uipc_socket.c revision 1.160 1 1.160 ad /* $NetBSD: uipc_socket.c,v 1.160 2008/04/24 11:38:36 ad Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.154 ad * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.64 thorpej * by Jason R. Thorpe of Wasabi Systems, Inc.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.64 thorpej * must display the following acknowledgement:
20 1.64 thorpej * This product includes software developed by the NetBSD
21 1.64 thorpej * Foundation, Inc. and its contributors.
22 1.64 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.64 thorpej * contributors may be used to endorse or promote products derived
24 1.64 thorpej * from this software without specific prior written permission.
25 1.64 thorpej *
26 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.64 thorpej */
38 1.16 cgd
39 1.1 cgd /*
40 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
41 1.159 ad * Copyright (c) 2004 Robert Watson
42 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
43 1.15 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 cgd *
45 1.1 cgd * Redistribution and use in source and binary forms, with or without
46 1.1 cgd * modification, are permitted provided that the following conditions
47 1.1 cgd * are met:
48 1.1 cgd * 1. Redistributions of source code must retain the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer.
50 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer in the
52 1.1 cgd * documentation and/or other materials provided with the distribution.
53 1.85 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 cgd * may be used to endorse or promote products derived from this software
55 1.1 cgd * without specific prior written permission.
56 1.1 cgd *
57 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 cgd * SUCH DAMAGE.
68 1.1 cgd *
69 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
70 1.1 cgd */
71 1.59 lukem
72 1.59 lukem #include <sys/cdefs.h>
73 1.160 ad __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.160 2008/04/24 11:38:36 ad Exp $");
74 1.64 thorpej
75 1.64 thorpej #include "opt_sock_counters.h"
76 1.64 thorpej #include "opt_sosend_loan.h"
77 1.81 martin #include "opt_mbuftrace.h"
78 1.84 ragge #include "opt_somaxkva.h"
79 1.1 cgd
80 1.9 mycroft #include <sys/param.h>
81 1.9 mycroft #include <sys/systm.h>
82 1.9 mycroft #include <sys/proc.h>
83 1.9 mycroft #include <sys/file.h>
84 1.142 dyoung #include <sys/filedesc.h>
85 1.9 mycroft #include <sys/malloc.h>
86 1.9 mycroft #include <sys/mbuf.h>
87 1.9 mycroft #include <sys/domain.h>
88 1.9 mycroft #include <sys/kernel.h>
89 1.9 mycroft #include <sys/protosw.h>
90 1.9 mycroft #include <sys/socket.h>
91 1.9 mycroft #include <sys/socketvar.h>
92 1.21 christos #include <sys/signalvar.h>
93 1.9 mycroft #include <sys/resourcevar.h>
94 1.72 jdolecek #include <sys/event.h>
95 1.89 christos #include <sys/poll.h>
96 1.118 elad #include <sys/kauth.h>
97 1.136 ad #include <sys/mutex.h>
98 1.136 ad #include <sys/condvar.h>
99 1.37 thorpej
100 1.64 thorpej #include <uvm/uvm.h>
101 1.64 thorpej
102 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
103 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
104 1.37 thorpej
105 1.142 dyoung extern const struct fileops socketops;
106 1.142 dyoung
107 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
108 1.54 lukem int somaxconn = SOMAXCONN;
109 1.160 ad kmutex_t *softnet_lock;
110 1.49 jonathan
111 1.64 thorpej #ifdef SOSEND_COUNTERS
112 1.64 thorpej #include <sys/device.h>
113 1.64 thorpej
114 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 1.64 thorpej NULL, "sosend", "loan big");
116 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 1.64 thorpej NULL, "sosend", "copy big");
118 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 1.64 thorpej NULL, "sosend", "copy small");
120 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 1.64 thorpej NULL, "sosend", "kva limit");
122 1.64 thorpej
123 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
124 1.64 thorpej
125 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
126 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
127 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
128 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
129 1.64 thorpej #else
130 1.64 thorpej
131 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
132 1.64 thorpej
133 1.64 thorpej #endif /* SOSEND_COUNTERS */
134 1.64 thorpej
135 1.119 yamt static struct callback_entry sokva_reclaimerentry;
136 1.1 cgd
137 1.71 thorpej #ifdef SOSEND_NO_LOAN
138 1.121 yamt int sock_loan_thresh = -1;
139 1.71 thorpej #else
140 1.121 yamt int sock_loan_thresh = 4096;
141 1.65 thorpej #endif
142 1.64 thorpej
143 1.136 ad static kmutex_t so_pendfree_lock;
144 1.113 thorpej static struct mbuf *so_pendfree;
145 1.64 thorpej
146 1.84 ragge #ifndef SOMAXKVA
147 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
148 1.84 ragge #endif
149 1.84 ragge int somaxkva = SOMAXKVA;
150 1.113 thorpej static int socurkva;
151 1.136 ad static kcondvar_t socurkva_cv;
152 1.64 thorpej
153 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
154 1.64 thorpej
155 1.117 yamt static size_t sodopendfree(void);
156 1.117 yamt static size_t sodopendfreel(void);
157 1.93 yamt
158 1.113 thorpej static vsize_t
159 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
160 1.80 yamt {
161 1.98 christos int error;
162 1.80 yamt
163 1.136 ad mutex_enter(&so_pendfree_lock);
164 1.80 yamt while (socurkva + len > somaxkva) {
165 1.93 yamt size_t freed;
166 1.93 yamt
167 1.93 yamt /*
168 1.93 yamt * try to do pendfree.
169 1.93 yamt */
170 1.93 yamt
171 1.117 yamt freed = sodopendfreel();
172 1.93 yamt
173 1.93 yamt /*
174 1.93 yamt * if some kva was freed, try again.
175 1.93 yamt */
176 1.93 yamt
177 1.93 yamt if (freed)
178 1.80 yamt continue;
179 1.93 yamt
180 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 1.98 christos if (error) {
183 1.98 christos len = 0;
184 1.98 christos break;
185 1.98 christos }
186 1.80 yamt }
187 1.93 yamt socurkva += len;
188 1.136 ad mutex_exit(&so_pendfree_lock);
189 1.98 christos return len;
190 1.95 yamt }
191 1.95 yamt
192 1.113 thorpej static void
193 1.95 yamt sokvaunreserve(vsize_t len)
194 1.95 yamt {
195 1.95 yamt
196 1.136 ad mutex_enter(&so_pendfree_lock);
197 1.95 yamt socurkva -= len;
198 1.136 ad cv_broadcast(&socurkva_cv);
199 1.136 ad mutex_exit(&so_pendfree_lock);
200 1.95 yamt }
201 1.95 yamt
202 1.95 yamt /*
203 1.95 yamt * sokvaalloc: allocate kva for loan.
204 1.95 yamt */
205 1.95 yamt
206 1.95 yamt vaddr_t
207 1.95 yamt sokvaalloc(vsize_t len, struct socket *so)
208 1.95 yamt {
209 1.95 yamt vaddr_t lva;
210 1.95 yamt
211 1.95 yamt /*
212 1.95 yamt * reserve kva.
213 1.95 yamt */
214 1.95 yamt
215 1.98 christos if (sokvareserve(so, len) == 0)
216 1.98 christos return 0;
217 1.93 yamt
218 1.93 yamt /*
219 1.93 yamt * allocate kva.
220 1.93 yamt */
221 1.80 yamt
222 1.109 yamt lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
223 1.95 yamt if (lva == 0) {
224 1.95 yamt sokvaunreserve(len);
225 1.80 yamt return (0);
226 1.95 yamt }
227 1.80 yamt
228 1.80 yamt return lva;
229 1.80 yamt }
230 1.80 yamt
231 1.93 yamt /*
232 1.93 yamt * sokvafree: free kva for loan.
233 1.93 yamt */
234 1.93 yamt
235 1.80 yamt void
236 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
237 1.80 yamt {
238 1.93 yamt
239 1.93 yamt /*
240 1.93 yamt * free kva.
241 1.93 yamt */
242 1.80 yamt
243 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
244 1.93 yamt
245 1.93 yamt /*
246 1.93 yamt * unreserve kva.
247 1.93 yamt */
248 1.93 yamt
249 1.95 yamt sokvaunreserve(len);
250 1.80 yamt }
251 1.80 yamt
252 1.64 thorpej static void
253 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
254 1.64 thorpej {
255 1.156 yamt vaddr_t sva, eva;
256 1.64 thorpej vsize_t len;
257 1.156 yamt int npgs;
258 1.156 yamt
259 1.156 yamt KASSERT(pgs != NULL);
260 1.64 thorpej
261 1.64 thorpej eva = round_page((vaddr_t) buf + size);
262 1.64 thorpej sva = trunc_page((vaddr_t) buf);
263 1.64 thorpej len = eva - sva;
264 1.64 thorpej npgs = len >> PAGE_SHIFT;
265 1.64 thorpej
266 1.64 thorpej pmap_kremove(sva, len);
267 1.64 thorpej pmap_update(pmap_kernel());
268 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
269 1.80 yamt sokvafree(sva, len);
270 1.64 thorpej }
271 1.64 thorpej
272 1.64 thorpej static size_t
273 1.152 matt sodopendfree(void)
274 1.64 thorpej {
275 1.93 yamt size_t rv;
276 1.64 thorpej
277 1.160 ad if (__predict_true(so_pendfree == NULL))
278 1.160 ad return 0;
279 1.160 ad
280 1.136 ad mutex_enter(&so_pendfree_lock);
281 1.117 yamt rv = sodopendfreel();
282 1.136 ad mutex_exit(&so_pendfree_lock);
283 1.93 yamt
284 1.93 yamt return rv;
285 1.93 yamt }
286 1.93 yamt
287 1.93 yamt /*
288 1.93 yamt * sodopendfreel: free mbufs on "pendfree" list.
