uipc_socket.c revision 1.1.1.3 1 1.1 cgd /*
2 1.1.1.2 fvdl * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 1.1.1.2 fvdl * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.1.1.3 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
34 1.1 cgd */
35 1.1 cgd
36 1.1.1.2 fvdl #include <sys/param.h>
37 1.1.1.2 fvdl #include <sys/systm.h>
38 1.1.1.2 fvdl #include <sys/proc.h>
39 1.1.1.2 fvdl #include <sys/file.h>
40 1.1.1.2 fvdl #include <sys/malloc.h>
41 1.1.1.2 fvdl #include <sys/mbuf.h>
42 1.1.1.2 fvdl #include <sys/domain.h>
43 1.1.1.2 fvdl #include <sys/kernel.h>
44 1.1.1.2 fvdl #include <sys/protosw.h>
45 1.1.1.2 fvdl #include <sys/socket.h>
46 1.1.1.2 fvdl #include <sys/socketvar.h>
47 1.1.1.2 fvdl #include <sys/resourcevar.h>
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * Socket operation routines.
51 1.1 cgd * These routines are called by the routines in
52 1.1 cgd * sys_socket.c or from a system process, and
53 1.1 cgd * implement the semantics of socket operations by
54 1.1 cgd * switching out to the protocol specific routines.
55 1.1 cgd */
56 1.1 cgd /*ARGSUSED*/
57 1.1.1.3 fvdl int
58 1.1 cgd socreate(dom, aso, type, proto)
59 1.1.1.2 fvdl int dom;
60 1.1 cgd struct socket **aso;
61 1.1 cgd register int type;
62 1.1 cgd int proto;
63 1.1 cgd {
64 1.1 cgd struct proc *p = curproc; /* XXX */
65 1.1 cgd register struct protosw *prp;
66 1.1 cgd register struct socket *so;
67 1.1 cgd register int error;
68 1.1 cgd
69 1.1 cgd if (proto)
70 1.1 cgd prp = pffindproto(dom, proto, type);
71 1.1 cgd else
72 1.1 cgd prp = pffindtype(dom, type);
73 1.1.1.2 fvdl if (prp == 0 || prp->pr_usrreq == 0)
74 1.1 cgd return (EPROTONOSUPPORT);
75 1.1 cgd if (prp->pr_type != type)
76 1.1 cgd return (EPROTOTYPE);
77 1.1 cgd MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT);
78 1.1 cgd bzero((caddr_t)so, sizeof(*so));
79 1.1 cgd so->so_type = type;
80 1.1 cgd if (p->p_ucred->cr_uid == 0)
81 1.1 cgd so->so_state = SS_PRIV;
82 1.1 cgd so->so_proto = prp;
83 1.1.1.3 fvdl error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
84 1.1.1.3 fvdl (struct mbuf *)(long)proto, (struct mbuf *)0);
85 1.1 cgd if (error) {
86 1.1 cgd so->so_state |= SS_NOFDREF;
87 1.1 cgd sofree(so);
88 1.1 cgd return (error);
89 1.1 cgd }
90 1.1 cgd *aso = so;
91 1.1 cgd return (0);
92 1.1 cgd }
93 1.1 cgd
94 1.1.1.3 fvdl int
95 1.1 cgd sobind(so, nam)
96 1.1 cgd struct socket *so;
97 1.1 cgd struct mbuf *nam;
98 1.1 cgd {
99 1.1 cgd int s = splnet();
100 1.1 cgd int error;
101 1.1 cgd
102 1.1 cgd error =
103 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_BIND,
104 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
105 1.1 cgd splx(s);
106 1.1 cgd return (error);
107 1.1 cgd }
108 1.1 cgd
109 1.1.1.3 fvdl int
110 1.1 cgd solisten(so, backlog)
111 1.1 cgd register struct socket *so;
112 1.1 cgd int backlog;
113 1.1 cgd {
114 1.1 cgd int s = splnet(), error;
115 1.1 cgd
116 1.1 cgd error =
117 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_LISTEN,
118 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
119 1.1 cgd if (error) {
120 1.1 cgd splx(s);
121 1.1 cgd return (error);
122 1.1 cgd }
123 1.1 cgd if (so->so_q == 0)
124 1.1 cgd so->so_options |= SO_ACCEPTCONN;
125 1.1 cgd if (backlog < 0)
126 1.1 cgd backlog = 0;
127 1.1 cgd so->so_qlimit = min(backlog, SOMAXCONN);
128 1.1 cgd splx(s);
129 1.1 cgd return (0);
130 1.1 cgd }
131 1.1 cgd
132 1.1.1.3 fvdl int
133 1.1 cgd sofree(so)
134 1.1 cgd register struct socket *so;
135 1.1 cgd {
136 1.1 cgd
137 1.1 cgd if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
138 1.1 cgd return;
139 1.1 cgd if (so->so_head) {
140 1.1 cgd if (!soqremque(so, 0) && !soqremque(so, 1))
141 1.1 cgd panic("sofree dq");
142 1.1 cgd so->so_head = 0;
143 1.1 cgd }
144 1.1 cgd sbrelease(&so->so_snd);
145 1.1 cgd sorflush(so);
146 1.1 cgd FREE(so, M_SOCKET);
147 1.1 cgd }
148 1.1 cgd
149 1.1 cgd /*
150 1.1 cgd * Close a socket on last file table reference removal.
151 1.1 cgd * Initiate disconnect if connected.
152 1.1 cgd * Free socket when disconnect complete.
