uipc_mbuf.c revision 1.245 1 /* $NetBSD: uipc_mbuf.c,v 1.245 2022/03/12 15:32:32 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2001, 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and Maxime Villard.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_mbuf.c 8.4 (Berkeley) 2/14/95
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uipc_mbuf.c,v 1.245 2022/03/12 15:32:32 riastradh Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_mbuftrace.h"
69 #include "opt_nmbclusters.h"
70 #include "opt_ddb.h"
71 #include "ether.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/atomic.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/mbuf.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 #include <sys/domain.h>
83 #include <sys/protosw.h>
84 #include <sys/percpu.h>
85 #include <sys/pool.h>
86 #include <sys/socket.h>
87 #include <sys/sysctl.h>
88
89 #include <net/if.h>
90
91 pool_cache_t mb_cache; /* mbuf cache */
92 static pool_cache_t mcl_cache; /* mbuf cluster cache */
93
94 struct mbstat mbstat;
95 int max_linkhdr;
96 int max_protohdr;
97 int max_hdr;
98 int max_datalen;
99
100 static void mb_drain(void *, int);
101 static int mb_ctor(void *, void *, int);
102
103 static void sysctl_kern_mbuf_setup(void);
104
105 static struct sysctllog *mbuf_sysctllog;
106
107 static struct mbuf *m_copy_internal(struct mbuf *, int, int, int, bool);
108 static struct mbuf *m_split_internal(struct mbuf *, int, int, bool);
109 static int m_copyback_internal(struct mbuf **, int, int, const void *,
110 int, int);
111
112 /* Flags for m_copyback_internal. */
113 #define CB_COPYBACK 0x0001 /* copyback from cp */
114 #define CB_PRESERVE 0x0002 /* preserve original data */
115 #define CB_COW 0x0004 /* do copy-on-write */
116 #define CB_EXTEND 0x0008 /* extend chain */
117
118 static const char mclpool_warnmsg[] =
119 "WARNING: mclpool limit reached; increase kern.mbuf.nmbclusters";
120
121 MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
122
123 static percpu_t *mbstat_percpu;
124
125 #ifdef MBUFTRACE
126 struct mownerhead mowners = LIST_HEAD_INITIALIZER(mowners);
127 struct mowner unknown_mowners[] = {
128 MOWNER_INIT("unknown", "free"),
129 MOWNER_INIT("unknown", "data"),
130 MOWNER_INIT("unknown", "header"),
131 MOWNER_INIT("unknown", "soname"),
132 MOWNER_INIT("unknown", "soopts"),
133 MOWNER_INIT("unknown", "ftable"),
134 MOWNER_INIT("unknown", "control"),
135 MOWNER_INIT("unknown", "oobdata"),
136 };
137 struct mowner revoked_mowner = MOWNER_INIT("revoked", "");
138 #endif
139
140 #define MEXT_ISEMBEDDED(m) ((m)->m_ext_ref == (m))
141
142 #define MCLADDREFERENCE(o, n) \
143 do { \
144 KASSERT(((o)->m_flags & M_EXT) != 0); \
145 KASSERT(((n)->m_flags & M_EXT) == 0); \
146 KASSERT((o)->m_ext.ext_refcnt >= 1); \
147 (n)->m_flags |= ((o)->m_flags & M_EXTCOPYFLAGS); \
148 atomic_inc_uint(&(o)->m_ext.ext_refcnt); \
149 (n)->m_ext_ref = (o)->m_ext_ref; \
150 mowner_ref((n), (n)->m_flags); \
151 } while (/* CONSTCOND */ 0)
152
153 static int
154 nmbclusters_limit(void)
155 {
156 #if defined(PMAP_MAP_POOLPAGE)
157 /* direct mapping, doesn't use space in kmem_arena */
158 vsize_t max_size = physmem / 4;
159 #else
160 vsize_t max_size = MIN(physmem / 4, nkmempages / 4);
161 #endif
162
163 max_size = max_size * PAGE_SIZE / MCLBYTES;
164 #ifdef NMBCLUSTERS_MAX
165 max_size = MIN(max_size, NMBCLUSTERS_MAX);
166 #endif
167
168 return max_size;
169 }
170
171 /*
172 * Initialize the mbuf allocator.
173 */
174 void
175 mbinit(void)
176 {
177
178 CTASSERT(sizeof(struct _m_ext) <= MHLEN);
179 CTASSERT(sizeof(struct mbuf) == MSIZE);
180
181 sysctl_kern_mbuf_setup();
182
183 mb_cache = pool_cache_init(msize, 0, 0, 0, "mbpl",
184 NULL, IPL_VM, mb_ctor, NULL, NULL);
185 KASSERT(mb_cache != NULL);
186
187 mcl_cache = pool_cache_init(mclbytes, COHERENCY_UNIT, 0, 0, "mclpl",
188 NULL, IPL_VM, NULL, NULL, NULL);
189 KASSERT(mcl_cache != NULL);
190
191 pool_cache_set_drain_hook(mb_cache, mb_drain, NULL);
192 pool_cache_set_drain_hook(mcl_cache, mb_drain, NULL);
193
194 /*
195 * Set an arbitrary default limit on the number of mbuf clusters.
196 */
197 #ifdef NMBCLUSTERS
198 nmbclusters = MIN(NMBCLUSTERS, nmbclusters_limit());
199 #else
200 nmbclusters = MAX(1024,
201 (vsize_t)physmem * PAGE_SIZE / MCLBYTES / 16);
202 nmbclusters = MIN(nmbclusters, nmbclusters_limit());
203 #endif
204
205 /*
206 * Set the hard limit on the mclpool to the number of
207 * mbuf clusters the kernel is to support. Log the limit
208 * reached message max once a minute.
209 */
210 pool_cache_sethardlimit(mcl_cache, nmbclusters, mclpool_warnmsg, 60);
211
212 mbstat_percpu = percpu_alloc(sizeof(struct mbstat_cpu));
213
214 /*
215 * Set a low water mark for both mbufs and clusters. This should
216 * help ensure that they can be allocated in a memory starvation
217 * situation. This is important for e.g. diskless systems which
218 * must allocate mbufs in order for the pagedaemon to clean pages.
219 */
220 pool_cache_setlowat(mb_cache, mblowat);
221 pool_cache_setlowat(mcl_cache, mcllowat);
222
223 #ifdef MBUFTRACE
224 {
225 /*
226 * Attach the unknown mowners.
227 */
228 int i;
229 MOWNER_ATTACH(&revoked_mowner);
230 for (i = sizeof(unknown_mowners)/sizeof(unknown_mowners[0]);
231 i-- > 0; )
232 MOWNER_ATTACH(&unknown_mowners[i]);
233 }
234 #endif
235 }
236
237 static void
238 mb_drain(void *arg, int flags)
239 {
240 struct domain *dp;
241 const struct protosw *pr;
242 struct ifnet *ifp;
243 int s;
244
245 KERNEL_LOCK(1, NULL);
246 s = splvm();
247 DOMAIN_FOREACH(dp) {
248 for (pr = dp->dom_protosw;
249 pr < dp->dom_protoswNPROTOSW; pr++)
250 if (pr->pr_drain)
251 (*pr->pr_drain)();
252 }
253 /* XXX we cannot use psref in H/W interrupt */
254 if (!cpu_intr_p()) {
255 int bound = curlwp_bind();
256 IFNET_READER_FOREACH(ifp) {
257 struct psref psref;
258
259 if_acquire(ifp, &psref);
260
261 if (ifp->if_drain)
262 (*ifp->if_drain)(ifp);
263
264 if_release(ifp, &psref);
265 }
266 curlwp_bindx(bound);
267 }
268 splx(s);
269 mbstat.m_drain++;
270 KERNEL_UNLOCK_ONE(NULL);
271 }
272
273 /*
274 * sysctl helper routine for the kern.mbuf subtree.
275 * nmbclusters, mblowat and mcllowat need range
276 * checking and pool tweaking after being reset.