289 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
290 1.93 yamt *
291 1.136 ad * => called with so_pendfree_lock held.
292 1.93 yamt */
293 1.93 yamt
294 1.93 yamt static size_t
295 1.152 matt sodopendfreel(void)
296 1.93 yamt {
297 1.137 ad struct mbuf *m, *next;
298 1.93 yamt size_t rv = 0;
299 1.93 yamt
300 1.136 ad KASSERT(mutex_owned(&so_pendfree_lock));
301 1.64 thorpej
302 1.137 ad while (so_pendfree != NULL) {
303 1.64 thorpej m = so_pendfree;
304 1.93 yamt so_pendfree = NULL;
305 1.136 ad mutex_exit(&so_pendfree_lock);
306 1.93 yamt
307 1.93 yamt for (; m != NULL; m = next) {
308 1.93 yamt next = m->m_next;
309 1.156 yamt KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
310 1.156 yamt KASSERT(m->m_ext.ext_refcnt == 0);
311 1.93 yamt
312 1.93 yamt rv += m->m_ext.ext_size;
313 1.156 yamt sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
314 1.93 yamt m->m_ext.ext_size);
315 1.145 ad pool_cache_put(mb_cache, m);
316 1.93 yamt }
317 1.64 thorpej
318 1.136 ad mutex_enter(&so_pendfree_lock);
319 1.64 thorpej }
320 1.64 thorpej
321 1.64 thorpej return (rv);
322 1.64 thorpej }
323 1.64 thorpej
324 1.80 yamt void
325 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
326 1.64 thorpej {
327 1.64 thorpej
328 1.156 yamt KASSERT(m != NULL);
329 1.64 thorpej
330 1.93 yamt /*
331 1.93 yamt * postpone freeing mbuf.
332 1.93 yamt *
333 1.93 yamt * we can't do it in interrupt context
334 1.93 yamt * because we need to put kva back to kernel_map.
335 1.93 yamt */
336 1.93 yamt
337 1.136 ad mutex_enter(&so_pendfree_lock);
338 1.92 yamt m->m_next = so_pendfree;
339 1.92 yamt so_pendfree = m;
340 1.136 ad cv_broadcast(&socurkva_cv);
341 1.136 ad mutex_exit(&so_pendfree_lock);
342 1.64 thorpej }
343 1.64 thorpej
344 1.64 thorpej static long
345 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
346 1.64 thorpej {
347 1.64 thorpej struct iovec *iov = uio->uio_iov;
348 1.64 thorpej vaddr_t sva, eva;
349 1.64 thorpej vsize_t len;
350 1.156 yamt vaddr_t lva;
351 1.156 yamt int npgs, error;
352 1.156 yamt vaddr_t va;
353 1.156 yamt int i;
354 1.64 thorpej
355 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
356 1.64 thorpej return (0);
357 1.64 thorpej
358 1.64 thorpej if (iov->iov_len < (size_t) space)
359 1.64 thorpej space = iov->iov_len;
360 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
361 1.64 thorpej space = SOCK_LOAN_CHUNK;
362 1.64 thorpej
363 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
364 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
365 1.64 thorpej len = eva - sva;
366 1.64 thorpej npgs = len >> PAGE_SHIFT;
367 1.64 thorpej
368 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
369 1.79 thorpej
370 1.80 yamt lva = sokvaalloc(len, so);
371 1.64 thorpej if (lva == 0)
372 1.80 yamt return 0;
373 1.64 thorpej
374 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
375 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
376 1.64 thorpej if (error) {
377 1.80 yamt sokvafree(lva, len);
378 1.64 thorpej return (0);
379 1.64 thorpej }
380 1.64 thorpej
381 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
382 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
383 1.79 thorpej VM_PROT_READ);
384 1.64 thorpej pmap_update(pmap_kernel());
385 1.64 thorpej
386 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
387 1.64 thorpej
388 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
389 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
390 1.64 thorpej
391 1.64 thorpej uio->uio_resid -= space;
392 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
393 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
394 1.64 thorpej uio->uio_iov->iov_len -= space;
395 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
396 1.64 thorpej uio->uio_iov++;
397 1.64 thorpej uio->uio_iovcnt--;
398 1.64 thorpej }
399 1.64 thorpej
400 1.64 thorpej return (space);
401 1.64 thorpej }
402 1.64 thorpej
403 1.119 yamt static int
404 1.129 yamt sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
405 1.119 yamt {
406 1.119 yamt
407 1.119 yamt KASSERT(ce == &sokva_reclaimerentry);
408 1.119 yamt KASSERT(obj == NULL);
409 1.119 yamt
410 1.119 yamt sodopendfree();
411 1.119 yamt if (!vm_map_starved_p(kernel_map)) {
412 1.119 yamt return CALLBACK_CHAIN_ABORT;
413 1.119 yamt }
414 1.119 yamt return CALLBACK_CHAIN_CONTINUE;
415 1.119 yamt }
416 1.119 yamt
417 1.142 dyoung struct mbuf *
418 1.147 dyoung getsombuf(struct socket *so, int type)
419 1.142 dyoung {
420 1.142 dyoung struct mbuf *m;
421 1.142 dyoung
422 1.147 dyoung m = m_get(M_WAIT, type);
423 1.142 dyoung MCLAIM(m, so->so_mowner);
424 1.142 dyoung return m;
425 1.142 dyoung }
426 1.142 dyoung
427 1.142 dyoung struct mbuf *
428 1.142 dyoung m_intopt(struct socket *so, int val)
429 1.142 dyoung {
430 1.142 dyoung struct mbuf *m;
431 1.142 dyoung
432 1.147 dyoung m = getsombuf(so, MT_SOOPTS);
433 1.142 dyoung m->m_len = sizeof(int);
434 1.142 dyoung *mtod(m, int *) = val;
435 1.142 dyoung return m;
436 1.142 dyoung }
437 1.142 dyoung
438 1.119 yamt void
439 1.119 yamt soinit(void)
440 1.119 yamt {
441 1.119 yamt
442 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
443 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
444 1.136 ad cv_init(&socurkva_cv, "sokva");
445 1.136 ad
446 1.119 yamt /* Set the initial adjusted socket buffer size. */
447 1.119 yamt if (sb_max_set(sb_max))
448 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
449 1.119 yamt
450 1.119 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
451 1.119 yamt &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
452 1.119 yamt }
453 1.119 yamt
454 1.1 cgd /*
455 1.1 cgd * Socket operation routines.
456 1.1 cgd * These routines are called by the routines in
457 1.1 cgd * sys_socket.c or from a system process, and
458 1.1 cgd * implement the semantics of socket operations by
459 1.1 cgd * switching out to the protocol specific routines.
460 1.1 cgd */
461 1.1 cgd /*ARGSUSED*/
462 1.3 andrew int
463 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
464 1.160 ad struct socket *lockso)
465 1.1 cgd {
466 1.99 matt const struct protosw *prp;
467 1.54 lukem struct socket *so;
468 1.115 yamt uid_t uid;
469 1.160 ad int error;
470 1.160 ad kmutex_t *lock;
471 1.1 cgd
472 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
473 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
474 1.132 elad KAUTH_ARG(proto));
475 1.140 dyoung if (error != 0)
476 1.140 dyoung return error;
477 1.127 elad
478 1.1 cgd if (proto)
479 1.1 cgd prp = pffindproto(dom, proto, type);
480 1.1 cgd else
481 1.1 cgd prp = pffindtype(dom, type);
482 1.140 dyoung if (prp == NULL) {
483 1.120 ginsbach /* no support for domain */
484 1.120 ginsbach if (pffinddomain(dom) == 0)
485 1.140 dyoung return EAFNOSUPPORT;
486 1.120 ginsbach /* no support for socket type */
487 1.120 ginsbach if (proto == 0 && type != 0)
488 1.140 dyoung return EPROTOTYPE;
489 1.140 dyoung return EPROTONOSUPPORT;
490 1.120 ginsbach }
491 1.140 dyoung if (prp->pr_usrreq == NULL)
492 1.140 dyoung return EPROTONOSUPPORT;
493 1.1 cgd if (prp->pr_type != type)
494 1.140 dyoung return EPROTOTYPE;
495 1.160 ad
496 1.160 ad so = soget(true);
497 1.1 cgd so->so_type = type;
498 1.1 cgd so->so_proto = prp;
499 1.33 matt so->so_send = sosend;
500 1.33 matt so->so_receive = soreceive;
501 1.78 matt #ifdef MBUFTRACE
502 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
503 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
504 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
505 1.78 matt #endif
506 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
507 1.115 yamt so->so_uidinfo = uid_find(uid);
508 1.160 ad if (lockso != NULL) {
509 1.160 ad /* Caller wants us to share a lock. */
510 1.160 ad lock = lockso->so_lock;
511 1.160 ad so->so_lock = lock;
512 1.160 ad mutex_obj_hold(lock);
513 1.160 ad mutex_enter(lock);
514 1.160 ad } else {
515 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
516 1.160 ad }
517 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
518 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
519 1.160 ad KASSERT(solocked(so));
520 1.140 dyoung if (error != 0) {
521 1.1 cgd so->so_state |= SS_NOFDREF;
522 1.1 cgd sofree(so);
523 1.140 dyoung return error;
524 1.1 cgd }
525 1.160 ad sounlock(so);
526 1.1 cgd *aso = so;
527 1.140 dyoung return 0;
528 1.1 cgd }
529 1.1 cgd
530 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
531 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
532 1.142 dyoung */
533 1.142 dyoung int
534 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
535 1.142 dyoung struct lwp *l, int *fdout)
536 1.142 dyoung {
537 1.142 dyoung struct socket *so;
538 1.142 dyoung struct file *fp;
539 1.142 dyoung int fd, error;
540 1.142 dyoung
541 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
542 1.142 dyoung return (error);
543 1.142 dyoung fp->f_flag = FREAD|FWRITE;
544 1.142 dyoung fp->f_type = DTYPE_SOCKET;
545 1.142 dyoung fp->f_ops = &socketops;
546 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
547 1.142 dyoung if (error != 0) {
548 1.155 ad fd_abort(curproc, fp, fd);
549 1.142 dyoung } else {
550 1.142 dyoung if (sop != NULL)
551 1.142 dyoung *sop = so;
552 1.142 dyoung fp->f_data = so;
553 1.155 ad fd_affix(curproc, fp, fd);
554 1.142 dyoung *fdout = fd;
555 1.142 dyoung }
556 1.142 dyoung return error;
557 1.142 dyoung }
558 1.142 dyoung
559 1.3 andrew int
560 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
561 1.1 cgd {
562 1.160 ad int error;
563 1.1 cgd
564 1.160 ad solock(so);
565 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
566 1.160 ad sounlock(so);
567 1.140 dyoung return error;
568 1.1 cgd }
569 1.1 cgd
570 1.3 andrew int
571 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
572 1.1 cgd {
573 1.160 ad int error;
574 1.1 cgd
575 1.160 ad solock(so);
576 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
577 1.158 ad SS_ISDISCONNECTING)) != 0)
578 1.158 ad return (EOPNOTSUPP);
579 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
580 1.150 elad NULL, NULL, l);
581 1.140 dyoung if (error != 0) {
582 1.160 ad sounlock(so);
583 1.140 dyoung return error;
584 1.1 cgd }
585 1.63 matt if (TAILQ_EMPTY(&so->so_q))
586 1.1 cgd so->so_options |= SO_ACCEPTCONN;
587 1.1 cgd if (backlog < 0)
588 1.1 cgd backlog = 0;
589 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
590 1.160 ad sounlock(so);
591 1.140 dyoung return 0;
592 1.1 cgd }
593 1.1 cgd
594 1.21 christos void
595 1.54 lukem sofree(struct socket *so)
596 1.1 cgd {
597 1.1 cgd
598 1.160 ad KASSERT(solocked(so));
599 1.160 ad
600 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
601 1.160 ad sounlock(so);
602 1.1 cgd return;
603 1.160 ad }
604 1.43 mycroft if (so->so_head) {
605 1.43 mycroft /*
606 1.43 mycroft * We must not decommission a socket that's on the accept(2)
607 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
608 1.43 mycroft * indicated that the listening socket was ready.