153 1.1 cgd */
154 1.1.1.3 fvdl int
155 1.1 cgd soclose(so)
156 1.1 cgd register struct socket *so;
157 1.1 cgd {
158 1.1 cgd int s = splnet(); /* conservative */
159 1.1 cgd int error = 0;
160 1.1 cgd
161 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
162 1.1 cgd while (so->so_q0)
163 1.1 cgd (void) soabort(so->so_q0);
164 1.1 cgd while (so->so_q)
165 1.1 cgd (void) soabort(so->so_q);
166 1.1 cgd }
167 1.1 cgd if (so->so_pcb == 0)
168 1.1 cgd goto discard;
169 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
170 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
171 1.1 cgd error = sodisconnect(so);
172 1.1 cgd if (error)
173 1.1 cgd goto drop;
174 1.1 cgd }
175 1.1 cgd if (so->so_options & SO_LINGER) {
176 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) &&
177 1.1 cgd (so->so_state & SS_NBIO))
178 1.1 cgd goto drop;
179 1.1 cgd while (so->so_state & SS_ISCONNECTED)
180 1.1 cgd if (error = tsleep((caddr_t)&so->so_timeo,
181 1.1.1.3 fvdl PSOCK | PCATCH, netcls, so->so_linger * hz))
182 1.1 cgd break;
183 1.1 cgd }
184 1.1 cgd }
185 1.1 cgd drop:
186 1.1 cgd if (so->so_pcb) {
187 1.1 cgd int error2 =
188 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
189 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
190 1.1 cgd if (error == 0)
191 1.1 cgd error = error2;
192 1.1 cgd }
193 1.1 cgd discard:
194 1.1 cgd if (so->so_state & SS_NOFDREF)
195 1.1 cgd panic("soclose: NOFDREF");
196 1.1 cgd so->so_state |= SS_NOFDREF;
197 1.1 cgd sofree(so);
198 1.1 cgd splx(s);
199 1.1 cgd return (error);
200 1.1 cgd }
201 1.1 cgd
202 1.1 cgd /*
203 1.1 cgd * Must be called at splnet...
204 1.1 cgd */
205 1.1.1.3 fvdl int
206 1.1 cgd soabort(so)
207 1.1 cgd struct socket *so;
208 1.1 cgd {
209 1.1 cgd
210 1.1 cgd return (
211 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_ABORT,
212 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
213 1.1 cgd }
214 1.1 cgd
215 1.1.1.3 fvdl int
216 1.1 cgd soaccept(so, nam)
217 1.1 cgd register struct socket *so;
218 1.1 cgd struct mbuf *nam;
219 1.1 cgd {
220 1.1 cgd int s = splnet();
221 1.1 cgd int error;
222 1.1 cgd
223 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
224 1.1 cgd panic("soaccept: !NOFDREF");
225 1.1 cgd so->so_state &= ~SS_NOFDREF;
226 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
227 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
228 1.1 cgd splx(s);
229 1.1 cgd return (error);
230 1.1 cgd }
231 1.1 cgd
232 1.1.1.3 fvdl int
233 1.1 cgd soconnect(so, nam)
234 1.1 cgd register struct socket *so;
235 1.1 cgd struct mbuf *nam;
236 1.1 cgd {
237 1.1 cgd int s;
238 1.1 cgd int error;
239 1.1 cgd
240 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
241 1.1 cgd return (EOPNOTSUPP);
242 1.1 cgd s = splnet();
243 1.1 cgd /*
244 1.1 cgd * If protocol is connection-based, can only connect once.
245 1.1 cgd * Otherwise, if connected, try to disconnect first.
246 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
247 1.1 cgd * a null address.
248 1.1 cgd */
249 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
250 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
251 1.1 cgd (error = sodisconnect(so))))
252 1.1 cgd error = EISCONN;
253 1.1 cgd else
254 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
255 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
256 1.1 cgd splx(s);
257 1.1 cgd return (error);
258 1.1 cgd }
259 1.1 cgd
260 1.1.1.3 fvdl int
261 1.1 cgd soconnect2(so1, so2)
262 1.1 cgd register struct socket *so1;
263 1.1 cgd struct socket *so2;
264 1.1 cgd {
265 1.1 cgd int s = splnet();
266 1.1 cgd int error;
267 1.1 cgd
268 1.1 cgd error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
269 1.1 cgd (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0);
270 1.1 cgd splx(s);
271 1.1 cgd return (error);
272 1.1 cgd }
273 1.1 cgd
274 1.1.1.3 fvdl int
275 1.1 cgd sodisconnect(so)
276 1.1 cgd register struct socket *so;
277 1.1 cgd {
278 1.1 cgd int s = splnet();
279 1.1 cgd int error;
280 1.1 cgd
281 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
282 1.1 cgd error = ENOTCONN;
283 1.1 cgd goto bad;
284 1.1 cgd }
285 1.1 cgd if (so->so_state & SS_ISDISCONNECTING) {
286 1.1 cgd error = EALREADY;
287 1.1 cgd goto bad;
288 1.1 cgd }
289 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
290 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
291 1.1 cgd bad:
292 1.1 cgd splx(s);
293 1.1 cgd return (error);
294 1.1 cgd }
295 1.1 cgd
296 1.1.1.2 fvdl #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
297 1.1 cgd /*
298 1.1 cgd * Send on a socket.
299 1.1 cgd * If send must go all at once and message is larger than
300 1.1 cgd * send buffering, then hard error.
301 1.1 cgd * Lock against other senders.
302 1.1 cgd * If must go all at once and not enough room now, then
303 1.1 cgd * inform user that this would block and do nothing.
304 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
305 1.1 cgd * The data to be sent is described by "uio" if nonzero,
306 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
307 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
308 1.1 cgd * enough to send all at once.
309 1.1 cgd *
310 1.1 cgd * Returns nonzero on error, timeout or signal; callers
311 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
312 1.1 cgd * Data and control buffers are freed on return.
