_paddr);
588
589 if (m->m_ext_storage.ext_buf == NULL)
590 return;
591
592 KASSERT(((vaddr_t)m->m_ext_storage.ext_buf & PAGE_MASK) + mclbytes
593 <= PAGE_SIZE);
594
595 MCLINITREFERENCE(m);
596 m->m_data = m->m_ext.ext_buf;
597 m->m_flags = (m->m_flags & ~M_EXTCOPYFLAGS) |
598 M_EXT|M_EXT_CLUSTER|M_EXT_RW;
599 m->m_ext.ext_size = MCLBYTES;
600 m->m_ext.ext_free = NULL;
601 m->m_ext.ext_arg = NULL;
602 /* ext_paddr initialized above */
603
604 mowner_ref(m, M_EXT|M_EXT_CLUSTER);
605 }
606
607 struct mbuf *
608 m_getcl(int how, int type, int flags)
609 {
610 struct mbuf *mp;
611
612 if ((flags & M_PKTHDR) != 0)
613 mp = m_gethdr(how, type);
614 else
615 mp = m_get(how, type);
616
617 if (mp == NULL)
618 return NULL;
619
620 MCLGET(mp, how);
621 if ((mp->m_flags & M_EXT) != 0)
622 return mp;
623
624 m_free(mp);
625 return NULL;
626 }
627
628 /*
629 * Utility function for M_PREPEND. Do *NOT* use it directly.
630 */
631 struct mbuf *
632 m_prepend(struct mbuf *m, int len, int how)
633 {
634 struct mbuf *mn;
635
636 if (__predict_false(len > MHLEN)) {
637 panic("%s: len > MHLEN", __func__);
638 }
639
640 KASSERT(len != M_COPYALL);
641 mn = m_get(how, m->m_type);
642 if (mn == NULL) {
643 m_freem(m);
644 return NULL;
645 }
646
647 if (m->m_flags & M_PKTHDR) {
648 m_move_pkthdr(mn, m);
649 } else {
650 MCLAIM(mn, m->m_owner);
651 }
652 mn->m_next = m;
653 m = mn;
654
655 if (m->m_flags & M_PKTHDR) {
656 if (len < MHLEN)
657 m_align(m, len);
658 } else {
659 if (len < MLEN)
660 m_align(m, len);
661 }
662
663 m->m_len = len;
664 return m;
665 }
666
667 struct mbuf *
668 m_copym(struct mbuf *m, int off, int len, int wait)
669 {
670 /* Shallow copy on M_EXT. */
671 return m_copy_internal(m, off, len, wait, false);
672 }
673
674 struct mbuf *
675 m_dup(struct mbuf *m, int off, int len, int wait)
676 {
677 /* Deep copy. */
678 return m_copy_internal(m, off, len, wait, true);
679 }
680
681 static inline int
682 m_copylen(int len, int copylen)
683 {
684 return (len == M_COPYALL) ? copylen : uimin(len, copylen);
685 }
686
687 static struct mbuf *
688 m_copy_internal(struct mbuf *m, int off0, int len, int wait, bool deep)
689 {
690 struct mbuf *n, **np;
691 int off = off0;
692 struct mbuf *top;
693 int copyhdr = 0;
694
695 if (off < 0 || (len != M_COPYALL && len < 0))
696 panic("%s: off %d, len %d", __func__, off, len);
697 if (off == 0 && m->m_flags & M_PKTHDR)
698 copyhdr = 1;
699 while (off > 0) {
700 if (m == NULL)
701 panic("%s: m == NULL, off %d", __func__, off);
702 if (off < m->m_len)
703 break;
704 off -= m->m_len;
705 m = m->m_next;
706 }
707
708 np = ⊤
709 top = NULL;
710 while (len == M_COPYALL || len > 0) {
711 if (m == NULL) {
712 if (len != M_COPYALL)
713 panic("%s: m == NULL, len %d [!COPYALL]",
714 __func__, len);
715 break;
716 }
717
718 n = m_get(wait, m->m_type);
719 *np = n;
720 if (n == NULL)
721 goto nospace;
722 MCLAIM(n, m->m_owner);
723
724 if (copyhdr) {
725 m_copy_pkthdr(n, m);
726 if (len == M_COPYALL)
727 n->m_pkthdr.len -= off0;
728 else
729 n->m_pkthdr.len = len;
730 copyhdr = 0;
731 }
732 n->m_len = m_copylen(len, m->m_len - off);
733
734 if (m->m_flags & M_EXT) {
735 if (!deep) {
736 n->m_data = m->m_data + off;
737 MCLADDREFERENCE(m, n);
738 } else {
739 /*
740 * We don't care if MCLGET fails. n->m_len is
741 * recomputed and handles that.
742 */
743 MCLGET(n, wait);
744 n->m_len = 0;
745 n->m_len = M_TRAILINGSPACE(n);
746 n->m_len = m_copylen(len, n->m_len);
747 n->m_len = uimin(n->m_len, m->m_len - off);
748 memcpy(mtod(n, void *), mtod(m, char *) + off,
749 (unsigned)n->m_len);
750 }
751 } else {
752 memcpy(mtod(n, void *), mtod(m, char *) + off,
753 (unsigned)n->m_len);
754 }
755
756 if (len != M_COPYALL)
757 len -= n->m_len;
758 off += n->m_len;
759
760 KASSERT(off <= m->m_len);
761
762 if (off == m->m_len) {
763 m = m->m_next;
764 off = 0;
765 }
766 np = &n->m_next;
767 }
768
769 return top;
770
771 nospace:
772 m_freem(top);
773 return NULL;
774 }
775
776 /*
777 * Copy an entire packet, including header (which must be present).
778 * An optimization of the common case 'm_copym(m, 0, M_COPYALL, how)'.
779 */
780 struct mbuf *
781 m_copypacket(struct mbuf *m, int how)
782 {
783 struct mbuf *top, *n, *o;
784
785 if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
786 panic("%s: no header (m = %p)", __func__, m);
787 }
788
789 n = m_get(how, m->m_type);
790 top = n;
791 if (!n)
792 goto nospace;
793
794 MCLAIM(n, m->m_owner);
795 m_copy_pkthdr(n, m);
796 n->m_len = m->m_len;
797 if (m->m_flags & M_EXT) {
798 n->m_data = m->m_data;
799 MCLADDREFERENCE(m, n);
800 } else {
801 memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
802 }
803
804 m = m->m_next;
805 while (m) {
806 o = m_get(how, m->m_type);
807 if (!o)
808 goto nospace;
809
810 MCLAIM(o, m->m_owner);
811 n->m_next = o;
812 n = n->m_next;
813
814 n->m_len = m->m_len;
815 if (m->m_flags & M_EXT) {
816 n->m_data = m->m_data;
817 MCLADDREFERENCE(m, n);
818 } else {
819 memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
820 }
821
822 m = m->m_next;
823 }
824 return top;
825
826 nospace:
827 m_freem(top);
828 return NULL;
829 }
830
831 void
832 m_copydata(struct mbuf *m, int off, int len, void *cp)
833 {
834 unsigned int count;
835 struct mbuf *m0 = m;
836 int len0 = len;
837 int off0 = off;
838 void *cp0 = cp;
839
840 KASSERT(len != M_COPYALL);
841 if (off < 0 || len < 0)
842 panic("m_copydata: off %d, len %d", off, len);
843 while (off > 0) {
844 if (m == NULL)
845 panic("m_copydata(%p,%d,%d,%p): m=NULL, off=%d (%d)",
846 m0, len0, off0, cp0, off, off0 - off);
847 if (off < m->m_len)
848 break;
849 off -= m->m_len;
850 m = m->m_next;
851 }
852 while (len > 0) {
853 if (m == NULL)
854 panic("m_copydata(%p,%d,%d,%p): "
855 "m=NULL, off=%d (%d), len=%d (%d)",
856 m0, len0, off0, cp0,
857 off, off0 - off, len, len0 - len);
858 count = uimin(m->m_len - off, len);
859 memcpy(cp, mtod(m, char *) + off, count);
860 len -= count;
861 cp = (char *)cp + count;
862 off = 0;
863 m = m->m_next;
864 }
865 }
866
867 /*
868 * Concatenate mbuf chain n to m.