609 1.43 mycroft */
610 1.160 ad if (!soqremque(so, 0)) {
611 1.160 ad sounlock(so);
612 1.43 mycroft return;
613 1.160 ad }
614 1.43 mycroft }
615 1.98 christos if (so->so_rcv.sb_hiwat)
616 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
617 1.98 christos RLIM_INFINITY);
618 1.98 christos if (so->so_snd.sb_hiwat)
619 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
620 1.98 christos RLIM_INFINITY);
621 1.98 christos sbrelease(&so->so_snd, so);
622 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
623 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
624 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
625 1.1 cgd sorflush(so);
626 1.160 ad sounlock(so);
627 1.160 ad soput(so);
628 1.1 cgd }
629 1.1 cgd
630 1.1 cgd /*
631 1.1 cgd * Close a socket on last file table reference removal.
632 1.1 cgd * Initiate disconnect if connected.
633 1.1 cgd * Free socket when disconnect complete.
634 1.1 cgd */
635 1.3 andrew int
636 1.54 lukem soclose(struct socket *so)
637 1.1 cgd {
638 1.54 lukem struct socket *so2;
639 1.160 ad int error;
640 1.160 ad int error2;
641 1.1 cgd
642 1.54 lukem error = 0;
643 1.160 ad solock(so);
644 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
645 1.160 ad do {
646 1.160 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
647 1.160 ad KASSERT(solocked2(so, so2));
648 1.160 ad (void) soqremque(so2, 0);
649 1.160 ad /* soabort drops the lock. */
650 1.160 ad (void) soabort(so2);
651 1.160 ad solock(so);
652 1.160 ad continue;
653 1.160 ad }
654 1.160 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
655 1.160 ad KASSERT(solocked2(so, so2));
656 1.160 ad (void) soqremque(so2, 1);
657 1.160 ad /* soabort drops the lock. */
658 1.160 ad (void) soabort(so2);
659 1.160 ad solock(so);
660 1.160 ad continue;
661 1.160 ad }
662 1.160 ad } while (0);
663 1.1 cgd }
664 1.1 cgd if (so->so_pcb == 0)
665 1.1 cgd goto discard;
666 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
667 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
668 1.1 cgd error = sodisconnect(so);
669 1.1 cgd if (error)
670 1.1 cgd goto drop;
671 1.1 cgd }
672 1.1 cgd if (so->so_options & SO_LINGER) {
673 1.151 ad if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
674 1.1 cgd goto drop;
675 1.21 christos while (so->so_state & SS_ISCONNECTED) {
676 1.160 ad error = sowait(so, so->so_linger * hz);
677 1.21 christos if (error)
678 1.1 cgd break;
679 1.21 christos }
680 1.1 cgd }
681 1.1 cgd }
682 1.54 lukem drop:
683 1.1 cgd if (so->so_pcb) {
684 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
685 1.140 dyoung NULL, NULL, NULL, NULL);
686 1.1 cgd if (error == 0)
687 1.1 cgd error = error2;
688 1.1 cgd }
689 1.54 lukem discard:
690 1.1 cgd if (so->so_state & SS_NOFDREF)
691 1.1 cgd panic("soclose: NOFDREF");
692 1.1 cgd so->so_state |= SS_NOFDREF;
693 1.1 cgd sofree(so);
694 1.1 cgd return (error);
695 1.1 cgd }
696 1.1 cgd
697 1.1 cgd /*
698 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
699 1.1 cgd */
700 1.3 andrew int
701 1.54 lukem soabort(struct socket *so)
702 1.1 cgd {
703 1.139 yamt int error;
704 1.160 ad
705 1.160 ad KASSERT(solocked(so));
706 1.160 ad KASSERT(so->so_head == NULL);
707 1.1 cgd
708 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
709 1.140 dyoung NULL, NULL, NULL);
710 1.139 yamt if (error) {
711 1.139 yamt sofree(so);
712 1.160 ad } else {
713 1.160 ad sounlock(so);
714 1.139 yamt }
715 1.139 yamt return error;
716 1.1 cgd }
717 1.1 cgd
718 1.3 andrew int
719 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
720 1.1 cgd {
721 1.160 ad int error;
722 1.160 ad
723 1.160 ad KASSERT(solocked(so));
724 1.1 cgd
725 1.54 lukem error = 0;
726 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
727 1.1 cgd panic("soaccept: !NOFDREF");
728 1.1 cgd so->so_state &= ~SS_NOFDREF;
729 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
730 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
731 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
732 1.140 dyoung NULL, nam, NULL, NULL);
733 1.41 mycroft else
734 1.53 itojun error = ECONNABORTED;
735 1.52 itojun
736 1.1 cgd return (error);
737 1.1 cgd }
738 1.1 cgd
739 1.3 andrew int
740 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
741 1.1 cgd {
742 1.160 ad int error;
743 1.160 ad
744 1.160 ad KASSERT(solocked(so));
745 1.1 cgd
746 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
747 1.1 cgd return (EOPNOTSUPP);
748 1.1 cgd /*
749 1.1 cgd * If protocol is connection-based, can only connect once.
750 1.1 cgd * Otherwise, if connected, try to disconnect first.
751 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
752 1.1 cgd * a null address.
753 1.1 cgd */
754 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
755 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
756 1.1 cgd (error = sodisconnect(so))))
757 1.1 cgd error = EISCONN;
758 1.1 cgd else
759 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
760 1.140 dyoung NULL, nam, NULL, l);
761 1.1 cgd return (error);
762 1.1 cgd }
763 1.1 cgd
764 1.3 andrew int
765 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
766 1.1 cgd {
767 1.160 ad int error;
768 1.160 ad
769 1.160 ad KASSERT(solocked2(so1, so2));
770 1.1 cgd
771 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
772 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
773 1.1 cgd return (error);
774 1.1 cgd }
775 1.1 cgd
776 1.3 andrew int
777 1.54 lukem sodisconnect(struct socket *so)
778 1.1 cgd {
779 1.160 ad int error;
780 1.160 ad
781 1.160 ad KASSERT(solocked(so));
782 1.1 cgd
783 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
784 1.1 cgd error = ENOTCONN;
785 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
786 1.1 cgd error = EALREADY;
787 1.160 ad } else {
788 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
789 1.160 ad NULL, NULL, NULL, NULL);
790 1.1 cgd }
791 1.117 yamt sodopendfree();
792 1.1 cgd return (error);
793 1.1 cgd }
794 1.1 cgd
795 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
796 1.1 cgd /*
797 1.1 cgd * Send on a socket.
798 1.1 cgd * If send must go all at once and message is larger than
799 1.1 cgd * send buffering, then hard error.
800 1.1 cgd * Lock against other senders.
801 1.1 cgd * If must go all at once and not enough room now, then
802 1.1 cgd * inform user that this would block and do nothing.
803 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
804 1.1 cgd * The data to be sent is described by "uio" if nonzero,
805 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
806 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
807 1.1 cgd * enough to send all at once.
808 1.1 cgd *
809 1.1 cgd * Returns nonzero on error, timeout or signal; callers
810 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
811 1.1 cgd * Data and control buffers are freed on return.
812 1.1 cgd */
813 1.3 andrew int
814 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
815 1.114 christos struct mbuf *control, int flags, struct lwp *l)
816 1.1 cgd {
817 1.54 lukem struct mbuf **mp, *m;
818 1.114 christos struct proc *p;
819 1.58 jdolecek long space, len, resid, clen, mlen;
820 1.58 jdolecek int error, s, dontroute, atomic;
821 1.54 lukem
822 1.114 christos p = l->l_proc;
823 1.117 yamt sodopendfree();
824 1.160 ad clen = 0;
825 1.64 thorpej
826 1.160 ad /*
827 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
828 1.160 ad * protocol processing soft interrupts from interrupting us and
829 1.160 ad * blocking (expensive).