277 */
278 static int
279 sysctl_kern_mbuf(SYSCTLFN_ARGS)
280 {
281 int error, newval;
282 struct sysctlnode node;
283
284 node = *rnode;
285 node.sysctl_data = &newval;
286 switch (rnode->sysctl_num) {
287 case MBUF_NMBCLUSTERS:
288 case MBUF_MBLOWAT:
289 case MBUF_MCLLOWAT:
290 newval = *(int*)rnode->sysctl_data;
291 break;
292 default:
293 return EOPNOTSUPP;
294 }
295
296 error = sysctl_lookup(SYSCTLFN_CALL(&node));
297 if (error || newp == NULL)
298 return error;
299 if (newval < 0)
300 return EINVAL;
301
302 switch (node.sysctl_num) {
303 case MBUF_NMBCLUSTERS:
304 if (newval < nmbclusters)
305 return EINVAL;
306 if (newval > nmbclusters_limit())
307 return EINVAL;
308 nmbclusters = newval;
309 pool_cache_sethardlimit(mcl_cache, nmbclusters,
310 mclpool_warnmsg, 60);
311 break;
312 case MBUF_MBLOWAT:
313 mblowat = newval;
314 pool_cache_setlowat(mb_cache, mblowat);
315 break;
316 case MBUF_MCLLOWAT:
317 mcllowat = newval;
318 pool_cache_setlowat(mcl_cache, mcllowat);
319 break;
320 }
321
322 return 0;
323 }
324
325 #ifdef MBUFTRACE
326 static void
327 mowner_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
328 {
329 struct mowner_counter *mc = v1;
330 struct mowner_user *mo_user = v2;
331 int i;
332
333 for (i = 0; i < MOWNER_COUNTER_NCOUNTERS; i++) {
334 mo_user->mo_counter[i] += mc->mc_counter[i];
335 }
336 }
337
338 static void
339 mowner_convert_to_user(struct mowner *mo, struct mowner_user *mo_user)
340 {
341
342 memset(mo_user, 0, sizeof(*mo_user));
343 CTASSERT(sizeof(mo_user->mo_name) == sizeof(mo->mo_name));
344 CTASSERT(sizeof(mo_user->mo_descr) == sizeof(mo->mo_descr));
345 memcpy(mo_user->mo_name, mo->mo_name, sizeof(mo->mo_name));
346 memcpy(mo_user->mo_descr, mo->mo_descr, sizeof(mo->mo_descr));
347 percpu_foreach(mo->mo_counters, mowner_convert_to_user_cb, mo_user);
348 }
349
350 static int
351 sysctl_kern_mbuf_mowners(SYSCTLFN_ARGS)
352 {
353 struct mowner *mo;
354 size_t len = 0;
355 int error = 0;
356
357 if (namelen != 0)
358 return EINVAL;
359 if (newp != NULL)
360 return EPERM;
361
362 LIST_FOREACH(mo, &mowners, mo_link) {
363 struct mowner_user mo_user;
364
365 mowner_convert_to_user(mo, &mo_user);
366
367 if (oldp != NULL) {
368 if (*oldlenp - len < sizeof(mo_user)) {
369 error = ENOMEM;
370 break;
371 }
372 error = copyout(&mo_user, (char *)oldp + len,
373 sizeof(mo_user));
374 if (error)
375 break;
376 }
377 len += sizeof(mo_user);
378 }
379
380 if (error == 0)
381 *oldlenp = len;
382
383 return error;
384 }
385 #endif /* MBUFTRACE */
386
387 void
388 mbstat_type_add(int type, int diff)
389 {
390 struct mbstat_cpu *mb;
391 int s;
392
393 s = splvm();
394 mb = percpu_getref(mbstat_percpu);
395 mb->m_mtypes[type] += diff;
396 percpu_putref(mbstat_percpu);
397 splx(s);
398 }
399
400 static void
401 mbstat_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
402 {
403 struct mbstat_cpu *mbsc = v1;
404 struct mbstat *mbs = v2;
405 int i;
406
407 for (i = 0; i < __arraycount(mbs->m_mtypes); i++) {
408 mbs->m_mtypes[i] += mbsc->m_mtypes[i];
409 }
410 }
411
412 static void
413 mbstat_convert_to_user(struct mbstat *mbs)
414 {
415
416 memset(mbs, 0, sizeof(*mbs));
417 mbs->m_drain = mbstat.m_drain;
418 percpu_foreach(mbstat_percpu, mbstat_convert_to_user_cb, mbs);
419 }
420
421 static int
422 sysctl_kern_mbuf_stats(SYSCTLFN_ARGS)
423 {
424 struct sysctlnode node;
425 struct mbstat mbs;
426
427 mbstat_convert_to_user(&mbs);
428 node = *rnode;
429 node.sysctl_data = &mbs;
430 node.sysctl_size = sizeof(mbs);
431 return sysctl_lookup(SYSCTLFN_CALL(&node));
432 }
433
434 static void
435 sysctl_kern_mbuf_setup(void)
436 {
437
438 KASSERT(mbuf_sysctllog == NULL);
439 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
440 CTLFLAG_PERMANENT,
441 CTLTYPE_NODE, "mbuf",
442 SYSCTL_DESCR("mbuf control variables"),
443 NULL, 0, NULL, 0,
444 CTL_KERN, KERN_MBUF, CTL_EOL);
445
446 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
447 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
448 CTLTYPE_INT, "msize",
449 SYSCTL_DESCR("mbuf base size"),
450 NULL, msize, NULL, 0,
451 CTL_KERN, KERN_MBUF, MBUF_MSIZE, CTL_EOL);
452 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
453 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
454 CTLTYPE_INT, "mclbytes",
455 SYSCTL_DESCR("mbuf cluster size"),
456 NULL, mclbytes, NULL, 0,
457 CTL_KERN, KERN_MBUF, MBUF_MCLBYTES, CTL_EOL);
458 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
460 CTLTYPE_INT, "nmbclusters",
461 SYSCTL_DESCR("Limit on the number of mbuf clusters"),
462 sysctl_kern_mbuf, 0, &nmbclusters, 0,
463 CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS, CTL_EOL);
464 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
465 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
466 CTLTYPE_INT, "mblowat",
467 SYSCTL_DESCR("mbuf low water mark"),
468 sysctl_kern_mbuf, 0, &mblowat, 0,
469 CTL_KERN, KERN_MBUF, MBUF_MBLOWAT, CTL_EOL);
470 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "mcllowat",
473 SYSCTL_DESCR("mbuf cluster low water mark"),
474 sysctl_kern_mbuf, 0, &mcllowat, 0,
475 CTL_KERN, KERN_MBUF, MBUF_MCLLOWAT, CTL_EOL);
476 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
477 CTLFLAG_PERMANENT,
478 CTLTYPE_STRUCT, "stats",
479 SYSCTL_DESCR("mbuf allocation statistics"),
480 sysctl_kern_mbuf_stats, 0, NULL, 0,
481 CTL_KERN, KERN_MBUF, MBUF_STATS, CTL_EOL);
482 #ifdef MBUFTRACE
483 sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
484 CTLFLAG_PERMANENT,
485 CTLTYPE_STRUCT, "mowners",
486 SYSCTL_DESCR("Information about mbuf owners"),
487 sysctl_kern_mbuf_mowners, 0, NULL, 0,
488 CTL_KERN, KERN_MBUF, MBUF_MOWNERS, CTL_EOL);
489 #endif
490 }
491
492 static int
493 mb_ctor(void *arg, void *object, int flags)
494 {
495 struct mbuf *m = object;
496
497 #ifdef POOL_VTOPHYS
498 m->m_paddr = POOL_VTOPHYS(m);
499 #else
500 m->m_paddr = M_PADDR_INVALID;
501 #endif
502 return 0;
503 }
504
505 /*
506 * Add mbuf to the end of a chain
507 */
508 struct mbuf *
509 m_add(struct mbuf *c, struct mbuf *m)
510 {
511 struct mbuf *n;
512
513 if (c == NULL)
514 return m;
515
516 for (n = c; n->m_next != NULL; n = n->m_next)
517 continue;
518 n->m_next = m;
519 return c;
520 }
521
522 struct mbuf *
523 m_get(int how, int type)
524 {
525 struct mbuf *m;
526
527 KASSERT(type != MT_FREE);
528
529 m = pool_cache_get(mb_cache,
530 how == M_WAIT ? PR_WAITOK|PR_LIMITFAIL : PR_NOWAIT);
531 if (m == NULL)
532 return NULL;
533 KASSERT(((vaddr_t)m->m_dat & PAGE_MASK) + MLEN <= PAGE_SIZE);
534
535 mbstat_type_add(type, 1);
536
537 mowner_init(m, type);
538 m->m_ext_ref = m; /* default */
539 m->m_type = type;
540 m->m_len = 0;
541 m->m_next = NULL;
542 m->m_nextpkt = NULL; /* default */
543 m->m_data = m->m_dat;
544 m->m_flags = 0; /* default */
545
546 return m;
547 }
548
549 struct mbuf *
550 m_gethdr(int how, int type)
551 {
552 struct mbuf *m;
553
554 m = m_get(how, type);
555 if (m == NULL)
556 return NULL;
557
558 m->m_data = m->m_pktdat;
559 m->m_flags = M_PKTHDR;
560
561 m_reset_rcvif(m);
562 m->m_pkthdr.len = 0;
563 m->m_pkthdr.csum_flags = 0;
564 m->m_pkthdr.csum_data = 0;
565 m->m_pkthdr.segsz = 0;
566 m->m_pkthdr.ether_vtag = 0;
567 m->m_pkthdr.pkthdr_flags = 0;
568 SLIST_INIT(&m->m_pkthdr.tags);
569
570 m->m_pkthdr.pattr_class = NULL;
571 m->m_pkthdr.pattr_af = AF_UNSPEC;
572 m->m_pkthdr.pattr_hdr = NULL;
573
574 return m;
575 }
576
577 void
578 m_clget(struct mbuf *m, int how)
579 {
580 m->m_ext_storage.ext_buf = (char *)pool_cache_get_paddr(mcl_cache,
581 how == M_WAIT ? (PR_WAITOK|PR_LIMITFAIL) : PR_NOWAIT,
582 &m->m_ext_storage.ext_paddr);
583
584 if (m->m_ext_storage.ext_buf == NULL)
585 return;
586
587 KASSERT(((vaddr_t)m->m_ext_storage.ext_buf & PAGE_MASK) + mclbytes
588 <= PAGE_SIZE);
589
590 MCLINITREFERENCE(m);
591 m->m_data = m->m_ext.ext_buf;
592 m->m_flags = (m->m_flags & ~M_EXTCOPYFLAGS) |
593 M_EXT|M_EXT_CLUSTER|M_EXT_RW;
594 m->m_ext.ext_size = MCLBYTES;
595 m->m_ext.ext_free = NULL;
596 m->m_ext.ext_arg = NULL;
597 /* ext_paddr initialized above */
598
599 mowner_ref(m, M_EXT|M_EXT_CLUSTER);
600 }
601
602 struct mbuf *
603 m_getcl(int how, int type, int flags)
604 {
605 struct mbuf *mp;
606
607 if ((flags & M_PKTHDR) != 0)
608 mp = m_gethdr(how, type);
609 else
610 mp = m_get(how, type);
611
612 if (mp == NULL)
613 return NULL;
614
615 MCLGET(mp, how);
616 if ((mp->m_flags & M_EXT) != 0)
617 return mp;
618
619 m_free(mp);
620 return NULL;
621 }
622
623 /*
624 * Utility function for M_PREPEND. Do *NOT* use it directly.