869 * n might be copied into m (when n->m_len is small), therefore data portion of
870 * n could be copied into an mbuf of different mbuf type.
871 * Any m_pkthdr is not updated.
872 */
873 void
874 m_cat(struct mbuf *m, struct mbuf *n)
875 {
876
877 while (m->m_next)
878 m = m->m_next;
879 while (n) {
880 if (M_READONLY(m) || n->m_len > M_TRAILINGSPACE(m)) {
881 /* just join the two chains */
882 m->m_next = n;
883 return;
884 }
885 /* splat the data from one into the other */
886 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
887 (u_int)n->m_len);
888 m->m_len += n->m_len;
889 n = m_free(n);
890 }
891 }
892
893 void
894 m_adj(struct mbuf *mp, int req_len)
895 {
896 int len = req_len;
897 struct mbuf *m;
898 int count;
899
900 if ((m = mp) == NULL)
901 return;
902 if (len >= 0) {
903 /*
904 * Trim from head.
905 */
906 while (m != NULL && len > 0) {
907 if (m->m_len <= len) {
908 len -= m->m_len;
909 m->m_len = 0;
910 m = m->m_next;
911 } else {
912 m->m_len -= len;
913 m->m_data += len;
914 len = 0;
915 }
916 }
917 if (mp->m_flags & M_PKTHDR)
918 mp->m_pkthdr.len -= (req_len - len);
919 } else {
920 /*
921 * Trim from tail. Scan the mbuf chain,
922 * calculating its length and finding the last mbuf.
923 * If the adjustment only affects this mbuf, then just
924 * adjust and return. Otherwise, rescan and truncate
925 * after the remaining size.
926 */
927 len = -len;
928 count = 0;
929 for (;;) {
930 count += m->m_len;
931 if (m->m_next == NULL)
932 break;
933 m = m->m_next;
934 }
935 if (m->m_len >= len) {
936 m->m_len -= len;
937 if (mp->m_flags & M_PKTHDR)
938 mp->m_pkthdr.len -= len;
939 return;
940 }
941
942 count -= len;
943 if (count < 0)
944 count = 0;
945
946 /*
947 * Correct length for chain is "count".
948 * Find the mbuf with last data, adjust its length,
949 * and toss data from remaining mbufs on chain.
950 */
951 m = mp;
952 if (m->m_flags & M_PKTHDR)
953 m->m_pkthdr.len = count;
954 for (; m; m = m->m_next) {
955 if (m->m_len >= count) {
956 m->m_len = count;
957 break;
958 }
959 count -= m->m_len;
960 }
961 if (m) {
962 while (m->m_next)
963 (m = m->m_next)->m_len = 0;
964 }
965 }
966 }
967
968 /*
969 * m_ensure_contig: rearrange an mbuf chain that given length of bytes
970 * would be contiguous and in the data area of an mbuf (therefore, mtod()
971 * would work for a structure of given length).
972 *
973 * => On success, returns true and the resulting mbuf chain; false otherwise.
974 * => The mbuf chain may change, but is always preserved valid.
975 */
976 bool
977 m_ensure_contig(struct mbuf **m0, int len)
978 {
979 struct mbuf *n = *m0, *m;
980 size_t count, space;
981
982 KASSERT(len != M_COPYALL);
983 /*
984 * If first mbuf has no cluster, and has room for len bytes
985 * without shifting current data, pullup into it,
986 * otherwise allocate a new mbuf to prepend to the chain.
987 */
988 if ((n->m_flags & M_EXT) == 0 &&
989 n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
990 if (n->m_len >= len) {
991 return true;
992 }
993 m = n;
994 n = n->m_next;
995 len -= m->m_len;
996 } else {
997 if (len > MHLEN) {
998 return false;
999 }
1000 m = m_get(M_DONTWAIT, n->m_type);
1001 if (m == NULL) {
1002 return false;
1003 }
1004 MCLAIM(m, n->m_owner);
1005 if (n->m_flags & M_PKTHDR) {
1006 m_move_pkthdr(m, n);
1007 }
1008 }
1009 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1010 do {
1011 count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
1012 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1013 (unsigned)count);
1014 len -= count;
1015 m->m_len += count;
1016 n->m_len -= count;
1017 space -= count;
1018 if (n->m_len)
1019 n->m_data += count;
1020 else
1021 n = m_free(n);
1022 } while (len > 0 && n);
1023
1024 m->m_next = n;
1025 *m0 = m;
1026
1027 return len <= 0;
1028 }
1029
1030 /*
1031 * m_pullup: same as m_ensure_contig(), but destroys mbuf chain on error.
1032 */
1033 struct mbuf *
1034 m_pullup(struct mbuf *n, int len)
1035 {
1036 struct mbuf *m = n;
1037
1038 KASSERT(len != M_COPYALL);
1039 if (!m_ensure_contig(&m, len)) {
1040 KASSERT(m != NULL);
1041 m_freem(m);
1042 m = NULL;
1043 }
1044 return m;
1045 }
1046
1047 /*
1048 * ensure that [off, off + len) is contiguous on the mbuf chain "m".
1049 * packet chain before "off" is kept untouched.
1050 * if offp == NULL, the target will start at <retval, 0> on resulting chain.
1051 * if offp != NULL, the target will start at <retval, *offp> on resulting chain.
1052 *
1053 * on error return (NULL return value), original "m" will be freed.
1054 *
1055 * XXX M_TRAILINGSPACE/M_LEADINGSPACE on shared cluster (sharedcluster)
1056 */
1057 struct mbuf *
1058 m_pulldown(struct mbuf *m, int off, int len, int *offp)
1059 {
1060 struct mbuf *n, *o;
1061 int hlen, tlen, olen;
1062 int sharedcluster;
1063
1064 /* Check invalid arguments. */
1065 if (m == NULL)
1066 panic("%s: m == NULL", __func__);
1067 if (len > MCLBYTES) {
1068 m_freem(m);
1069 return NULL;
1070 }
1071
1072 n = m;
1073 while (n != NULL && off > 0) {
1074 if (n->m_len > off)
1075 break;
1076 off -= n->m_len;
1077 n = n->m_next;
1078 }
1079 /* Be sure to point non-empty mbuf. */
1080 while (n != NULL && n->m_len == 0)
1081 n = n->m_next;
1082 if (!n) {
1083 m_freem(m);
1084 return NULL; /* mbuf chain too short */
1085 }
1086
1087 sharedcluster = M_READONLY(n);
1088
1089 /*
1090 * The target data is on <n, off>. If we got enough data on the mbuf
1091 * "n", we're done.
