uipc_socket.c revision 1.174 1 1.174 pooka /* $NetBSD: uipc_socket.c,v 1.174 2008/10/11 13:40:57 pooka Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.154 ad * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.64 thorpej * by Jason R. Thorpe of Wasabi Systems, Inc.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.59 lukem #include <sys/cdefs.h>
66 1.174 pooka __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.174 2008/10/11 13:40:57 pooka Exp $");
67 1.64 thorpej
68 1.170 tls #include "opt_inet.h"
69 1.64 thorpej #include "opt_sock_counters.h"
70 1.64 thorpej #include "opt_sosend_loan.h"
71 1.81 martin #include "opt_mbuftrace.h"
72 1.84 ragge #include "opt_somaxkva.h"
73 1.167 ad #include "opt_multiprocessor.h" /* XXX */
74 1.1 cgd
75 1.9 mycroft #include <sys/param.h>
76 1.9 mycroft #include <sys/systm.h>
77 1.9 mycroft #include <sys/proc.h>
78 1.9 mycroft #include <sys/file.h>
79 1.142 dyoung #include <sys/filedesc.h>
80 1.173 plunky #include <sys/kmem.h>
81 1.9 mycroft #include <sys/mbuf.h>
82 1.9 mycroft #include <sys/domain.h>
83 1.9 mycroft #include <sys/kernel.h>
84 1.9 mycroft #include <sys/protosw.h>
85 1.9 mycroft #include <sys/socket.h>
86 1.9 mycroft #include <sys/socketvar.h>
87 1.21 christos #include <sys/signalvar.h>
88 1.9 mycroft #include <sys/resourcevar.h>
89 1.174 pooka #include <sys/uidinfo.h>
90 1.72 jdolecek #include <sys/event.h>
91 1.89 christos #include <sys/poll.h>
92 1.118 elad #include <sys/kauth.h>
93 1.136 ad #include <sys/mutex.h>
94 1.136 ad #include <sys/condvar.h>
95 1.37 thorpej
96 1.64 thorpej #include <uvm/uvm.h>
97 1.64 thorpej
98 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
99 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
100 1.37 thorpej
101 1.142 dyoung extern const struct fileops socketops;
102 1.142 dyoung
103 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
104 1.54 lukem int somaxconn = SOMAXCONN;
105 1.160 ad kmutex_t *softnet_lock;
106 1.49 jonathan
107 1.64 thorpej #ifdef SOSEND_COUNTERS
108 1.64 thorpej #include <sys/device.h>
109 1.64 thorpej
110 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 1.64 thorpej NULL, "sosend", "loan big");
112 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 1.64 thorpej NULL, "sosend", "copy big");
114 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 1.64 thorpej NULL, "sosend", "copy small");
116 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 1.64 thorpej NULL, "sosend", "kva limit");
118 1.64 thorpej
119 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
120 1.64 thorpej
121 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
122 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
123 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
124 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
125 1.64 thorpej #else
126 1.64 thorpej
127 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
128 1.64 thorpej
129 1.64 thorpej #endif /* SOSEND_COUNTERS */
130 1.64 thorpej
131 1.119 yamt static struct callback_entry sokva_reclaimerentry;
132 1.1 cgd
133 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
134 1.121 yamt int sock_loan_thresh = -1;
135 1.71 thorpej #else
136 1.121 yamt int sock_loan_thresh = 4096;
137 1.65 thorpej #endif
138 1.64 thorpej
139 1.136 ad static kmutex_t so_pendfree_lock;
140 1.113 thorpej static struct mbuf *so_pendfree;
141 1.64 thorpej
142 1.84 ragge #ifndef SOMAXKVA
143 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
144 1.84 ragge #endif
145 1.84 ragge int somaxkva = SOMAXKVA;
146 1.113 thorpej static int socurkva;
147 1.136 ad static kcondvar_t socurkva_cv;
148 1.64 thorpej
149 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
150 1.64 thorpej
151 1.117 yamt static size_t sodopendfree(void);
152 1.117 yamt static size_t sodopendfreel(void);
153 1.93 yamt
154 1.113 thorpej static vsize_t
155 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
156 1.80 yamt {
157 1.98 christos int error;
158 1.80 yamt
159 1.136 ad mutex_enter(&so_pendfree_lock);
160 1.80 yamt while (socurkva + len > somaxkva) {
161 1.93 yamt size_t freed;
162 1.93 yamt
163 1.93 yamt /*
164 1.93 yamt * try to do pendfree.