625 */
626 struct mbuf *
627 m_prepend(struct mbuf *m, int len, int how)
628 {
629 struct mbuf *mn;
630
631 if (__predict_false(len > MHLEN)) {
632 panic("%s: len > MHLEN", __func__);
633 }
634
635 KASSERT(len != M_COPYALL);
636 mn = m_get(how, m->m_type);
637 if (mn == NULL) {
638 m_freem(m);
639 return NULL;
640 }
641
642 if (m->m_flags & M_PKTHDR) {
643 m_move_pkthdr(mn, m);
644 } else {
645 MCLAIM(mn, m->m_owner);
646 }
647 mn->m_next = m;
648 m = mn;
649
650 if (m->m_flags & M_PKTHDR) {
651 if (len < MHLEN)
652 m_align(m, len);
653 } else {
654 if (len < MLEN)
655 m_align(m, len);
656 }
657
658 m->m_len = len;
659 return m;
660 }
661
662 struct mbuf *
663 m_copym(struct mbuf *m, int off, int len, int wait)
664 {
665 /* Shallow copy on M_EXT. */
666 return m_copy_internal(m, off, len, wait, false);
667 }
668
669 struct mbuf *
670 m_dup(struct mbuf *m, int off, int len, int wait)
671 {
672 /* Deep copy. */
673 return m_copy_internal(m, off, len, wait, true);
674 }
675
676 static inline int
677 m_copylen(int len, int copylen)
678 {
679 return (len == M_COPYALL) ? copylen : uimin(len, copylen);
680 }
681
682 static struct mbuf *
683 m_copy_internal(struct mbuf *m, int off0, int len, int wait, bool deep)
684 {
685 struct mbuf *n, **np;
686 int off = off0;
687 struct mbuf *top;
688 int copyhdr = 0;
689
690 if (off < 0 || (len != M_COPYALL && len < 0))
691 panic("%s: off %d, len %d", __func__, off, len);
692 if (off == 0 && m->m_flags & M_PKTHDR)
693 copyhdr = 1;
694 while (off > 0) {
695 if (m == NULL)
696 panic("%s: m == NULL, off %d", __func__, off);
697 if (off < m->m_len)
698 break;
699 off -= m->m_len;
700 m = m->m_next;
701 }
702
703 np = ⊤
704 top = NULL;
705 while (len == M_COPYALL || len > 0) {
706 if (m == NULL) {
707 if (len != M_COPYALL)
708 panic("%s: m == NULL, len %d [!COPYALL]",
709 __func__, len);
710 break;
711 }
712
713 n = m_get(wait, m->m_type);
714 *np = n;
715 if (n == NULL)
716 goto nospace;
717 MCLAIM(n, m->m_owner);
718
719 if (copyhdr) {
720 m_copy_pkthdr(n, m);
721 if (len == M_COPYALL)
722 n->m_pkthdr.len -= off0;
723 else
724 n->m_pkthdr.len = len;
725 copyhdr = 0;
726 }
727 n->m_len = m_copylen(len, m->m_len - off);
728
729 if (m->m_flags & M_EXT) {
730 if (!deep) {
731 n->m_data = m->m_data + off;
732 MCLADDREFERENCE(m, n);
733 } else {
734 /*
735 * We don't care if MCLGET fails. n->m_len is
736 * recomputed and handles that.
737 */
738 MCLGET(n, wait);
739 n->m_len = 0;
740 n->m_len = M_TRAILINGSPACE(n);
741 n->m_len = m_copylen(len, n->m_len);
742 n->m_len = uimin(n->m_len, m->m_len - off);
743 memcpy(mtod(n, void *), mtod(m, char *) + off,
744 (unsigned)n->m_len);
745 }
746 } else {
747 memcpy(mtod(n, void *), mtod(m, char *) + off,
748 (unsigned)n->m_len);
749 }
750
751 if (len != M_COPYALL)
752 len -= n->m_len;
753 off += n->m_len;
754
755 KASSERT(off <= m->m_len);
756
757 if (off == m->m_len) {
758 m = m->m_next;
759 off = 0;
760 }
761 np = &n->m_next;
762 }
763
764 return top;
765
766 nospace:
767 m_freem(top);
768 return NULL;
769 }
770
771 /*
772 * Copy an entire packet, including header (which must be present).
773 * An optimization of the common case 'm_copym(m, 0, M_COPYALL, how)'.
774 */
775 struct mbuf *
776 m_copypacket(struct mbuf *m, int how)
777 {
778 struct mbuf *top, *n, *o;
779
780 if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
781 panic("%s: no header (m = %p)", __func__, m);
782 }
783
784 n = m_get(how, m->m_type);
785 top = n;
786 if (!n)
787 goto nospace;
788
789 MCLAIM(n, m->m_owner);
790 m_copy_pkthdr(n, m);
791 n->m_len = m->m_len;
792 if (m->m_flags & M_EXT) {
793 n->m_data = m->m_data;
794 MCLADDREFERENCE(m, n);
795 } else {
796 memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
797 }
798
799 m = m->m_next;
800 while (m) {
801 o = m_get(how, m->m_type);
802 if (!o)
803 goto nospace;
804
805 MCLAIM(o, m->m_owner);
806 n->m_next = o;
807 n = n->m_next;
808
809 n->m_len = m->m_len;
810 if (m->m_flags & M_EXT) {
811 n->m_data = m->m_data;
812 MCLADDREFERENCE(m, n);
813 } else {
814 memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
815 }
816
817 m = m->m_next;
818 }
819 return top;
820
821 nospace:
822 m_freem(top);
823 return NULL;
824 }
825
826 void
827 m_copydata(struct mbuf *m, int off, int len, void *cp)
828 {
829 unsigned int count;
830 struct mbuf *m0 = m;
831 int len0 = len;
832 int off0 = off;
833 void *cp0 = cp;
834
835 KASSERT(len != M_COPYALL);
836 if (off < 0 || len < 0)
837 panic("m_copydata: off %d, len %d", off, len);
838 while (off > 0) {
839 if (m == NULL)
840 panic("m_copydata(%p,%d,%d,%p): m=NULL, off=%d (%d)",
841 m0, len0, off0, cp0, off, off0 - off);
842 if (off < m->m_len)
843 break;
844 off -= m->m_len;
845 m = m->m_next;
846 }
847 while (len > 0) {
848 if (m == NULL)
849 panic("m_copydata(%p,%d,%d,%p): "
850 "m=NULL, off=%d (%d), len=%d (%d)",
851 m0, len0, off0, cp0,
852 off, off0 - off, len, len0 - len);
853 count = uimin(m->m_len - off, len);
854 memcpy(cp, mtod(m, char *) + off, count);
855 len -= count;
856 cp = (char *)cp + count;
857 off = 0;
858 m = m->m_next;
859 }
860 }
861
862 /*
863 * Concatenate mbuf chain n to m.
864 * n might be copied into m (when n->m_len is small), therefore data portion of
865 * n could be copied into an mbuf of different mbuf type.
866 * Any m_pkthdr is not updated.
867 */
868 void
869 m_cat(struct mbuf *m, struct mbuf *n)
870 {
871
872 while (m->m_next)
873 m = m->m_next;
874 while (n) {
875 if (M_READONLY(m) || n->m_len > M_TRAILINGSPACE(m)) {
876 /* just join the two chains */
877 m->m_next = n;
878 return;
879 }
880 /* splat the data from one into the other */
881 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
882 (u_int)n->m_len);
883 m->m_len += n->m_len;
884 n = m_free(n);
885 }
886 }
887
888 void
889 m_adj(struct mbuf *mp, int req_len)
890 {
891 int len = req_len;
892 struct mbuf *m;
893 int count;
894
895 if ((m = mp) == NULL)
896 return;
897 if (len >= 0) {
898 /*
899 * Trim from head.
900 */
901 while (m != NULL && len > 0) {
902 if (m->m_len <= len) {
903 len -= m->m_len;
904 m->m_len = 0;
905 m = m->m_next;
906 } else {
907 m->m_len -= len;
908 m->m_data += len;
909 len = 0;
910 }
911 }
912 if (mp->m_flags & M_PKTHDR)
913 mp->m_pkthdr.len -= (req_len - len);
914 } else {
915 /*
916 * Trim from tail. Scan the mbuf chain,
917 * calculating its length and finding the last mbuf.
918 * If the adjustment only affects this mbuf, then just
919 * adjust and return. Otherwise, rescan and truncate
920 * after the remaining size.
921 */
922 len = -len;
923 count = 0;
924 for (;;) {
925 count += m->m_len;
926 if (m->m_next == NULL)
927 break;
928 m = m->m_next;
929 }
930 if (m->m_len >= len) {
931 m->m_len -= len;
932 if (mp->m_flags & M_PKTHDR)
933 mp->m_pkthdr.len -= len;
934 return;
935 }
936
937 count -= len;
938 if (count < 0)
939 count = 0;
940
941 /*
942 * Correct length for chain is "count".