830 1.160 ad */
831 1.160 ad s = splsoftnet();
832 1.160 ad solock(so);
833 1.54 lukem atomic = sosendallatonce(so) || top;
834 1.1 cgd if (uio)
835 1.1 cgd resid = uio->uio_resid;
836 1.1 cgd else
837 1.1 cgd resid = top->m_pkthdr.len;
838 1.7 cgd /*
839 1.7 cgd * In theory resid should be unsigned.
840 1.7 cgd * However, space must be signed, as it might be less than 0
841 1.7 cgd * if we over-committed, and we must use a signed comparison
842 1.7 cgd * of space and resid. On the other hand, a negative resid
843 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
844 1.7 cgd */
845 1.29 mycroft if (resid < 0) {
846 1.29 mycroft error = EINVAL;
847 1.29 mycroft goto out;
848 1.29 mycroft }
849 1.1 cgd dontroute =
850 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
851 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
852 1.157 ad if (l)
853 1.157 ad l->l_ru.ru_msgsnd++;
854 1.1 cgd if (control)
855 1.1 cgd clen = control->m_len;
856 1.54 lukem restart:
857 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
858 1.1 cgd goto out;
859 1.1 cgd do {
860 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
861 1.160 ad error = EPIPE;
862 1.160 ad goto release;
863 1.160 ad }
864 1.48 thorpej if (so->so_error) {
865 1.48 thorpej error = so->so_error;
866 1.48 thorpej so->so_error = 0;
867 1.48 thorpej goto release;
868 1.48 thorpej }
869 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
870 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
871 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
872 1.160 ad !(resid == 0 && clen != 0)) {
873 1.160 ad error = ENOTCONN;
874 1.160 ad goto release;
875 1.160 ad }
876 1.160 ad } else if (addr == 0) {
877 1.160 ad error = EDESTADDRREQ;
878 1.160 ad goto release;
879 1.160 ad }
880 1.1 cgd }
881 1.1 cgd space = sbspace(&so->so_snd);
882 1.1 cgd if (flags & MSG_OOB)
883 1.1 cgd space += 1024;
884 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
885 1.160 ad clen > so->so_snd.sb_hiwat) {
886 1.160 ad error = EMSGSIZE;
887 1.160 ad goto release;
888 1.160 ad }
889 1.96 mycroft if (space < resid + clen &&
890 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
891 1.160 ad if (so->so_nbio) {
892 1.160 ad error = EWOULDBLOCK;
893 1.160 ad goto release;
894 1.160 ad }
895 1.1 cgd sbunlock(&so->so_snd);
896 1.1 cgd error = sbwait(&so->so_snd);
897 1.1 cgd if (error)
898 1.1 cgd goto out;
899 1.1 cgd goto restart;
900 1.1 cgd }
901 1.1 cgd mp = ⊤
902 1.1 cgd space -= clen;
903 1.1 cgd do {
904 1.45 tv if (uio == NULL) {
905 1.45 tv /*
906 1.45 tv * Data is prepackaged in "top".
907 1.45 tv */
908 1.45 tv resid = 0;
909 1.45 tv if (flags & MSG_EOR)
910 1.45 tv top->m_flags |= M_EOR;
911 1.45 tv } else do {
912 1.160 ad sounlock(so);
913 1.160 ad splx(s);
914 1.144 dyoung if (top == NULL) {
915 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
916 1.45 tv mlen = MHLEN;
917 1.45 tv m->m_pkthdr.len = 0;
918 1.140 dyoung m->m_pkthdr.rcvif = NULL;
919 1.45 tv } else {
920 1.78 matt m = m_get(M_WAIT, MT_DATA);
921 1.45 tv mlen = MLEN;
922 1.45 tv }
923 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
924 1.121 yamt if (sock_loan_thresh >= 0 &&
925 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
926 1.121 yamt space >= sock_loan_thresh &&
927 1.64 thorpej (len = sosend_loan(so, uio, m,
928 1.64 thorpej space)) != 0) {
929 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
930 1.64 thorpej space -= len;
931 1.64 thorpej goto have_data;
932 1.64 thorpej }
933 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
934 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
935 1.78 matt m_clget(m, M_WAIT);
936 1.45 tv if ((m->m_flags & M_EXT) == 0)
937 1.45 tv goto nopages;
938 1.45 tv mlen = MCLBYTES;
939 1.45 tv if (atomic && top == 0) {
940 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
941 1.54 lukem resid);
942 1.45 tv m->m_data += max_hdr;
943 1.45 tv } else
944 1.58 jdolecek len = lmin(MCLBYTES, resid);
945 1.45 tv space -= len;
946 1.45 tv } else {
947 1.64 thorpej nopages:
948 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
949 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
950 1.45 tv space -= len;
951 1.45 tv /*
952 1.45 tv * For datagram protocols, leave room
953 1.45 tv * for protocol headers in first mbuf.
954 1.45 tv */
955 1.45 tv if (atomic && top == 0 && len < mlen)
956 1.45 tv MH_ALIGN(m, len);
957 1.45 tv }
958 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
959 1.64 thorpej have_data:
960 1.45 tv resid = uio->uio_resid;
961 1.45 tv m->m_len = len;
962 1.45 tv *mp = m;
963 1.45 tv top->m_pkthdr.len += len;
964 1.160 ad s = splsoftnet();
965 1.160 ad solock(so);
966 1.144 dyoung if (error != 0)
967 1.45 tv goto release;
968 1.45 tv mp = &m->m_next;
969 1.45 tv if (resid <= 0) {
970 1.45 tv if (flags & MSG_EOR)
971 1.45 tv top->m_flags |= M_EOR;
972 1.45 tv break;
973 1.45 tv }
974 1.45 tv } while (space > 0 && atomic);
975 1.108 perry
976 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
977 1.160 ad error = EPIPE;
978 1.160 ad goto release;
979 1.160 ad }
980 1.45 tv if (dontroute)
981 1.45 tv so->so_options |= SO_DONTROUTE;
982 1.45 tv if (resid > 0)
983 1.45 tv so->so_state |= SS_MORETOCOME;
984 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
985 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
986 1.160 ad top, addr, control, curlwp);
987 1.45 tv if (dontroute)
988 1.45 tv so->so_options &= ~SO_DONTROUTE;
989 1.45 tv if (resid > 0)
990 1.45 tv so->so_state &= ~SS_MORETOCOME;
991 1.45 tv clen = 0;
992 1.144 dyoung control = NULL;
993 1.144 dyoung top = NULL;
994 1.45 tv mp = ⊤
995 1.144 dyoung if (error != 0)
996 1.1 cgd goto release;
997 1.1 cgd } while (resid && space > 0);
998 1.1 cgd } while (resid);
999 1.1 cgd
1000 1.54 lukem release:
1001 1.1 cgd sbunlock(&so->so_snd);
1002 1.54 lukem out:
1003 1.160 ad sounlock(so);
1004 1.160 ad splx(s);
1005 1.1 cgd if (top)
1006 1.1 cgd m_freem(top);
1007 1.1 cgd if (control)
1008 1.1 cgd m_freem(control);
1009 1.1 cgd return (error);
1010 1.1 cgd }
1011 1.1 cgd
1012 1.1 cgd /*
1013 1.159 ad * Following replacement or removal of the first mbuf on the first
1014 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1015 1.159 ad * into the socket buffer so that other consumers see the values
1016 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1017 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1018 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1019 1.159 ad */
1020 1.159 ad static void
1021 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1022 1.159 ad {
1023 1.159 ad
1024 1.160 ad KASSERT(solocked(sb->sb_so));
1025 1.160 ad
1026 1.159 ad /*
1027 1.159 ad * First, update for the new value of nextrecord. If necessary,
1028 1.159 ad * make it the first record.
1029 1.159 ad */
1030 1.159 ad if (sb->sb_mb != NULL)
1031 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1032 1.159 ad else
1033 1.159 ad sb->sb_mb = nextrecord;
1034 1.159 ad
1035 1.159 ad /*
1036 1.159 ad * Now update any dependent socket buffer fields to reflect
1037 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1038 1.159 ad * the addition of a second clause that takes care of the
1039 1.159 ad * case where sb_mb has been updated, but remains the last
1040 1.159 ad * record.
1041 1.159 ad */
1042 1.159 ad if (sb->sb_mb == NULL) {
1043 1.159 ad sb->sb_mbtail = NULL;
1044 1.159 ad sb->sb_lastrecord = NULL;
1045 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1046 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1047 1.159 ad }
1048 1.159 ad
1049 1.159 ad /*
1050 1.1 cgd * Implement receive operations on a socket.
1051 1.1 cgd * We depend on the way that records are added to the sockbuf
1052 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1053 1.1 cgd * must begin with an address if the protocol so specifies,
1054 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1055 1.1 cgd * and then zero or more mbufs of data.
1056 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1057 1.1 cgd * we splx() while doing the actual copy to user space.
1058 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1059 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1060 1.1 cgd *
1061 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1062 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1063 1.1 cgd * only for the count in uio_resid.