165 1.93 yamt */
166 1.93 yamt
167 1.117 yamt freed = sodopendfreel();
168 1.93 yamt
169 1.93 yamt /*
170 1.93 yamt * if some kva was freed, try again.
171 1.93 yamt */
172 1.93 yamt
173 1.93 yamt if (freed)
174 1.80 yamt continue;
175 1.93 yamt
176 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
177 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
178 1.98 christos if (error) {
179 1.98 christos len = 0;
180 1.98 christos break;
181 1.98 christos }
182 1.80 yamt }
183 1.93 yamt socurkva += len;
184 1.136 ad mutex_exit(&so_pendfree_lock);
185 1.98 christos return len;
186 1.95 yamt }
187 1.95 yamt
188 1.113 thorpej static void
189 1.95 yamt sokvaunreserve(vsize_t len)
190 1.95 yamt {
191 1.95 yamt
192 1.136 ad mutex_enter(&so_pendfree_lock);
193 1.95 yamt socurkva -= len;
194 1.136 ad cv_broadcast(&socurkva_cv);
195 1.136 ad mutex_exit(&so_pendfree_lock);
196 1.95 yamt }
197 1.95 yamt
198 1.95 yamt /*
199 1.95 yamt * sokvaalloc: allocate kva for loan.
200 1.95 yamt */
201 1.95 yamt
202 1.95 yamt vaddr_t
203 1.95 yamt sokvaalloc(vsize_t len, struct socket *so)
204 1.95 yamt {
205 1.95 yamt vaddr_t lva;
206 1.95 yamt
207 1.95 yamt /*
208 1.95 yamt * reserve kva.
209 1.95 yamt */
210 1.95 yamt
211 1.98 christos if (sokvareserve(so, len) == 0)
212 1.98 christos return 0;
213 1.93 yamt
214 1.93 yamt /*
215 1.93 yamt * allocate kva.
216 1.93 yamt */
217 1.80 yamt
218 1.109 yamt lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
219 1.95 yamt if (lva == 0) {
220 1.95 yamt sokvaunreserve(len);
221 1.80 yamt return (0);
222 1.95 yamt }
223 1.80 yamt
224 1.80 yamt return lva;
225 1.80 yamt }
226 1.80 yamt
227 1.93 yamt /*
228 1.93 yamt * sokvafree: free kva for loan.
229 1.93 yamt */
230 1.93 yamt
231 1.80 yamt void
232 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
233 1.80 yamt {
234 1.93 yamt
235 1.93 yamt /*
236 1.93 yamt * free kva.
237 1.93 yamt */
238 1.80 yamt
239 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
240 1.93 yamt
241 1.93 yamt /*
242 1.93 yamt * unreserve kva.
243 1.93 yamt */
244 1.93 yamt
245 1.95 yamt sokvaunreserve(len);
246 1.80 yamt }
247 1.80 yamt
248 1.64 thorpej static void
249 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
250 1.64 thorpej {
251 1.156 yamt vaddr_t sva, eva;
252 1.64 thorpej vsize_t len;
253 1.156 yamt int npgs;
254 1.156 yamt
255 1.156 yamt KASSERT(pgs != NULL);
256 1.64 thorpej
257 1.64 thorpej eva = round_page((vaddr_t) buf + size);
258 1.64 thorpej sva = trunc_page((vaddr_t) buf);
259 1.64 thorpej len = eva - sva;
260 1.64 thorpej npgs = len >> PAGE_SHIFT;
261 1.64 thorpej
262 1.64 thorpej pmap_kremove(sva, len);
263 1.64 thorpej pmap_update(pmap_kernel());
264 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
265 1.80 yamt sokvafree(sva, len);
266 1.64 thorpej }
267 1.64 thorpej
268 1.64 thorpej static size_t
269 1.152 matt sodopendfree(void)
270 1.64 thorpej {
271 1.93 yamt size_t rv;
272 1.64 thorpej
273 1.160 ad if (__predict_true(so_pendfree == NULL))
274 1.160 ad return 0;
275 1.160 ad
276 1.136 ad mutex_enter(&so_pendfree_lock);
277 1.117 yamt rv = sodopendfreel();
278 1.136 ad mutex_exit(&so_pendfree_lock);
279 1.93 yamt
280 1.93 yamt return rv;
281 1.93 yamt }
282 1.93 yamt
283 1.93 yamt /*
284 1.93 yamt * sodopendfreel: free mbufs on "pendfree" list.
