uipc_socket.c revision 1.163 1 1.163 ad /* $NetBSD: uipc_socket.c,v 1.163 2008/04/29 17:35:31 ad Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.154 ad * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.64 thorpej * by Jason R. Thorpe of Wasabi Systems, Inc.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.59 lukem #include <sys/cdefs.h>
66 1.163 ad __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.163 2008/04/29 17:35:31 ad Exp $");
67 1.64 thorpej
68 1.64 thorpej #include "opt_sock_counters.h"
69 1.64 thorpej #include "opt_sosend_loan.h"
70 1.81 martin #include "opt_mbuftrace.h"
71 1.84 ragge #include "opt_somaxkva.h"
72 1.1 cgd
73 1.9 mycroft #include <sys/param.h>
74 1.9 mycroft #include <sys/systm.h>
75 1.9 mycroft #include <sys/proc.h>
76 1.9 mycroft #include <sys/file.h>
77 1.142 dyoung #include <sys/filedesc.h>
78 1.9 mycroft #include <sys/malloc.h>
79 1.9 mycroft #include <sys/mbuf.h>
80 1.9 mycroft #include <sys/domain.h>
81 1.9 mycroft #include <sys/kernel.h>
82 1.9 mycroft #include <sys/protosw.h>
83 1.9 mycroft #include <sys/socket.h>
84 1.9 mycroft #include <sys/socketvar.h>
85 1.21 christos #include <sys/signalvar.h>
86 1.9 mycroft #include <sys/resourcevar.h>
87 1.72 jdolecek #include <sys/event.h>
88 1.89 christos #include <sys/poll.h>
89 1.118 elad #include <sys/kauth.h>
90 1.136 ad #include <sys/mutex.h>
91 1.136 ad #include <sys/condvar.h>
92 1.37 thorpej
93 1.64 thorpej #include <uvm/uvm.h>
94 1.64 thorpej
95 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
96 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
97 1.37 thorpej
98 1.142 dyoung extern const struct fileops socketops;
99 1.142 dyoung
100 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
101 1.54 lukem int somaxconn = SOMAXCONN;
102 1.160 ad kmutex_t *softnet_lock;
103 1.49 jonathan
104 1.64 thorpej #ifdef SOSEND_COUNTERS
105 1.64 thorpej #include <sys/device.h>
106 1.64 thorpej
107 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
108 1.64 thorpej NULL, "sosend", "loan big");
109 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 1.64 thorpej NULL, "sosend", "copy big");
111 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 1.64 thorpej NULL, "sosend", "copy small");
113 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 1.64 thorpej NULL, "sosend", "kva limit");
115 1.64 thorpej
116 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
117 1.64 thorpej
118 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
119 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
120 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
121 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
122 1.64 thorpej #else
123 1.64 thorpej
124 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
125 1.64 thorpej
126 1.64 thorpej #endif /* SOSEND_COUNTERS */
127 1.64 thorpej
128 1.119 yamt static struct callback_entry sokva_reclaimerentry;
129 1.1 cgd
130 1.71 thorpej #ifdef SOSEND_NO_LOAN
131 1.121 yamt int sock_loan_thresh = -1;
132 1.71 thorpej #else
133 1.121 yamt int sock_loan_thresh = 4096;
134 1.65 thorpej #endif
135 1.64 thorpej
136 1.136 ad static kmutex_t so_pendfree_lock;
137 1.113 thorpej static struct mbuf *so_pendfree;
138 1.64 thorpej
139 1.84 ragge #ifndef SOMAXKVA
140 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
141 1.84 ragge #endif
142 1.84 ragge int somaxkva = SOMAXKVA;
143 1.113 thorpej static int socurkva;
144 1.136 ad static kcondvar_t socurkva_cv;
145 1.64 thorpej
146 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
147 1.64 thorpej
148 1.117 yamt static size_t sodopendfree(void);
149 1.117 yamt static size_t sodopendfreel(void);
150 1.93 yamt
151 1.113 thorpej static vsize_t
152 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
153 1.80 yamt {
154 1.98 christos int error;
155 1.80 yamt
156 1.136 ad mutex_enter(&so_pendfree_lock);
157 1.80 yamt while (socurkva + len > somaxkva) {
158 1.93 yamt size_t freed;
159 1.93 yamt
160 1.93 yamt /*
161 1.93 yamt * try to do pendfree.
162 1.93 yamt */
163 1.93 yamt
164 1.117 yamt freed = sodopendfreel();
165 1.93 yamt
166 1.93 yamt /*
167 1.93 yamt * if some kva was freed, try again.
168 1.93 yamt */
169 1.93 yamt
170 1.93 yamt if (freed)
171 1.80 yamt continue;
172 1.93 yamt
173 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 1.98 christos if (error) {
176 1.98 christos len = 0;
177 1.98 christos break;
178 1.98 christos }
179 1.80 yamt }
180 1.93 yamt socurkva += len;
181 1.136 ad mutex_exit(&so_pendfree_lock);
182 1.98 christos return len;
183 1.95 yamt }
184 1.95 yamt
185 1.113 thorpej static void
186 1.95 yamt sokvaunreserve(vsize_t len)
187 1.95 yamt {
188 1.95 yamt
189 1.136 ad mutex_enter(&so_pendfree_lock);
190 1.95 yamt socurkva -= len;
191 1.136 ad cv_broadcast(&socurkva_cv);
192 1.136 ad mutex_exit(&so_pendfree_lock);
193 1.95 yamt }
194 1.95 yamt
195 1.95 yamt /*
196 1.95 yamt * sokvaalloc: allocate kva for loan.
197 1.95 yamt */
198 1.95 yamt
199 1.95 yamt vaddr_t
200 1.95 yamt sokvaalloc(vsize_t len, struct socket *so)
201 1.95 yamt {
202 1.95 yamt vaddr_t lva;
203 1.95 yamt
204 1.95 yamt /*
205 1.95 yamt * reserve kva.
206 1.95 yamt */
207 1.95 yamt
208 1.98 christos if (sokvareserve(so, len) == 0)
209 1.98 christos return 0;
210 1.93 yamt
211 1.93 yamt /*
212 1.93 yamt * allocate kva.
213 1.93 yamt */
214 1.80 yamt
215 1.109 yamt lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
216 1.95 yamt if (lva == 0) {
217 1.95 yamt sokvaunreserve(len);
218 1.80 yamt return (0);
219 1.95 yamt }
220 1.80 yamt
221 1.80 yamt return lva;
222 1.80 yamt }
223 1.80 yamt
224 1.93 yamt /*
225 1.93 yamt * sokvafree: free kva for loan.
226 1.93 yamt */
227 1.93 yamt
228 1.80 yamt void
229 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
230 1.80 yamt {
231 1.93 yamt
232 1.93 yamt /*
233 1.93 yamt * free kva.
234 1.93 yamt */
235 1.80 yamt
236 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
237 1.93 yamt
238 1.93 yamt /*
239 1.93 yamt * unreserve kva.
240 1.93 yamt */
241 1.93 yamt
242 1.95 yamt sokvaunreserve(len);
243 1.80 yamt }
244 1.80 yamt
245 1.64 thorpej static void
246 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
247 1.64 thorpej {
248 1.156 yamt vaddr_t sva, eva;
249 1.64 thorpej vsize_t len;
250 1.156 yamt int npgs;
251 1.156 yamt
252 1.156 yamt KASSERT(pgs != NULL);
253 1.64 thorpej
254 1.64 thorpej eva = round_page((vaddr_t) buf + size);
255 1.64 thorpej sva = trunc_page((vaddr_t) buf);
256 1.64 thorpej len = eva - sva;
257 1.64 thorpej npgs = len >> PAGE_SHIFT;
258 1.64 thorpej
259 1.64 thorpej pmap_kremove(sva, len);
260 1.64 thorpej pmap_update(pmap_kernel());
261 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
262 1.80 yamt sokvafree(sva, len);
263 1.64 thorpej }
264 1.64 thorpej
265 1.64 thorpej static size_t
266 1.152 matt sodopendfree(void)
267 1.64 thorpej {
268 1.93 yamt size_t rv;
269 1.64 thorpej
270 1.160 ad if (__predict_true(so_pendfree == NULL))
271 1.160 ad return 0;
272 1.160 ad
273 1.136 ad mutex_enter(&so_pendfree_lock);
274 1.117 yamt rv = sodopendfreel();
275 1.136 ad mutex_exit(&so_pendfree_lock);
276 1.93 yamt
277 1.93 yamt return rv;
278 1.93 yamt }
279 1.93 yamt
280 1.93 yamt /*
281 1.93 yamt * sodopendfreel: free mbufs on "pendfree" list.
282 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
283 1.93 yamt *
284 1.136 ad * => called with so_pendfree_lock held.
285 1.93 yamt */
286 1.93 yamt
287 1.93 yamt static size_t
288 1.152 matt sodopendfreel(void)
289 1.93 yamt {
290 1.137 ad struct mbuf *m, *next;
291 1.93 yamt size_t rv = 0;
292 1.93 yamt
293 1.136 ad KASSERT(mutex_owned(&so_pendfree_lock));
294 1.64 thorpej
295 1.137 ad while (so_pendfree != NULL) {
296 1.64 thorpej m = so_pendfree;
297 1.93 yamt so_pendfree = NULL;
298 1.136 ad mutex_exit(&so_pendfree_lock);
299 1.93 yamt
300 1.93 yamt for (; m != NULL; m = next) {
301 1.93 yamt next = m->m_next;
302 1.156 yamt KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
303 1.156 yamt KASSERT(m->m_ext.ext_refcnt == 0);
304 1.93 yamt
305 1.93 yamt rv += m->m_ext.ext_size;
306 1.156 yamt sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
307 1.93 yamt m->m_ext.ext_size);
308 1.145 ad pool_cache_put(mb_cache, m);
309 1.93 yamt }
310 1.64 thorpej
311 1.136 ad mutex_enter(&so_pendfree_lock);
312 1.64 thorpej }
313 1.64 thorpej
314 1.64 thorpej return (rv);
315 1.64 thorpej }
316 1.64 thorpej
317 1.80 yamt void
318 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
319 1.64 thorpej {
320 1.64 thorpej
321 1.156 yamt KASSERT(m != NULL);
322 1.64 thorpej
323 1.93 yamt /*
324 1.93 yamt * postpone freeing mbuf.