1064 1.1 cgd */
1065 1.3 andrew int
1066 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1067 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1068 1.1 cgd {
1069 1.116 yamt struct lwp *l = curlwp;
1070 1.160 ad struct mbuf *m, **mp, *mt;
1071 1.146 dyoung int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1072 1.99 matt const struct protosw *pr;
1073 1.54 lukem struct mbuf *nextrecord;
1074 1.67 he int mbuf_removed = 0;
1075 1.146 dyoung const struct domain *dom;
1076 1.64 thorpej
1077 1.54 lukem pr = so->so_proto;
1078 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1079 1.146 dyoung dom = pr->pr_domain;
1080 1.1 cgd mp = mp0;
1081 1.54 lukem type = 0;
1082 1.54 lukem orig_resid = uio->uio_resid;
1083 1.102 jonathan
1084 1.144 dyoung if (paddr != NULL)
1085 1.144 dyoung *paddr = NULL;
1086 1.144 dyoung if (controlp != NULL)
1087 1.144 dyoung *controlp = NULL;
1088 1.144 dyoung if (flagsp != NULL)
1089 1.1 cgd flags = *flagsp &~ MSG_EOR;
1090 1.1 cgd else
1091 1.1 cgd flags = 0;
1092 1.66 enami
1093 1.66 enami if ((flags & MSG_DONTWAIT) == 0)
1094 1.117 yamt sodopendfree();
1095 1.66 enami
1096 1.1 cgd if (flags & MSG_OOB) {
1097 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1098 1.160 ad solock(so);
1099 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1100 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1101 1.160 ad sounlock(so);
1102 1.1 cgd if (error)
1103 1.1 cgd goto bad;
1104 1.1 cgd do {
1105 1.134 christos error = uiomove(mtod(m, void *),
1106 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
1107 1.1 cgd m = m_free(m);
1108 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1109 1.54 lukem bad:
1110 1.144 dyoung if (m != NULL)
1111 1.1 cgd m_freem(m);
1112 1.144 dyoung return error;
1113 1.1 cgd }
1114 1.144 dyoung if (mp != NULL)
1115 1.140 dyoung *mp = NULL;
1116 1.160 ad
1117 1.160 ad /*
1118 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1119 1.160 ad * protocol processing soft interrupts from interrupting us and
1120 1.160 ad * blocking (expensive).
1121 1.160 ad */
1122 1.160 ad s = splsoftnet();
1123 1.160 ad solock(so);
1124 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1125 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1126 1.1 cgd
1127 1.54 lukem restart:
1128 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1129 1.160 ad sounlock(so);
1130 1.160 ad splx(s);
1131 1.144 dyoung return error;
1132 1.160 ad }
1133 1.1 cgd
1134 1.1 cgd m = so->so_rcv.sb_mb;
1135 1.1 cgd /*
1136 1.1 cgd * If we have less data than requested, block awaiting more
1137 1.1 cgd * (subject to any timeout) if:
1138 1.15 mycroft * 1. the current count is less than the low water mark,
1139 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1140 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1141 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1142 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1143 1.1 cgd * we have to do the receive in sections, and thus risk returning
1144 1.1 cgd * a short count if a timeout or signal occurs after we start.
1145 1.1 cgd */
1146 1.144 dyoung if (m == NULL ||
1147 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1148 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1149 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1150 1.144 dyoung ((flags & MSG_WAITALL) &&
1151 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1152 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1153 1.1 cgd #ifdef DIAGNOSTIC
1154 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1155 1.1 cgd panic("receive 1");
1156 1.1 cgd #endif
1157 1.1 cgd if (so->so_error) {
1158 1.144 dyoung if (m != NULL)
1159 1.15 mycroft goto dontblock;
1160 1.1 cgd error = so->so_error;
1161 1.1 cgd if ((flags & MSG_PEEK) == 0)
1162 1.1 cgd so->so_error = 0;
1163 1.1 cgd goto release;
1164 1.1 cgd }
1165 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1166 1.144 dyoung if (m != NULL)
1167 1.15 mycroft goto dontblock;
1168 1.1 cgd else
1169 1.1 cgd goto release;
1170 1.1 cgd }
1171 1.144 dyoung for (; m != NULL; m = m->m_next)
1172 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1173 1.1 cgd m = so->so_rcv.sb_mb;
1174 1.1 cgd goto dontblock;
1175 1.1 cgd }
1176 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1177 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1178 1.1 cgd error = ENOTCONN;
1179 1.1 cgd goto release;
1180 1.1 cgd }
1181 1.1 cgd if (uio->uio_resid == 0)
1182 1.1 cgd goto release;
1183 1.151 ad if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1184 1.1 cgd error = EWOULDBLOCK;
1185 1.1 cgd goto release;
1186 1.1 cgd }
1187 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1188 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1189 1.1 cgd sbunlock(&so->so_rcv);
1190 1.1 cgd error = sbwait(&so->so_rcv);
1191 1.160 ad if (error != 0) {
1192 1.160 ad sounlock(so);
1193 1.160 ad splx(s);
1194 1.144 dyoung return error;
1195 1.160 ad }
1196 1.1 cgd goto restart;
1197 1.1 cgd }
1198 1.54 lukem dontblock:
1199 1.69 thorpej /*
1200 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1201 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1202 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1203 1.159 ad * various socket buffer pointers and local stack versions of the
1204 1.159 ad * pointers in sync, pushing out modifications before dropping the
1205 1.160 ad * socket lock, and re-reading them when picking it up.
1206 1.159 ad *
1207 1.159 ad * Otherwise, we will race with the network stack appending new data
1208 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1209 1.159 ad * versions of the field, possibly resulting in socket buffer
1210 1.159 ad * corruption.
1211 1.159 ad *
1212 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1213 1.159 ad * readers from pulling off the front of the socket buffer.
1214 1.69 thorpej */
1215 1.144 dyoung if (l != NULL)
1216 1.157 ad l->l_ru.ru_msgrcv++;
1217 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1218 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1219 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1220 1.1 cgd nextrecord = m->m_nextpkt;
1221 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1222 1.1 cgd #ifdef DIAGNOSTIC
1223 1.1 cgd if (m->m_type != MT_SONAME)
1224 1.1 cgd panic("receive 1a");
1225 1.1 cgd #endif
1226 1.3 andrew orig_resid = 0;
1227 1.1 cgd if (flags & MSG_PEEK) {
1228 1.1 cgd if (paddr)
1229 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1230 1.1 cgd m = m->m_next;
1231 1.1 cgd } else {
1232 1.1 cgd sbfree(&so->so_rcv, m);
1233 1.67 he mbuf_removed = 1;
1234 1.144 dyoung if (paddr != NULL) {
1235 1.1 cgd *paddr = m;
1236 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1237 1.144 dyoung m->m_next = NULL;
1238 1.1 cgd m = so->so_rcv.sb_mb;
1239 1.1 cgd } else {
1240 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1241 1.1 cgd m = so->so_rcv.sb_mb;
1242 1.1 cgd }
1243 1.159 ad sbsync(&so->so_rcv, nextrecord);
1244 1.1 cgd }
1245 1.1 cgd }
1246 1.159 ad
1247 1.159 ad /*
1248 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1249 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1250 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1251 1.159 ad * perform externalization (or freeing if controlp == NULL).
1252 1.159 ad */
1253 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1254 1.159 ad struct mbuf *cm = NULL, *cmn;
1255 1.159 ad struct mbuf **cme = &cm;
1256 1.159 ad
1257 1.159 ad do {
1258 1.159 ad if (flags & MSG_PEEK) {
1259 1.159 ad if (controlp != NULL) {
1260 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1261 1.159 ad controlp = &(*controlp)->m_next;
1262 1.159 ad }
1263 1.159 ad m = m->m_next;
1264 1.159 ad } else {
1265 1.159 ad sbfree(&so->so_rcv, m);
1266 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1267 1.144 dyoung m->m_next = NULL;
1268 1.159 ad *cme = m;
1269 1.159 ad cme = &(*cme)->m_next;
1270 1.1 cgd m = so->so_rcv.sb_mb;
1271 1.159 ad }
1272 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1273 1.159 ad if ((flags & MSG_PEEK) == 0)
1274 1.159 ad sbsync(&so->so_rcv, nextrecord);
1275 1.159 ad for (; cm != NULL; cm = cmn) {
1276 1.159 ad cmn = cm->m_next;
1277 1.159 ad cm->m_next = NULL;
1278 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1279 1.159 ad if (controlp != NULL) {
1280 1.159 ad if (dom->dom_externalize != NULL &&
1281 1.159 ad type == SCM_RIGHTS) {
1282 1.160 ad sounlock(so);
1283 1.159 ad splx(s);
1284 1.159 ad error = (*dom->dom_externalize)(cm, l);
1285 1.159 ad s = splsoftnet();
1286 1.160 ad solock(so);
1287 1.159 ad }
1288 1.159 ad *controlp = cm;
1289 1.159 ad while (*controlp != NULL)
1290 1.159 ad controlp = &(*controlp)->m_next;
1291 1.1 cgd } else {
1292 1.106 itojun /*
1293 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1294 1.106 itojun * through the read path rather than recv.
1295 1.106 itojun */
1296 1.159 ad if (dom->dom_dispose != NULL &&
1297 1.159 ad type == SCM_RIGHTS) {
1298 1.160 ad sounlock(so);
1299 1.159 ad (*dom->dom_dispose)(cm);
1300 1.160 ad solock(so);
1301 1.159 ad }
1302 1.159 ad m_freem(cm);
1303 1.1 cgd }
1304 1.1 cgd }
1305 1.159 ad if (m != NULL)
1306 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1307 1.159 ad else
1308 1.159 ad nextrecord = so->so_rcv.sb_mb;
1309 1.159 ad orig_resid = 0;
1310 1.1 cgd }
1311 1.69 thorpej
1312 1.159 ad /* If m is non-NULL, we have some data to read. */
1313 1.159 ad if (__predict_true(m != NULL)) {
1314 1.1 cgd type = m->m_type;
1315 1.1 cgd if (type == MT_OOBDATA)
1316 1.1 cgd flags |= MSG_OOB;
1317 1.1 cgd }
1318 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1319 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1320 1.69 thorpej
1321 1.1 cgd moff = 0;
1322 1.1 cgd offset = 0;
1323 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1324 1.1 cgd if (m->m_type == MT_OOBDATA) {
1325 1.1 cgd if (type != MT_OOBDATA)
1326 1.1 cgd break;
1327 1.1 cgd } else if (type == MT_OOBDATA)
1328 1.1 cgd break;
1329 1.1 cgd #ifdef DIAGNOSTIC
1330 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1331 1.1 cgd panic("receive 3");
1332 1.1 cgd #endif
1333 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1334 1.1 cgd len = uio->uio_resid;
1335 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1336 1.1 cgd len = so->so_oobmark - offset;
1337 1.1 cgd if (len > m->m_len - moff)
1338 1.1 cgd len = m->m_len - moff;
1339 1.1 cgd /*
1340 1.1 cgd * If mp is set, just pass back the mbufs.