285 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
286 1.93 yamt *
287 1.136 ad * => called with so_pendfree_lock held.
288 1.93 yamt */
289 1.93 yamt
290 1.93 yamt static size_t
291 1.152 matt sodopendfreel(void)
292 1.93 yamt {
293 1.137 ad struct mbuf *m, *next;
294 1.93 yamt size_t rv = 0;
295 1.93 yamt
296 1.136 ad KASSERT(mutex_owned(&so_pendfree_lock));
297 1.64 thorpej
298 1.137 ad while (so_pendfree != NULL) {
299 1.64 thorpej m = so_pendfree;
300 1.93 yamt so_pendfree = NULL;
301 1.136 ad mutex_exit(&so_pendfree_lock);
302 1.93 yamt
303 1.93 yamt for (; m != NULL; m = next) {
304 1.93 yamt next = m->m_next;
305 1.156 yamt KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
306 1.156 yamt KASSERT(m->m_ext.ext_refcnt == 0);
307 1.93 yamt
308 1.93 yamt rv += m->m_ext.ext_size;
309 1.156 yamt sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
310 1.93 yamt m->m_ext.ext_size);
311 1.145 ad pool_cache_put(mb_cache, m);
312 1.93 yamt }
313 1.64 thorpej
314 1.136 ad mutex_enter(&so_pendfree_lock);
315 1.64 thorpej }
316 1.64 thorpej
317 1.64 thorpej return (rv);
318 1.64 thorpej }
319 1.64 thorpej
320 1.80 yamt void
321 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
322 1.64 thorpej {
323 1.64 thorpej
324 1.156 yamt KASSERT(m != NULL);
325 1.64 thorpej
326 1.93 yamt /*
327 1.93 yamt * postpone freeing mbuf.
328 1.93 yamt *
329 1.93 yamt * we can't do it in interrupt context
330 1.93 yamt * because we need to put kva back to kernel_map.
331 1.93 yamt */
332 1.93 yamt
333 1.136 ad mutex_enter(&so_pendfree_lock);
334 1.92 yamt m->m_next = so_pendfree;
335 1.92 yamt so_pendfree = m;
336 1.136 ad cv_broadcast(&socurkva_cv);
337 1.136 ad mutex_exit(&so_pendfree_lock);
338 1.64 thorpej }
339 1.64 thorpej
340 1.64 thorpej static long
341 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
342 1.64 thorpej {
343 1.64 thorpej struct iovec *iov = uio->uio_iov;
344 1.64 thorpej vaddr_t sva, eva;
345 1.64 thorpej vsize_t len;
346 1.156 yamt vaddr_t lva;
347 1.156 yamt int npgs, error;
348 1.156 yamt vaddr_t va;
349 1.156 yamt int i;
350 1.64 thorpej
351 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
352 1.64 thorpej return (0);
353 1.64 thorpej
354 1.64 thorpej if (iov->iov_len < (size_t) space)
355 1.64 thorpej space = iov->iov_len;
356 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
357 1.64 thorpej space = SOCK_LOAN_CHUNK;
358 1.64 thorpej
359 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
360 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
361 1.64 thorpej len = eva - sva;
362 1.64 thorpej npgs = len >> PAGE_SHIFT;
363 1.64 thorpej
364 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
365 1.79 thorpej
366 1.80 yamt lva = sokvaalloc(len, so);
367 1.64 thorpej if (lva == 0)
368 1.80 yamt return 0;
369 1.64 thorpej
370 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
371 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
372 1.64 thorpej if (error) {
373 1.80 yamt sokvafree(lva, len);
374 1.64 thorpej return (0);
375 1.64 thorpej }
376 1.64 thorpej
377 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
378 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
379 1.79 thorpej VM_PROT_READ);
380 1.64 thorpej pmap_update(pmap_kernel());
381 1.64 thorpej
382 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
383 1.64 thorpej
384 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
385 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
386 1.64 thorpej
387 1.64 thorpej uio->uio_resid -= space;
388 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
389 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