943 * Find the mbuf with last data, adjust its length,
944 * and toss data from remaining mbufs on chain.
945 */
946 m = mp;
947 if (m->m_flags & M_PKTHDR)
948 m->m_pkthdr.len = count;
949 for (; m; m = m->m_next) {
950 if (m->m_len >= count) {
951 m->m_len = count;
952 break;
953 }
954 count -= m->m_len;
955 }
956 if (m) {
957 while (m->m_next)
958 (m = m->m_next)->m_len = 0;
959 }
960 }
961 }
962
963 /*
964 * m_ensure_contig: rearrange an mbuf chain that given length of bytes
965 * would be contiguous and in the data area of an mbuf (therefore, mtod()
966 * would work for a structure of given length).
967 *
968 * => On success, returns true and the resulting mbuf chain; false otherwise.
969 * => The mbuf chain may change, but is always preserved valid.
970 */
971 bool
972 m_ensure_contig(struct mbuf **m0, int len)
973 {
974 struct mbuf *n = *m0, *m;
975 size_t count, space;
976
977 KASSERT(len != M_COPYALL);
978 /*
979 * If first mbuf has no cluster, and has room for len bytes
980 * without shifting current data, pullup into it,
981 * otherwise allocate a new mbuf to prepend to the chain.
982 */
983 if ((n->m_flags & M_EXT) == 0 &&
984 n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
985 if (n->m_len >= len) {
986 return true;
987 }
988 m = n;
989 n = n->m_next;
990 len -= m->m_len;
991 } else {
992 if (len > MHLEN) {
993 return false;
994 }
995 m = m_get(M_DONTWAIT, n->m_type);
996 if (m == NULL) {
997 return false;
998 }
999 MCLAIM(m, n->m_owner);
1000 if (n->m_flags & M_PKTHDR) {
1001 m_move_pkthdr(m, n);
1002 }
1003 }
1004 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1005 do {
1006 count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
1007 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1008 (unsigned)count);
1009 len -= count;
1010 m->m_len += count;
1011 n->m_len -= count;
1012 space -= count;
1013 if (n->m_len)
1014 n->m_data += count;
1015 else
1016 n = m_free(n);
1017 } while (len > 0 && n);
1018
1019 m->m_next = n;
1020 *m0 = m;
1021
1022 return len <= 0;
1023 }
1024
1025 /*
1026 * m_pullup: same as m_ensure_contig(), but destroys mbuf chain on error.
1027 */
1028 struct mbuf *
1029 m_pullup(struct mbuf *n, int len)
1030 {
1031 struct mbuf *m = n;
1032
1033 KASSERT(len != M_COPYALL);
1034 if (!m_ensure_contig(&m, len)) {
1035 KASSERT(m != NULL);
1036 m_freem(m);
1037 m = NULL;
1038 }
1039 return m;
1040 }
1041
1042 /*
1043 * ensure that [off, off + len) is contiguous on the mbuf chain "m".
1044 * packet chain before "off" is kept untouched.
1045 * if offp == NULL, the target will start at <retval, 0> on resulting chain.
1046 * if offp != NULL, the target will start at <retval, *offp> on resulting chain.
1047 *
1048 * on error return (NULL return value), original "m" will be freed.
1049 *
1050 * XXX M_TRAILINGSPACE/M_LEADINGSPACE on shared cluster (sharedcluster)
1051 */
1052 struct mbuf *
1053 m_pulldown(struct mbuf *m, int off, int len, int *offp)
1054 {
1055 struct mbuf *n, *o;
1056 int hlen, tlen, olen;
1057 int sharedcluster;
1058
1059 /* Check invalid arguments. */
1060 if (m == NULL)
1061 panic("%s: m == NULL", __func__);
1062 if (len > MCLBYTES) {
1063 m_freem(m);
1064 return NULL;
1065 }
1066
1067 n = m;
1068 while (n != NULL && off > 0) {
1069 if (n->m_len > off)
1070 break;
1071 off -= n->m_len;
1072 n = n->m_next;
1073 }
1074 /* Be sure to point non-empty mbuf. */
1075 while (n != NULL && n->m_len == 0)
1076 n = n->m_next;
1077 if (!n) {
1078 m_freem(m);
1079 return NULL; /* mbuf chain too short */
1080 }
1081
1082 sharedcluster = M_READONLY(n);
1083
1084 /*
1085 * The target data is on <n, off>. If we got enough data on the mbuf
1086 * "n", we're done.
1087 */
1088 #ifdef __NO_STRICT_ALIGNMENT
1089 if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster)
1090 #else
1091 if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster &&
1092 ALIGNED_POINTER((mtod(n, char *) + off), uint32_t))
1093 #endif
1094 goto ok;
1095
1096 /*
1097 * When (len <= n->m_len - off) and (off != 0), it is a special case.
1098 * Len bytes from <n, off> sit in single mbuf, but the caller does
1099 * not like the starting position (off).
1100 *
1101 * Chop the current mbuf into two pieces, set off to 0.
1102 */
1103 if (len <= n->m_len - off) {
1104 struct mbuf *mlast;
1105
1106 o = m_dup(n, off, n->m_len - off, M_DONTWAIT);
1107 if (o == NULL) {
1108 m_freem(m);
1109 return NULL; /* ENOBUFS */
1110 }
1111 KASSERT(o->m_len >= len);
1112 for (mlast = o; mlast->m_next != NULL; mlast = mlast->m_next)
1113 ;
1114 n->m_len = off;
1115 mlast->m_next = n->m_next;
1116 n->m_next = o;
1117 n = o;
1118 off = 0;
1119 goto ok;
1120 }
1121
1122 /*
1123 * We need to take hlen from <n, off> and tlen from <n->m_next, 0>,
1124 * and construct contiguous mbuf with m_len == len.
1125 *
1126 * Note that hlen + tlen == len, and tlen > 0.
1127 */
1128 hlen = n->m_len - off;
1129 tlen = len - hlen;
1130
1131 /*
1132 * Ensure that we have enough trailing data on mbuf chain. If not,
1133 * we can do nothing about the chain.
1134 */
1135 olen = 0;
1136 for (o = n->m_next; o != NULL; o = o->m_next)
1137 olen += o->m_len;
1138 if (hlen + olen < len) {
1139 m_freem(m);
1140 return NULL; /* mbuf chain too short */
1141 }
1142
1143 /*
1144 * Easy cases first. We need to use m_copydata() to get data from
1145 * <n->m_next, 0>.
1146 */
1147 if ((off == 0 || offp) && M_TRAILINGSPACE(n) >= tlen &&
1148 !sharedcluster) {
1149 m_copydata(n->m_next, 0, tlen, mtod(n, char *) + n->m_len);
1150 n->m_len += tlen;
1151 m_adj(n->m_next, tlen);
1152 goto ok;
1153 }
1154 if ((off == 0 || offp) && M_LEADINGSPACE(n->m_next) >= hlen &&
1155 #ifndef __NO_STRICT_ALIGNMENT
1156 ALIGNED_POINTER((n->m_next->m_data - hlen), uint32_t) &&
1157 #endif
1158 !sharedcluster && n->m_next->m_len >= tlen) {
1159 n->m_next->m_data -= hlen;
1160 n->m_next->m_len += hlen;
1161 memcpy(mtod(n->m_next, void *), mtod(n, char *) + off, hlen);
1162 n->m_len -= hlen;
1163 n = n->m_next;
1164 off = 0;
1165 goto ok;
1166 }
1167
1168 /*
1169 * Now, we need to do the hard way. Don't copy as there's no room
1170 * on both ends.
1171 */
1172 o = m_get(M_DONTWAIT, m->m_type);
1173 if (o && len > MLEN) {
1174 MCLGET(o, M_DONTWAIT);
1175 if ((o->m_flags & M_EXT) == 0) {
1176 m_free(o);
1177 o = NULL;
1178 }
1179 }
1180 if (!o) {
1181 m_freem(m);
1182 return NULL; /* ENOBUFS */
1183 }
1184 /* get hlen from <n, off> into <o, 0> */
1185 o->m_len = hlen;
1186 memcpy(mtod(o, void *), mtod(n, char *) + off, hlen);
1187 n->m_len -= hlen;
1188 /* get tlen from <n->m_next, 0> into <o, hlen> */
1189 m_copydata(n->m_next, 0, tlen, mtod(o, char *) + o->m_len);
1190 o->m_len += tlen;
1191 m_adj(n->m_next, tlen);
1192 o->m_next = n->m_next;
1193 n->m_next = o;
1194 n = o;
1195 off = 0;
1196
1197 ok:
1198 if (offp)
1199 *offp = off;
1200 return n;
1201 }
1202
1203 /*
1204 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1205 * the amount of empty space before the data in the new mbuf to be specified
1206 * (in the event that the caller expects to prepend later).