1092 */
1093 #ifdef __NO_STRICT_ALIGNMENT
1094 if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster)
1095 #else
1096 if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster &&
1097 ALIGNED_POINTER((mtod(n, char *) + off), uint32_t))
1098 #endif
1099 goto ok;
1100
1101 /*
1102 * When (len <= n->m_len - off) and (off != 0), it is a special case.
1103 * Len bytes from <n, off> sit in single mbuf, but the caller does
1104 * not like the starting position (off).
1105 *
1106 * Chop the current mbuf into two pieces, set off to 0.
1107 */
1108 if (len <= n->m_len - off) {
1109 struct mbuf *mlast;
1110
1111 o = m_dup(n, off, n->m_len - off, M_DONTWAIT);
1112 if (o == NULL) {
1113 m_freem(m);
1114 return NULL; /* ENOBUFS */
1115 }
1116 KASSERT(o->m_len >= len);
1117 for (mlast = o; mlast->m_next != NULL; mlast = mlast->m_next)
1118 ;
1119 n->m_len = off;
1120 mlast->m_next = n->m_next;
1121 n->m_next = o;
1122 n = o;
1123 off = 0;
1124 goto ok;
1125 }
1126
1127 /*
1128 * We need to take hlen from <n, off> and tlen from <n->m_next, 0>,
1129 * and construct contiguous mbuf with m_len == len.
1130 *
1131 * Note that hlen + tlen == len, and tlen > 0.
1132 */
1133 hlen = n->m_len - off;
1134 tlen = len - hlen;
1135
1136 /*
1137 * Ensure that we have enough trailing data on mbuf chain. If not,
1138 * we can do nothing about the chain.
1139 */
1140 olen = 0;
1141 for (o = n->m_next; o != NULL; o = o->m_next)
1142 olen += o->m_len;
1143 if (hlen + olen < len) {
1144 m_freem(m);
1145 return NULL; /* mbuf chain too short */
1146 }
1147
1148 /*
1149 * Easy cases first. We need to use m_copydata() to get data from
1150 * <n->m_next, 0>.
1151 */
1152 if ((off == 0 || offp) && M_TRAILINGSPACE(n) >= tlen &&
1153 !sharedcluster) {
1154 m_copydata(n->m_next, 0, tlen, mtod(n, char *) + n->m_len);
1155 n->m_len += tlen;
1156 m_adj(n->m_next, tlen);
1157 goto ok;
1158 }
1159 if ((off == 0 || offp) && M_LEADINGSPACE(n->m_next) >= hlen &&
1160 #ifndef __NO_STRICT_ALIGNMENT
1161 ALIGNED_POINTER((n->m_next->m_data - hlen), uint32_t) &&
1162 #endif
1163 !sharedcluster && n->m_next->m_len >= tlen) {
1164 n->m_next->m_data -= hlen;
1165 n->m_next->m_len += hlen;
1166 memcpy(mtod(n->m_next, void *), mtod(n, char *) + off, hlen);
1167 n->m_len -= hlen;
1168 n = n->m_next;
1169 off = 0;
1170 goto ok;
1171 }
1172
1173 /*
1174 * Now, we need to do the hard way. Don't copy as there's no room
1175 * on both ends.
1176 */
1177 o = m_get(M_DONTWAIT, m->m_type);
1178 if (o && len > MLEN) {
1179 MCLGET(o, M_DONTWAIT);
1180 if ((o->m_flags & M_EXT) == 0) {
1181 m_free(o);
1182 o = NULL;
1183 }
1184 }
1185 if (!o) {
1186 m_freem(m);
1187 return NULL; /* ENOBUFS */
1188 }
1189 /* get hlen from <n, off> into <o, 0> */
1190 o->m_len = hlen;
1191 memcpy(mtod(o, void *), mtod(n, char *) + off, hlen);
1192 n->m_len -= hlen;
1193 /* get tlen from <n->m_next, 0> into <o, hlen> */
1194 m_copydata(n->m_next, 0, tlen, mtod(o, char *) + o->m_len);
1195 o->m_len += tlen;
1196 m_adj(n->m_next, tlen);
1197 o->m_next = n->m_next;
1198 n->m_next = o;
1199 n = o;
1200 off = 0;
1201
1202 ok:
1203 if (offp)
1204 *offp = off;
1205 return n;
1206 }
1207
1208 /*
1209 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1210 * the amount of empty space before the data in the new mbuf to be specified
1211 * (in the event that the caller expects to prepend later).
1212 */
1213 struct mbuf *
1214 m_copyup(struct mbuf *n, int len, int dstoff)
1215 {
1216 struct mbuf *m;
1217 int count, space;
1218
1219 KASSERT(len != M_COPYALL);
1220 if (len > ((int)MHLEN - dstoff))
1221 goto bad;
1222 m = m_get(M_DONTWAIT, n->m_type);
1223 if (m == NULL)
1224 goto bad;
1225 MCLAIM(m, n->m_owner);
1226 if (n->m_flags & M_PKTHDR) {
1227 m_move_pkthdr(m, n);
1228 }
1229 m->m_data += dstoff;
1230 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1231 do {
1232 count = uimin(uimin(uimax(len, max_protohdr), space), n->m_len);
1233 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1234 (unsigned)count);
1235 len -= count;
1236 m->m_len += count;
1237 n->m_len -= count;
1238 space -= count;
1239 if (n->m_len)
1240 n->m_data += count;
1241 else
1242 n = m_free(n);
1243 } while (len > 0 && n);
1244 if (len > 0) {
1245 (void) m_free(m);
1246 goto bad;
1247 }
1248 m->m_next = n;
1249 return m;
1250 bad:
1251 m_freem(n);
1252 return NULL;
1253 }
1254
1255 struct mbuf *
1256 m_split(struct mbuf *m0, int len, int wait)
1257 {
1258 return m_split_internal(m0, len, wait, true);
1259 }
1260
1261 static struct mbuf *
1262 m_split_internal(struct mbuf *m0, int len0, int wait, bool copyhdr)
1263 {
1264 struct mbuf *m, *n;
1265 unsigned len = len0, remain, len_save;
1266
1267 KASSERT(len0 != M_COPYALL);
1268 for (m = m0; m && len > m->m_len; m = m->m_next)
1269 len -= m->m_len;
1270 if (m == NULL)
1271 return NULL;
1272
1273 remain = m->m_len - len;
1274 if (copyhdr && (m0->m_flags & M_PKTHDR)) {
1275 n = m_gethdr(wait, m0->m_type);
1276 if (n == NULL)
1277 return NULL;
1278
1279 MCLAIM(n, m0->m_owner);
1280 m_copy_rcvif(n, m0);
1281 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1282 len_save = m0->m_pkthdr.len;
1283 m0->m_pkthdr.len = len0;
1284
1285 if (m->m_flags & M_EXT)
1286 goto extpacket;
1287
1288 if (remain > MHLEN) {
1289 /* m can't be the lead packet */
1290 m_align(n, 0);
1291 n->m_len = 0;
1292 n->m_next = m_split(m, len, wait);
1293 if (n->m_next == NULL) {
1294 (void)m_free(n);
1295 m0->m_pkthdr.len = len_save;
1296 return NULL;
1297 }
1298 return n;
1299 } else {
1300 m_align(n, remain);
1301 }
1302 } else if (remain == 0) {
1303 n = m->m_next;
1304 m->m_next = NULL;
1305 return n;
1306 } else {
1307 n = m_get(wait, m->m_type);
1308 if (n == NULL)
1309 return NULL;
1310 MCLAIM(n, m->m_owner);
1311 m_align(n, remain);
1312 }
1313
1314 extpacket:
1315 if (m->m_flags & M_EXT) {
1316 n->m_data = m->m_data + len;
1317 MCLADDREFERENCE(m, n);
1318 } else {
1319 memcpy(mtod(n, void *), mtod(m, char *) + len, remain);
1320 }
1321
1322 n->m_len = remain;
1323 m->m_len = len;
1324 n->m_next = m->m_next;
1325 m->m_next = NULL;
1326 return n;
1327 }
1328
1329 /*
1330 * Routine to copy from device local memory into mbufs.