390 1.64 thorpej uio->uio_iov->iov_len -= space;
391 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
392 1.64 thorpej uio->uio_iov++;
393 1.64 thorpej uio->uio_iovcnt--;
394 1.64 thorpej }
395 1.64 thorpej
396 1.64 thorpej return (space);
397 1.64 thorpej }
398 1.64 thorpej
399 1.119 yamt static int
400 1.129 yamt sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
401 1.119 yamt {
402 1.119 yamt
403 1.119 yamt KASSERT(ce == &sokva_reclaimerentry);
404 1.119 yamt KASSERT(obj == NULL);
405 1.119 yamt
406 1.119 yamt sodopendfree();
407 1.119 yamt if (!vm_map_starved_p(kernel_map)) {
408 1.119 yamt return CALLBACK_CHAIN_ABORT;
409 1.119 yamt }
410 1.119 yamt return CALLBACK_CHAIN_CONTINUE;
411 1.119 yamt }
412 1.119 yamt
413 1.142 dyoung struct mbuf *
414 1.147 dyoung getsombuf(struct socket *so, int type)
415 1.142 dyoung {
416 1.142 dyoung struct mbuf *m;
417 1.142 dyoung
418 1.147 dyoung m = m_get(M_WAIT, type);
419 1.142 dyoung MCLAIM(m, so->so_mowner);
420 1.142 dyoung return m;
421 1.142 dyoung }
422 1.142 dyoung
423 1.119 yamt void
424 1.119 yamt soinit(void)
425 1.119 yamt {
426 1.119 yamt
427 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
428 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
429 1.136 ad cv_init(&socurkva_cv, "sokva");
430 1.166 ad soinit2();
431 1.136 ad
432 1.119 yamt /* Set the initial adjusted socket buffer size. */
433 1.119 yamt if (sb_max_set(sb_max))
434 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
435 1.119 yamt
436 1.119 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
437 1.119 yamt &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
438 1.119 yamt }
439 1.119 yamt
440 1.1 cgd /*
441 1.1 cgd * Socket operation routines.
442 1.1 cgd * These routines are called by the routines in
443 1.1 cgd * sys_socket.c or from a system process, and
444 1.1 cgd * implement the semantics of socket operations by
445 1.1 cgd * switching out to the protocol specific routines.
446 1.1 cgd */
447 1.1 cgd /*ARGSUSED*/
448 1.3 andrew int
449 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
450 1.160 ad struct socket *lockso)
451 1.1 cgd {
452 1.99 matt const struct protosw *prp;
453 1.54 lukem struct socket *so;
454 1.115 yamt uid_t uid;
455 1.160 ad int error;
456 1.160 ad kmutex_t *lock;
457 1.1 cgd
458 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
459 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
460 1.132 elad KAUTH_ARG(proto));
461 1.140 dyoung if (error != 0)
462 1.140 dyoung return error;
463 1.127 elad
464 1.1 cgd if (proto)
465 1.1 cgd prp = pffindproto(dom, proto, type);
466 1.1 cgd else
467 1.1 cgd prp = pffindtype(dom, type);
468 1.140 dyoung if (prp == NULL) {
469 1.120 ginsbach /* no support for domain */
470 1.120 ginsbach if (pffinddomain(dom) == 0)
471 1.140 dyoung return EAFNOSUPPORT;
472 1.120 ginsbach /* no support for socket type */
473 1.120 ginsbach if (proto == 0 && type != 0)
474 1.140 dyoung return EPROTOTYPE;
475 1.140 dyoung return EPROTONOSUPPORT;
476 1.120 ginsbach }
477 1.140 dyoung if (prp->pr_usrreq == NULL)
478 1.140 dyoung return EPROTONOSUPPORT;
479 1.1 cgd if (prp->pr_type != type)
480 1.140 dyoung return EPROTOTYPE;
481 1.160 ad
482 1.160 ad so = soget(true);
483 1.1 cgd so->so_type = type;
484 1.1 cgd so->so_proto = prp;
485 1.33 matt so->so_send = sosend;
486 1.33 matt so->so_receive = soreceive;
487 1.78 matt #ifdef MBUFTRACE
488 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
489 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
490 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
491 1.78 matt #endif