313 1.1 cgd */
314 1.1.1.3 fvdl int
315 1.1 cgd sosend(so, addr, uio, top, control, flags)
316 1.1 cgd register struct socket *so;
317 1.1 cgd struct mbuf *addr;
318 1.1 cgd struct uio *uio;
319 1.1 cgd struct mbuf *top;
320 1.1 cgd struct mbuf *control;
321 1.1 cgd int flags;
322 1.1 cgd {
323 1.1 cgd struct proc *p = curproc; /* XXX */
324 1.1 cgd struct mbuf **mp;
325 1.1 cgd register struct mbuf *m;
326 1.1 cgd register long space, len, resid;
327 1.1 cgd int clen = 0, error, s, dontroute, mlen;
328 1.1 cgd int atomic = sosendallatonce(so) || top;
329 1.1 cgd
330 1.1 cgd if (uio)
331 1.1 cgd resid = uio->uio_resid;
332 1.1 cgd else
333 1.1 cgd resid = top->m_pkthdr.len;
334 1.1.1.2 fvdl /*
335 1.1.1.2 fvdl * In theory resid should be unsigned.
336 1.1.1.2 fvdl * However, space must be signed, as it might be less than 0
337 1.1.1.2 fvdl * if we over-committed, and we must use a signed comparison
338 1.1.1.2 fvdl * of space and resid. On the other hand, a negative resid
339 1.1.1.2 fvdl * causes us to loop sending 0-length segments to the protocol.
340 1.1.1.2 fvdl */
341 1.1.1.2 fvdl if (resid < 0)
342 1.1.1.2 fvdl return (EINVAL);
343 1.1 cgd dontroute =
344 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
345 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
346 1.1 cgd p->p_stats->p_ru.ru_msgsnd++;
347 1.1 cgd if (control)
348 1.1 cgd clen = control->m_len;
349 1.1 cgd #define snderr(errno) { error = errno; splx(s); goto release; }
350 1.1 cgd
351 1.1 cgd restart:
352 1.1.1.2 fvdl if (error = sblock(&so->so_snd, SBLOCKWAIT(flags)))
353 1.1 cgd goto out;
354 1.1 cgd do {
355 1.1 cgd s = splnet();
356 1.1 cgd if (so->so_state & SS_CANTSENDMORE)
357 1.1 cgd snderr(EPIPE);
358 1.1 cgd if (so->so_error)
359 1.1 cgd snderr(so->so_error);
360 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
361 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
362 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
363 1.1 cgd !(resid == 0 && clen != 0))
364 1.1 cgd snderr(ENOTCONN);
365 1.1 cgd } else if (addr == 0)
366 1.1 cgd snderr(EDESTADDRREQ);
367 1.1 cgd }
368 1.1 cgd space = sbspace(&so->so_snd);
369 1.1 cgd if (flags & MSG_OOB)
370 1.1 cgd space += 1024;
371 1.1.1.2 fvdl if (atomic && resid > so->so_snd.sb_hiwat ||
372 1.1.1.2 fvdl clen > so->so_snd.sb_hiwat)
373 1.1.1.2 fvdl snderr(EMSGSIZE);
374 1.1.1.2 fvdl if (space < resid + clen && uio &&
375 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
376 1.1 cgd if (so->so_state & SS_NBIO)
377 1.1 cgd snderr(EWOULDBLOCK);
378 1.1 cgd sbunlock(&so->so_snd);
379 1.1 cgd error = sbwait(&so->so_snd);
380 1.1 cgd splx(s);
381 1.1 cgd if (error)
382 1.1 cgd goto out;
383 1.1 cgd goto restart;
384 1.1 cgd }
385 1.1 cgd splx(s);
386 1.1 cgd mp = ⊤
387 1.1 cgd space -= clen;
388 1.1 cgd do {
389 1.1 cgd if (uio == NULL) {
390 1.1 cgd /*
391 1.1 cgd * Data is prepackaged in "top".
392 1.1 cgd */
393 1.1 cgd resid = 0;
394 1.1 cgd if (flags & MSG_EOR)
395 1.1 cgd top->m_flags |= M_EOR;
396 1.1 cgd } else do {
397 1.1 cgd if (top == 0) {
398 1.1 cgd MGETHDR(m, M_WAIT, MT_DATA);
399 1.1 cgd mlen = MHLEN;
400 1.1 cgd m->m_pkthdr.len = 0;
401 1.1 cgd m->m_pkthdr.rcvif = (struct ifnet *)0;
402 1.1 cgd } else {
403 1.1 cgd MGET(m, M_WAIT, MT_DATA);
404 1.1 cgd mlen = MLEN;
405 1.1 cgd }
406 1.1 cgd if (resid >= MINCLSIZE && space >= MCLBYTES) {
407 1.1 cgd MCLGET(m, M_WAIT);
408 1.1 cgd if ((m->m_flags & M_EXT) == 0)
409 1.1 cgd goto nopages;
410 1.1 cgd mlen = MCLBYTES;
411 1.1 cgd #ifdef MAPPED_MBUFS
412 1.1 cgd len = min(MCLBYTES, resid);
413 1.1 cgd #else
414 1.1.1.2 fvdl if (atomic && top == 0) {
415 1.1 cgd len = min(MCLBYTES - max_hdr, resid);
416 1.1 cgd m->m_data += max_hdr;
417 1.1 cgd } else
418 1.1 cgd len = min(MCLBYTES, resid);
419 1.1 cgd #endif
420 1.1 cgd space -= MCLBYTES;
421 1.1 cgd } else {
422 1.1 cgd nopages:
423 1.1 cgd len = min(min(mlen, resid), space);
424 1.1 cgd space -= len;
425 1.1 cgd /*
426 1.1 cgd * For datagram protocols, leave room
427 1.1 cgd * for protocol headers in first mbuf.