1207 */
1208 struct mbuf *
1209 m_copyup(struct mbuf *n, int len, int dstoff)
1210 {
1211 struct mbuf *m;
1212 int count, space;
1213
1214 KASSERT(len != M_COPYALL);
1215 if (len > ((int)MHLEN - dstoff))
1216 goto bad;
1217 m = m_get(M_DONTWAIT, n->m_type);
1218 if (m == NULL)
1219 goto bad;
1220 MCLAIM(m, n->m_owner);
1221 if (n->m_flags & M_PKTHDR) {
1222 m_move_pkthdr(m, n);
1223 }
1224 m->m_data += dstoff;
1225 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1226 do {
1227 count = uimin(uimin(uimax(len, max_protohdr), space), n->m_len);
1228 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1229 (unsigned)count);
1230 len -= count;
1231 m->m_len += count;
1232 n->m_len -= count;
1233 space -= count;
1234 if (n->m_len)
1235 n->m_data += count;
1236 else
1237 n = m_free(n);
1238 } while (len > 0 && n);
1239 if (len > 0) {
1240 (void) m_free(m);
1241 goto bad;
1242 }
1243 m->m_next = n;
1244 return m;
1245 bad:
1246 m_freem(n);
1247 return NULL;
1248 }
1249
1250 struct mbuf *
1251 m_split(struct mbuf *m0, int len, int wait)
1252 {
1253 return m_split_internal(m0, len, wait, true);
1254 }
1255
1256 static struct mbuf *
1257 m_split_internal(struct mbuf *m0, int len0, int wait, bool copyhdr)
1258 {
1259 struct mbuf *m, *n;
1260 unsigned len = len0, remain, len_save;
1261
1262 KASSERT(len0 != M_COPYALL);
1263 for (m = m0; m && len > m->m_len; m = m->m_next)
1264 len -= m->m_len;
1265 if (m == NULL)
1266 return NULL;
1267
1268 remain = m->m_len - len;
1269 if (copyhdr && (m0->m_flags & M_PKTHDR)) {
1270 n = m_gethdr(wait, m0->m_type);
1271 if (n == NULL)
1272 return NULL;
1273
1274 MCLAIM(n, m0->m_owner);
1275 m_copy_rcvif(n, m0);
1276 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1277 len_save = m0->m_pkthdr.len;
1278 m0->m_pkthdr.len = len0;
1279
1280 if (m->m_flags & M_EXT)
1281 goto extpacket;
1282
1283 if (remain > MHLEN) {
1284 /* m can't be the lead packet */
1285 m_align(n, 0);
1286 n->m_len = 0;
1287 n->m_next = m_split(m, len, wait);
1288 if (n->m_next == NULL) {
1289 (void)m_free(n);
1290 m0->m_pkthdr.len = len_save;
1291 return NULL;
1292 }
1293 return n;
1294 } else {
1295 m_align(n, remain);
1296 }
1297 } else if (remain == 0) {
1298 n = m->m_next;
1299 m->m_next = NULL;
1300 return n;
1301 } else {
1302 n = m_get(wait, m->m_type);
1303 if (n == NULL)
1304 return NULL;
1305 MCLAIM(n, m->m_owner);
1306 m_align(n, remain);
1307 }
1308
1309 extpacket:
1310 if (m->m_flags & M_EXT) {
1311 n->m_data = m->m_data + len;
1312 MCLADDREFERENCE(m, n);
1313 } else {
1314 memcpy(mtod(n, void *), mtod(m, char *) + len, remain);
1315 }
1316
1317 n->m_len = remain;
1318 m->m_len = len;
1319 n->m_next = m->m_next;
1320 m->m_next = NULL;
1321 return n;
1322 }
1323
1324 /*
1325 * Routine to copy from device local memory into mbufs.
1326 */
1327 struct mbuf *
1328 m_devget(char *buf, int totlen, int off, struct ifnet *ifp)
1329 {
1330 struct mbuf *m;
1331 struct mbuf *top = NULL, **mp = ⊤
1332 char *cp, *epkt;
1333 int len;
1334
1335 cp = buf;
1336 epkt = cp + totlen;
1337 if (off) {
1338 /*
1339 * If 'off' is non-zero, packet is trailer-encapsulated,
1340 * so we have to skip the type and length fields.
1341 */
1342 cp += off + 2 * sizeof(uint16_t);
1343 totlen -= 2 * sizeof(uint16_t);
1344 }
1345
1346 m = m_gethdr(M_DONTWAIT, MT_DATA);
1347 if (m == NULL)
1348 return NULL;
1349 m_set_rcvif(m, ifp);
1350 m->m_pkthdr.len = totlen;
1351 m->m_len = MHLEN;
1352
1353 while (totlen > 0) {
1354 if (top) {
1355 m = m_get(M_DONTWAIT, MT_DATA);
1356 if (m == NULL) {
1357 m_freem(top);
1358 return NULL;
1359 }
1360 m->m_len = MLEN;
1361 }
1362
1363 len = uimin(totlen, epkt - cp);
1364
1365 if (len >= MINCLSIZE) {
1366 MCLGET(m, M_DONTWAIT);
1367 if ((m->m_flags & M_EXT) == 0) {
1368 m_free(m);
1369 m_freem(top);
1370 return NULL;
1371 }
1372 m->m_len = len = uimin(len, MCLBYTES);
1373 } else {
1374 /*
1375 * Place initial small packet/header at end of mbuf.
1376 */
1377 if (len < m->m_len) {
1378 if (top == 0 && len + max_linkhdr <= m->m_len)
1379 m->m_data += max_linkhdr;
1380 m->m_len = len;
1381 } else
1382 len = m->m_len;
1383 }
1384
1385 memcpy(mtod(m, void *), cp, (size_t)len);
1386
1387 cp += len;
1388 *mp = m;
1389 mp = &m->m_next;
1390 totlen -= len;
1391 if (cp == epkt)
1392 cp = buf;
1393 }
1394
1395 return top;
1396 }
1397
1398 /*
1399 * Copy data from a buffer back into the indicated mbuf chain,
1400 * starting "off" bytes from the beginning, extending the mbuf
1401 * chain if necessary.
1402 */
1403 void
1404 m_copyback(struct mbuf *m0, int off, int len, const void *cp)
1405 {
1406 #if defined(DEBUG)
1407 struct mbuf *origm = m0;
1408 int error;
1409 #endif
1410
1411 if (m0 == NULL)
1412 return;
1413
1414 #if defined(DEBUG)
1415 error =
1416 #endif
1417 m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_EXTEND,
1418 M_DONTWAIT);
1419
1420 #if defined(DEBUG)
1421 if (error != 0 || (m0 != NULL && origm != m0))
1422 panic("m_copyback");
1423 #endif
1424 }
1425
1426 struct mbuf *
1427 m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
1428 {
1429 int error;
1430
1431 /* don't support chain expansion */
1432 KASSERT(len != M_COPYALL);
1433 KDASSERT(off + len <= m_length(m0));
1434
1435 error = m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_COW,
1436 how);
1437 if (error) {
1438 /*
1439 * no way to recover from partial success.
1440 * just free the chain.
1441 */
1442 m_freem(m0);
1443 return NULL;
1444 }
1445 return m0;
1446 }
1447
1448 int
1449 m_makewritable(struct mbuf **mp, int off, int len, int how)
1450 {
1451 int error;
1452 #if defined(DEBUG)
1453 int origlen = m_length(*mp);
1454 #endif
1455
1456 error = m_copyback_internal(mp, off, len, NULL, CB_PRESERVE|CB_COW,
1457 how);
1458 if (error)
1459 return error;
1460
1461 #if defined(DEBUG)
1462 int reslen = 0;
1463 for (struct mbuf *n = *mp; n; n = n->m_next)
1464 reslen += n->m_len;
1465 if (origlen != reslen)
1466 panic("m_makewritable: length changed");
1467 if (((*mp)->m_flags & M_PKTHDR) != 0 && reslen != (*mp)->m_pkthdr.len)
1468 panic("m_makewritable: inconsist");
1469 #endif
1470
1471 return 0;
1472 }
1473
1474 static int
1475 m_copyback_internal(struct mbuf **mp0, int off, int len, const void *vp,
1476 int flags, int how)
1477 {
1478 int mlen;
1479 struct mbuf *m, *n;
1480 struct mbuf **mp;
1481 int totlen = 0;
1482 const char *cp = vp;
1483
1484 KASSERT(mp0 != NULL);
1485 KASSERT(*mp0 != NULL);
1486 KASSERT((flags & CB_PRESERVE) == 0 || cp == NULL);
1487 KASSERT((flags & CB_COPYBACK) == 0 || cp != NULL);
1488
1489 if (len == M_COPYALL)
1490 len = m_length(*mp0) - off;
1491
1492 /*
1493 * we don't bother to update "totlen" in the case of CB_COW,
1494 * assuming that CB_EXTEND and CB_COW are exclusive.
1495 */
1496
1497 KASSERT((~flags & (CB_EXTEND|CB_COW)) != 0);
1498
1499 mp = mp0;
1500 m = *mp;
1501 while (off > (mlen = m->m_len)) {
1502 off -= mlen;
1503 totlen += mlen;
1504 if (m->m_next == NULL) {
1505 int tspace;
1506 extend:
1507 if ((flags & CB_EXTEND) == 0)
1508 goto out;
1509
1510 /*
1511 * try to make some space at the end of "m".
1512 */
1513
1514 mlen = m->m_len;
1515 if (off + len >= MINCLSIZE &&
1516 (m->m_flags & M_EXT) == 0 && m->m_len == 0) {
1517 MCLGET(m, how);
1518 }
1519 tspace = M_TRAILINGSPACE(m);
1520 if (tspace > 0) {
1521 tspace = uimin(tspace, off + len);
1522 KASSERT(tspace > 0);
1523 memset(mtod(m, char *) + m->m_len, 0,
1524 uimin(off, tspace));
1525 m->m_len += tspace;
1526 off += mlen;
1527 totlen -= mlen;
1528 continue;
1529 }
1530
1531 /*
1532 * need to allocate an mbuf.