325 1.93 yamt *
326 1.93 yamt * we can't do it in interrupt context
327 1.93 yamt * because we need to put kva back to kernel_map.
328 1.93 yamt */
329 1.93 yamt
330 1.136 ad mutex_enter(&so_pendfree_lock);
331 1.92 yamt m->m_next = so_pendfree;
332 1.92 yamt so_pendfree = m;
333 1.136 ad cv_broadcast(&socurkva_cv);
334 1.136 ad mutex_exit(&so_pendfree_lock);
335 1.64 thorpej }
336 1.64 thorpej
337 1.64 thorpej static long
338 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
339 1.64 thorpej {
340 1.64 thorpej struct iovec *iov = uio->uio_iov;
341 1.64 thorpej vaddr_t sva, eva;
342 1.64 thorpej vsize_t len;
343 1.156 yamt vaddr_t lva;
344 1.156 yamt int npgs, error;
345 1.156 yamt vaddr_t va;
346 1.156 yamt int i;
347 1.64 thorpej
348 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
349 1.64 thorpej return (0);
350 1.64 thorpej
351 1.64 thorpej if (iov->iov_len < (size_t) space)
352 1.64 thorpej space = iov->iov_len;
353 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
354 1.64 thorpej space = SOCK_LOAN_CHUNK;
355 1.64 thorpej
356 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
357 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
358 1.64 thorpej len = eva - sva;
359 1.64 thorpej npgs = len >> PAGE_SHIFT;
360 1.64 thorpej
361 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
362 1.79 thorpej
363 1.80 yamt lva = sokvaalloc(len, so);
364 1.64 thorpej if (lva == 0)
365 1.80 yamt return 0;
366 1.64 thorpej
367 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
368 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
369 1.64 thorpej if (error) {
370 1.80 yamt sokvafree(lva, len);
371 1.64 thorpej return (0);
372 1.64 thorpej }
373 1.64 thorpej
374 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
375 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
376 1.79 thorpej VM_PROT_READ);
377 1.64 thorpej pmap_update(pmap_kernel());
378 1.64 thorpej
379 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
380 1.64 thorpej
381 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
382 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
383 1.64 thorpej
384 1.64 thorpej uio->uio_resid -= space;
385 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
386 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
387 1.64 thorpej uio->uio_iov->iov_len -= space;
388 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
389 1.64 thorpej uio->uio_iov++;
390 1.64 thorpej uio->uio_iovcnt--;
391 1.64 thorpej }
392 1.64 thorpej
393 1.64 thorpej return (space);
394 1.64 thorpej }
395 1.64 thorpej
396 1.119 yamt static int
397 1.129 yamt sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
398 1.119 yamt {
399 1.119 yamt
400 1.119 yamt KASSERT(ce == &sokva_reclaimerentry);
401 1.119 yamt KASSERT(obj == NULL);
402 1.119 yamt
403 1.119 yamt sodopendfree();
404 1.119 yamt if (!vm_map_starved_p(kernel_map)) {
405 1.119 yamt return CALLBACK_CHAIN_ABORT;
406 1.119 yamt }
407 1.119 yamt return CALLBACK_CHAIN_CONTINUE;
408 1.119 yamt }
409 1.119 yamt
410 1.142 dyoung struct mbuf *
411 1.147 dyoung getsombuf(struct socket *so, int type)
412 1.142 dyoung {
413 1.142 dyoung struct mbuf *m;
414 1.142 dyoung
415 1.147 dyoung m = m_get(M_WAIT, type);
416 1.142 dyoung MCLAIM(m, so->so_mowner);
417 1.142 dyoung return m;
418 1.142 dyoung }
419 1.142 dyoung
420 1.142 dyoung struct mbuf *
421 1.142 dyoung m_intopt(struct socket *so, int val)
422 1.142 dyoung {
423 1.142 dyoung struct mbuf *m;
424 1.142 dyoung
425 1.147 dyoung m = getsombuf(so, MT_SOOPTS);
426 1.142 dyoung m->m_len = sizeof(int);
427 1.142 dyoung *mtod(m, int *) = val;
428 1.142 dyoung return m;
429 1.142 dyoung }
430 1.142 dyoung
431 1.119 yamt void
432 1.119 yamt soinit(void)
433 1.119 yamt {
434 1.119 yamt
435 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
436 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
437 1.136 ad cv_init(&socurkva_cv, "sokva");
438 1.136 ad
439 1.119 yamt /* Set the initial adjusted socket buffer size. */
440 1.119 yamt if (sb_max_set(sb_max))
441 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
442 1.119 yamt
443 1.119 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
444 1.119 yamt &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
445 1.119 yamt }
446 1.119 yamt
447 1.1 cgd /*
448 1.1 cgd * Socket operation routines.
449 1.1 cgd * These routines are called by the routines in
450 1.1 cgd * sys_socket.c or from a system process, and
451 1.1 cgd * implement the semantics of socket operations by
452 1.1 cgd * switching out to the protocol specific routines.
453 1.1 cgd */
454 1.1 cgd /*ARGSUSED*/
455 1.3 andrew int
456 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
457 1.160 ad struct socket *lockso)
458 1.1 cgd {
459 1.99 matt const struct protosw *prp;
460 1.54 lukem struct socket *so;
461 1.115 yamt uid_t uid;
462 1.160 ad int error;
463 1.160 ad kmutex_t *lock;
464 1.1 cgd
465 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
466 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
467 1.132 elad KAUTH_ARG(proto));
468 1.140 dyoung if (error != 0)
469 1.140 dyoung return error;
470 1.127 elad
471 1.1 cgd if (proto)
472 1.1 cgd prp = pffindproto(dom, proto, type);
473 1.1 cgd else
474 1.1 cgd prp = pffindtype(dom, type);
475 1.140 dyoung if (prp == NULL) {
476 1.120 ginsbach /* no support for domain */
477 1.120 ginsbach if (pffinddomain(dom) == 0)
478 1.140 dyoung return EAFNOSUPPORT;
479 1.120 ginsbach /* no support for socket type */
480 1.120 ginsbach if (proto == 0 && type != 0)
481 1.140 dyoung return EPROTOTYPE;
482 1.140 dyoung return EPROTONOSUPPORT;
483 1.120 ginsbach }
484 1.140 dyoung if (prp->pr_usrreq == NULL)
485 1.140 dyoung return EPROTONOSUPPORT;
486 1.1 cgd if (prp->pr_type != type)
487 1.140 dyoung return EPROTOTYPE;
488 1.160 ad
489 1.160 ad so = soget(true);
490 1.1 cgd so->so_type = type;
491 1.1 cgd so->so_proto = prp;
492 1.33 matt so->so_send = sosend;
493 1.33 matt so->so_receive = soreceive;
494 1.78 matt #ifdef MBUFTRACE
495 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
496 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
497 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
498 1.78 matt #endif
499 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
500 1.115 yamt so->so_uidinfo = uid_find(uid);
501 1.160 ad if (lockso != NULL) {
502 1.160 ad /* Caller wants us to share a lock. */
503 1.160 ad lock = lockso->so_lock;
504 1.160 ad so->so_lock = lock;
505 1.160 ad mutex_obj_hold(lock);
506 1.160 ad mutex_enter(lock);
507 1.160 ad } else {
508 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
509 1.160 ad }
510 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
511 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
512 1.160 ad KASSERT(solocked(so));
513 1.140 dyoung if (error != 0) {
514 1.1 cgd so->so_state |= SS_NOFDREF;
515 1.1 cgd sofree(so);
516 1.140 dyoung return error;
517 1.1 cgd }
518 1.160 ad sounlock(so);
519 1.1 cgd *aso = so;
520 1.140 dyoung return 0;
521 1.1 cgd }
522 1.1 cgd
523 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
524 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
525 1.142 dyoung */
526 1.142 dyoung int
527 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
528 1.142 dyoung struct lwp *l, int *fdout)
529 1.142 dyoung {
530 1.142 dyoung struct socket *so;
531 1.142 dyoung struct file *fp;
532 1.142 dyoung int fd, error;
533 1.142 dyoung
534 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
535 1.142 dyoung return (error);
536 1.142 dyoung fp->f_flag = FREAD|FWRITE;
537 1.142 dyoung fp->f_type = DTYPE_SOCKET;
538 1.142 dyoung fp->f_ops = &socketops;
539 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
540 1.142 dyoung if (error != 0) {
541 1.155 ad fd_abort(curproc, fp, fd);
542 1.142 dyoung } else {
543 1.142 dyoung if (sop != NULL)
544 1.142 dyoung *sop = so;
545 1.142 dyoung fp->f_data = so;
546 1.155 ad fd_affix(curproc, fp, fd);
547 1.142 dyoung *fdout = fd;
548 1.142 dyoung }
549 1.142 dyoung return error;
550 1.142 dyoung }
551 1.142 dyoung
552 1.3 andrew int
553 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
554 1.1 cgd {
555 1.160 ad int error;
556 1.1 cgd
557 1.160 ad solock(so);
558 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
559 1.160 ad sounlock(so);
560 1.140 dyoung return error;
561 1.1 cgd }
562 1.1 cgd
563 1.3 andrew int
564 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
565 1.1 cgd {
566 1.160 ad int error;
567 1.1 cgd
568 1.160 ad solock(so);
569 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
570 1.163 ad SS_ISDISCONNECTING)) != 0) {
571 1.163 ad sounlock(so);
572 1.158 ad return (EOPNOTSUPP);
573 1.163 ad }
574 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
575 1.150 elad NULL, NULL, l);
576 1.140 dyoung if (error != 0) {
577 1.160 ad sounlock(so);
578 1.140 dyoung return error;
579 1.1 cgd }
580 1.63 matt if (TAILQ_EMPTY(&so->so_q))
581 1.1 cgd so->so_options |= SO_ACCEPTCONN;
582 1.1 cgd if (backlog < 0)
583 1.1 cgd backlog = 0;
584 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
585 1.160 ad sounlock(so);
586 1.140 dyoung return 0;
587 1.1 cgd }
588 1.1 cgd
589 1.21 christos void
590 1.54 lukem sofree(struct socket *so)
591 1.1 cgd {
592 1.161 ad u_int refs;
593 1.1 cgd
594 1.160 ad KASSERT(solocked(so));
595 1.160 ad
596 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
597 1.160 ad sounlock(so);
598 1.1 cgd return;
599 1.160 ad }
600 1.43 mycroft if (so->so_head) {
601 1.43 mycroft /*
602 1.43 mycroft * We must not decommission a socket that's on the accept(2)
603 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
604 1.43 mycroft * indicated that the listening socket was ready.