428 1.1 cgd */
429 1.1 cgd if (atomic && top == 0 && len < mlen)
430 1.1 cgd MH_ALIGN(m, len);
431 1.1 cgd }
432 1.1 cgd error = uiomove(mtod(m, caddr_t), (int)len, uio);
433 1.1 cgd resid = uio->uio_resid;
434 1.1 cgd m->m_len = len;
435 1.1 cgd *mp = m;
436 1.1 cgd top->m_pkthdr.len += len;
437 1.1 cgd if (error)
438 1.1 cgd goto release;
439 1.1 cgd mp = &m->m_next;
440 1.1 cgd if (resid <= 0) {
441 1.1 cgd if (flags & MSG_EOR)
442 1.1 cgd top->m_flags |= M_EOR;
443 1.1 cgd break;
444 1.1 cgd }
445 1.1 cgd } while (space > 0 && atomic);
446 1.1 cgd if (dontroute)
447 1.1 cgd so->so_options |= SO_DONTROUTE;
448 1.1 cgd s = splnet(); /* XXX */
449 1.1 cgd error = (*so->so_proto->pr_usrreq)(so,
450 1.1 cgd (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
451 1.1 cgd top, addr, control);
452 1.1 cgd splx(s);
453 1.1 cgd if (dontroute)
454 1.1 cgd so->so_options &= ~SO_DONTROUTE;
455 1.1 cgd clen = 0;
456 1.1 cgd control = 0;
457 1.1 cgd top = 0;
458 1.1 cgd mp = ⊤
459 1.1 cgd if (error)
460 1.1 cgd goto release;
461 1.1 cgd } while (resid && space > 0);
462 1.1 cgd } while (resid);
463 1.1 cgd
464 1.1 cgd release:
465 1.1 cgd sbunlock(&so->so_snd);
466 1.1 cgd out:
467 1.1 cgd if (top)
468 1.1 cgd m_freem(top);
469 1.1 cgd if (control)
470 1.1 cgd m_freem(control);
471 1.1 cgd return (error);
472 1.1 cgd }
473 1.1 cgd
474 1.1 cgd /*
475 1.1 cgd * Implement receive operations on a socket.
476 1.1 cgd * We depend on the way that records are added to the sockbuf
477 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
478 1.1 cgd * must begin with an address if the protocol so specifies,
479 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
480 1.1 cgd * and then zero or more mbufs of data.
481 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
482 1.1 cgd * we splx() while doing the actual copy to user space.
483 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
484 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
485 1.1 cgd *
486 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
487 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
488 1.1 cgd * only for the count in uio_resid.
489 1.1 cgd */
490 1.1.1.3 fvdl int
491 1.1 cgd soreceive(so, paddr, uio, mp0, controlp, flagsp)
492 1.1 cgd register struct socket *so;
493 1.1 cgd struct mbuf **paddr;
494 1.1 cgd struct uio *uio;
495 1.1 cgd struct mbuf **mp0;
496 1.1 cgd struct mbuf **controlp;
497 1.1 cgd int *flagsp;
498 1.1 cgd {
499 1.1 cgd register struct mbuf *m, **mp;
500 1.1 cgd register int flags, len, error, s, offset;
501 1.1 cgd struct protosw *pr = so->so_proto;
502 1.1 cgd struct mbuf *nextrecord;
503 1.1 cgd int moff, type;
504 1.1.1.2 fvdl int orig_resid = uio->uio_resid;
505 1.1 cgd
506 1.1 cgd mp = mp0;
507 1.1 cgd if (paddr)
508 1.1 cgd *paddr = 0;
509 1.1 cgd if (controlp)
510 1.1 cgd *controlp = 0;
511 1.1 cgd if (flagsp)
512 1.1 cgd flags = *flagsp &~ MSG_EOR;
513 1.1 cgd else
514 1.1 cgd flags = 0;
515 1.1 cgd if (flags & MSG_OOB) {
516 1.1 cgd m = m_get(M_WAIT, MT_DATA);
517 1.1.1.3 fvdl error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
518 1.1.1.3 fvdl (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0);
519 1.1 cgd if (error)
520 1.1 cgd goto bad;
521 1.1 cgd do {
522 1.1 cgd error = uiomove(mtod(m, caddr_t),
523 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
524 1.1 cgd m = m_free(m);
525 1.1 cgd } while (uio->uio_resid && error == 0 && m);
526 1.1 cgd bad:
527 1.1 cgd if (m)
528 1.1 cgd m_freem(m);
529 1.1 cgd return (error);
530 1.1 cgd }
531 1.1 cgd if (mp)
532 1.1 cgd *mp = (struct mbuf *)0;
533 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
534 1.1 cgd (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
535 1.1 cgd (struct mbuf *)0, (struct mbuf *)0);
536 1.1 cgd
537 1.1 cgd restart:
538 1.1.1.2 fvdl if (error = sblock(&so->so_rcv, SBLOCKWAIT(flags)))
539 1.1 cgd return (error);
540 1.1 cgd s = splnet();
541 1.1 cgd
542 1.1 cgd m = so->so_rcv.sb_mb;
543 1.1 cgd /*
544 1.1 cgd * If we have less data than requested, block awaiting more
545 1.1 cgd * (subject to any timeout) if:
546 1.1 cgd * 1. the current count is less than the low water mark, or
547 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
548 1.1.1.3 fvdl * receive operation at once if we block (resid <= hiwat), or
549 1.1.1.3 fvdl * 3. MSG_DONTWAIT is not set.
550 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
551 1.1 cgd * we have to do the receive in sections, and thus risk returning
552 1.1 cgd * a short count if a timeout or signal occurs after we start.