1331 */
1332 struct mbuf *
1333 m_devget(char *buf, int totlen, int off, struct ifnet *ifp)
1334 {
1335 struct mbuf *m;
1336 struct mbuf *top = NULL, **mp = ⊤
1337 char *cp, *epkt;
1338 int len;
1339
1340 cp = buf;
1341 epkt = cp + totlen;
1342 if (off) {
1343 /*
1344 * If 'off' is non-zero, packet is trailer-encapsulated,
1345 * so we have to skip the type and length fields.
1346 */
1347 cp += off + 2 * sizeof(uint16_t);
1348 totlen -= 2 * sizeof(uint16_t);
1349 }
1350
1351 m = m_gethdr(M_DONTWAIT, MT_DATA);
1352 if (m == NULL)
1353 return NULL;
1354 m_set_rcvif(m, ifp);
1355 m->m_pkthdr.len = totlen;
1356 m->m_len = MHLEN;
1357
1358 while (totlen > 0) {
1359 if (top) {
1360 m = m_get(M_DONTWAIT, MT_DATA);
1361 if (m == NULL) {
1362 m_freem(top);
1363 return NULL;
1364 }
1365 m->m_len = MLEN;
1366 }
1367
1368 len = uimin(totlen, epkt - cp);
1369
1370 if (len >= MINCLSIZE) {
1371 MCLGET(m, M_DONTWAIT);
1372 if ((m->m_flags & M_EXT) == 0) {
1373 m_free(m);
1374 m_freem(top);
1375 return NULL;
1376 }
1377 m->m_len = len = uimin(len, MCLBYTES);
1378 } else {
1379 /*
1380 * Place initial small packet/header at end of mbuf.
1381 */
1382 if (len < m->m_len) {
1383 if (top == 0 && len + max_linkhdr <= m->m_len)
1384 m->m_data += max_linkhdr;
1385 m->m_len = len;
1386 } else
1387 len = m->m_len;
1388 }
1389
1390 memcpy(mtod(m, void *), cp, (size_t)len);
1391
1392 cp += len;
1393 *mp = m;
1394 mp = &m->m_next;
1395 totlen -= len;
1396 if (cp == epkt)
1397 cp = buf;
1398 }
1399
1400 return top;
1401 }
1402
1403 /*
1404 * Copy data from a buffer back into the indicated mbuf chain,
1405 * starting "off" bytes from the beginning, extending the mbuf
1406 * chain if necessary.
1407 */
1408 void
1409 m_copyback(struct mbuf *m0, int off, int len, const void *cp)
1410 {
1411 #if defined(DEBUG)
1412 struct mbuf *origm = m0;
1413 int error;
1414 #endif
1415
1416 if (m0 == NULL)
1417 return;
1418
1419 #if defined(DEBUG)
1420 error =
1421 #endif
1422 m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_EXTEND,
1423 M_DONTWAIT);
1424
1425 #if defined(DEBUG)
1426 if (error != 0 || (m0 != NULL && origm != m0))
1427 panic("m_copyback");
1428 #endif
1429 }
1430
1431 struct mbuf *
1432 m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
1433 {
1434 int error;
1435
1436 /* don't support chain expansion */
1437 KASSERT(len != M_COPYALL);
1438 KDASSERT(off + len <= m_length(m0));
1439
1440 error = m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_COW,
1441 how);
1442 if (error) {
1443 /*
1444 * no way to recover from partial success.
1445 * just free the chain.
1446 */
1447 m_freem(m0);
1448 return NULL;
1449 }
1450 return m0;
1451 }
1452
1453 int
1454 m_makewritable(struct mbuf **mp, int off, int len, int how)
1455 {
1456 int error;
1457 #if defined(DEBUG)
1458 int origlen = m_length(*mp);
1459 #endif
1460
1461 error = m_copyback_internal(mp, off, len, NULL, CB_PRESERVE|CB_COW,
1462 how);
1463 if (error)
1464 return error;
1465
1466 #if defined(DEBUG)
1467 int reslen = 0;
1468 for (struct mbuf *n = *mp; n; n = n->m_next)
1469 reslen += n->m_len;
1470 if (origlen != reslen)
1471 panic("m_makewritable: length changed");
1472 if (((*mp)->m_flags & M_PKTHDR) != 0 && reslen != (*mp)->m_pkthdr.len)
1473 panic("m_makewritable: inconsist");
1474 #endif
1475
1476 return 0;
1477 }
1478
1479 static int
1480 m_copyback_internal(struct mbuf **mp0, int off, int len, const void *vp,
1481 int flags, int how)
1482 {
1483 int mlen;
1484 struct mbuf *m, *n;
1485 struct mbuf **mp;
1486 int totlen = 0;
1487 const char *cp = vp;
1488
1489 KASSERT(mp0 != NULL);
1490 KASSERT(*mp0 != NULL);
1491 KASSERT((flags & CB_PRESERVE) == 0 || cp == NULL);
1492 KASSERT((flags & CB_COPYBACK) == 0 || cp != NULL);
1493
1494 if (len == M_COPYALL)
1495 len = m_length(*mp0) - off;
1496
1497 /*
1498 * we don't bother to update "totlen" in the case of CB_COW,
1499 * assuming that CB_EXTEND and CB_COW are exclusive.
1500 */
1501
1502 KASSERT((~flags & (CB_EXTEND|CB_COW)) != 0);
1503
1504 mp = mp0;
1505 m = *mp;
1506 while (off > (mlen = m->m_len)) {
1507 off -= mlen;
1508 totlen += mlen;
1509 if (m->m_next == NULL) {
1510 int tspace;
1511 extend:
1512 if ((flags & CB_EXTEND) == 0)
1513 goto out;
1514
1515 /*
1516 * try to make some space at the end of "m".
1517 */
1518
1519 mlen = m->m_len;
1520 if (off + len >= MINCLSIZE &&
1521 (m->m_flags & M_EXT) == 0 && m->m_len == 0) {
1522 MCLGET(m, how);
1523 }
1524 tspace = M_TRAILINGSPACE(m);
1525 if (tspace > 0) {
1526 tspace = uimin(tspace, off + len);
1527 KASSERT(tspace > 0);
1528 memset(mtod(m, char *) + m->m_len, 0,
1529 uimin(off, tspace));
1530 m->m_len += tspace;
1531 off += mlen;
1532 totlen -= mlen;
1533 continue;
1534 }
1535
1536 /*
1537 * need to allocate an mbuf.