605 1.43 mycroft */
606 1.160 ad if (!soqremque(so, 0)) {
607 1.160 ad sounlock(so);
608 1.43 mycroft return;
609 1.160 ad }
610 1.43 mycroft }
611 1.98 christos if (so->so_rcv.sb_hiwat)
612 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
613 1.98 christos RLIM_INFINITY);
614 1.98 christos if (so->so_snd.sb_hiwat)
615 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
616 1.98 christos RLIM_INFINITY);
617 1.98 christos sbrelease(&so->so_snd, so);
618 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
619 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
620 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
621 1.1 cgd sorflush(so);
622 1.161 ad refs = so->so_aborting; /* XXX */
623 1.160 ad sounlock(so);
624 1.161 ad if (refs == 0) /* XXX */
625 1.161 ad soput(so);
626 1.1 cgd }
627 1.1 cgd
628 1.1 cgd /*
629 1.1 cgd * Close a socket on last file table reference removal.
630 1.1 cgd * Initiate disconnect if connected.
631 1.1 cgd * Free socket when disconnect complete.
632 1.1 cgd */
633 1.3 andrew int
634 1.54 lukem soclose(struct socket *so)
635 1.1 cgd {
636 1.54 lukem struct socket *so2;
637 1.160 ad int error;
638 1.160 ad int error2;
639 1.1 cgd
640 1.54 lukem error = 0;
641 1.160 ad solock(so);
642 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
643 1.160 ad do {
644 1.160 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
645 1.160 ad KASSERT(solocked2(so, so2));
646 1.160 ad (void) soqremque(so2, 0);
647 1.160 ad /* soabort drops the lock. */
648 1.160 ad (void) soabort(so2);
649 1.160 ad solock(so);
650 1.160 ad continue;
651 1.160 ad }
652 1.160 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
653 1.160 ad KASSERT(solocked2(so, so2));
654 1.160 ad (void) soqremque(so2, 1);
655 1.160 ad /* soabort drops the lock. */
656 1.160 ad (void) soabort(so2);
657 1.160 ad solock(so);
658 1.160 ad continue;
659 1.160 ad }
660 1.160 ad } while (0);
661 1.1 cgd }
662 1.1 cgd if (so->so_pcb == 0)
663 1.1 cgd goto discard;
664 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
665 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
666 1.1 cgd error = sodisconnect(so);
667 1.1 cgd if (error)
668 1.1 cgd goto drop;
669 1.1 cgd }
670 1.1 cgd if (so->so_options & SO_LINGER) {
671 1.151 ad if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
672 1.1 cgd goto drop;
673 1.21 christos while (so->so_state & SS_ISCONNECTED) {
674 1.160 ad error = sowait(so, so->so_linger * hz);
675 1.21 christos if (error)
676 1.1 cgd break;
677 1.21 christos }
678 1.1 cgd }
679 1.1 cgd }
680 1.54 lukem drop:
681 1.1 cgd if (so->so_pcb) {
682 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
683 1.140 dyoung NULL, NULL, NULL, NULL);
684 1.1 cgd if (error == 0)
685 1.1 cgd error = error2;
686 1.1 cgd }
687 1.54 lukem discard:
688 1.1 cgd if (so->so_state & SS_NOFDREF)
689 1.1 cgd panic("soclose: NOFDREF");
690 1.1 cgd so->so_state |= SS_NOFDREF;
691 1.1 cgd sofree(so);
692 1.1 cgd return (error);
693 1.1 cgd }
694 1.1 cgd
695 1.1 cgd /*
696 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
697 1.1 cgd */
698 1.3 andrew int
699 1.54 lukem soabort(struct socket *so)
700 1.1 cgd {
701 1.161 ad u_int refs;
702 1.139 yamt int error;
703 1.160 ad
704 1.160 ad KASSERT(solocked(so));
705 1.160 ad KASSERT(so->so_head == NULL);
706 1.1 cgd
707 1.161 ad so->so_aborting++; /* XXX */
708 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
709 1.140 dyoung NULL, NULL, NULL);
710 1.161 ad refs = --so->so_aborting; /* XXX */
711 1.139 yamt if (error) {
712 1.139 yamt sofree(so);
713 1.160 ad } else {
714 1.160 ad sounlock(so);
715 1.161 ad if (refs == 0)
716 1.161 ad sofree(so);
717 1.139 yamt }
718 1.139 yamt return error;
719 1.1 cgd }
720 1.1 cgd
721 1.3 andrew int
722 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
723 1.1 cgd {
724 1.160 ad int error;
725 1.160 ad
726 1.160 ad KASSERT(solocked(so));
727 1.1 cgd
728 1.54 lukem error = 0;
729 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
730 1.1 cgd panic("soaccept: !NOFDREF");
731 1.1 cgd so->so_state &= ~SS_NOFDREF;
732 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
733 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
734 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
735 1.140 dyoung NULL, nam, NULL, NULL);
736 1.41 mycroft else
737 1.53 itojun error = ECONNABORTED;
738 1.52 itojun
739 1.1 cgd return (error);
740 1.1 cgd }
741 1.1 cgd
742 1.3 andrew int
743 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
744 1.1 cgd {
745 1.160 ad int error;
746 1.160 ad
747 1.160 ad KASSERT(solocked(so));
748 1.1 cgd
749 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
750 1.1 cgd return (EOPNOTSUPP);
751 1.1 cgd /*
752 1.1 cgd * If protocol is connection-based, can only connect once.
753 1.1 cgd * Otherwise, if connected, try to disconnect first.
754 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
755 1.1 cgd * a null address.
756 1.1 cgd */
757 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
758 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
759 1.1 cgd (error = sodisconnect(so))))
760 1.1 cgd error = EISCONN;
761 1.1 cgd else
762 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
763 1.140 dyoung NULL, nam, NULL, l);
764 1.1 cgd return (error);
765 1.1 cgd }
766 1.1 cgd
767 1.3 andrew int
768 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
769 1.1 cgd {
770 1.160 ad int error;
771 1.160 ad
772 1.160 ad KASSERT(solocked2(so1, so2));
773 1.1 cgd
774 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
775 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
776 1.1 cgd return (error);
777 1.1 cgd }
778 1.1 cgd
779 1.3 andrew int
780 1.54 lukem sodisconnect(struct socket *so)
781 1.1 cgd {
782 1.160 ad int error;
783 1.160 ad
784 1.160 ad KASSERT(solocked(so));
785 1.1 cgd
786 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
787 1.1 cgd error = ENOTCONN;
788 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
789 1.1 cgd error = EALREADY;
790 1.160 ad } else {
791 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
792 1.160 ad NULL, NULL, NULL, NULL);
793 1.1 cgd }
794 1.117 yamt sodopendfree();
795 1.1 cgd return (error);
796 1.1 cgd }
797 1.1 cgd
798 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
799 1.1 cgd /*
800 1.1 cgd * Send on a socket.
801 1.1 cgd * If send must go all at once and message is larger than
802 1.1 cgd * send buffering, then hard error.
803 1.1 cgd * Lock against other senders.
804 1.1 cgd * If must go all at once and not enough room now, then
805 1.1 cgd * inform user that this would block and do nothing.
806 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
807 1.1 cgd * The data to be sent is described by "uio" if nonzero,
808 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
809 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
810 1.1 cgd * enough to send all at once.
811 1.1 cgd *
812 1.1 cgd * Returns nonzero on error, timeout or signal; callers
813 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
814 1.1 cgd * Data and control buffers are freed on return.
815 1.1 cgd */
816 1.3 andrew int
817 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
818 1.114 christos struct mbuf *control, int flags, struct lwp *l)
819 1.1 cgd {
820 1.54 lukem struct mbuf **mp, *m;
821 1.114 christos struct proc *p;
822 1.58 jdolecek long space, len, resid, clen, mlen;
823 1.58 jdolecek int error, s, dontroute, atomic;
824 1.54 lukem
825 1.114 christos p = l->l_proc;
826 1.117 yamt sodopendfree();
827 1.160 ad clen = 0;
828 1.64 thorpej
829 1.160 ad /*
830 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
831 1.160 ad * protocol processing soft interrupts from interrupting us and
832 1.160 ad * blocking (expensive).