553 1.1 cgd */
554 1.1.1.2 fvdl if (m == 0 || ((flags & MSG_DONTWAIT) == 0 &&
555 1.1.1.2 fvdl so->so_rcv.sb_cc < uio->uio_resid) &&
556 1.1 cgd (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
557 1.1 cgd ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
558 1.1.1.2 fvdl m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0) {
559 1.1 cgd #ifdef DIAGNOSTIC
560 1.1 cgd if (m == 0 && so->so_rcv.sb_cc)
561 1.1 cgd panic("receive 1");
562 1.1 cgd #endif
563 1.1 cgd if (so->so_error) {
564 1.1 cgd if (m)
565 1.1.1.2 fvdl goto dontblock;
566 1.1 cgd error = so->so_error;
567 1.1 cgd if ((flags & MSG_PEEK) == 0)
568 1.1 cgd so->so_error = 0;
569 1.1 cgd goto release;
570 1.1 cgd }
571 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
572 1.1 cgd if (m)
573 1.1.1.2 fvdl goto dontblock;
574 1.1 cgd else
575 1.1 cgd goto release;
576 1.1 cgd }
577 1.1 cgd for (; m; m = m->m_next)
578 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
579 1.1 cgd m = so->so_rcv.sb_mb;
580 1.1 cgd goto dontblock;
581 1.1 cgd }
582 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
583 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
584 1.1 cgd error = ENOTCONN;
585 1.1 cgd goto release;
586 1.1 cgd }
587 1.1 cgd if (uio->uio_resid == 0)
588 1.1 cgd goto release;
589 1.1.1.2 fvdl if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
590 1.1 cgd error = EWOULDBLOCK;
591 1.1 cgd goto release;
592 1.1 cgd }
593 1.1 cgd sbunlock(&so->so_rcv);
594 1.1 cgd error = sbwait(&so->so_rcv);
595 1.1 cgd splx(s);
596 1.1 cgd if (error)
597 1.1 cgd return (error);
598 1.1 cgd goto restart;
599 1.1 cgd }
600 1.1 cgd dontblock:
601 1.1.1.2 fvdl if (uio->uio_procp)
602 1.1.1.2 fvdl uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
603 1.1 cgd nextrecord = m->m_nextpkt;
604 1.1 cgd if (pr->pr_flags & PR_ADDR) {
605 1.1 cgd #ifdef DIAGNOSTIC
606 1.1 cgd if (m->m_type != MT_SONAME)
607 1.1 cgd panic("receive 1a");
608 1.1 cgd #endif
609 1.1.1.2 fvdl orig_resid = 0;
610 1.1 cgd if (flags & MSG_PEEK) {
611 1.1 cgd if (paddr)
612 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
613 1.1 cgd m = m->m_next;
614 1.1 cgd } else {
615 1.1 cgd sbfree(&so->so_rcv, m);
616 1.1 cgd if (paddr) {
617 1.1 cgd *paddr = m;
618 1.1 cgd so->so_rcv.sb_mb = m->m_next;
619 1.1 cgd m->m_next = 0;
620 1.1 cgd m = so->so_rcv.sb_mb;
621 1.1 cgd } else {
622 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
623 1.1 cgd m = so->so_rcv.sb_mb;
624 1.1 cgd }
625 1.1 cgd }
626 1.1 cgd }
627 1.1 cgd while (m && m->m_type == MT_CONTROL && error == 0) {
628 1.1 cgd if (flags & MSG_PEEK) {
629 1.1 cgd if (controlp)
630 1.1 cgd *controlp = m_copy(m, 0, m->m_len);
631 1.1 cgd m = m->m_next;
632 1.1 cgd } else {
633 1.1 cgd sbfree(&so->so_rcv, m);
634 1.1 cgd if (controlp) {
635 1.1 cgd if (pr->pr_domain->dom_externalize &&
636 1.1 cgd mtod(m, struct cmsghdr *)->cmsg_type ==
637 1.1 cgd SCM_RIGHTS)
638 1.1 cgd error = (*pr->pr_domain->dom_externalize)(m);
639 1.1 cgd *controlp = m;
640 1.1 cgd so->so_rcv.sb_mb = m->m_next;
641 1.1 cgd m->m_next = 0;
642 1.1 cgd m = so->so_rcv.sb_mb;
643 1.1 cgd } else {
644 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
645 1.1 cgd m = so->so_rcv.sb_mb;
646 1.1 cgd }
647 1.1 cgd }
648 1.1.1.2 fvdl if (controlp) {
649 1.1.1.2 fvdl orig_resid = 0;
650 1.1 cgd controlp = &(*controlp)->m_next;
651 1.1.1.2 fvdl }
652 1.1 cgd }
653 1.1 cgd if (m) {
654 1.1 cgd if ((flags & MSG_PEEK) == 0)
655 1.1 cgd m->m_nextpkt = nextrecord;
656 1.1 cgd type = m->m_type;
657 1.1 cgd if (type == MT_OOBDATA)
658 1.1 cgd flags |= MSG_OOB;
659 1.1 cgd }
660 1.1 cgd moff = 0;
661 1.1 cgd offset = 0;
662 1.1 cgd while (m && uio->uio_resid > 0 && error == 0) {
663 1.1 cgd if (m->m_type == MT_OOBDATA) {
664 1.1 cgd if (type != MT_OOBDATA)
665 1.1 cgd break;
666 1.1 cgd } else if (type == MT_OOBDATA)
667 1.1 cgd break;
668 1.1 cgd #ifdef DIAGNOSTIC
669 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
670 1.1 cgd panic("receive 3");
671 1.1 cgd #endif
672 1.1 cgd so->so_state &= ~SS_RCVATMARK;
673 1.1 cgd len = uio->uio_resid;
674 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
675 1.1 cgd len = so->so_oobmark - offset;
676 1.1 cgd if (len > m->m_len - moff)
677 1.1 cgd len = m->m_len - moff;
678 1.1 cgd /*
679 1.1 cgd * If mp is set, just pass back the mbufs.