1538 */
1539
1540 if (off + len >= MINCLSIZE) {
1541 n = m_getcl(how, m->m_type, 0);
1542 } else {
1543 n = m_get(how, m->m_type);
1544 }
1545 if (n == NULL) {
1546 goto out;
1547 }
1548 n->m_len = uimin(M_TRAILINGSPACE(n), off + len);
1549 memset(mtod(n, char *), 0, uimin(n->m_len, off));
1550 m->m_next = n;
1551 }
1552 mp = &m->m_next;
1553 m = m->m_next;
1554 }
1555 while (len > 0) {
1556 mlen = m->m_len - off;
1557 if (mlen != 0 && M_READONLY(m)) {
1558 /*
1559 * This mbuf is read-only. Allocate a new writable
1560 * mbuf and try again.
1561 */
1562 char *datap;
1563 int eatlen;
1564
1565 KASSERT((flags & CB_COW) != 0);
1566
1567 /*
1568 * if we're going to write into the middle of
1569 * a mbuf, split it first.
1570 */
1571 if (off > 0) {
1572 n = m_split_internal(m, off, how, false);
1573 if (n == NULL)
1574 goto enobufs;
1575 m->m_next = n;
1576 mp = &m->m_next;
1577 m = n;
1578 off = 0;
1579 continue;
1580 }
1581
1582 /*
1583 * XXX TODO coalesce into the trailingspace of
1584 * the previous mbuf when possible.
1585 */
1586
1587 /*
1588 * allocate a new mbuf. copy packet header if needed.
1589 */
1590 n = m_get(how, m->m_type);
1591 if (n == NULL)
1592 goto enobufs;
1593 MCLAIM(n, m->m_owner);
1594 if (off == 0 && (m->m_flags & M_PKTHDR) != 0) {
1595 m_move_pkthdr(n, m);
1596 n->m_len = MHLEN;
1597 } else {
1598 if (len >= MINCLSIZE)
1599 MCLGET(n, M_DONTWAIT);
1600 n->m_len =
1601 (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
1602 }
1603 if (n->m_len > len)
1604 n->m_len = len;
1605
1606 /*
1607 * free the region which has been overwritten.
1608 * copying data from old mbufs if requested.
1609 */
1610 if (flags & CB_PRESERVE)
1611 datap = mtod(n, char *);
1612 else
1613 datap = NULL;
1614 eatlen = n->m_len;
1615 while (m != NULL && M_READONLY(m) &&
1616 n->m_type == m->m_type && eatlen > 0) {
1617 mlen = uimin(eatlen, m->m_len);
1618 if (datap) {
1619 m_copydata(m, 0, mlen, datap);
1620 datap += mlen;
1621 }
1622 m->m_data += mlen;
1623 m->m_len -= mlen;
1624 eatlen -= mlen;
1625 if (m->m_len == 0)
1626 *mp = m = m_free(m);
1627 }
1628 if (eatlen > 0)
1629 n->m_len -= eatlen;
1630 n->m_next = m;
1631 *mp = m = n;
1632 continue;
1633 }
1634 mlen = uimin(mlen, len);
1635 if (flags & CB_COPYBACK) {
1636 memcpy(mtod(m, char *) + off, cp, (unsigned)mlen);
1637 cp += mlen;
1638 }
1639 len -= mlen;
1640 mlen += off;
1641 off = 0;
1642 totlen += mlen;
1643 if (len == 0)
1644 break;
1645 if (m->m_next == NULL) {
1646 goto extend;
1647 }
1648 mp = &m->m_next;
1649 m = m->m_next;
1650 }
1651
1652 out:
1653 if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
1654 KASSERT((flags & CB_EXTEND) != 0);
1655 m->m_pkthdr.len = totlen;
1656 }
1657
1658 return 0;
1659
1660 enobufs:
1661 return ENOBUFS;
1662 }
1663
1664 /*
1665 * Compress the mbuf chain. Return the new mbuf chain on success, NULL on
1666 * failure. The first mbuf is preserved, and on success the pointer returned
1667 * is the same as the one passed.
1668 */
1669 struct mbuf *
1670 m_defrag(struct mbuf *m, int how)
1671 {
1672 struct mbuf *m0, *mn, *n;
1673 int sz;
1674
1675 KASSERT((m->m_flags & M_PKTHDR) != 0);
1676
1677 if (m->m_next == NULL)
1678 return m;
1679
1680 /* Defrag to single mbuf if at all possible */
1681 if ((m->m_flags & M_EXT) == 0 && m->m_pkthdr.len <= MCLBYTES) {
1682 if (m->m_pkthdr.len <= MHLEN) {
1683 if (M_TRAILINGSPACE(m) < (m->m_pkthdr.len - m->m_len)) {
1684 KASSERTMSG(M_LEADINGSPACE(m) +
1685 M_TRAILINGSPACE(m) >=
1686 (m->m_pkthdr.len - m->m_len),
1687 "too small leading %d trailing %d ro? %d"
1688 " pkthdr.len %d mlen %d",
1689 (int)M_LEADINGSPACE(m),
1690 (int)M_TRAILINGSPACE(m),
1691 M_READONLY(m),
1692 m->m_pkthdr.len, m->m_len);
1693
1694 memmove(m->m_pktdat, m->m_data, m->m_len);
1695 m->m_data = m->m_pktdat;
1696
1697 KASSERT(M_TRAILINGSPACE(m) >=
1698 (m->m_pkthdr.len - m->m_len));
1699 }
1700 } else {
1701 /* Must copy data before adding cluster */
1702 m0 = m_get(how, MT_DATA);
1703 if (m0 == NULL)
1704 return NULL;
1705 KASSERT(m->m_len <= MHLEN);
1706 m_copydata(m, 0, m->m_len, mtod(m0, void *));
1707
1708 MCLGET(m, how);
1709 if ((m->m_flags & M_EXT) == 0) {
1710 m_free(m0);
1711 return NULL;
1712 }
1713 memcpy(m->m_data, mtod(m0, void *), m->m_len);
1714 m_free(m0);
1715 }
1716 KASSERT(M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len));
1717 m_copydata(m->m_next, 0, m->m_pkthdr.len - m->m_len,
1718 mtod(m, char *) + m->m_len);
1719 m->m_len = m->m_pkthdr.len;
1720 m_freem(m->m_next);
1721 m->m_next = NULL;
1722 return m;
1723 }
1724
1725 m0 = m_get(how, MT_DATA);
1726 if (m0 == NULL)
1727 return NULL;
1728 mn = m0;
1729
1730 sz = m->m_pkthdr.len - m->m_len;
1731 KASSERT(sz >= 0);
1732
1733 do {
1734 if (sz > MLEN) {
1735 MCLGET(mn, how);
1736 if ((mn->m_flags & M_EXT) == 0) {
1737 m_freem(m0);
1738 return NULL;
1739 }
1740 }
1741
1742 mn->m_len = MIN(sz, MCLBYTES);
1743
1744 m_copydata(m, m->m_pkthdr.len - sz, mn->m_len,
1745 mtod(mn, void *));
1746
1747 sz -= mn->m_len;
1748
1749 if (sz > 0) {
1750 /* need more mbufs */
1751 n = m_get(how, MT_DATA);
1752 if (n == NULL) {
1753 m_freem(m0);
1754 return NULL;
1755 }
1756
1757 mn->m_next = n;
1758 mn = n;
1759 }
1760 } while (sz > 0);
1761
1762 m_freem(m->m_next);
1763 m->m_next = m0;
1764
1765 return m;
1766 }
1767
1768 void
1769 m_remove_pkthdr(struct mbuf *m)
1770 {
1771 KASSERT(m->m_flags & M_PKTHDR);
1772
1773 m_tag_delete_chain(m);
1774 m->m_flags &= ~M_PKTHDR;
1775 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1776 }
1777
1778 void
1779 m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
1780 {
1781 KASSERT((to->m_flags & M_EXT) == 0);
1782 KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1783 SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1784 KASSERT((from->m_flags & M_PKTHDR) != 0);
1785
1786 to->m_pkthdr = from->m_pkthdr;
1787 to->m_flags = from->m_flags & M_COPYFLAGS;
1788 to->m_data = to->m_pktdat;
1789
1790 SLIST_INIT(&to->m_pkthdr.tags);
1791 m_tag_copy_chain(to, from);
1792 }
1793
1794 void
1795 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1796 {
1797 KASSERT((to->m_flags & M_EXT) == 0);
1798 KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1799 SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1800 KASSERT((from->m_flags & M_PKTHDR) != 0);
1801
1802 to->m_pkthdr = from->m_pkthdr;
1803 to->m_flags = from->m_flags & M_COPYFLAGS;
1804 to->m_data = to->m_pktdat;
1805
1806 from->m_flags &= ~M_PKTHDR;
1807 }
1808
1809 /*
1810 * Set the m_data pointer of a newly-allocated mbuf to place an object of the
1811 * specified size at the end of the mbuf, longword aligned.