833 1.160 ad */
834 1.160 ad s = splsoftnet();
835 1.160 ad solock(so);
836 1.54 lukem atomic = sosendallatonce(so) || top;
837 1.1 cgd if (uio)
838 1.1 cgd resid = uio->uio_resid;
839 1.1 cgd else
840 1.1 cgd resid = top->m_pkthdr.len;
841 1.7 cgd /*
842 1.7 cgd * In theory resid should be unsigned.
843 1.7 cgd * However, space must be signed, as it might be less than 0
844 1.7 cgd * if we over-committed, and we must use a signed comparison
845 1.7 cgd * of space and resid. On the other hand, a negative resid
846 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
847 1.7 cgd */
848 1.29 mycroft if (resid < 0) {
849 1.29 mycroft error = EINVAL;
850 1.29 mycroft goto out;
851 1.29 mycroft }
852 1.1 cgd dontroute =
853 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
854 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
855 1.157 ad if (l)
856 1.157 ad l->l_ru.ru_msgsnd++;
857 1.1 cgd if (control)
858 1.1 cgd clen = control->m_len;
859 1.54 lukem restart:
860 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
861 1.1 cgd goto out;
862 1.1 cgd do {
863 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
864 1.160 ad error = EPIPE;
865 1.160 ad goto release;
866 1.160 ad }
867 1.48 thorpej if (so->so_error) {
868 1.48 thorpej error = so->so_error;
869 1.48 thorpej so->so_error = 0;
870 1.48 thorpej goto release;
871 1.48 thorpej }
872 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
873 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
874 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
875 1.160 ad !(resid == 0 && clen != 0)) {
876 1.160 ad error = ENOTCONN;
877 1.160 ad goto release;
878 1.160 ad }
879 1.160 ad } else if (addr == 0) {
880 1.160 ad error = EDESTADDRREQ;
881 1.160 ad goto release;
882 1.160 ad }
883 1.1 cgd }
884 1.1 cgd space = sbspace(&so->so_snd);
885 1.1 cgd if (flags & MSG_OOB)
886 1.1 cgd space += 1024;
887 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
888 1.160 ad clen > so->so_snd.sb_hiwat) {
889 1.160 ad error = EMSGSIZE;
890 1.160 ad goto release;
891 1.160 ad }
892 1.96 mycroft if (space < resid + clen &&
893 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
894 1.160 ad if (so->so_nbio) {
895 1.160 ad error = EWOULDBLOCK;
896 1.160 ad goto release;
897 1.160 ad }
898 1.1 cgd sbunlock(&so->so_snd);
899 1.1 cgd error = sbwait(&so->so_snd);
900 1.1 cgd if (error)
901 1.1 cgd goto out;
902 1.1 cgd goto restart;
903 1.1 cgd }
904 1.1 cgd mp = ⊤
905 1.1 cgd space -= clen;
906 1.1 cgd do {
907 1.45 tv if (uio == NULL) {
908 1.45 tv /*
909 1.45 tv * Data is prepackaged in "top".
910 1.45 tv */
911 1.45 tv resid = 0;
912 1.45 tv if (flags & MSG_EOR)
913 1.45 tv top->m_flags |= M_EOR;
914 1.45 tv } else do {
915 1.160 ad sounlock(so);
916 1.160 ad splx(s);
917 1.144 dyoung if (top == NULL) {
918 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
919 1.45 tv mlen = MHLEN;
920 1.45 tv m->m_pkthdr.len = 0;
921 1.140 dyoung m->m_pkthdr.rcvif = NULL;
922 1.45 tv } else {
923 1.78 matt m = m_get(M_WAIT, MT_DATA);
924 1.45 tv mlen = MLEN;
925 1.45 tv }
926 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
927 1.121 yamt if (sock_loan_thresh >= 0 &&
928 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
929 1.121 yamt space >= sock_loan_thresh &&
930 1.64 thorpej (len = sosend_loan(so, uio, m,
931 1.64 thorpej space)) != 0) {
932 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
933 1.64 thorpej space -= len;
934 1.64 thorpej goto have_data;
935 1.64 thorpej }
936 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
937 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
938 1.78 matt m_clget(m, M_WAIT);
939 1.45 tv if ((m->m_flags & M_EXT) == 0)
940 1.45 tv goto nopages;
941 1.45 tv mlen = MCLBYTES;
942 1.45 tv if (atomic && top == 0) {
943 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
944 1.54 lukem resid);
945 1.45 tv m->m_data += max_hdr;
946 1.45 tv } else
947 1.58 jdolecek len = lmin(MCLBYTES, resid);
948 1.45 tv space -= len;
949 1.45 tv } else {
950 1.64 thorpej nopages:
951 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
952 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
953 1.45 tv space -= len;
954 1.45 tv /*
955 1.45 tv * For datagram protocols, leave room
956 1.45 tv * for protocol headers in first mbuf.
957 1.45 tv */
958 1.45 tv if (atomic && top == 0 && len < mlen)
959 1.45 tv MH_ALIGN(m, len);
960 1.45 tv }
961 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
962 1.64 thorpej have_data:
963 1.45 tv resid = uio->uio_resid;
964 1.45 tv m->m_len = len;
965 1.45 tv *mp = m;
966 1.45 tv top->m_pkthdr.len += len;
967 1.160 ad s = splsoftnet();
968 1.160 ad solock(so);
969 1.144 dyoung if (error != 0)
970 1.45 tv goto release;
971 1.45 tv mp = &m->m_next;
972 1.45 tv if (resid <= 0) {
973 1.45 tv if (flags & MSG_EOR)
974 1.45 tv top->m_flags |= M_EOR;
975 1.45 tv break;
976 1.45 tv }
977 1.45 tv } while (space > 0 && atomic);
978 1.108 perry
979 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
980 1.160 ad error = EPIPE;
981 1.160 ad goto release;
982 1.160 ad }
983 1.45 tv if (dontroute)
984 1.45 tv so->so_options |= SO_DONTROUTE;
985 1.45 tv if (resid > 0)
986 1.45 tv so->so_state |= SS_MORETOCOME;
987 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
988 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
989 1.160 ad top, addr, control, curlwp);
990 1.45 tv if (dontroute)
991 1.45 tv so->so_options &= ~SO_DONTROUTE;
992 1.45 tv if (resid > 0)
993 1.45 tv so->so_state &= ~SS_MORETOCOME;
994 1.45 tv clen = 0;
995 1.144 dyoung control = NULL;
996 1.144 dyoung top = NULL;
997 1.45 tv mp = ⊤
998 1.144 dyoung if (error != 0)
999 1.1 cgd goto release;
1000 1.1 cgd } while (resid && space > 0);
1001 1.1 cgd } while (resid);
1002 1.1 cgd
1003 1.54 lukem release:
1004 1.1 cgd sbunlock(&so->so_snd);
1005 1.54 lukem out:
1006 1.160 ad sounlock(so);
1007 1.160 ad splx(s);
1008 1.1 cgd if (top)
1009 1.1 cgd m_freem(top);
1010 1.1 cgd if (control)
1011 1.1 cgd m_freem(control);
1012 1.1 cgd return (error);
1013 1.1 cgd }
1014 1.1 cgd
1015 1.1 cgd /*
1016 1.159 ad * Following replacement or removal of the first mbuf on the first
1017 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1018 1.159 ad * into the socket buffer so that other consumers see the values
1019 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1020 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1021 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1022 1.159 ad */
1023 1.159 ad static void
1024 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1025 1.159 ad {
1026 1.159 ad
1027 1.160 ad KASSERT(solocked(sb->sb_so));
1028 1.160 ad
1029 1.159 ad /*
1030 1.159 ad * First, update for the new value of nextrecord. If necessary,
1031 1.159 ad * make it the first record.
1032 1.159 ad */
1033 1.159 ad if (sb->sb_mb != NULL)
1034 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1035 1.159 ad else
1036 1.159 ad sb->sb_mb = nextrecord;
1037 1.159 ad
1038 1.159 ad /*
1039 1.159 ad * Now update any dependent socket buffer fields to reflect
1040 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1041 1.159 ad * the addition of a second clause that takes care of the
1042 1.159 ad * case where sb_mb has been updated, but remains the last
1043 1.159 ad * record.
1044 1.159 ad */
1045 1.159 ad if (sb->sb_mb == NULL) {
1046 1.159 ad sb->sb_mbtail = NULL;
1047 1.159 ad sb->sb_lastrecord = NULL;
1048 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1049 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1050 1.159 ad }
1051 1.159 ad
1052 1.159 ad /*
1053 1.1 cgd * Implement receive operations on a socket.
1054 1.1 cgd * We depend on the way that records are added to the sockbuf
1055 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1056 1.1 cgd * must begin with an address if the protocol so specifies,
1057 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1058 1.1 cgd * and then zero or more mbufs of data.
1059 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1060 1.1 cgd * we splx() while doing the actual copy to user space.
1061 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1062 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1063 1.1 cgd *
1064 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1065 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1066 1.1 cgd * only for the count in uio_resid.