680 1.1 cgd * Otherwise copy them out via the uio, then free.
681 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
682 1.1 cgd * it points to next record) when we drop priority;
683 1.1 cgd * we must note any additions to the sockbuf when we
684 1.1 cgd * block interrupts again.
685 1.1 cgd */
686 1.1 cgd if (mp == 0) {
687 1.1 cgd splx(s);
688 1.1 cgd error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
689 1.1 cgd s = splnet();
690 1.1 cgd } else
691 1.1 cgd uio->uio_resid -= len;
692 1.1 cgd if (len == m->m_len - moff) {
693 1.1 cgd if (m->m_flags & M_EOR)
694 1.1 cgd flags |= MSG_EOR;
695 1.1 cgd if (flags & MSG_PEEK) {
696 1.1 cgd m = m->m_next;
697 1.1 cgd moff = 0;
698 1.1 cgd } else {
699 1.1 cgd nextrecord = m->m_nextpkt;
700 1.1 cgd sbfree(&so->so_rcv, m);
701 1.1 cgd if (mp) {
702 1.1 cgd *mp = m;
703 1.1 cgd mp = &m->m_next;
704 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
705 1.1 cgd *mp = (struct mbuf *)0;
706 1.1 cgd } else {
707 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
708 1.1 cgd m = so->so_rcv.sb_mb;
709 1.1 cgd }
710 1.1 cgd if (m)
711 1.1 cgd m->m_nextpkt = nextrecord;
712 1.1 cgd }
713 1.1 cgd } else {
714 1.1 cgd if (flags & MSG_PEEK)
715 1.1 cgd moff += len;
716 1.1 cgd else {
717 1.1 cgd if (mp)
718 1.1 cgd *mp = m_copym(m, 0, len, M_WAIT);
719 1.1 cgd m->m_data += len;
720 1.1 cgd m->m_len -= len;
721 1.1 cgd so->so_rcv.sb_cc -= len;
722 1.1 cgd }
723 1.1 cgd }
724 1.1 cgd if (so->so_oobmark) {
725 1.1 cgd if ((flags & MSG_PEEK) == 0) {
726 1.1 cgd so->so_oobmark -= len;
727 1.1 cgd if (so->so_oobmark == 0) {
728 1.1 cgd so->so_state |= SS_RCVATMARK;
729 1.1 cgd break;
730 1.1 cgd }
731 1.1.1.2 fvdl } else {
732 1.1 cgd offset += len;
733 1.1.1.2 fvdl if (offset == so->so_oobmark)
734 1.1.1.2 fvdl break;
735 1.1.1.2 fvdl }
736 1.1 cgd }
737 1.1 cgd if (flags & MSG_EOR)
738 1.1 cgd break;
739 1.1 cgd /*
740 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
741 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
742 1.1 cgd * termination. If a signal/timeout occurs, return
743 1.1 cgd * with a short count but without error.
744 1.1 cgd * Keep sockbuf locked against other readers.
745 1.1 cgd */
746 1.1 cgd while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
747 1.1.1.2 fvdl !sosendallatonce(so) && !nextrecord) {
748 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
749 1.1 cgd break;
750 1.1 cgd error = sbwait(&so->so_rcv);
751 1.1 cgd if (error) {
752 1.1 cgd sbunlock(&so->so_rcv);
753 1.1 cgd splx(s);
754 1.1 cgd return (0);
755 1.1 cgd }
756 1.1 cgd if (m = so->so_rcv.sb_mb)
757 1.1 cgd nextrecord = m->m_nextpkt;
758 1.1 cgd }
759 1.1 cgd }
760 1.1.1.2 fvdl
761 1.1.1.2 fvdl if (m && pr->pr_flags & PR_ATOMIC) {
762 1.1.1.2 fvdl flags |= MSG_TRUNC;
763 1.1.1.2 fvdl if ((flags & MSG_PEEK) == 0)
764 1.1.1.2 fvdl (void) sbdroprecord(&so->so_rcv);
765 1.1.1.2 fvdl }
766 1.1 cgd if ((flags & MSG_PEEK) == 0) {
767 1.1 cgd if (m == 0)
768 1.1 cgd so->so_rcv.sb_mb = nextrecord;
769 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
770 1.1 cgd (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
771 1.1.1.3 fvdl (struct mbuf *)(long)flags, (struct mbuf *)0,
772 1.1 cgd (struct mbuf *)0);
773 1.1 cgd }
774 1.1.1.2 fvdl if (orig_resid == uio->uio_resid && orig_resid &&