492 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
493 1.115 yamt so->so_uidinfo = uid_find(uid);
494 1.168 yamt so->so_egid = kauth_cred_getegid(l->l_cred);
495 1.168 yamt so->so_cpid = l->l_proc->p_pid;
496 1.160 ad if (lockso != NULL) {
497 1.160 ad /* Caller wants us to share a lock. */
498 1.160 ad lock = lockso->so_lock;
499 1.160 ad so->so_lock = lock;
500 1.160 ad mutex_obj_hold(lock);
501 1.160 ad mutex_enter(lock);
502 1.160 ad } else {
503 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
504 1.160 ad }
505 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
506 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
507 1.160 ad KASSERT(solocked(so));
508 1.140 dyoung if (error != 0) {
509 1.1 cgd so->so_state |= SS_NOFDREF;
510 1.1 cgd sofree(so);
511 1.140 dyoung return error;
512 1.1 cgd }
513 1.160 ad sounlock(so);
514 1.1 cgd *aso = so;
515 1.140 dyoung return 0;
516 1.1 cgd }
517 1.1 cgd
518 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
519 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
520 1.142 dyoung */
521 1.142 dyoung int
522 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
523 1.142 dyoung struct lwp *l, int *fdout)
524 1.142 dyoung {
525 1.142 dyoung struct socket *so;
526 1.142 dyoung struct file *fp;
527 1.142 dyoung int fd, error;
528 1.142 dyoung
529 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
530 1.142 dyoung return (error);
531 1.142 dyoung fp->f_flag = FREAD|FWRITE;
532 1.142 dyoung fp->f_type = DTYPE_SOCKET;
533 1.142 dyoung fp->f_ops = &socketops;
534 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
535 1.142 dyoung if (error != 0) {
536 1.155 ad fd_abort(curproc, fp, fd);
537 1.142 dyoung } else {
538 1.142 dyoung if (sop != NULL)
539 1.142 dyoung *sop = so;
540 1.142 dyoung fp->f_data = so;
541 1.155 ad fd_affix(curproc, fp, fd);
542 1.142 dyoung *fdout = fd;
543 1.142 dyoung }
544 1.142 dyoung return error;
545 1.142 dyoung }
546 1.142 dyoung
547 1.3 andrew int
548 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
549 1.1 cgd {
550 1.160 ad int error;
551 1.1 cgd
552 1.160 ad solock(so);
553 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
554 1.160 ad sounlock(so);
555 1.140 dyoung return error;
556 1.1 cgd }
557 1.1 cgd
558 1.3 andrew int
559 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
560 1.1 cgd {
561 1.160 ad int error;
562 1.1 cgd
563 1.160 ad solock(so);
564 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
565 1.163 ad SS_ISDISCONNECTING)) != 0) {
566 1.163 ad sounlock(so);
567 1.158 ad return (EOPNOTSUPP);
568 1.163 ad }
569 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
570 1.150 elad NULL, NULL, l);
571 1.140 dyoung if (error != 0) {
572 1.160 ad sounlock(so);
573 1.140 dyoung return error;
574 1.1 cgd }
575 1.63 matt if (TAILQ_EMPTY(&so->so_q))
576 1.1 cgd so->so_options |= SO_ACCEPTCONN;
577 1.1 cgd if (backlog < 0)
578 1.1 cgd backlog = 0;
579 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
580 1.160 ad sounlock(so);
581 1.140 dyoung return 0;
582 1.1 cgd }
583 1.1 cgd
584 1.21 christos void
585 1.54 lukem sofree(struct socket *so)
586 1.1 cgd {
587 1.161 ad u_int refs;
588 1.1 cgd
589 1.160 ad KASSERT(solocked(so));
590 1.160 ad
591 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
592 1.160 ad sounlock(so);
593 1.1 cgd return;
594 1.160 ad }
595 1.43 mycroft if (so->so_head) {
596 1.43 mycroft /*
597 1.43 mycroft * We must not decommission a socket that's on the accept(2)
598 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
599 1.43 mycroft * indicated that the listening socket was ready.