1067 1.1 cgd */
1068 1.3 andrew int
1069 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1070 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1071 1.1 cgd {
1072 1.116 yamt struct lwp *l = curlwp;
1073 1.160 ad struct mbuf *m, **mp, *mt;
1074 1.146 dyoung int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1075 1.99 matt const struct protosw *pr;
1076 1.54 lukem struct mbuf *nextrecord;
1077 1.67 he int mbuf_removed = 0;
1078 1.146 dyoung const struct domain *dom;
1079 1.64 thorpej
1080 1.54 lukem pr = so->so_proto;
1081 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1082 1.146 dyoung dom = pr->pr_domain;
1083 1.1 cgd mp = mp0;
1084 1.54 lukem type = 0;
1085 1.54 lukem orig_resid = uio->uio_resid;
1086 1.102 jonathan
1087 1.144 dyoung if (paddr != NULL)
1088 1.144 dyoung *paddr = NULL;
1089 1.144 dyoung if (controlp != NULL)
1090 1.144 dyoung *controlp = NULL;
1091 1.144 dyoung if (flagsp != NULL)
1092 1.1 cgd flags = *flagsp &~ MSG_EOR;
1093 1.1 cgd else
1094 1.1 cgd flags = 0;
1095 1.66 enami
1096 1.66 enami if ((flags & MSG_DONTWAIT) == 0)
1097 1.117 yamt sodopendfree();
1098 1.66 enami
1099 1.1 cgd if (flags & MSG_OOB) {
1100 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1101 1.160 ad solock(so);
1102 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1103 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1104 1.160 ad sounlock(so);
1105 1.1 cgd if (error)
1106 1.1 cgd goto bad;
1107 1.1 cgd do {
1108 1.134 christos error = uiomove(mtod(m, void *),
1109 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
1110 1.1 cgd m = m_free(m);
1111 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1112 1.54 lukem bad:
1113 1.144 dyoung if (m != NULL)
1114 1.1 cgd m_freem(m);
1115 1.144 dyoung return error;
1116 1.1 cgd }
1117 1.144 dyoung if (mp != NULL)
1118 1.140 dyoung *mp = NULL;
1119 1.160 ad
1120 1.160 ad /*
1121 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1122 1.160 ad * protocol processing soft interrupts from interrupting us and
1123 1.160 ad * blocking (expensive).
1124 1.160 ad */
1125 1.160 ad s = splsoftnet();
1126 1.160 ad solock(so);
1127 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1128 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1129 1.1 cgd
1130 1.54 lukem restart:
1131 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1132 1.160 ad sounlock(so);
1133 1.160 ad splx(s);
1134 1.144 dyoung return error;
1135 1.160 ad }
1136 1.1 cgd
1137 1.1 cgd m = so->so_rcv.sb_mb;
1138 1.1 cgd /*
1139 1.1 cgd * If we have less data than requested, block awaiting more
1140 1.1 cgd * (subject to any timeout) if:
1141 1.15 mycroft * 1. the current count is less than the low water mark,
1142 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1143 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1144 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1145 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1146 1.1 cgd * we have to do the receive in sections, and thus risk returning
1147 1.1 cgd * a short count if a timeout or signal occurs after we start.
1148 1.1 cgd */
1149 1.144 dyoung if (m == NULL ||
1150 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1151 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1152 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1153 1.144 dyoung ((flags & MSG_WAITALL) &&
1154 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1155 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1156 1.1 cgd #ifdef DIAGNOSTIC
1157 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1158 1.1 cgd panic("receive 1");
1159 1.1 cgd #endif
1160 1.1 cgd if (so->so_error) {
1161 1.144 dyoung if (m != NULL)
1162 1.15 mycroft goto dontblock;
1163 1.1 cgd error = so->so_error;
1164 1.1 cgd if ((flags & MSG_PEEK) == 0)
1165 1.1 cgd so->so_error = 0;
1166 1.1 cgd goto release;
1167 1.1 cgd }
1168 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1169 1.144 dyoung if (m != NULL)
1170 1.15 mycroft goto dontblock;
1171 1.1 cgd else
1172 1.1 cgd goto release;
1173 1.1 cgd }
1174 1.144 dyoung for (; m != NULL; m = m->m_next)
1175 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1176 1.1 cgd m = so->so_rcv.sb_mb;
1177 1.1 cgd goto dontblock;
1178 1.1 cgd }
1179 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1180 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1181 1.1 cgd error = ENOTCONN;
1182 1.1 cgd goto release;
1183 1.1 cgd }
1184 1.1 cgd if (uio->uio_resid == 0)
1185 1.1 cgd goto release;
1186 1.151 ad if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1187 1.1 cgd error = EWOULDBLOCK;
1188 1.1 cgd goto release;
1189 1.1 cgd }
1190 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1191 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1192 1.1 cgd sbunlock(&so->so_rcv);
1193 1.1 cgd error = sbwait(&so->so_rcv);
1194 1.160 ad if (error != 0) {
1195 1.160 ad sounlock(so);
1196 1.160 ad splx(s);
1197 1.144 dyoung return error;
1198 1.160 ad }
1199 1.1 cgd goto restart;
1200 1.1 cgd }
1201 1.54 lukem dontblock:
1202 1.69 thorpej /*
1203 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1204 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1205 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1206 1.159 ad * various socket buffer pointers and local stack versions of the
1207 1.159 ad * pointers in sync, pushing out modifications before dropping the
1208 1.160 ad * socket lock, and re-reading them when picking it up.
1209 1.159 ad *
1210 1.159 ad * Otherwise, we will race with the network stack appending new data
1211 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1212 1.159 ad * versions of the field, possibly resulting in socket buffer
1213 1.159 ad * corruption.
1214 1.159 ad *
1215 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1216 1.159 ad * readers from pulling off the front of the socket buffer.
1217 1.69 thorpej */
1218 1.144 dyoung if (l != NULL)
1219 1.157 ad l->l_ru.ru_msgrcv++;
1220 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1221 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1222 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1223 1.1 cgd nextrecord = m->m_nextpkt;
1224 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1225 1.1 cgd #ifdef DIAGNOSTIC
1226 1.1 cgd if (m->m_type != MT_SONAME)
1227 1.1 cgd panic("receive 1a");
1228 1.1 cgd #endif
1229 1.3 andrew orig_resid = 0;
1230 1.1 cgd if (flags & MSG_PEEK) {
1231 1.1 cgd if (paddr)
1232 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1233 1.1 cgd m = m->m_next;
1234 1.1 cgd } else {
1235 1.1 cgd sbfree(&so->so_rcv, m);
1236 1.67 he mbuf_removed = 1;
1237 1.144 dyoung if (paddr != NULL) {
1238 1.1 cgd *paddr = m;
1239 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1240 1.144 dyoung m->m_next = NULL;
1241 1.1 cgd m = so->so_rcv.sb_mb;
1242 1.1 cgd } else {
1243 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1244 1.1 cgd m = so->so_rcv.sb_mb;
1245 1.1 cgd }
1246 1.159 ad sbsync(&so->so_rcv, nextrecord);
1247 1.1 cgd }
1248 1.1 cgd }
1249 1.159 ad
1250 1.159 ad /*
1251 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1252 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1253 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1254 1.159 ad * perform externalization (or freeing if controlp == NULL).
1255 1.159 ad */
1256 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1257 1.159 ad struct mbuf *cm = NULL, *cmn;
1258 1.159 ad struct mbuf **cme = &cm;
1259 1.159 ad
1260 1.159 ad do {
1261 1.159 ad if (flags & MSG_PEEK) {
1262 1.159 ad if (controlp != NULL) {
1263 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1264 1.159 ad controlp = &(*controlp)->m_next;
1265 1.159 ad }
1266 1.159 ad m = m->m_next;
1267 1.159 ad } else {
1268 1.159 ad sbfree(&so->so_rcv, m);
1269 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1270 1.144 dyoung m->m_next = NULL;
1271 1.159 ad *cme = m;
1272 1.159 ad cme = &(*cme)->m_next;
1273 1.1 cgd m = so->so_rcv.sb_mb;
1274 1.159 ad }
1275 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1276 1.159 ad if ((flags & MSG_PEEK) == 0)
1277 1.159 ad sbsync(&so->so_rcv, nextrecord);
1278 1.159 ad for (; cm != NULL; cm = cmn) {
1279 1.159 ad cmn = cm->m_next;
1280 1.159 ad cm->m_next = NULL;
1281 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1282 1.159 ad if (controlp != NULL) {
1283 1.159 ad if (dom->dom_externalize != NULL &&
1284 1.159 ad type == SCM_RIGHTS) {
1285 1.160 ad sounlock(so);
1286 1.159 ad splx(s);
1287 1.159 ad error = (*dom->dom_externalize)(cm, l);
1288 1.159 ad s = splsoftnet();
1289 1.160 ad solock(so);
1290 1.159 ad }
1291 1.159 ad *controlp = cm;
1292 1.159 ad while (*controlp != NULL)
1293 1.159 ad controlp = &(*controlp)->m_next;
1294 1.1 cgd } else {
1295 1.106 itojun /*
1296 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1297 1.106 itojun * through the read path rather than recv.
1298 1.106 itojun */
1299 1.159 ad if (dom->dom_dispose != NULL &&
1300 1.159 ad type == SCM_RIGHTS) {
1301 1.160 ad sounlock(so);
1302 1.159 ad (*dom->dom_dispose)(cm);
1303 1.160 ad solock(so);
1304 1.159 ad }
1305 1.159 ad m_freem(cm);
1306 1.1 cgd }
1307 1.1 cgd }
1308 1.159 ad if (m != NULL)
1309 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1310 1.159 ad else
1311 1.159 ad nextrecord = so->so_rcv.sb_mb;
1312 1.159 ad orig_resid = 0;
1313 1.1 cgd }
1314 1.69 thorpej
1315 1.159 ad /* If m is non-NULL, we have some data to read. */
1316 1.159 ad if (__predict_true(m != NULL)) {
1317 1.1 cgd type = m->m_type;
1318 1.1 cgd if (type == MT_OOBDATA)
1319 1.1 cgd flags |= MSG_OOB;
1320 1.1 cgd }
1321 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1322 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1323 1.69 thorpej
1324 1.1 cgd moff = 0;
1325 1.1 cgd offset = 0;
1326 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1327 1.1 cgd if (m->m_type == MT_OOBDATA) {
1328 1.1 cgd if (type != MT_OOBDATA)
1329 1.1 cgd break;
1330 1.1 cgd } else if (type == MT_OOBDATA)
1331 1.1 cgd break;
1332 1.1 cgd #ifdef DIAGNOSTIC
1333 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1334 1.1 cgd panic("receive 3");
1335 1.1 cgd #endif
1336 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1337 1.1 cgd len = uio->uio_resid;
1338 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1339 1.1 cgd len = so->so_oobmark - offset;
1340 1.1 cgd if (len > m->m_len - moff)
1341 1.1 cgd len = m->m_len - moff;
1342 1.1 cgd /*
1343 1.1 cgd * If mp is set, just pass back the mbufs.