1341 1.1 cgd * Otherwise copy them out via the uio, then free.
1342 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1343 1.1 cgd * it points to next record) when we drop priority;
1344 1.1 cgd * we must note any additions to the sockbuf when we
1345 1.1 cgd * block interrupts again.
1346 1.1 cgd */
1347 1.144 dyoung if (mp == NULL) {
1348 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1349 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1350 1.160 ad sounlock(so);
1351 1.1 cgd splx(s);
1352 1.134 christos error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1353 1.20 mycroft s = splsoftnet();
1354 1.160 ad solock(so);
1355 1.144 dyoung if (error != 0) {
1356 1.67 he /*
1357 1.67 he * If any part of the record has been removed
1358 1.67 he * (such as the MT_SONAME mbuf, which will
1359 1.67 he * happen when PR_ADDR, and thus also
1360 1.67 he * PR_ATOMIC, is set), then drop the entire
1361 1.67 he * record to maintain the atomicity of the
1362 1.67 he * receive operation.
1363 1.67 he *
1364 1.67 he * This avoids a later panic("receive 1a")
1365 1.67 he * when compiled with DIAGNOSTIC.
1366 1.67 he */
1367 1.146 dyoung if (m && mbuf_removed && atomic)
1368 1.67 he (void) sbdroprecord(&so->so_rcv);
1369 1.67 he
1370 1.57 jdolecek goto release;
1371 1.67 he }
1372 1.1 cgd } else
1373 1.1 cgd uio->uio_resid -= len;
1374 1.1 cgd if (len == m->m_len - moff) {
1375 1.1 cgd if (m->m_flags & M_EOR)
1376 1.1 cgd flags |= MSG_EOR;
1377 1.1 cgd if (flags & MSG_PEEK) {
1378 1.1 cgd m = m->m_next;
1379 1.1 cgd moff = 0;
1380 1.1 cgd } else {
1381 1.1 cgd nextrecord = m->m_nextpkt;
1382 1.1 cgd sbfree(&so->so_rcv, m);
1383 1.1 cgd if (mp) {
1384 1.1 cgd *mp = m;
1385 1.1 cgd mp = &m->m_next;
1386 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1387 1.140 dyoung *mp = NULL;
1388 1.1 cgd } else {
1389 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1390 1.1 cgd m = so->so_rcv.sb_mb;
1391 1.1 cgd }
1392 1.69 thorpej /*
1393 1.69 thorpej * If m != NULL, we also know that
1394 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1395 1.69 thorpej */
1396 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1397 1.69 thorpej if (m) {
1398 1.1 cgd m->m_nextpkt = nextrecord;
1399 1.69 thorpej if (nextrecord == NULL)
1400 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1401 1.69 thorpej } else {
1402 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1403 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1404 1.69 thorpej }
1405 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1406 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1407 1.1 cgd }
1408 1.144 dyoung } else if (flags & MSG_PEEK)
1409 1.144 dyoung moff += len;
1410 1.144 dyoung else {
1411 1.160 ad if (mp != NULL) {
1412 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1413 1.160 ad if (__predict_false(mt == NULL)) {
1414 1.160 ad sounlock(so);
1415 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1416 1.160 ad solock(so);
1417 1.160 ad }
1418 1.160 ad *mp = mt;
1419 1.160 ad }
1420 1.144 dyoung m->m_data += len;
1421 1.144 dyoung m->m_len -= len;
1422 1.144 dyoung so->so_rcv.sb_cc -= len;
1423 1.1 cgd }
1424 1.1 cgd if (so->so_oobmark) {
1425 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1426 1.1 cgd so->so_oobmark -= len;
1427 1.1 cgd if (so->so_oobmark == 0) {
1428 1.1 cgd so->so_state |= SS_RCVATMARK;
1429 1.1 cgd break;
1430 1.1 cgd }
1431 1.7 cgd } else {
1432 1.1 cgd offset += len;
1433 1.7 cgd if (offset == so->so_oobmark)
1434 1.7 cgd break;
1435 1.7 cgd }
1436 1.1 cgd }
1437 1.1 cgd if (flags & MSG_EOR)
1438 1.1 cgd break;
1439 1.1 cgd /*
1440 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1441 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1442 1.1 cgd * termination. If a signal/timeout occurs, return
1443 1.1 cgd * with a short count but without error.
1444 1.1 cgd * Keep sockbuf locked against other readers.
1445 1.1 cgd */
1446 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1447 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1448 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1449 1.1 cgd break;
1450 1.68 matt /*
1451 1.68 matt * If we are peeking and the socket receive buffer is
1452 1.68 matt * full, stop since we can't get more data to peek at.
1453 1.68 matt */
1454 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1455 1.68 matt break;
1456 1.68 matt /*
1457 1.68 matt * If we've drained the socket buffer, tell the
1458 1.68 matt * protocol in case it needs to do something to
1459 1.68 matt * get it filled again.
1460 1.68 matt */
1461 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1462 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1463 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1464 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1465 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1466 1.1 cgd error = sbwait(&so->so_rcv);
1467 1.144 dyoung if (error != 0) {
1468 1.1 cgd sbunlock(&so->so_rcv);
1469 1.160 ad sounlock(so);
1470 1.1 cgd splx(s);
1471 1.144 dyoung return 0;
1472 1.1 cgd }
1473 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1474 1.1 cgd nextrecord = m->m_nextpkt;
1475 1.1 cgd }
1476 1.1 cgd }
1477 1.3 andrew
1478 1.146 dyoung if (m && atomic) {
1479 1.3 andrew flags |= MSG_TRUNC;
1480 1.3 andrew if ((flags & MSG_PEEK) == 0)
1481 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1482 1.3 andrew }
1483 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1484 1.144 dyoung if (m == NULL) {
1485 1.69 thorpej /*
1486 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1487 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1488 1.69 thorpej * there is still data in the socket buffer.
1489 1.69 thorpej */
1490 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1491 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1492 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1493 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1494 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1495 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1496 1.69 thorpej }
1497 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1498 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1499 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1500 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1501 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1502 1.1 cgd }
1503 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1504 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1505 1.3 andrew sbunlock(&so->so_rcv);
1506 1.3 andrew goto restart;
1507 1.3 andrew }
1508 1.108 perry
1509 1.144 dyoung if (flagsp != NULL)
1510 1.1 cgd *flagsp |= flags;
1511 1.54 lukem release:
1512 1.1 cgd sbunlock(&so->so_rcv);
1513 1.160 ad sounlock(so);
1514 1.1 cgd splx(s);
1515 1.144 dyoung return error;
1516 1.1 cgd }
1517 1.1 cgd
1518 1.14 mycroft int
1519 1.54 lukem soshutdown(struct socket *so, int how)
1520 1.1 cgd {
1521 1.99 matt const struct protosw *pr;
1522 1.160 ad int error;
1523 1.160 ad
1524 1.160 ad KASSERT(solocked(so));
1525 1.34 kleink
1526 1.54 lukem pr = so->so_proto;
1527 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1528 1.34 kleink return (EINVAL);
1529 1.1 cgd
1530 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1531 1.1 cgd sorflush(so);
1532 1.160 ad error = 0;
1533 1.160 ad }
1534 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1535 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1536 1.140 dyoung NULL, NULL, NULL);
1537 1.160 ad
1538 1.160 ad return error;
1539 1.1 cgd }
1540 1.1 cgd
1541 1.14 mycroft void
1542 1.54 lukem sorflush(struct socket *so)
1543 1.1 cgd {
1544 1.54 lukem struct sockbuf *sb, asb;
1545 1.99 matt const struct protosw *pr;
1546 1.160 ad
1547 1.160 ad KASSERT(solocked(so));
1548 1.1 cgd
1549 1.54 lukem sb = &so->so_rcv;
1550 1.54 lukem pr = so->so_proto;
1551 1.160 ad socantrcvmore(so);
1552 1.1 cgd sb->sb_flags |= SB_NOINTR;
1553 1.160 ad (void )sblock(sb, M_WAITOK);
1554 1.1 cgd sbunlock(sb);
1555 1.1 cgd asb = *sb;
1556 1.86 wrstuden /*
1557 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1558 1.86 wrstuden * fields valid.