1533 */
1534
1535 if (off + len >= MINCLSIZE) {
1536 n = m_getcl(how, m->m_type, 0);
1537 } else {
1538 n = m_get(how, m->m_type);
1539 }
1540 if (n == NULL) {
1541 goto out;
1542 }
1543 n->m_len = uimin(M_TRAILINGSPACE(n), off + len);
1544 memset(mtod(n, char *), 0, uimin(n->m_len, off));
1545 m->m_next = n;
1546 }
1547 mp = &m->m_next;
1548 m = m->m_next;
1549 }
1550 while (len > 0) {
1551 mlen = m->m_len - off;
1552 if (mlen != 0 && M_READONLY(m)) {
1553 /*
1554 * This mbuf is read-only. Allocate a new writable
1555 * mbuf and try again.
1556 */
1557 char *datap;
1558 int eatlen;
1559
1560 KASSERT((flags & CB_COW) != 0);
1561
1562 /*
1563 * if we're going to write into the middle of
1564 * a mbuf, split it first.
1565 */
1566 if (off > 0) {
1567 n = m_split_internal(m, off, how, false);
1568 if (n == NULL)
1569 goto enobufs;
1570 m->m_next = n;
1571 mp = &m->m_next;
1572 m = n;
1573 off = 0;
1574 continue;
1575 }
1576
1577 /*
1578 * XXX TODO coalesce into the trailingspace of
1579 * the previous mbuf when possible.
1580 */
1581
1582 /*
1583 * allocate a new mbuf. copy packet header if needed.
1584 */
1585 n = m_get(how, m->m_type);
1586 if (n == NULL)
1587 goto enobufs;
1588 MCLAIM(n, m->m_owner);
1589 if (off == 0 && (m->m_flags & M_PKTHDR) != 0) {
1590 m_move_pkthdr(n, m);
1591 n->m_len = MHLEN;
1592 } else {
1593 if (len >= MINCLSIZE)
1594 MCLGET(n, M_DONTWAIT);
1595 n->m_len =
1596 (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
1597 }
1598 if (n->m_len > len)
1599 n->m_len = len;
1600
1601 /*
1602 * free the region which has been overwritten.
1603 * copying data from old mbufs if requested.
1604 */
1605 if (flags & CB_PRESERVE)
1606 datap = mtod(n, char *);
1607 else
1608 datap = NULL;
1609 eatlen = n->m_len;
1610 while (m != NULL && M_READONLY(m) &&
1611 n->m_type == m->m_type && eatlen > 0) {
1612 mlen = uimin(eatlen, m->m_len);
1613 if (datap) {
1614 m_copydata(m, 0, mlen, datap);
1615 datap += mlen;
1616 }
1617 m->m_data += mlen;
1618 m->m_len -= mlen;
1619 eatlen -= mlen;
1620 if (m->m_len == 0)
1621 *mp = m = m_free(m);
1622 }
1623 if (eatlen > 0)
1624 n->m_len -= eatlen;
1625 n->m_next = m;
1626 *mp = m = n;
1627 continue;
1628 }
1629 mlen = uimin(mlen, len);
1630 if (flags & CB_COPYBACK) {
1631 memcpy(mtod(m, char *) + off, cp, (unsigned)mlen);
1632 cp += mlen;
1633 }
1634 len -= mlen;
1635 mlen += off;
1636 off = 0;
1637 totlen += mlen;
1638 if (len == 0)
1639 break;
1640 if (m->m_next == NULL) {
1641 goto extend;
1642 }
1643 mp = &m->m_next;
1644 m = m->m_next;
1645 }
1646
1647 out:
1648 if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
1649 KASSERT((flags & CB_EXTEND) != 0);
1650 m->m_pkthdr.len = totlen;
1651 }
1652
1653 return 0;
1654
1655 enobufs:
1656 return ENOBUFS;
1657 }
1658
1659 /*
1660 * Compress the mbuf chain. Return the new mbuf chain on success, NULL on
1661 * failure. The first mbuf is preserved, and on success the pointer returned
1662 * is the same as the one passed.
1663 */
1664 struct mbuf *
1665 m_defrag(struct mbuf *m, int how)
1666 {
1667 struct mbuf *m0, *mn, *n;
1668 int sz;
1669
1670 KASSERT((m->m_flags & M_PKTHDR) != 0);
1671
1672 if (m->m_next == NULL)
1673 return m;
1674
1675 /* Defrag to single mbuf if at all possible */
1676 if ((m->m_flags & M_EXT) == 0 && m->m_pkthdr.len <= MCLBYTES) {
1677 if (m->m_pkthdr.len <= MHLEN) {
1678 if (M_TRAILINGSPACE(m) < (m->m_pkthdr.len - m->m_len)) {
1679 KASSERTMSG(M_LEADINGSPACE(m) +
1680 M_TRAILINGSPACE(m) >=
1681 (m->m_pkthdr.len - m->m_len),
1682 "too small leading %d trailing %d ro? %d"
1683 " pkthdr.len %d mlen %d",
1684 (int)M_LEADINGSPACE(m),
1685 (int)M_TRAILINGSPACE(m),
1686 M_READONLY(m),
1687 m->m_pkthdr.len, m->m_len);
1688
1689 memmove(m->m_pktdat, m->m_data, m->m_len);
1690 m->m_data = m->m_pktdat;
1691
1692 KASSERT(M_TRAILINGSPACE(m) >=
1693 (m->m_pkthdr.len - m->m_len));
1694 }
1695 } else {
1696 /* Must copy data before adding cluster */
1697 m0 = m_get(how, MT_DATA);
1698 if (m0 == NULL)
1699 return NULL;
1700 KASSERT(m->m_len <= MHLEN);
1701 m_copydata(m, 0, m->m_len, mtod(m0, void *));
1702
1703 MCLGET(m, how);
1704 if ((m->m_flags & M_EXT) == 0) {
1705 m_free(m0);
1706 return NULL;
1707 }
1708 memcpy(m->m_data, mtod(m0, void *), m->m_len);
1709 m_free(m0);
1710 }
1711 KASSERT(M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len));
1712 m_copydata(m->m_next, 0, m->m_pkthdr.len - m->m_len,
1713 mtod(m, char *) + m->m_len);
1714 m->m_len = m->m_pkthdr.len;
1715 m_freem(m->m_next);
1716 m->m_next = NULL;
1717 return m;
1718 }
1719
1720 m0 = m_get(how, MT_DATA);
1721 if (m0 == NULL)
1722 return NULL;
1723 mn = m0;
1724
1725 sz = m->m_pkthdr.len - m->m_len;
1726 KASSERT(sz >= 0);
1727
1728 do {
1729 if (sz > MLEN) {
1730 MCLGET(mn, how);
1731 if ((mn->m_flags & M_EXT) == 0) {
1732 m_freem(m0);
1733 return NULL;
1734 }
1735 }
1736
1737 mn->m_len = MIN(sz, MCLBYTES);
1738
1739 m_copydata(m, m->m_pkthdr.len - sz, mn->m_len,
1740 mtod(mn, void *));
1741
1742 sz -= mn->m_len;
1743
1744 if (sz > 0) {
1745 /* need more mbufs */
1746 n = m_get(how, MT_DATA);
1747 if (n == NULL) {
1748 m_freem(m0);
1749 return NULL;
1750 }
1751
1752 mn->m_next = n;
1753 mn = n;
1754 }
1755 } while (sz > 0);
1756
1757 m_freem(m->m_next);
1758 m->m_next = m0;
1759
1760 return m;
1761 }
1762
1763 void
1764 m_remove_pkthdr(struct mbuf *m)
1765 {
1766 KASSERT(m->m_flags & M_PKTHDR);
1767
1768 m_tag_delete_chain(m);
1769 m->m_flags &= ~M_PKTHDR;
1770 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1771 }
1772
1773 void
1774 m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
1775 {
1776 KASSERT((to->m_flags & M_EXT) == 0);
1777 KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1778 SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1779 KASSERT((from->m_flags & M_PKTHDR) != 0);
1780
1781 to->m_pkthdr = from->m_pkthdr;
1782 to->m_flags = from->m_flags & M_COPYFLAGS;
1783 to->m_data = to->m_pktdat;
1784
1785 SLIST_INIT(&to->m_pkthdr.tags);
1786 m_tag_copy_chain(to, from);
1787 }
1788
1789 void
1790 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1791 {
1792 KASSERT((to->m_flags & M_EXT) == 0);
1793 KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1794 SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1795 KASSERT((from->m_flags & M_PKTHDR) != 0);
1796
1797 to->m_pkthdr = from->m_pkthdr;
1798 to->m_flags = from->m_flags & M_COPYFLAGS;
1799 to->m_data = to->m_pktdat;
1800
1801 from->m_flags &= ~M_PKTHDR;
1802 }
1803
1804 /*
1805 * Set the m_data pointer of a newly-allocated mbuf to place an object of the
1806 * specified size at the end of the mbuf, longword aligned.
1807 */
1808 void
1809 m_align(struct mbuf *m, int len)
1810 {
1811 int buflen, adjust;
1812
1813 KASSERT(len != M_COPYALL);
1814 KASSERT(M_LEADINGSPACE(m) == 0);
1815
1816 buflen = M_BUFSIZE(m);
1817
1818 KASSERT(len <= buflen);
1819 adjust = buflen - len;
1820 m->m_data += adjust &~ (sizeof(long)-1);
1821 }
1822
1823 /*
1824 * Apply function f to the data in an mbuf chain starting "off" bytes from the
1825 * beginning, continuing for "len" bytes.