1344 1.1 cgd * Otherwise copy them out via the uio, then free.
1345 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1346 1.1 cgd * it points to next record) when we drop priority;
1347 1.1 cgd * we must note any additions to the sockbuf when we
1348 1.1 cgd * block interrupts again.
1349 1.1 cgd */
1350 1.144 dyoung if (mp == NULL) {
1351 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1352 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1353 1.160 ad sounlock(so);
1354 1.1 cgd splx(s);
1355 1.134 christos error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1356 1.20 mycroft s = splsoftnet();
1357 1.160 ad solock(so);
1358 1.144 dyoung if (error != 0) {
1359 1.67 he /*
1360 1.67 he * If any part of the record has been removed
1361 1.67 he * (such as the MT_SONAME mbuf, which will
1362 1.67 he * happen when PR_ADDR, and thus also
1363 1.67 he * PR_ATOMIC, is set), then drop the entire
1364 1.67 he * record to maintain the atomicity of the
1365 1.67 he * receive operation.
1366 1.67 he *
1367 1.67 he * This avoids a later panic("receive 1a")
1368 1.67 he * when compiled with DIAGNOSTIC.
1369 1.67 he */
1370 1.146 dyoung if (m && mbuf_removed && atomic)
1371 1.67 he (void) sbdroprecord(&so->so_rcv);
1372 1.67 he
1373 1.57 jdolecek goto release;
1374 1.67 he }
1375 1.1 cgd } else
1376 1.1 cgd uio->uio_resid -= len;
1377 1.1 cgd if (len == m->m_len - moff) {
1378 1.1 cgd if (m->m_flags & M_EOR)
1379 1.1 cgd flags |= MSG_EOR;
1380 1.1 cgd if (flags & MSG_PEEK) {
1381 1.1 cgd m = m->m_next;
1382 1.1 cgd moff = 0;
1383 1.1 cgd } else {
1384 1.1 cgd nextrecord = m->m_nextpkt;
1385 1.1 cgd sbfree(&so->so_rcv, m);
1386 1.1 cgd if (mp) {
1387 1.1 cgd *mp = m;
1388 1.1 cgd mp = &m->m_next;
1389 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1390 1.140 dyoung *mp = NULL;
1391 1.1 cgd } else {
1392 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1393 1.1 cgd m = so->so_rcv.sb_mb;
1394 1.1 cgd }
1395 1.69 thorpej /*
1396 1.69 thorpej * If m != NULL, we also know that
1397 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1398 1.69 thorpej */
1399 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1400 1.69 thorpej if (m) {
1401 1.1 cgd m->m_nextpkt = nextrecord;
1402 1.69 thorpej if (nextrecord == NULL)
1403 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1404 1.69 thorpej } else {
1405 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1406 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1407 1.69 thorpej }
1408 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1409 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1410 1.1 cgd }
1411 1.144 dyoung } else if (flags & MSG_PEEK)
1412 1.144 dyoung moff += len;
1413 1.144 dyoung else {
1414 1.160 ad if (mp != NULL) {
1415 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1416 1.160 ad if (__predict_false(mt == NULL)) {
1417 1.160 ad sounlock(so);
1418 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1419 1.160 ad solock(so);
1420 1.160 ad }
1421 1.160 ad *mp = mt;
1422 1.160 ad }
1423 1.144 dyoung m->m_data += len;
1424 1.144 dyoung m->m_len -= len;
1425 1.144 dyoung so->so_rcv.sb_cc -= len;
1426 1.1 cgd }
1427 1.1 cgd if (so->so_oobmark) {
1428 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1429 1.1 cgd so->so_oobmark -= len;
1430 1.1 cgd if (so->so_oobmark == 0) {
1431 1.1 cgd so->so_state |= SS_RCVATMARK;
1432 1.1 cgd break;
1433 1.1 cgd }
1434 1.7 cgd } else {
1435 1.1 cgd offset += len;
1436 1.7 cgd if (offset == so->so_oobmark)
1437 1.7 cgd break;
1438 1.7 cgd }
1439 1.1 cgd }
1440 1.1 cgd if (flags & MSG_EOR)
1441 1.1 cgd break;
1442 1.1 cgd /*
1443 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1444 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1445 1.1 cgd * termination. If a signal/timeout occurs, return
1446 1.1 cgd * with a short count but without error.
1447 1.1 cgd * Keep sockbuf locked against other readers.
1448 1.1 cgd */
1449 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1450 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1451 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1452 1.1 cgd break;
1453 1.68 matt /*
1454 1.68 matt * If we are peeking and the socket receive buffer is
1455 1.68 matt * full, stop since we can't get more data to peek at.
1456 1.68 matt */
1457 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1458 1.68 matt break;
1459 1.68 matt /*
1460 1.68 matt * If we've drained the socket buffer, tell the
1461 1.68 matt * protocol in case it needs to do something to
1462 1.68 matt * get it filled again.
1463 1.68 matt */
1464 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1465 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1466 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1467 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1468 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1469 1.1 cgd error = sbwait(&so->so_rcv);
1470 1.144 dyoung if (error != 0) {
1471 1.1 cgd sbunlock(&so->so_rcv);
1472 1.160 ad sounlock(so);
1473 1.1 cgd splx(s);
1474 1.144 dyoung return 0;
1475 1.1 cgd }
1476 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1477 1.1 cgd nextrecord = m->m_nextpkt;
1478 1.1 cgd }
1479 1.1 cgd }
1480 1.3 andrew
1481 1.146 dyoung if (m && atomic) {
1482 1.3 andrew flags |= MSG_TRUNC;
1483 1.3 andrew if ((flags & MSG_PEEK) == 0)
1484 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1485 1.3 andrew }
1486 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1487 1.144 dyoung if (m == NULL) {
1488 1.69 thorpej /*
1489 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1490 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1491 1.69 thorpej * there is still data in the socket buffer.
1492 1.69 thorpej */
1493 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1494 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1495 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1496 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1497 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1498 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1499 1.69 thorpej }
1500 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1501 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1502 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1503 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1504 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1505 1.1 cgd }
1506 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1507 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1508 1.3 andrew sbunlock(&so->so_rcv);
1509 1.3 andrew goto restart;
1510 1.3 andrew }
1511 1.108 perry
1512 1.144 dyoung if (flagsp != NULL)
1513 1.1 cgd *flagsp |= flags;
1514 1.54 lukem release:
1515 1.1 cgd sbunlock(&so->so_rcv);
1516 1.160 ad sounlock(so);
1517 1.1 cgd splx(s);
1518 1.144 dyoung return error;
1519 1.1 cgd }
1520 1.1 cgd
1521 1.14 mycroft int
1522 1.54 lukem soshutdown(struct socket *so, int how)
1523 1.1 cgd {
1524 1.99 matt const struct protosw *pr;
1525 1.160 ad int error;
1526 1.160 ad
1527 1.160 ad KASSERT(solocked(so));
1528 1.34 kleink
1529 1.54 lukem pr = so->so_proto;
1530 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1531 1.34 kleink return (EINVAL);
1532 1.1 cgd
1533 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1534 1.1 cgd sorflush(so);
1535 1.160 ad error = 0;
1536 1.160 ad }
1537 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1538 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1539 1.140 dyoung NULL, NULL, NULL);
1540 1.160 ad
1541 1.160 ad return error;
1542 1.1 cgd }
1543 1.1 cgd
1544 1.14 mycroft void
1545 1.54 lukem sorflush(struct socket *so)
1546 1.1 cgd {
1547 1.54 lukem struct sockbuf *sb, asb;
1548 1.99 matt const struct protosw *pr;
1549 1.160 ad
1550 1.160 ad KASSERT(solocked(so));
1551 1.1 cgd
1552 1.54 lukem sb = &so->so_rcv;
1553 1.54 lukem pr = so->so_proto;
1554 1.160 ad socantrcvmore(so);
1555 1.1 cgd sb->sb_flags |= SB_NOINTR;
1556 1.160 ad (void )sblock(sb, M_WAITOK);
1557 1.1 cgd sbunlock(sb);
1558 1.1 cgd asb = *sb;
1559 1.86 wrstuden /*
1560 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1561 1.86 wrstuden * fields valid.