1559 1.86 wrstuden */
1560 1.86 wrstuden memset(&sb->sb_startzero, 0,
1561 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1562 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1563 1.160 ad sounlock(so);
1564 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1565 1.160 ad solock(so);
1566 1.160 ad }
1567 1.98 christos sbrelease(&asb, so);
1568 1.1 cgd }
1569 1.1 cgd
1570 1.142 dyoung static int
1571 1.142 dyoung sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1572 1.1 cgd {
1573 1.142 dyoung int optval, val;
1574 1.130 christos struct linger *l;
1575 1.141 yamt struct sockbuf *sb;
1576 1.142 dyoung struct timeval *tv;
1577 1.142 dyoung
1578 1.142 dyoung switch (optname) {
1579 1.142 dyoung
1580 1.142 dyoung case SO_LINGER:
1581 1.142 dyoung if (m == NULL || m->m_len != sizeof(struct linger))
1582 1.142 dyoung return EINVAL;
1583 1.142 dyoung l = mtod(m, struct linger *);
1584 1.142 dyoung if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1585 1.142 dyoung l->l_linger > (INT_MAX / hz))
1586 1.142 dyoung return EDOM;
1587 1.142 dyoung so->so_linger = l->l_linger;
1588 1.142 dyoung if (l->l_onoff)
1589 1.142 dyoung so->so_options |= SO_LINGER;
1590 1.142 dyoung else
1591 1.142 dyoung so->so_options &= ~SO_LINGER;
1592 1.142 dyoung break;
1593 1.1 cgd
1594 1.142 dyoung case SO_DEBUG:
1595 1.142 dyoung case SO_KEEPALIVE:
1596 1.142 dyoung case SO_DONTROUTE:
1597 1.142 dyoung case SO_USELOOPBACK:
1598 1.142 dyoung case SO_BROADCAST:
1599 1.142 dyoung case SO_REUSEADDR:
1600 1.142 dyoung case SO_REUSEPORT:
1601 1.142 dyoung case SO_OOBINLINE:
1602 1.142 dyoung case SO_TIMESTAMP:
1603 1.142 dyoung if (m == NULL || m->m_len < sizeof(int))
1604 1.142 dyoung return EINVAL;
1605 1.142 dyoung if (*mtod(m, int *))
1606 1.142 dyoung so->so_options |= optname;
1607 1.142 dyoung else
1608 1.142 dyoung so->so_options &= ~optname;
1609 1.142 dyoung break;
1610 1.142 dyoung
1611 1.142 dyoung case SO_SNDBUF:
1612 1.142 dyoung case SO_RCVBUF:
1613 1.142 dyoung case SO_SNDLOWAT:
1614 1.142 dyoung case SO_RCVLOWAT:
1615 1.142 dyoung if (m == NULL || m->m_len < sizeof(int))
1616 1.142 dyoung return EINVAL;
1617 1.1 cgd
1618 1.142 dyoung /*
1619 1.142 dyoung * Values < 1 make no sense for any of these
1620 1.142 dyoung * options, so disallow them.
1621 1.142 dyoung */
1622 1.142 dyoung optval = *mtod(m, int *);
1623 1.142 dyoung if (optval < 1)
1624 1.142 dyoung return EINVAL;
1625 1.1 cgd
1626 1.142 dyoung switch (optname) {
1627 1.1 cgd
1628 1.1 cgd case SO_SNDBUF:
1629 1.1 cgd case SO_RCVBUF:
1630 1.142 dyoung sb = (optname == SO_SNDBUF) ?
1631 1.142 dyoung &so->so_snd : &so->so_rcv;
1632 1.142 dyoung if (sbreserve(sb, (u_long)optval, so) == 0)
1633 1.142 dyoung return ENOBUFS;
1634 1.142 dyoung sb->sb_flags &= ~SB_AUTOSIZE;
1635 1.142 dyoung break;
1636 1.142 dyoung
1637 1.142 dyoung /*
1638 1.142 dyoung * Make sure the low-water is never greater than
1639 1.142 dyoung * the high-water.
1640 1.142 dyoung */
1641 1.1 cgd case SO_SNDLOWAT:
1642 1.142 dyoung so->so_snd.sb_lowat =
1643 1.142 dyoung (optval > so->so_snd.sb_hiwat) ?
1644 1.142 dyoung so->so_snd.sb_hiwat : optval;
1645 1.142 dyoung break;
1646 1.1 cgd case SO_RCVLOWAT:
1647 1.142 dyoung so->so_rcv.sb_lowat =
1648 1.142 dyoung (optval > so->so_rcv.sb_hiwat) ?
1649 1.142 dyoung so->so_rcv.sb_hiwat : optval;
1650 1.142 dyoung break;
1651 1.142 dyoung }
1652 1.142 dyoung break;
1653 1.28 thorpej
1654 1.142 dyoung case SO_SNDTIMEO:
1655 1.142 dyoung case SO_RCVTIMEO:
1656 1.142 dyoung if (m == NULL || m->m_len < sizeof(*tv))
1657 1.142 dyoung return EINVAL;
1658 1.142 dyoung tv = mtod(m, struct timeval *);
1659 1.142 dyoung if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1660 1.142 dyoung return EDOM;
1661 1.142 dyoung val = tv->tv_sec * hz + tv->tv_usec / tick;
1662 1.142 dyoung if (val == 0 && tv->tv_usec != 0)
1663 1.142 dyoung val = 1;
1664 1.28 thorpej
1665 1.142 dyoung switch (optname) {
1666 1.28 thorpej
1667 1.142 dyoung case SO_SNDTIMEO:
1668 1.142 dyoung so->so_snd.sb_timeo = val;
1669 1.1 cgd break;
1670 1.1 cgd case SO_RCVTIMEO:
1671 1.142 dyoung so->so_rcv.sb_timeo = val;
1672 1.142 dyoung break;
1673 1.142 dyoung }
1674 1.142 dyoung break;
1675 1.1 cgd
1676 1.142 dyoung default:
1677 1.142 dyoung return ENOPROTOOPT;
1678 1.142 dyoung }
1679 1.142 dyoung return 0;
1680 1.142 dyoung }
1681 1.1 cgd
1682 1.142 dyoung int
1683 1.142 dyoung sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1684 1.142 dyoung {
1685 1.142 dyoung int error, prerr;
1686 1.1 cgd
1687 1.160 ad solock(so);
1688 1.142 dyoung if (level == SOL_SOCKET)
1689 1.142 dyoung error = sosetopt1(so, level, optname, m);
1690 1.142 dyoung else
1691 1.142 dyoung error = ENOPROTOOPT;
1692 1.1 cgd
1693 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1694 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1695 1.142 dyoung /* give the protocol stack a shot */
1696 1.142 dyoung prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1697 1.142 dyoung optname, &m);
1698 1.142 dyoung if (prerr == 0)
1699 1.142 dyoung error = 0;
1700 1.142 dyoung else if (prerr != ENOPROTOOPT)
1701 1.142 dyoung error = prerr;
1702 1.142 dyoung } else if (m != NULL)
1703 1.142 dyoung (void)m_free(m);
1704 1.160 ad sounlock(so);
1705 1.142 dyoung return error;
1706 1.1 cgd }
1707 1.1 cgd
1708 1.14 mycroft int
1709 1.54 lukem sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1710 1.1 cgd {
1711 1.54 lukem struct mbuf *m;
1712 1.160 ad int error;
1713 1.1 cgd
1714 1.160 ad solock(so);
1715 1.1 cgd if (level != SOL_SOCKET) {
1716 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1717 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1718 1.1 cgd (PRCO_GETOPT, so, level, optname, mp));
1719 1.1 cgd } else
1720 1.160 ad error = (ENOPROTOOPT);
1721 1.1 cgd } else {
1722 1.1 cgd m = m_get(M_WAIT, MT_SOOPTS);
1723 1.36 perry m->m_len = sizeof(int);
1724 1.1 cgd
1725 1.1 cgd switch (optname) {
1726 1.1 cgd
1727 1.1 cgd case SO_LINGER:
1728 1.36 perry m->m_len = sizeof(struct linger);
1729 1.1 cgd mtod(m, struct linger *)->l_onoff =
1730 1.131 christos (so->so_options & SO_LINGER) ? 1 : 0;
1731 1.1 cgd mtod(m, struct linger *)->l_linger = so->so_linger;
1732 1.1 cgd break;
1733 1.1 cgd
1734 1.1 cgd case SO_USELOOPBACK:
1735 1.1 cgd case SO_DONTROUTE:
1736 1.1 cgd case SO_DEBUG:
1737 1.1 cgd case SO_KEEPALIVE:
1738 1.1 cgd case SO_REUSEADDR:
1739 1.15 mycroft case SO_REUSEPORT:
1740 1.1 cgd case SO_BROADCAST:
1741 1.1 cgd case SO_OOBINLINE:
1742 1.26 thorpej case SO_TIMESTAMP:
1743 1.131 christos *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1744 1.1 cgd break;
1745 1.1 cgd
1746 1.1 cgd case SO_TYPE:
1747 1.1 cgd *mtod(m, int *) = so->so_type;
1748 1.1 cgd break;
1749 1.1 cgd
1750 1.1 cgd case SO_ERROR:
1751 1.1 cgd *mtod(m, int *) = so->so_error;
1752 1.1 cgd so->so_error = 0;
1753 1.1 cgd break;
1754 1.1 cgd
1755 1.1 cgd case SO_SNDBUF:
1756 1.1 cgd *mtod(m, int *) = so->so_snd.sb_hiwat;
1757 1.1 cgd break;
1758 1.1 cgd
1759 1.1 cgd case SO_RCVBUF:
1760 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_hiwat;
1761 1.1 cgd break;
1762 1.1 cgd
1763 1.1 cgd case SO_SNDLOWAT:
1764 1.1 cgd *mtod(m, int *) = so->so_snd.sb_lowat;
1765 1.1 cgd break;
1766 1.1 cgd
1767 1.1 cgd case SO_RCVLOWAT:
1768 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_lowat;
1769 1.1 cgd break;
1770 1.1 cgd
1771 1.1 cgd case SO_SNDTIMEO:
1772 1.1 cgd case SO_RCVTIMEO:
1773 1.1 cgd {
1774 1.1 cgd int val = (optname == SO_SNDTIMEO ?