1812 */
1813 void
1814 m_align(struct mbuf *m, int len)
1815 {
1816 int buflen, adjust;
1817
1818 KASSERT(len != M_COPYALL);
1819 KASSERT(M_LEADINGSPACE(m) == 0);
1820
1821 buflen = M_BUFSIZE(m);
1822
1823 KASSERT(len <= buflen);
1824 adjust = buflen - len;
1825 m->m_data += adjust &~ (sizeof(long)-1);
1826 }
1827
1828 /*
1829 * Apply function f to the data in an mbuf chain starting "off" bytes from the
1830 * beginning, continuing for "len" bytes.
1831 */
1832 int
1833 m_apply(struct mbuf *m, int off, int len,
1834 int (*f)(void *, void *, unsigned int), void *arg)
1835 {
1836 unsigned int count;
1837 int rval;
1838
1839 KASSERT(len != M_COPYALL);
1840 KASSERT(len >= 0);
1841 KASSERT(off >= 0);
1842
1843 while (off > 0) {
1844 KASSERT(m != NULL);
1845 if (off < m->m_len)
1846 break;
1847 off -= m->m_len;
1848 m = m->m_next;
1849 }
1850 while (len > 0) {
1851 KASSERT(m != NULL);
1852 count = uimin(m->m_len - off, len);
1853
1854 rval = (*f)(arg, mtod(m, char *) + off, count);
1855 if (rval)
1856 return rval;
1857
1858 len -= count;
1859 off = 0;
1860 m = m->m_next;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /*
1867 * Return a pointer to mbuf/offset of location in mbuf chain.
1868 */
1869 struct mbuf *
1870 m_getptr(struct mbuf *m, int loc, int *off)
1871 {
1872
1873 while (loc >= 0) {
1874 /* Normal end of search */
1875 if (m->m_len > loc) {
1876 *off = loc;
1877 return m;
1878 }
1879
1880 loc -= m->m_len;
1881
1882 if (m->m_next == NULL) {
1883 if (loc == 0) {
1884 /* Point at the end of valid data */
1885 *off = m->m_len;
1886 return m;
1887 }
1888 return NULL;
1889 } else {
1890 m = m->m_next;
1891 }
1892 }
1893
1894 return NULL;
1895 }
1896
1897 /*
1898 * Release a reference to the mbuf external storage.
1899 *
1900 * => free the mbuf m itself as well.
1901 */
1902 static void
1903 m_ext_free(struct mbuf *m)
1904 {
1905 const bool embedded = MEXT_ISEMBEDDED(m);
1906 bool dofree = true;
1907 u_int refcnt;
1908
1909 KASSERT((m->m_flags & M_EXT) != 0);
1910 KASSERT(MEXT_ISEMBEDDED(m->m_ext_ref));
1911 KASSERT((m->m_ext_ref->m_flags & M_EXT) != 0);
1912 KASSERT((m->m_flags & M_EXT_CLUSTER) ==
1913 (m->m_ext_ref->m_flags & M_EXT_CLUSTER));
1914
1915 if (__predict_false(m->m_type == MT_FREE)) {
1916 panic("mbuf %p already freed", m);
1917 }
1918
1919 if (__predict_true(m->m_ext.ext_refcnt == 1)) {
1920 refcnt = m->m_ext.ext_refcnt = 0;
1921 } else {
1922 refcnt = atomic_dec_uint_nv(&m->m_ext.ext_refcnt);
1923 }
1924
1925 if (refcnt > 0) {
1926 if (embedded) {
1927 /*
1928 * other mbuf's m_ext_ref still points to us.
1929 */
1930 dofree = false;
1931 } else {
1932 m->m_ext_ref = m;
1933 }
1934 } else {
1935 /*
1936 * dropping the last reference
1937 */
1938 if (!embedded) {
1939 m->m_ext.ext_refcnt++; /* XXX */
1940 m_ext_free(m->m_ext_ref);
1941 m->m_ext_ref = m;
1942 } else if ((m->m_flags & M_EXT_CLUSTER) != 0) {
1943 pool_cache_put_paddr(mcl_cache,
1944 m->m_ext.ext_buf, m->m_ext.ext_paddr);
1945 } else if (m->m_ext.ext_free) {
1946 (*m->m_ext.ext_free)(m,
1947 m->m_ext.ext_buf, m->m_ext.ext_size,
1948 m->m_ext.ext_arg);
1949 /*
1950 * 'm' is already freed by the ext_free callback.
1951 */
1952 dofree = false;
1953 } else {
1954 free(m->m_ext.ext_buf, 0);
1955 }
1956 }
1957
1958 if (dofree) {
1959 m->m_type = MT_FREE;
1960 m->m_data = NULL;
1961 pool_cache_put(mb_cache, m);
1962 }
1963 }
1964
1965 /*
1966 * Free a single mbuf and associated external storage. Return the
1967 * successor, if any.