1562 1.86 wrstuden */
1563 1.86 wrstuden memset(&sb->sb_startzero, 0,
1564 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1565 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1566 1.160 ad sounlock(so);
1567 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1568 1.160 ad solock(so);
1569 1.160 ad }
1570 1.98 christos sbrelease(&asb, so);
1571 1.1 cgd }
1572 1.1 cgd
1573 1.142 dyoung static int
1574 1.142 dyoung sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1575 1.1 cgd {
1576 1.142 dyoung int optval, val;
1577 1.130 christos struct linger *l;
1578 1.141 yamt struct sockbuf *sb;
1579 1.142 dyoung struct timeval *tv;
1580 1.142 dyoung
1581 1.142 dyoung switch (optname) {
1582 1.142 dyoung
1583 1.142 dyoung case SO_LINGER:
1584 1.142 dyoung if (m == NULL || m->m_len != sizeof(struct linger))
1585 1.142 dyoung return EINVAL;
1586 1.142 dyoung l = mtod(m, struct linger *);
1587 1.142 dyoung if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1588 1.142 dyoung l->l_linger > (INT_MAX / hz))
1589 1.142 dyoung return EDOM;
1590 1.142 dyoung so->so_linger = l->l_linger;
1591 1.142 dyoung if (l->l_onoff)
1592 1.142 dyoung so->so_options |= SO_LINGER;
1593 1.142 dyoung else
1594 1.142 dyoung so->so_options &= ~SO_LINGER;
1595 1.142 dyoung break;
1596 1.1 cgd
1597 1.142 dyoung case SO_DEBUG:
1598 1.142 dyoung case SO_KEEPALIVE:
1599 1.142 dyoung case SO_DONTROUTE:
1600 1.142 dyoung case SO_USELOOPBACK:
1601 1.142 dyoung case SO_BROADCAST:
1602 1.142 dyoung case SO_REUSEADDR:
1603 1.142 dyoung case SO_REUSEPORT:
1604 1.142 dyoung case SO_OOBINLINE:
1605 1.142 dyoung case SO_TIMESTAMP:
1606 1.142 dyoung if (m == NULL || m->m_len < sizeof(int))
1607 1.142 dyoung return EINVAL;
1608 1.142 dyoung if (*mtod(m, int *))
1609 1.142 dyoung so->so_options |= optname;
1610 1.142 dyoung else
1611 1.142 dyoung so->so_options &= ~optname;
1612 1.142 dyoung break;
1613 1.142 dyoung
1614 1.142 dyoung case SO_SNDBUF:
1615 1.142 dyoung case SO_RCVBUF:
1616 1.142 dyoung case SO_SNDLOWAT:
1617 1.142 dyoung case SO_RCVLOWAT:
1618 1.142 dyoung if (m == NULL || m->m_len < sizeof(int))
1619 1.142 dyoung return EINVAL;
1620 1.1 cgd
1621 1.142 dyoung /*
1622 1.142 dyoung * Values < 1 make no sense for any of these
1623 1.142 dyoung * options, so disallow them.
1624 1.142 dyoung */
1625 1.142 dyoung optval = *mtod(m, int *);
1626 1.142 dyoung if (optval < 1)
1627 1.142 dyoung return EINVAL;
1628 1.1 cgd
1629 1.142 dyoung switch (optname) {
1630 1.1 cgd
1631 1.1 cgd case SO_SNDBUF:
1632 1.1 cgd case SO_RCVBUF:
1633 1.142 dyoung sb = (optname == SO_SNDBUF) ?
1634 1.142 dyoung &so->so_snd : &so->so_rcv;
1635 1.142 dyoung if (sbreserve(sb, (u_long)optval, so) == 0)
1636 1.142 dyoung return ENOBUFS;
1637 1.142 dyoung sb->sb_flags &= ~SB_AUTOSIZE;
1638 1.142 dyoung break;
1639 1.142 dyoung
1640 1.142 dyoung /*
1641 1.142 dyoung * Make sure the low-water is never greater than
1642 1.142 dyoung * the high-water.
1643 1.142 dyoung */
1644 1.1 cgd case SO_SNDLOWAT:
1645 1.142 dyoung so->so_snd.sb_lowat =
1646 1.142 dyoung (optval > so->so_snd.sb_hiwat) ?
1647 1.142 dyoung so->so_snd.sb_hiwat : optval;
1648 1.142 dyoung break;
1649 1.1 cgd case SO_RCVLOWAT:
1650 1.142 dyoung so->so_rcv.sb_lowat =
1651 1.142 dyoung (optval > so->so_rcv.sb_hiwat) ?
1652 1.142 dyoung so->so_rcv.sb_hiwat : optval;
1653 1.142 dyoung break;
1654 1.142 dyoung }
1655 1.142 dyoung break;
1656 1.28 thorpej
1657 1.142 dyoung case SO_SNDTIMEO:
1658 1.142 dyoung case SO_RCVTIMEO:
1659 1.142 dyoung if (m == NULL || m->m_len < sizeof(*tv))
1660 1.142 dyoung return EINVAL;
1661 1.142 dyoung tv = mtod(m, struct timeval *);
1662 1.142 dyoung if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1663 1.142 dyoung return EDOM;
1664 1.142 dyoung val = tv->tv_sec * hz + tv->tv_usec / tick;
1665 1.142 dyoung if (val == 0 && tv->tv_usec != 0)
1666 1.142 dyoung val = 1;
1667 1.28 thorpej
1668 1.142 dyoung switch (optname) {
1669 1.28 thorpej
1670 1.142 dyoung case SO_SNDTIMEO:
1671 1.142 dyoung so->so_snd.sb_timeo = val;
1672 1.1 cgd break;
1673 1.1 cgd case SO_RCVTIMEO:
1674 1.142 dyoung so->so_rcv.sb_timeo = val;
1675 1.142 dyoung break;
1676 1.142 dyoung }
1677 1.142 dyoung break;
1678 1.1 cgd
1679 1.142 dyoung default:
1680 1.142 dyoung return ENOPROTOOPT;
1681 1.142 dyoung }
1682 1.142 dyoung return 0;
1683 1.142 dyoung }
1684 1.1 cgd
1685 1.142 dyoung int
1686 1.142 dyoung sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1687 1.142 dyoung {
1688 1.142 dyoung int error, prerr;
1689 1.1 cgd
1690 1.160 ad solock(so);
1691 1.142 dyoung if (level == SOL_SOCKET)
1692 1.142 dyoung error = sosetopt1(so, level, optname, m);
1693 1.142 dyoung else
1694 1.142 dyoung error = ENOPROTOOPT;
1695 1.1 cgd
1696 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1697 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1698 1.142 dyoung /* give the protocol stack a shot */
1699 1.142 dyoung prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1700 1.142 dyoung optname, &m);
1701 1.142 dyoung if (prerr == 0)
1702 1.142 dyoung error = 0;
1703 1.142 dyoung else if (prerr != ENOPROTOOPT)
1704 1.142 dyoung error = prerr;
1705 1.142 dyoung } else if (m != NULL)
1706 1.142 dyoung (void)m_free(m);
1707 1.160 ad sounlock(so);
1708 1.142 dyoung return error;
1709 1.1 cgd }
1710 1.1 cgd
1711 1.14 mycroft int
1712 1.54 lukem sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1713 1.1 cgd {
1714 1.54 lukem struct mbuf *m;
1715 1.160 ad int error;
1716 1.1 cgd
1717 1.160 ad solock(so);
1718 1.1 cgd if (level != SOL_SOCKET) {
1719 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1720 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1721 1.1 cgd (PRCO_GETOPT, so, level, optname, mp));
1722 1.1 cgd } else
1723 1.160 ad error = (ENOPROTOOPT);
1724 1.1 cgd } else {
1725 1.1 cgd m = m_get(M_WAIT, MT_SOOPTS);
1726 1.36 perry m->m_len = sizeof(int);
1727 1.1 cgd
1728 1.1 cgd switch (optname) {
1729 1.1 cgd
1730 1.1 cgd case SO_LINGER:
1731 1.36 perry m->m_len = sizeof(struct linger);
1732 1.1 cgd mtod(m, struct linger *)->l_onoff =
1733 1.131 christos (so->so_options & SO_LINGER) ? 1 : 0;
1734 1.1 cgd mtod(m, struct linger *)->l_linger = so->so_linger;
1735 1.1 cgd break;
1736 1.1 cgd
1737 1.1 cgd case SO_USELOOPBACK:
1738 1.1 cgd case SO_DONTROUTE:
1739 1.1 cgd case SO_DEBUG:
1740 1.1 cgd case SO_KEEPALIVE:
1741 1.1 cgd case SO_REUSEADDR:
1742 1.15 mycroft case SO_REUSEPORT:
1743 1.1 cgd case SO_BROADCAST:
1744 1.1 cgd case SO_OOBINLINE:
1745 1.26 thorpej case SO_TIMESTAMP:
1746 1.131 christos *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1747 1.1 cgd break;
1748 1.1 cgd
1749 1.1 cgd case SO_TYPE:
1750 1.1 cgd *mtod(m, int *) = so->so_type;
1751 1.1 cgd break;
1752 1.1 cgd
1753 1.1 cgd case SO_ERROR:
1754 1.1 cgd *mtod(m, int *) = so->so_error;
1755 1.1 cgd so->so_error = 0;
1756 1.1 cgd break;
1757 1.1 cgd
1758 1.1 cgd case SO_SNDBUF:
1759 1.1 cgd *mtod(m, int *) = so->so_snd.sb_hiwat;
1760 1.1 cgd break;
1761 1.1 cgd
1762 1.1 cgd case SO_RCVBUF:
1763 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_hiwat;
1764 1.1 cgd break;
1765 1.1 cgd
1766 1.1 cgd case SO_SNDLOWAT:
1767 1.1 cgd *mtod(m, int *) = so->so_snd.sb_lowat;
1768 1.1 cgd break;
1769 1.1 cgd
1770 1.1 cgd case SO_RCVLOWAT:
1771 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_lowat;
1772 1.1 cgd break;
1773 1.1 cgd
1774 1.1 cgd case SO_SNDTIMEO:
1775 1.1 cgd case SO_RCVTIMEO:
1776 1.1 cgd {
1777 1.1 cgd int val = (optname == SO_SNDTIMEO ?