775 1.1.1.2 fvdl (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
776 1.1.1.2 fvdl sbunlock(&so->so_rcv);
777 1.1.1.2 fvdl splx(s);
778 1.1.1.2 fvdl goto restart;
779 1.1.1.2 fvdl }
780 1.1.1.2 fvdl
781 1.1 cgd if (flagsp)
782 1.1 cgd *flagsp |= flags;
783 1.1 cgd release:
784 1.1 cgd sbunlock(&so->so_rcv);
785 1.1 cgd splx(s);
786 1.1 cgd return (error);
787 1.1 cgd }
788 1.1 cgd
789 1.1.1.3 fvdl int
790 1.1 cgd soshutdown(so, how)
791 1.1 cgd register struct socket *so;
792 1.1 cgd register int how;
793 1.1 cgd {
794 1.1 cgd register struct protosw *pr = so->so_proto;
795 1.1 cgd
796 1.1 cgd how++;
797 1.1 cgd if (how & FREAD)
798 1.1 cgd sorflush(so);
799 1.1 cgd if (how & FWRITE)
800 1.1 cgd return ((*pr->pr_usrreq)(so, PRU_SHUTDOWN,
801 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
802 1.1 cgd return (0);
803 1.1 cgd }
804 1.1 cgd
805 1.1.1.3 fvdl void
806 1.1 cgd sorflush(so)
807 1.1 cgd register struct socket *so;
808 1.1 cgd {
809 1.1 cgd register struct sockbuf *sb = &so->so_rcv;
810 1.1 cgd register struct protosw *pr = so->so_proto;
811 1.1 cgd register int s;
812 1.1 cgd struct sockbuf asb;
813 1.1 cgd
814 1.1 cgd sb->sb_flags |= SB_NOINTR;
815 1.1.1.2 fvdl (void) sblock(sb, M_WAITOK);
816 1.1 cgd s = splimp();
817 1.1 cgd socantrcvmore(so);
818 1.1 cgd sbunlock(sb);
819 1.1 cgd asb = *sb;
820 1.1 cgd bzero((caddr_t)sb, sizeof (*sb));
821 1.1 cgd splx(s);
822 1.1 cgd if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
823 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
824 1.1 cgd sbrelease(&asb);
825 1.1 cgd }
826 1.1 cgd
827 1.1.1.3 fvdl int
828 1.1 cgd sosetopt(so, level, optname, m0)
829 1.1 cgd register struct socket *so;
830 1.1 cgd int level, optname;
831 1.1 cgd struct mbuf *m0;
832 1.1 cgd {
833 1.1 cgd int error = 0;
834 1.1 cgd register struct mbuf *m = m0;
835 1.1 cgd
836 1.1 cgd if (level != SOL_SOCKET) {
837 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput)
838 1.1 cgd return ((*so->so_proto->pr_ctloutput)
839 1.1 cgd (PRCO_SETOPT, so, level, optname, &m0));
840 1.1 cgd error = ENOPROTOOPT;
841 1.1 cgd } else {
842 1.1 cgd switch (optname) {
843 1.1 cgd
844 1.1 cgd case SO_LINGER:
845 1.1 cgd if (m == NULL || m->m_len != sizeof (struct linger)) {
846 1.1 cgd error = EINVAL;
847 1.1 cgd goto bad;
848 1.1 cgd }
849 1.1 cgd so->so_linger = mtod(m, struct linger *)->l_linger;
850 1.1 cgd /* fall thru... */
851 1.1 cgd
852 1.1 cgd case SO_DEBUG:
853 1.1 cgd case SO_KEEPALIVE:
854 1.1 cgd case SO_DONTROUTE:
855 1.1 cgd case SO_USELOOPBACK:
856 1.1 cgd case SO_BROADCAST:
857 1.1 cgd case SO_REUSEADDR:
858 1.1.1.2 fvdl case SO_REUSEPORT:
859 1.1 cgd case SO_OOBINLINE:
860 1.1 cgd if (m == NULL || m->m_len < sizeof (int)) {
861 1.1 cgd error = EINVAL;
862 1.1 cgd goto bad;
863 1.1 cgd }
864 1.1 cgd if (*mtod(m, int *))
865 1.1 cgd so->so_options |= optname;
866 1.1 cgd else
867 1.1 cgd so->so_options &= ~optname;
868 1.1 cgd break;
869 1.1 cgd
870 1.1 cgd case SO_SNDBUF:
871 1.1 cgd case SO_RCVBUF:
872 1.1 cgd case SO_SNDLOWAT:
873 1.1 cgd case SO_RCVLOWAT:
874 1.1 cgd if (m == NULL || m->m_len < sizeof (int)) {
875 1.1 cgd error = EINVAL;
876 1.1 cgd goto bad;
877 1.1 cgd }
878 1.1 cgd switch (optname) {
879 1.1 cgd
880 1.1 cgd case SO_SNDBUF:
881 1.1 cgd case SO_RCVBUF:
882 1.1 cgd if (sbreserve(optname == SO_SNDBUF ?