1968 */
1969 struct mbuf *
1970 m_free(struct mbuf *m)
1971 {
1972 struct mbuf *n;
1973
1974 mowner_revoke(m, 1, m->m_flags);
1975 mbstat_type_add(m->m_type, -1);
1976
1977 if (m->m_flags & M_PKTHDR)
1978 m_tag_delete_chain(m);
1979
1980 n = m->m_next;
1981
1982 if (m->m_flags & M_EXT) {
1983 m_ext_free(m);
1984 } else {
1985 if (__predict_false(m->m_type == MT_FREE)) {
1986 panic("mbuf %p already freed", m);
1987 }
1988 m->m_type = MT_FREE;
1989 m->m_data = NULL;
1990 pool_cache_put(mb_cache, m);
1991 }
1992
1993 return n;
1994 }
1995
1996 #if 0
1997 void
1998 m_freem(struct mbuf *m)
1999 {
2000 if (m == NULL)
2001 return;
2002 do {
2003 m = m_free(m);
2004 } while (m);
2005 }
2006 #else
2007 void
2008 M_FREEM(struct mbuf *m, const char *func, int line)
2009 {
2010 if (m == NULL)
2011 return;
2012 do {
2013 if (((m->m_flags & M_EXT) != 0) &&
2014 (m->m_ext.ext_arg == watchpoint))
2015 printf("catch %p (%s line %d)\n", watchpoint,
2016 func, line);
2017 m = m_free(m);
2018 } while (m);
2019 }
2020 #endif
2021
2022 #if defined(DDB)
2023 void
2024 m_print(const struct mbuf *m, const char *modif, void (*pr)(const char *, ...))
2025 {
2026 char ch;
2027 bool opt_c = false;
2028 bool opt_d = false;
2029 #if NETHER > 0
2030 bool opt_v = false;
2031 const struct mbuf *m0 = NULL;
2032 #endif
2033 int no = 0;
2034 char buf[512];
2035
2036 while ((ch = *(modif++)) != '\0') {
2037 switch (ch) {
2038 case 'c':
2039 opt_c = true;
2040 break;
2041 case 'd':
2042 opt_d = true;
2043 break;
2044 #if NETHER > 0
2045 case 'v':
2046 opt_v = true;
2047 m0 = m;
2048 break;
2049 #endif
2050 default:
2051 break;
2052 }
2053 }
2054
2055 nextchain:
2056 (*pr)("MBUF(%d) %p\n", no, m);
2057 snprintb(buf, sizeof(buf), M_FLAGS_BITS, (u_int)m->m_flags);
2058 (*pr)(" data=%p, len=%d, type=%d, flags=%s\n",
2059 m->m_data, m->m_len, m->m_type, buf);
2060 if (opt_d) {
2061 int i;
2062 unsigned char *p = m->m_data;
2063
2064 (*pr)(" data:");
2065
2066 for (i = 0; i < m->m_len; i++) {
2067 if (i % 16 == 0)
2068 (*pr)("\n");
2069 (*pr)(" %02x", p[i]);
2070 }
2071
2072 (*pr)("\n");
2073 }
2074 (*pr)(" owner=%p, next=%p, nextpkt=%p\n", m->m_owner, m->m_next,
2075 m->m_nextpkt);
2076 (*pr)(" leadingspace=%u, trailingspace=%u, readonly=%u\n",
2077 (int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(m),
2078 (int)M_READONLY(m));
2079 if ((m->m_flags & M_PKTHDR) != 0) {
2080 snprintb(buf, sizeof(buf), M_CSUM_BITS, m->m_pkthdr.csum_flags);
2081 (*pr)(" pktlen=%d, rcvif=%p, csum_flags=%s, csum_data=0x%"
2082 PRIx32 ", segsz=%u\n",
2083 m->m_pkthdr.len, m_get_rcvif_NOMPSAFE(m),
2084 buf, m->m_pkthdr.csum_data, m->m_pkthdr.segsz);
2085 }
2086 if ((m->m_flags & M_EXT)) {
2087 (*pr)(" ext_refcnt=%u, ext_buf=%p, ext_size=%zd, "
2088 "ext_free=%p, ext_arg=%p\n",
2089 m->m_ext.ext_refcnt,
2090 m->m_ext.ext_buf, m->m_ext.ext_size,
2091 m->m_ext.ext_free, m->m_ext.ext_arg);
2092 }
2093 if ((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0) {
2094 vaddr_t sva = (vaddr_t)m->m_ext.ext_buf;
2095 vaddr_t eva = sva + m->m_ext.ext_size;
2096 int n = (round_page(eva) - trunc_page(sva)) >> PAGE_SHIFT;
2097 int i;
2098
2099 (*pr)(" pages:");
2100 for (i = 0; i < n; i ++) {
2101 (*pr)(" %p", m->m_ext.ext_pgs[i]);
2102 }
2103 (*pr)("\n");
2104 }
2105
2106 if (opt_c) {
2107 m = m->m_next;
2108 if (m != NULL) {
2109 no++;
2110 goto nextchain;
2111 }
2112 }
2113
2114 #if NETHER > 0
2115 if (opt_v && m0)
2116 m_examine(m0, AF_ETHER, modif, pr);
2117 #endif
2118 }
2119 #endif /* defined(DDB) */
2120
2121 #if defined(MBUFTRACE)
2122 void
2123 mowner_init_owner(struct mowner *mo, const char *name, const char *descr)
2124 {
2125 memset(mo, 0, sizeof(*mo));
2126 strlcpy(mo->mo_name, name, sizeof(mo->mo_name));
2127 strlcpy(mo->mo_descr, descr, sizeof(mo->mo_descr));
2128 }
2129
2130 void
2131 mowner_attach(struct mowner *mo)
2132 {
2133
2134 KASSERT(mo->mo_counters == NULL);
2135 mo->mo_counters = percpu_alloc(sizeof(struct mowner_counter));
2136
2137 /* XXX lock */
2138 LIST_INSERT_HEAD(&mowners, mo, mo_link);
2139 }
2140
2141 void
2142 mowner_detach(struct mowner *mo)
2143 {
2144
2145 KASSERT(mo->mo_counters != NULL);
2146
2147 /* XXX lock */
2148 LIST_REMOVE(mo, mo_link);
2149
2150 percpu_free(mo->mo_counters, sizeof(struct mowner_counter));
2151 mo->mo_counters = NULL;
2152 }
2153
2154 void
2155 mowner_init(struct mbuf *m, int type)
2156 {
2157 struct mowner_counter *mc;
2158 struct mowner *mo;
2159 int s;
2160
2161 m->m_owner = mo = &unknown_mowners[type];
2162 s = splvm();
2163 mc = percpu_getref(mo->mo_counters);
2164 mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2165 percpu_putref(mo->mo_counters);
2166 splx(s);
2167 }
2168
2169 void
2170 mowner_ref(struct mbuf *m, int flags)
2171 {
2172 struct mowner *mo = m->m_owner;
2173 struct mowner_counter *mc;
2174 int s;
2175
2176 s = splvm();
2177 mc = percpu_getref(mo->mo_counters);
2178 if ((flags & M_EXT) != 0)
2179 mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2180 if ((flags & M_EXT_CLUSTER) != 0)
2181 mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2182 percpu_putref(mo->mo_counters);
2183 splx(s);
2184 }
2185
2186 void
2187 mowner_revoke(struct mbuf *m, bool all, int flags)
2188 {
2189 struct mowner *mo = m->m_owner;
2190 struct mowner_counter *mc;
2191 int s;
2192
2193 s = splvm();
2194 mc = percpu_getref(mo->mo_counters);
2195 if ((flags & M_EXT) != 0)
2196 mc->mc_counter[MOWNER_COUNTER_EXT_RELEASES]++;
2197 if ((flags & M_EXT_CLUSTER) != 0)
2198 mc->mc_counter[MOWNER_COUNTER_CLUSTER_RELEASES]++;
2199 if (all)
2200 mc->mc_counter[MOWNER_COUNTER_RELEASES]++;
2201 percpu_putref(mo->mo_counters);
2202 splx(s);
2203 if (all)
2204 m->m_owner = &revoked_mowner;
2205 }
2206
2207 static void
2208 mowner_claim(struct mbuf *m, struct mowner *mo)
2209 {
2210 struct mowner_counter *mc;
2211 int flags = m->m_flags;
2212 int s;
2213
2214 s = splvm();
2215 mc = percpu_getref(mo->mo_counters);
2216 mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2217 if ((flags & M_EXT) != 0)
2218 mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2219 if ((flags & M_EXT_CLUSTER) != 0)
2220 mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2221 percpu_putref(mo->mo_counters);
2222 splx(s);
2223 m->m_owner = mo;
2224 }
2225
2226 void
2227 m_claim(struct mbuf *m, struct mowner *mo)
2228 {
2229
2230 if (m->m_owner == mo || mo == NULL)
2231 return;
2232
2233 mowner_revoke(m, true, m->m_flags);
2234 mowner_claim(m, mo);
2235 }
2236
2237 void
2238 m_claimm(struct mbuf *m, struct mowner *mo)
2239 {
2240
2241 for (; m != NULL; m = m->m_next)
2242 m_claim(m, mo);
2243 }
2244 #endif /* defined(MBUFTRACE) */
2245
2246 #ifdef DIAGNOSTIC
2247 /*
2248 * Verify that the mbuf chain is not malformed. Used only for diagnostic.