1778 1.1 cgd so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1779 1.1 cgd
1780 1.1 cgd m->m_len = sizeof(struct timeval);
1781 1.1 cgd mtod(m, struct timeval *)->tv_sec = val / hz;
1782 1.1 cgd mtod(m, struct timeval *)->tv_usec =
1783 1.27 kleink (val % hz) * tick;
1784 1.1 cgd break;
1785 1.1 cgd }
1786 1.1 cgd
1787 1.107 darrenr case SO_OVERFLOWED:
1788 1.107 darrenr *mtod(m, int *) = so->so_rcv.sb_overflowed;
1789 1.107 darrenr break;
1790 1.107 darrenr
1791 1.1 cgd default:
1792 1.160 ad sounlock(so);
1793 1.1 cgd (void)m_free(m);
1794 1.1 cgd return (ENOPROTOOPT);
1795 1.1 cgd }
1796 1.1 cgd *mp = m;
1797 1.160 ad error = 0;
1798 1.1 cgd }
1799 1.160 ad
1800 1.160 ad sounlock(so);
1801 1.160 ad return (error);
1802 1.1 cgd }
1803 1.1 cgd
1804 1.14 mycroft void
1805 1.54 lukem sohasoutofband(struct socket *so)
1806 1.1 cgd {
1807 1.153 rmind
1808 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1809 1.153 rmind selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1810 1.1 cgd }
1811 1.72 jdolecek
1812 1.72 jdolecek static void
1813 1.72 jdolecek filt_sordetach(struct knote *kn)
1814 1.72 jdolecek {
1815 1.72 jdolecek struct socket *so;
1816 1.72 jdolecek
1817 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1818 1.160 ad solock(so);
1819 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1820 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1821 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
1822 1.160 ad sounlock(so);
1823 1.72 jdolecek }
1824 1.72 jdolecek
1825 1.72 jdolecek /*ARGSUSED*/
1826 1.72 jdolecek static int
1827 1.129 yamt filt_soread(struct knote *kn, long hint)
1828 1.72 jdolecek {
1829 1.72 jdolecek struct socket *so;
1830 1.160 ad int rv;
1831 1.72 jdolecek
1832 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1833 1.160 ad if (hint != NOTE_SUBMIT)
1834 1.160 ad solock(so);
1835 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
1836 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
1837 1.108 perry kn->kn_flags |= EV_EOF;
1838 1.72 jdolecek kn->kn_fflags = so->so_error;
1839 1.160 ad rv = 1;
1840 1.160 ad } else if (so->so_error) /* temporary udp error */
1841 1.160 ad rv = 1;
1842 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
1843 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
1844 1.160 ad else
1845 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1846 1.160 ad if (hint != NOTE_SUBMIT)
1847 1.160 ad sounlock(so);
1848 1.160 ad return rv;
1849 1.72 jdolecek }
1850 1.72 jdolecek
1851 1.72 jdolecek static void
1852 1.72 jdolecek filt_sowdetach(struct knote *kn)
1853 1.72 jdolecek {
1854 1.72 jdolecek struct socket *so;
1855 1.72 jdolecek
1856 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1857 1.160 ad solock(so);
1858 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1859 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1860 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
1861 1.160 ad sounlock(so);
1862 1.72 jdolecek }
1863 1.72 jdolecek
1864 1.72 jdolecek /*ARGSUSED*/
1865 1.72 jdolecek static int
1866 1.129 yamt filt_sowrite(struct knote *kn, long hint)
1867 1.72 jdolecek {
1868 1.72 jdolecek struct socket *so;
1869 1.160 ad int rv;
1870 1.72 jdolecek
1871 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1872 1.160 ad if (hint != NOTE_SUBMIT)
1873 1.160 ad solock(so);
1874 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
1875 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
1876 1.108 perry kn->kn_flags |= EV_EOF;
1877 1.72 jdolecek kn->kn_fflags = so->so_error;
1878 1.160 ad rv = 1;
1879 1.160 ad } else if (so->so_error) /* temporary udp error */
1880 1.160 ad rv = 1;
1881 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1882 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
1883 1.160 ad rv = 0;
1884 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
1885 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
1886 1.160 ad else
1887 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
1888 1.160 ad if (hint != NOTE_SUBMIT)
1889 1.160 ad sounlock(so);
1890 1.160 ad return rv;
1891 1.72 jdolecek }
1892 1.72 jdolecek
1893 1.72 jdolecek /*ARGSUSED*/
1894 1.72 jdolecek static int
1895 1.129 yamt filt_solisten(struct knote *kn, long hint)
1896 1.72 jdolecek {
1897 1.72 jdolecek struct socket *so;
1898 1.160 ad int rv;
1899 1.72 jdolecek
1900 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1901 1.72 jdolecek
1902 1.72 jdolecek /*
1903 1.72 jdolecek * Set kn_data to number of incoming connections, not
1904 1.72 jdolecek * counting partial (incomplete) connections.
1905 1.108 perry */
1906 1.160 ad if (hint != NOTE_SUBMIT)
1907 1.160 ad solock(so);
1908 1.72 jdolecek kn->kn_data = so->so_qlen;
1909 1.160 ad rv = (kn->kn_data > 0);
1910 1.160 ad if (hint != NOTE_SUBMIT)
1911 1.160 ad sounlock(so);
1912 1.160 ad return rv;
1913 1.72 jdolecek }
1914 1.72 jdolecek
1915 1.72 jdolecek static const struct filterops solisten_filtops =
1916 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
1917 1.72 jdolecek static const struct filterops soread_filtops =
1918 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
1919 1.72 jdolecek static const struct filterops sowrite_filtops =
1920 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
1921 1.72 jdolecek
1922 1.72 jdolecek int
1923 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
1924 1.72 jdolecek {
1925 1.72 jdolecek struct socket *so;
1926 1.72 jdolecek struct sockbuf *sb;
1927 1.72 jdolecek
1928 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
1929 1.160 ad solock(so);
1930 1.72 jdolecek switch (kn->kn_filter) {
1931 1.72 jdolecek case EVFILT_READ:
1932 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
1933 1.72 jdolecek kn->kn_fop = &solisten_filtops;
1934 1.72 jdolecek else
1935 1.72 jdolecek kn->kn_fop = &soread_filtops;
1936 1.72 jdolecek sb = &so->so_rcv;
1937 1.72 jdolecek break;
1938 1.72 jdolecek case EVFILT_WRITE:
1939 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
1940 1.72 jdolecek sb = &so->so_snd;
1941 1.72 jdolecek break;
1942 1.72 jdolecek default:
1943 1.160 ad sounlock(so);
1944 1.149 pooka return (EINVAL);
1945 1.72 jdolecek }
1946 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1947 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
1948 1.160 ad sounlock(so);
1949 1.72 jdolecek return (0);
1950 1.72 jdolecek }
1951 1.72 jdolecek
1952 1.154 ad static int
1953 1.154 ad sodopoll(struct socket *so, int events)
1954 1.154 ad {
1955 1.154 ad int revents;
1956 1.154 ad
1957 1.154 ad revents = 0;
1958 1.154 ad
1959 1.154 ad if (events & (POLLIN | POLLRDNORM))
1960 1.154 ad if (soreadable(so))
1961 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
1962 1.154 ad
1963 1.154 ad if (events & (POLLOUT | POLLWRNORM))
1964 1.154 ad if (sowritable(so))
1965 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
1966 1.154 ad
1967 1.154 ad if (events & (POLLPRI | POLLRDBAND))
1968 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1969 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
1970 1.154 ad
1971 1.154 ad return revents;
1972 1.154 ad }
1973 1.154 ad
1974 1.154 ad int
1975 1.154 ad sopoll(struct socket *so, int events)
1976 1.154 ad {
1977 1.154 ad int revents = 0;
1978 1.154 ad
1979 1.160 ad #ifndef DIAGNOSTIC
1980 1.160 ad /*
1981 1.160 ad * Do a quick, unlocked check in expectation that the socket
1982 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1983 1.160 ad * as the solocked() assertions will fail.
1984 1.160 ad */
1985 1.154 ad if ((revents = sodopoll(so, events)) != 0)
1986 1.154 ad return revents;
1987 1.160 ad #endif
1988 1.154 ad
1989 1.160 ad solock(so);
1990 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
1991 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1992 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
1993 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
1994 1.154 ad }
1995 1.154 ad
1996 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
1997 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
1998 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
1999 1.154 ad }
2000 1.154 ad }
2001 1.160 ad sounlock(so);
2002 1.154 ad
2003 1.154 ad return revents;
2004 1.154 ad }
2005 1.154 ad
2006 1.154 ad
2007 1.94 yamt #include <sys/sysctl.h>
2008 1.94 yamt
2009 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2010 1.94 yamt
2011 1.94 yamt /*
2012 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2013 1.94 yamt * value is not too small.
2014 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2015 1.94 yamt */
2016 1.94 yamt static int
2017 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2018 1.94 yamt {
2019 1.94 yamt int error, new_somaxkva;
2020 1.94 yamt struct sysctlnode node;
2021 1.94 yamt
2022 1.94 yamt new_somaxkva = somaxkva;
2023 1.94 yamt node = *rnode;
2024 1.94 yamt node.sysctl_data = &new_somaxkva;
2025 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2026 1.94 yamt if (error || newp == NULL)
2027 1.94 yamt return (error);
2028 1.94 yamt
2029 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2030 1.94 yamt return (EINVAL);
2031 1.94 yamt
2032 1.136 ad mutex_enter(&so_pendfree_lock);
2033 1.94 yamt somaxkva = new_somaxkva;
2034 1.136 ad cv_broadcast(&socurkva_cv);
2035 1.136 ad mutex_exit(&so_pendfree_lock);
2036 1.94 yamt
2037 1.94 yamt return (error);
2038 1.94 yamt }
2039 1.94 yamt
2040 1.94 yamt SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2041 1.94 yamt {
2042 1.94 yamt
2043 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2044 1.97 atatat CTLFLAG_PERMANENT,
2045 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2046 1.97 atatat NULL, 0, NULL, 0,
2047 1.97 atatat CTL_KERN, CTL_EOL);
2048 1.97 atatat
2049 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2050 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2051 1.103 atatat CTLTYPE_INT, "somaxkva",
2052 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2053 1.103 atatat "used for socket buffers"),
2054 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2055 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2056 1.94 yamt }
2057