1775 1.1 cgd so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1776 1.1 cgd
1777 1.1 cgd m->m_len = sizeof(struct timeval);
1778 1.1 cgd mtod(m, struct timeval *)->tv_sec = val / hz;
1779 1.1 cgd mtod(m, struct timeval *)->tv_usec =
1780 1.27 kleink (val % hz) * tick;
1781 1.1 cgd break;
1782 1.1 cgd }
1783 1.1 cgd
1784 1.107 darrenr case SO_OVERFLOWED:
1785 1.107 darrenr *mtod(m, int *) = so->so_rcv.sb_overflowed;
1786 1.107 darrenr break;
1787 1.107 darrenr
1788 1.1 cgd default:
1789 1.160 ad sounlock(so);
1790 1.1 cgd (void)m_free(m);
1791 1.1 cgd return (ENOPROTOOPT);
1792 1.1 cgd }
1793 1.1 cgd *mp = m;
1794 1.160 ad error = 0;
1795 1.1 cgd }
1796 1.160 ad
1797 1.160 ad sounlock(so);
1798 1.160 ad return (error);
1799 1.1 cgd }
1800 1.1 cgd
1801 1.14 mycroft void
1802 1.54 lukem sohasoutofband(struct socket *so)
1803 1.1 cgd {
1804 1.153 rmind
1805 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1806 1.153 rmind selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1807 1.1 cgd }
1808 1.72 jdolecek
1809 1.72 jdolecek static void
1810 1.72 jdolecek filt_sordetach(struct knote *kn)
1811 1.72 jdolecek {
1812 1.72 jdolecek struct socket *so;
1813 1.72 jdolecek
1814 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1815 1.160 ad solock(so);
1816 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1817 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1818 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
1819 1.160 ad sounlock(so);
1820 1.72 jdolecek }
1821 1.72 jdolecek
1822 1.72 jdolecek /*ARGSUSED*/
1823 1.72 jdolecek static int
1824 1.129 yamt filt_soread(struct knote *kn, long hint)
1825 1.72 jdolecek {
1826 1.72 jdolecek struct socket *so;
1827 1.160 ad int rv;
1828 1.72 jdolecek
1829 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1830 1.160 ad if (hint != NOTE_SUBMIT)
1831 1.160 ad solock(so);
1832 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
1833 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
1834 1.108 perry kn->kn_flags |= EV_EOF;
1835 1.72 jdolecek kn->kn_fflags = so->so_error;
1836 1.160 ad rv = 1;
1837 1.160 ad } else if (so->so_error) /* temporary udp error */
1838 1.160 ad rv = 1;
1839 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
1840 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
1841 1.160 ad else
1842 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1843 1.160 ad if (hint != NOTE_SUBMIT)
1844 1.160 ad sounlock(so);
1845 1.160 ad return rv;
1846 1.72 jdolecek }
1847 1.72 jdolecek
1848 1.72 jdolecek static void
1849 1.72 jdolecek filt_sowdetach(struct knote *kn)
1850 1.72 jdolecek {
1851 1.72 jdolecek struct socket *so;
1852 1.72 jdolecek
1853 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1854 1.160 ad solock(so);
1855 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1856 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1857 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
1858 1.160 ad sounlock(so);
1859 1.72 jdolecek }
1860 1.72 jdolecek
1861 1.72 jdolecek /*ARGSUSED*/
1862 1.72 jdolecek static int
1863 1.129 yamt filt_sowrite(struct knote *kn, long hint)
1864 1.72 jdolecek {
1865 1.72 jdolecek struct socket *so;
1866 1.160 ad int rv;
1867 1.72 jdolecek
1868 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1869 1.160 ad if (hint != NOTE_SUBMIT)
1870 1.160 ad solock(so);
1871 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
1872 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
1873 1.108 perry kn->kn_flags |= EV_EOF;
1874 1.72 jdolecek kn->kn_fflags = so->so_error;
1875 1.160 ad rv = 1;
1876 1.160 ad } else if (so->so_error) /* temporary udp error */
1877 1.160 ad rv = 1;
1878 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1879 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
1880 1.160 ad rv = 0;
1881 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
1882 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
1883 1.160 ad else
1884 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
1885 1.160 ad if (hint != NOTE_SUBMIT)
1886 1.160 ad sounlock(so);
1887 1.160 ad return rv;
1888 1.72 jdolecek }
1889 1.72 jdolecek
1890 1.72 jdolecek /*ARGSUSED*/
1891 1.72 jdolecek static int
1892 1.129 yamt filt_solisten(struct knote *kn, long hint)
1893 1.72 jdolecek {
1894 1.72 jdolecek struct socket *so;
1895 1.160 ad int rv;
1896 1.72 jdolecek
1897 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1898 1.72 jdolecek
1899 1.72 jdolecek /*
1900 1.72 jdolecek * Set kn_data to number of incoming connections, not
1901 1.72 jdolecek * counting partial (incomplete) connections.
1902 1.108 perry */
1903 1.160 ad if (hint != NOTE_SUBMIT)
1904 1.160 ad solock(so);
1905 1.72 jdolecek kn->kn_data = so->so_qlen;
1906 1.160 ad rv = (kn->kn_data > 0);
1907 1.160 ad if (hint != NOTE_SUBMIT)
1908 1.160 ad sounlock(so);
1909 1.160 ad return rv;
1910 1.72 jdolecek }
1911 1.72 jdolecek
1912 1.72 jdolecek static const struct filterops solisten_filtops =
1913 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
1914 1.72 jdolecek static const struct filterops soread_filtops =
1915 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
1916 1.72 jdolecek static const struct filterops sowrite_filtops =
1917 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
1918 1.72 jdolecek
1919 1.72 jdolecek int
1920 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
1921 1.72 jdolecek {
1922 1.72 jdolecek struct socket *so;
1923 1.72 jdolecek struct sockbuf *sb;
1924 1.72 jdolecek
1925 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1926 1.160 ad solock(so);
1927 1.72 jdolecek switch (kn->kn_filter) {
1928 1.72 jdolecek case EVFILT_READ:
1929 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
1930 1.72 jdolecek kn->kn_fop = &solisten_filtops;
1931 1.72 jdolecek else
1932 1.72 jdolecek kn->kn_fop = &soread_filtops;
1933 1.72 jdolecek sb = &so->so_rcv;
1934 1.72 jdolecek break;
1935 1.72 jdolecek case EVFILT_WRITE:
1936 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
1937 1.72 jdolecek sb = &so->so_snd;
1938 1.72 jdolecek break;
1939 1.72 jdolecek default:
1940 1.160 ad sounlock(so);
1941 1.149 pooka return (EINVAL);
1942 1.72 jdolecek }
1943 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1944 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
1945 1.160 ad sounlock(so);
1946 1.72 jdolecek return (0);
1947 1.72 jdolecek }
1948 1.72 jdolecek
1949 1.154 ad static int
1950 1.154 ad sodopoll(struct socket *so, int events)
1951 1.154 ad {
1952 1.154 ad int revents;
1953 1.154 ad
1954 1.154 ad revents = 0;
1955 1.154 ad
1956 1.154 ad if (events & (POLLIN | POLLRDNORM))
1957 1.154 ad if (soreadable(so))
1958 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
1959 1.154 ad
1960 1.154 ad if (events & (POLLOUT | POLLWRNORM))
1961 1.154 ad if (sowritable(so))
1962 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
1963 1.154 ad
1964 1.154 ad if (events & (POLLPRI | POLLRDBAND))
1965 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1966 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
1967 1.154 ad
1968 1.154 ad return revents;
1969 1.154 ad }
1970 1.154 ad
1971 1.154 ad int
1972 1.154 ad sopoll(struct socket *so, int events)
1973 1.154 ad {
1974 1.154 ad int revents = 0;
1975 1.154 ad
1976 1.160 ad #ifndef DIAGNOSTIC
1977 1.160 ad /*
1978 1.160 ad * Do a quick, unlocked check in expectation that the socket
1979 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1980 1.160 ad * as the solocked() assertions will fail.
1981 1.160 ad */
1982 1.154 ad if ((revents = sodopoll(so, events)) != 0)
1983 1.154 ad return revents;
1984 1.160 ad #endif
1985 1.154 ad
1986 1.160 ad solock(so);
1987 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
1988 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1989 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
1990 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
1991 1.154 ad }
1992 1.154 ad
1993 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
1994 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
1995 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
1996 1.154 ad }
1997 1.154 ad }
1998 1.160 ad sounlock(so);
1999 1.154 ad
2000 1.154 ad return revents;
2001 1.154 ad }
2002 1.154 ad
2003 1.154 ad
2004 1.94 yamt #include <sys/sysctl.h>
2005 1.94 yamt
2006 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2007 1.94 yamt
2008 1.94 yamt /*
2009 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2010 1.94 yamt * value is not too small.
2011 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2012 1.94 yamt */
2013 1.94 yamt static int
2014 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2015 1.94 yamt {
2016 1.94 yamt int error, new_somaxkva;
2017 1.94 yamt struct sysctlnode node;
2018 1.94 yamt
2019 1.94 yamt new_somaxkva = somaxkva;
2020 1.94 yamt node = *rnode;
2021 1.94 yamt node.sysctl_data = &new_somaxkva;
2022 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2023 1.94 yamt if (error || newp == NULL)
2024 1.94 yamt return (error);
2025 1.94 yamt
2026 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2027 1.94 yamt return (EINVAL);
2028 1.94 yamt
2029 1.136 ad mutex_enter(&so_pendfree_lock);
2030 1.94 yamt somaxkva = new_somaxkva;
2031 1.136 ad cv_broadcast(&socurkva_cv);
2032 1.136 ad mutex_exit(&so_pendfree_lock);
2033 1.94 yamt
2034 1.94 yamt return (error);
2035 1.94 yamt }
2036 1.94 yamt
2037 1.94 yamt SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2038 1.94 yamt {
2039 1.94 yamt
2040 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2041 1.97 atatat CTLFLAG_PERMANENT,
2042 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2043 1.97 atatat NULL, 0, NULL, 0,
2044 1.97 atatat CTL_KERN, CTL_EOL);
2045 1.97 atatat
2046 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2047 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2048 1.103 atatat CTLTYPE_INT, "somaxkva",
2049 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2050 1.103 atatat "used for socket buffers"),
2051 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2052 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2053 1.94 yamt }
2054