1826 */
1827 int
1828 m_apply(struct mbuf *m, int off, int len,
1829 int (*f)(void *, void *, unsigned int), void *arg)
1830 {
1831 unsigned int count;
1832 int rval;
1833
1834 KASSERT(len != M_COPYALL);
1835 KASSERT(len >= 0);
1836 KASSERT(off >= 0);
1837
1838 while (off > 0) {
1839 KASSERT(m != NULL);
1840 if (off < m->m_len)
1841 break;
1842 off -= m->m_len;
1843 m = m->m_next;
1844 }
1845 while (len > 0) {
1846 KASSERT(m != NULL);
1847 count = uimin(m->m_len - off, len);
1848
1849 rval = (*f)(arg, mtod(m, char *) + off, count);
1850 if (rval)
1851 return rval;
1852
1853 len -= count;
1854 off = 0;
1855 m = m->m_next;
1856 }
1857
1858 return 0;
1859 }
1860
1861 /*
1862 * Return a pointer to mbuf/offset of location in mbuf chain.
1863 */
1864 struct mbuf *
1865 m_getptr(struct mbuf *m, int loc, int *off)
1866 {
1867
1868 while (loc >= 0) {
1869 /* Normal end of search */
1870 if (m->m_len > loc) {
1871 *off = loc;
1872 return m;
1873 }
1874
1875 loc -= m->m_len;
1876
1877 if (m->m_next == NULL) {
1878 if (loc == 0) {
1879 /* Point at the end of valid data */
1880 *off = m->m_len;
1881 return m;
1882 }
1883 return NULL;
1884 } else {
1885 m = m->m_next;
1886 }
1887 }
1888
1889 return NULL;
1890 }
1891
1892 /*
1893 * Release a reference to the mbuf external storage.
1894 *
1895 * => free the mbuf m itself as well.
1896 */
1897 static void
1898 m_ext_free(struct mbuf *m)
1899 {
1900 const bool embedded = MEXT_ISEMBEDDED(m);
1901 bool dofree = true;
1902 u_int refcnt;
1903
1904 KASSERT((m->m_flags & M_EXT) != 0);
1905 KASSERT(MEXT_ISEMBEDDED(m->m_ext_ref));
1906 KASSERT((m->m_ext_ref->m_flags & M_EXT) != 0);
1907 KASSERT((m->m_flags & M_EXT_CLUSTER) ==
1908 (m->m_ext_ref->m_flags & M_EXT_CLUSTER));
1909
1910 if (__predict_false(m->m_type == MT_FREE)) {
1911 panic("mbuf %p already freed", m);
1912 }
1913
1914 if (__predict_true(m->m_ext.ext_refcnt == 1)) {
1915 refcnt = m->m_ext.ext_refcnt = 0;
1916 } else {
1917 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1918 membar_exit();
1919 #endif
1920 refcnt = atomic_dec_uint_nv(&m->m_ext.ext_refcnt);
1921 }
1922
1923 if (refcnt > 0) {
1924 if (embedded) {
1925 /*
1926 * other mbuf's m_ext_ref still points to us.
1927 */
1928 dofree = false;
1929 } else {
1930 m->m_ext_ref = m;
1931 }
1932 } else {
1933 /*
1934 * dropping the last reference
1935 */
1936 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1937 membar_enter();
1938 #endif
1939 if (!embedded) {
1940 m->m_ext.ext_refcnt++; /* XXX */
1941 m_ext_free(m->m_ext_ref);
1942 m->m_ext_ref = m;
1943 } else if ((m->m_flags & M_EXT_CLUSTER) != 0) {
1944 pool_cache_put_paddr(mcl_cache,
1945 m->m_ext.ext_buf, m->m_ext.ext_paddr);
1946 } else if (m->m_ext.ext_free) {
1947 (*m->m_ext.ext_free)(m,
1948 m->m_ext.ext_buf, m->m_ext.ext_size,
1949 m->m_ext.ext_arg);
1950 /*
1951 * 'm' is already freed by the ext_free callback.
1952 */
1953 dofree = false;
1954 } else {
1955 free(m->m_ext.ext_buf, 0);
1956 }
1957 }
1958
1959 if (dofree) {
1960 m->m_type = MT_FREE;
1961 m->m_data = NULL;
1962 pool_cache_put(mb_cache, m);
1963 }
1964 }
1965
1966 /*
1967 * Free a single mbuf and associated external storage. Return the
1968 * successor, if any.
1969 */
1970 struct mbuf *
1971 m_free(struct mbuf *m)
1972 {
1973 struct mbuf *n;
1974
1975 mowner_revoke(m, 1, m->m_flags);
1976 mbstat_type_add(m->m_type, -1);
1977
1978 if (m->m_flags & M_PKTHDR)
1979 m_tag_delete_chain(m);
1980
1981 n = m->m_next;
1982
1983 if (m->m_flags & M_EXT) {
1984 m_ext_free(m);
1985 } else {
1986 if (__predict_false(m->m_type == MT_FREE)) {
1987 panic("mbuf %p already freed", m);
1988 }
1989 m->m_type = MT_FREE;
1990 m->m_data = NULL;
1991 pool_cache_put(mb_cache, m);
1992 }
1993
1994 return n;
1995 }
1996
1997 void
1998 m_freem(struct mbuf *m)
1999 {
2000 if (m == NULL)
2001 return;
2002 do {
2003 m = m_free(m);
2004 } while (m);
2005 }
2006
2007 #if defined(DDB)
2008 void
2009 m_print(const struct mbuf *m, const char *modif, void (*pr)(const char *, ...))
2010 {
2011 char ch;
2012 bool opt_c = false;
2013 bool opt_d = false;
2014 #if NETHER > 0
2015 bool opt_v = false;
2016 const struct mbuf *m0 = NULL;
2017 #endif
2018 int no = 0;
2019 char buf[512];
2020
2021 while ((ch = *(modif++)) != '\0') {
2022 switch (ch) {
2023 case 'c':
2024 opt_c = true;
2025 break;
2026 case 'd':
2027 opt_d = true;
2028 break;
2029 #if NETHER > 0
2030 case 'v':
2031 opt_v = true;
2032 m0 = m;
2033 break;
2034 #endif
2035 default:
2036 break;
2037 }
2038 }
2039
2040 nextchain:
2041 (*pr)("MBUF(%d) %p\n", no, m);
2042 snprintb(buf, sizeof(buf), M_FLAGS_BITS, (u_int)m->m_flags);
2043 (*pr)(" data=%p, len=%d, type=%d, flags=%s\n",
2044 m->m_data, m->m_len, m->m_type, buf);
2045 if (opt_d) {
2046 int i;
2047 unsigned char *p = m->m_data;
2048
2049 (*pr)(" data:");
2050
2051 for (i = 0; i < m->m_len; i++) {
2052 if (i % 16 == 0)
2053 (*pr)("\n");
2054 (*pr)(" %02x", p[i]);
2055 }
2056
2057 (*pr)("\n");
2058 }
2059 (*pr)(" owner=%p, next=%p, nextpkt=%p\n", m->m_owner, m->m_next,
2060 m->m_nextpkt);
2061 (*pr)(" leadingspace=%u, trailingspace=%u, readonly=%u\n",
2062 (int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(m),
2063 (int)M_READONLY(m));
2064 if ((m->m_flags & M_PKTHDR) != 0) {
2065 snprintb(buf, sizeof(buf), M_CSUM_BITS, m->m_pkthdr.csum_flags);
2066 (*pr)(" pktlen=%d, rcvif=%p, csum_flags=%s, csum_data=0x%"
2067 PRIx32 ", segsz=%u\n",
2068 m->m_pkthdr.len, m_get_rcvif_NOMPSAFE(m),
2069 buf, m->m_pkthdr.csum_data, m->m_pkthdr.segsz);
2070 }
2071 if ((m->m_flags & M_EXT)) {
2072 (*pr)(" ext_refcnt=%u, ext_buf=%p, ext_size=%zd, "
2073 "ext_free=%p, ext_arg=%p\n",
2074 m->m_ext.ext_refcnt,
2075 m->m_ext.ext_buf, m->m_ext.ext_size,
2076 m->m_ext.ext_free, m->m_ext.ext_arg);
2077 }
2078 if ((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0) {
2079 vaddr_t sva = (vaddr_t)m->m_ext.ext_buf;
2080 vaddr_t eva = sva + m->m_ext.ext_size;
2081 int n = (round_page(eva) - trunc_page(sva)) >> PAGE_SHIFT;
2082 int i;
2083
2084 (*pr)(" pages:");
2085 for (i = 0; i < n; i ++) {
2086 (*pr)(" %p", m->m_ext.ext_pgs[i]);
2087 }
2088 (*pr)("\n");
2089 }
2090
2091 if (opt_c) {
2092 m = m->m_next;
2093 if (m != NULL) {
2094 no++;
2095 goto nextchain;
2096 }
2097 }
2098
2099 #if NETHER > 0
2100 if (opt_v && m0)
2101 m_examine(m0, AF_ETHER, modif, pr);
2102 #endif
2103 }
2104 #endif /* defined(DDB) */
2105
2106 #if defined(MBUFTRACE)
2107 void
2108 mowner_init_owner(struct mowner *mo, const char *name, const char *descr)
2109 {
2110 memset(mo, 0, sizeof(*mo));
2111 strlcpy(mo->mo_name, name, sizeof(mo->mo_name));
2112 strlcpy(mo->mo_descr, descr, sizeof(mo->mo_descr));
2113 }
2114
2115 void
2116 mowner_attach(struct mowner *mo)
2117 {
2118
2119 KASSERT(mo->mo_counters == NULL);
2120 mo->mo_counters = percpu_alloc(sizeof(struct mowner_counter));
2121
2122 /* XXX lock */
2123 LIST_INSERT_HEAD(&mowners, mo, mo_link);