883 1.1 cgd &so->so_snd : &so->so_rcv,
884 1.1 cgd (u_long) *mtod(m, int *)) == 0) {
885 1.1 cgd error = ENOBUFS;
886 1.1 cgd goto bad;
887 1.1 cgd }
888 1.1 cgd break;
889 1.1 cgd
890 1.1 cgd case SO_SNDLOWAT:
891 1.1 cgd so->so_snd.sb_lowat = *mtod(m, int *);
892 1.1 cgd break;
893 1.1 cgd case SO_RCVLOWAT:
894 1.1 cgd so->so_rcv.sb_lowat = *mtod(m, int *);
895 1.1 cgd break;
896 1.1 cgd }
897 1.1 cgd break;
898 1.1 cgd
899 1.1 cgd case SO_SNDTIMEO:
900 1.1 cgd case SO_RCVTIMEO:
901 1.1 cgd {
902 1.1 cgd struct timeval *tv;
903 1.1 cgd short val;
904 1.1 cgd
905 1.1 cgd if (m == NULL || m->m_len < sizeof (*tv)) {
906 1.1 cgd error = EINVAL;
907 1.1 cgd goto bad;
908 1.1 cgd }
909 1.1 cgd tv = mtod(m, struct timeval *);
910 1.1.1.3 fvdl if (tv->tv_sec * hz + tv->tv_usec / tick > SHRT_MAX) {
911 1.1 cgd error = EDOM;
912 1.1 cgd goto bad;
913 1.1 cgd }
914 1.1 cgd val = tv->tv_sec * hz + tv->tv_usec / tick;
915 1.1 cgd
916 1.1 cgd switch (optname) {
917 1.1 cgd
918 1.1 cgd case SO_SNDTIMEO:
919 1.1 cgd so->so_snd.sb_timeo = val;
920 1.1 cgd break;
921 1.1 cgd case SO_RCVTIMEO:
922 1.1 cgd so->so_rcv.sb_timeo = val;
923 1.1 cgd break;
924 1.1 cgd }
925 1.1 cgd break;
926 1.1 cgd }
927 1.1 cgd
928 1.1 cgd default:
929 1.1 cgd error = ENOPROTOOPT;
930 1.1 cgd break;
931 1.1 cgd }
932 1.1.1.2 fvdl if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
933 1.1.1.2 fvdl (void) ((*so->so_proto->pr_ctloutput)
934 1.1.1.2 fvdl (PRCO_SETOPT, so, level, optname, &m0));
935 1.1.1.2 fvdl m = NULL; /* freed by protocol */
936 1.1.1.2 fvdl }
937 1.1 cgd }
938 1.1 cgd bad:
939 1.1 cgd if (m)
940 1.1 cgd (void) m_free(m);
941 1.1 cgd return (error);
942 1.1 cgd }
943 1.1 cgd
944 1.1.1.3 fvdl int
945 1.1 cgd sogetopt(so, level, optname, mp)
946 1.1 cgd register struct socket *so;
947 1.1 cgd int level, optname;
948 1.1 cgd struct mbuf **mp;
949 1.1 cgd {
950 1.1 cgd register struct mbuf *m;
951 1.1 cgd
952 1.1 cgd if (level != SOL_SOCKET) {
953 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
954 1.1 cgd return ((*so->so_proto->pr_ctloutput)
955 1.1 cgd (PRCO_GETOPT, so, level, optname, mp));
956 1.1 cgd } else
957 1.1 cgd return (ENOPROTOOPT);
958 1.1 cgd } else {
959 1.1 cgd m = m_get(M_WAIT, MT_SOOPTS);
960 1.1 cgd m->m_len = sizeof (int);
961 1.1 cgd
962 1.1 cgd switch (optname) {
963 1.1 cgd
964 1.1 cgd case SO_LINGER:
965 1.1 cgd m->m_len = sizeof (struct linger);
966 1.1 cgd mtod(m, struct linger *)->l_onoff =
967 1.1 cgd so->so_options & SO_LINGER;
968 1.1 cgd mtod(m, struct linger *)->l_linger = so->so_linger;
969 1.1 cgd break;
970 1.1 cgd
971 1.1 cgd case SO_USELOOPBACK:
972 1.1 cgd case SO_DONTROUTE:
973 1.1 cgd case SO_DEBUG:
974 1.1 cgd case SO_KEEPALIVE:
975 1.1 cgd case SO_REUSEADDR:
976 1.1.1.2 fvdl case SO_REUSEPORT:
977 1.1 cgd case SO_BROADCAST:
978 1.1 cgd case SO_OOBINLINE:
979 1.1 cgd *mtod(m, int *) = so->so_options & optname;
980 1.1 cgd break;
981 1.1 cgd
982 1.1 cgd case SO_TYPE:
983 1.1 cgd *mtod(m, int *) = so->so_type;
984 1.1 cgd break;
985 1.1 cgd
986 1.1 cgd case SO_ERROR:
987 1.1 cgd *mtod(m, int *) = so->so_error;
988 1.1 cgd so->so_error = 0;
989 1.1 cgd break;
990 1.1 cgd
991 1.1 cgd case SO_SNDBUF:
992 1.1 cgd *mtod(m, int *) = so->so_snd.sb_hiwat;
993 1.1 cgd break;
994 1.1 cgd
995 1.1 cgd case SO_RCVBUF:
996 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_hiwat;
997 1.1 cgd break;
998 1.1 cgd
999 1.1 cgd case SO_SNDLOWAT:
1000 1.1 cgd *mtod(m, int *) = so->so_snd.sb_lowat;
1001 1.1 cgd break;
1002 1.1 cgd
1003 1.1 cgd case SO_RCVLOWAT:
1004 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_lowat;
1005 1.1 cgd break;
1006 1.1 cgd
1007 1.1 cgd case SO_SNDTIMEO:
1008 1.1 cgd case SO_RCVTIMEO:
1009 1.1 cgd {
1010 1.1 cgd int val = (optname == SO_SNDTIMEO ?
1011 1.1 cgd so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1012 1.1 cgd
1013 1.1 cgd m->m_len = sizeof(struct timeval);
1014 1.1 cgd mtod(m, struct timeval *)->tv_sec = val / hz;
1015 1.1 cgd mtod(m, struct timeval *)->tv_usec =
1016 1.1.1.3 fvdl (val % hz) * tick;
1017 1.1 cgd break;
1018 1.1 cgd }
1019 1.1 cgd
1020 1.1 cgd default:
1021 1.1 cgd (void)m_free(m);
1022 1.1 cgd return (ENOPROTOOPT);
1023 1.1 cgd }
1024 1.1 cgd *mp = m;
1025 1.1 cgd return (0);
1026 1.1 cgd }
1027 1.1 cgd }
1028 1.1 cgd
1029 1.1.1.3 fvdl void
1030 1.1 cgd sohasoutofband(so)
1031 1.1 cgd register struct socket *so;
1032 1.1 cgd {
1033 1.1 cgd struct proc *p;
1034 1.1 cgd
1035 1.1 cgd if (so->so_pgid < 0)
1036 1.1 cgd gsignal(-so->so_pgid, SIGURG);
1037 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1038 1.1 cgd psignal(p, SIGURG);
1039 1.1.1.2 fvdl selwakeup(&so->so_rcv.sb_sel);
1040 1.1 cgd }
1041