2249 * Panics on error.
2250 */
2251 void
2252 m_verify_packet(struct mbuf *m)
2253 {
2254 struct mbuf *n = m;
2255 char *low, *high, *dat;
2256 int totlen = 0, len;
2257
2258 if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
2259 panic("%s: mbuf doesn't have M_PKTHDR", __func__);
2260 }
2261
2262 while (n != NULL) {
2263 if (__predict_false(n->m_type == MT_FREE)) {
2264 panic("%s: mbuf already freed (n = %p)", __func__, n);
2265 }
2266 #if 0
2267 /*
2268 * This ought to be a rule of the mbuf API. Unfortunately,
2269 * many places don't respect that rule.
2270 */
2271 if (__predict_false((n != m) && (n->m_flags & M_PKTHDR) != 0)) {
2272 panic("%s: M_PKTHDR set on secondary mbuf", __func__);
2273 }
2274 #endif
2275 if (__predict_false(n->m_nextpkt != NULL)) {
2276 panic("%s: m_nextpkt not null (m_nextpkt = %p)",
2277 __func__, n->m_nextpkt);
2278 }
2279
2280 dat = n->m_data;
2281 len = n->m_len;
2282 if (__predict_false(len < 0)) {
2283 panic("%s: incorrect length (len = %d)", __func__, len);
2284 }
2285
2286 low = M_BUFADDR(n);
2287 high = low + M_BUFSIZE(n);
2288 if (__predict_false((dat < low) || (dat + len > high))) {
2289 panic("%s: m_data not in packet"
2290 "(dat = %p, len = %d, low = %p, high = %p)",
2291 __func__, dat, len, low, high);
2292 }
2293
2294 totlen += len;
2295 n = n->m_next;
2296 }
2297
2298 if (__predict_false(totlen != m->m_pkthdr.len)) {
2299 panic("%s: inconsistent mbuf length (%d != %d)", __func__,
2300 totlen, m->m_pkthdr.len);
2301 }
2302 }
2303 #endif
2304
2305 struct m_tag *
2306 m_tag_get(int type, int len, int wait)
2307 {
2308 struct m_tag *t;
2309
2310 if (len < 0)
2311 return NULL;
2312 t = malloc(len + sizeof(struct m_tag), M_PACKET_TAGS, wait);
2313 if (t == NULL)
2314 return NULL;
2315 t->m_tag_id = type;
2316 t->m_tag_len = len;
2317 return t;
2318 }
2319
2320 void
2321 m_tag_free(struct m_tag *t)
2322 {
2323 free(t, M_PACKET_TAGS);
2324 }
2325
2326 void
2327 m_tag_prepend(struct mbuf *m, struct m_tag *t)
2328 {
2329 KASSERT((m->m_flags & M_PKTHDR) != 0);
2330 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
2331 }
2332
2333 void
2334 m_tag_unlink(struct mbuf *m, struct m_tag *t)
2335 {
2336 KASSERT((m->m_flags & M_PKTHDR) != 0);
2337 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
2338 }
2339
2340 void
2341 m_tag_delete(struct mbuf *m, struct m_tag *t)
2342 {
2343 m_tag_unlink(m, t);
2344 m_tag_free(t);
2345 }
2346
2347 void
2348 m_tag_delete_chain(struct mbuf *m)
2349 {
2350 struct m_tag *p, *q;
2351
2352 KASSERT((m->m_flags & M_PKTHDR) != 0);
2353
2354 p = SLIST_FIRST(&m->m_pkthdr.tags);
2355 if (p == NULL)
2356 return;
2357 while ((q = SLIST_NEXT(p, m_tag_link)) != NULL)
2358 m_tag_delete(m, q);
2359 m_tag_delete(m, p);
2360 }
2361
2362 struct m_tag *
2363 m_tag_find(const struct mbuf *m, int type)
2364 {
2365 struct m_tag *p;
2366
2367 KASSERT((m->m_flags & M_PKTHDR) != 0);
2368
2369 p = SLIST_FIRST(&m->m_pkthdr.tags);
2370 while (p != NULL) {
2371 if (p->m_tag_id == type)
2372 return p;
2373 p = SLIST_NEXT(p, m_tag_link);
2374 }
2375 return NULL;
2376 }
2377
2378 struct m_tag *
2379 m_tag_copy(struct m_tag *t)
2380 {
2381 struct m_tag *p;
2382
2383 p = m_tag_get(t->m_tag_id, t->m_tag_len, M_NOWAIT);
2384 if (p == NULL)
2385 return NULL;
2386 memcpy(p + 1, t + 1, t->m_tag_len);
2387 return p;
2388 }
2389
2390 /*
2391 * Copy two tag chains. The destination mbuf (to) loses any attached
2392 * tags even if the operation fails. This should not be a problem, as
2393 * m_tag_copy_chain() is typically called with a newly-allocated
2394 * destination mbuf.
2395 */
2396 int
2397 m_tag_copy_chain(struct mbuf *to, struct mbuf *from)
2398 {
2399 struct m_tag *p, *t, *tprev = NULL;
2400
2401 KASSERT((from->m_flags & M_PKTHDR) != 0);
2402
2403 m_tag_delete_chain(to);
2404 SLIST_FOREACH(p, &from->m_pkthdr.tags, m_tag_link) {
2405 t = m_tag_copy(p);
2406 if (t == NULL) {
2407 m_tag_delete_chain(to);
2408 return 0;
2409 }
2410 if (tprev == NULL)
2411 SLIST_INSERT_HEAD(&to->m_pkthdr.tags, t, m_tag_link);
2412 else
2413 SLIST_INSERT_AFTER(tprev, t, m_tag_link);
2414 tprev = t;
2415 }
2416 return 1;
2417 }
2418