2124 }
2125
2126 void
2127 mowner_detach(struct mowner *mo)
2128 {
2129
2130 KASSERT(mo->mo_counters != NULL);
2131
2132 /* XXX lock */
2133 LIST_REMOVE(mo, mo_link);
2134
2135 percpu_free(mo->mo_counters, sizeof(struct mowner_counter));
2136 mo->mo_counters = NULL;
2137 }
2138
2139 void
2140 mowner_init(struct mbuf *m, int type)
2141 {
2142 struct mowner_counter *mc;
2143 struct mowner *mo;
2144 int s;
2145
2146 m->m_owner = mo = &unknown_mowners[type];
2147 s = splvm();
2148 mc = percpu_getref(mo->mo_counters);
2149 mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2150 percpu_putref(mo->mo_counters);
2151 splx(s);
2152 }
2153
2154 void
2155 mowner_ref(struct mbuf *m, int flags)
2156 {
2157 struct mowner *mo = m->m_owner;
2158 struct mowner_counter *mc;
2159 int s;
2160
2161 s = splvm();
2162 mc = percpu_getref(mo->mo_counters);
2163 if ((flags & M_EXT) != 0)
2164 mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2165 if ((flags & M_EXT_CLUSTER) != 0)
2166 mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2167 percpu_putref(mo->mo_counters);
2168 splx(s);
2169 }
2170
2171 void
2172 mowner_revoke(struct mbuf *m, bool all, int flags)
2173 {
2174 struct mowner *mo = m->m_owner;
2175 struct mowner_counter *mc;
2176 int s;
2177
2178 s = splvm();
2179 mc = percpu_getref(mo->mo_counters);
2180 if ((flags & M_EXT) != 0)
2181 mc->mc_counter[MOWNER_COUNTER_EXT_RELEASES]++;
2182 if ((flags & M_EXT_CLUSTER) != 0)
2183 mc->mc_counter[MOWNER_COUNTER_CLUSTER_RELEASES]++;
2184 if (all)
2185 mc->mc_counter[MOWNER_COUNTER_RELEASES]++;
2186 percpu_putref(mo->mo_counters);
2187 splx(s);
2188 if (all)
2189 m->m_owner = &revoked_mowner;
2190 }
2191
2192 static void
2193 mowner_claim(struct mbuf *m, struct mowner *mo)
2194 {
2195 struct mowner_counter *mc;
2196 int flags = m->m_flags;
2197 int s;
2198
2199 s = splvm();
2200 mc = percpu_getref(mo->mo_counters);
2201 mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2202 if ((flags & M_EXT) != 0)
2203 mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2204 if ((flags & M_EXT_CLUSTER) != 0)
2205 mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2206 percpu_putref(mo->mo_counters);
2207 splx(s);
2208 m->m_owner = mo;
2209 }
2210
2211 void
2212 m_claim(struct mbuf *m, struct mowner *mo)
2213 {
2214
2215 if (m->m_owner == mo || mo == NULL)
2216 return;
2217
2218 mowner_revoke(m, true, m->m_flags);
2219 mowner_claim(m, mo);
2220 }
2221
2222 void
2223 m_claimm(struct mbuf *m, struct mowner *mo)
2224 {
2225
2226 for (; m != NULL; m = m->m_next)
2227 m_claim(m, mo);
2228 }
2229 #endif /* defined(MBUFTRACE) */
2230
2231 #ifdef DIAGNOSTIC
2232 /*
2233 * Verify that the mbuf chain is not malformed. Used only for diagnostic.
2234 * Panics on error.
2235 */
2236 void
2237 m_verify_packet(struct mbuf *m)
2238 {
2239 struct mbuf *n = m;
2240 char *low, *high, *dat;
2241 int totlen = 0, len;
2242
2243 if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
2244 panic("%s: mbuf doesn't have M_PKTHDR", __func__);
2245 }
2246
2247 while (n != NULL) {
2248 if (__predict_false(n->m_type == MT_FREE)) {
2249 panic("%s: mbuf already freed (n = %p)", __func__, n);
2250 }
2251 #if 0
2252 /*
2253 * This ought to be a rule of the mbuf API. Unfortunately,
2254 * many places don't respect that rule.
2255 */
2256 if (__predict_false((n != m) && (n->m_flags & M_PKTHDR) != 0)) {
2257 panic("%s: M_PKTHDR set on secondary mbuf", __func__);
2258 }
2259 #endif
2260 if (__predict_false(n->m_nextpkt != NULL)) {
2261 panic("%s: m_nextpkt not null (m_nextpkt = %p)",
2262 __func__, n->m_nextpkt);
2263 }
2264
2265 dat = n->m_data;
2266 len = n->m_len;
2267 if (__predict_false(len < 0)) {
2268 panic("%s: incorrect length (len = %d)", __func__, len);
2269 }
2270
2271 low = M_BUFADDR(n);
2272 high = low + M_BUFSIZE(n);
2273 if (__predict_false((dat < low) || (dat + len > high))) {
2274 panic("%s: m_data not in packet"
2275 "(dat = %p, len = %d, low = %p, high = %p)",
2276 __func__, dat, len, low, high);
2277 }
2278
2279 totlen += len;
2280 n = n->m_next;
2281 }
2282
2283 if (__predict_false(totlen != m->m_pkthdr.len)) {
2284 panic("%s: inconsistent mbuf length (%d != %d)", __func__,
2285 totlen, m->m_pkthdr.len);
2286 }
2287 }
2288 #endif
2289
2290 struct m_tag *
2291 m_tag_get(int type, int len, int wait)
2292 {
2293 struct m_tag *t;
2294
2295 if (len < 0)
2296 return NULL;
2297 t = malloc(len + sizeof(struct m_tag), M_PACKET_TAGS, wait);
2298 if (t == NULL)
2299 return NULL;
2300 t->m_tag_id = type;
2301 t->m_tag_len = len;
2302 return t;
2303 }
2304
2305 void
2306 m_tag_free(struct m_tag *t)
2307 {
2308 free(t, M_PACKET_TAGS);
2309 }
2310
2311 void
2312 m_tag_prepend(struct mbuf *m, struct m_tag *t)
2313 {
2314 KASSERT((m->m_flags & M_PKTHDR) != 0);
2315 SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
2316 }
2317
2318 void
2319 m_tag_unlink(struct mbuf *m, struct m_tag *t)
2320 {
2321 KASSERT((m->m_flags & M_PKTHDR) != 0);
2322 SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
2323 }
2324
2325 void
2326 m_tag_delete(struct mbuf *m, struct m_tag *t)
2327 {
2328 m_tag_unlink(m, t);
2329 m_tag_free(t);
2330 }
2331
2332 void
2333 m_tag_delete_chain(struct mbuf *m)
2334 {
2335 struct m_tag *p, *q;
2336
2337 KASSERT((m->m_flags & M_PKTHDR) != 0);
2338
2339 p = SLIST_FIRST(&m->m_pkthdr.tags);
2340 if (p == NULL)
2341 return;
2342 while ((q = SLIST_NEXT(p, m_tag_link)) != NULL)
2343 m_tag_delete(m, q);
2344 m_tag_delete(m, p);
2345 }
2346
2347 struct m_tag *
2348 m_tag_find(const struct mbuf *m, int type)
2349 {
2350 struct m_tag *p;
2351
2352 KASSERT((m->m_flags & M_PKTHDR) != 0);
2353
2354 p = SLIST_FIRST(&m->m_pkthdr.tags);
2355 while (p != NULL) {
2356 if (p->m_tag_id == type)
2357 return p;
2358 p = SLIST_NEXT(p, m_tag_link);
2359 }
2360 return NULL;
2361 }
2362
2363 struct m_tag *
2364 m_tag_copy(struct m_tag *t)
2365 {
2366 struct m_tag *p;
2367
2368 p = m_tag_get(t->m_tag_id, t->m_tag_len, M_NOWAIT);
2369 if (p == NULL)
2370 return NULL;
2371 memcpy(p + 1, t + 1, t->m_tag_len);
2372 return p;
2373 }
2374
2375 /*
2376 * Copy two tag chains. The destination mbuf (to) loses any attached
2377 * tags even if the operation fails. This should not be a problem, as
2378 * m_tag_copy_chain() is typically called with a newly-allocated
2379 * destination mbuf.
2380 */
2381 int
2382 m_tag_copy_chain(struct mbuf *to, struct mbuf *from)
2383 {
2384 struct m_tag *p, *t, *tprev = NULL;
2385
2386 KASSERT((from->m_flags & M_PKTHDR) != 0);
2387
2388 m_tag_delete_chain(to);
2389 SLIST_FOREACH(p, &from->m_pkthdr.tags, m_tag_link) {
2390 t = m_tag_copy(p);
2391 if (t == NULL) {
2392 m_tag_delete_chain(to);
2393 return 0;
2394 }
2395 if (tprev == NULL)
2396 SLIST_INSERT_HEAD(&to->m_pkthdr.tags, t, m_tag_link);
2397 else
2398 SLIST_INSERT_AFTER(tprev, t, m_tag_link);
2399 tprev = t;
2400 }
2401 return 1;
2402 }
2403