600 1.43 mycroft */
601 1.160 ad if (!soqremque(so, 0)) {
602 1.160 ad sounlock(so);
603 1.43 mycroft return;
604 1.160 ad }
605 1.43 mycroft }
606 1.98 christos if (so->so_rcv.sb_hiwat)
607 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
608 1.98 christos RLIM_INFINITY);
609 1.98 christos if (so->so_snd.sb_hiwat)
610 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
611 1.98 christos RLIM_INFINITY);
612 1.98 christos sbrelease(&so->so_snd, so);
613 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
614 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
615 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
616 1.1 cgd sorflush(so);
617 1.161 ad refs = so->so_aborting; /* XXX */
618 1.170 tls #ifdef INET
619 1.170 tls /* remove acccept filter if one is present. */
620 1.170 tls if (so->so_accf != NULL)
621 1.170 tls do_setopt_accept_filter(so, NULL);
622 1.170 tls #endif
623 1.160 ad sounlock(so);
624 1.161 ad if (refs == 0) /* XXX */
625 1.161 ad soput(so);
626 1.1 cgd }
627 1.1 cgd
628 1.1 cgd /*
629 1.1 cgd * Close a socket on last file table reference removal.
630 1.1 cgd * Initiate disconnect if connected.
631 1.1 cgd * Free socket when disconnect complete.
632 1.1 cgd */
633 1.3 andrew int
634 1.54 lukem soclose(struct socket *so)
635 1.1 cgd {
636 1.54 lukem struct socket *so2;
637 1.160 ad int error;
638 1.160 ad int error2;
639 1.1 cgd
640 1.54 lukem error = 0;
641 1.160 ad solock(so);
642 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
643 1.172 ad for (;;) {
644 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
645 1.160 ad KASSERT(solocked2(so, so2));
646 1.160 ad (void) soqremque(so2, 0);
647 1.160 ad /* soabort drops the lock. */
648 1.160 ad (void) soabort(so2);
649 1.160 ad solock(so);
650 1.172 ad continue;
651 1.160 ad }
652 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
653 1.160 ad KASSERT(solocked2(so, so2));
654 1.160 ad (void) soqremque(so2, 1);
655 1.160 ad /* soabort drops the lock. */
656 1.160 ad (void) soabort(so2);
657 1.160 ad solock(so);
658 1.172 ad continue;
659 1.160 ad }
660 1.172 ad break;
661 1.172 ad }
662 1.1 cgd }
663 1.1 cgd if (so->so_pcb == 0)
664 1.1 cgd goto discard;
665 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
666 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
667 1.1 cgd error = sodisconnect(so);
668 1.1 cgd if (error)
669 1.1 cgd goto drop;
670 1.1 cgd }
671 1.1 cgd if (so->so_options & SO_LINGER) {
672 1.151 ad if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
673 1.1 cgd goto drop;
674 1.21 christos while (so->so_state & SS_ISCONNECTED) {
675 1.160 ad error = sowait(so, so->so_linger * hz);
676 1.21 christos if (error)
677 1.1 cgd break;
678 1.21 christos }
679 1.1 cgd }
680 1.1 cgd }
681 1.54 lukem drop:
682 1.1 cgd if (so->so_pcb) {
683 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
684 1.140 dyoung NULL, NULL, NULL, NULL);
685 1.1 cgd if (error == 0)
686 1.1 cgd error = error2;
687 1.1 cgd }
688 1.54 lukem discard:
689 1.1 cgd if (so->so_state & SS_NOFDREF)
690 1.1 cgd panic("soclose: NOFDREF");
691 1.1 cgd so->so_state |= SS_NOFDREF;
692 1.1 cgd sofree(so);
693 1.1 cgd return (error);
694 1.1 cgd }
695 1.1 cgd
696 1.1 cgd /*
697 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
698 1.1 cgd */
699 1.3 andrew int
700 1.54 lukem soabort(struct socket *so)
701 1.1 cgd {
702 1.161 ad u_int refs;
703 1.139 yamt int error;
704 1.160 ad
705 1.160 ad KASSERT(solocked(so));
706 1.160 ad KASSERT(so->so_head == NULL);
707 1.1 cgd
708 1.161 ad so->so_aborting++; /* XXX */
709 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
710 1.140 dyoung NULL, NULL, NULL);
711 1.161 ad refs = --so->so_aborting; /* XXX */
712 1.164 drochner if (error || (refs == 0)) {
713 1.139 yamt sofree(so);
714 1.160 ad } else {
715 1.160 ad sounlock(so);
716 1.139 yamt }
717 1.139 yamt return error;
718 1.1 cgd }
719 1.1 cgd
720 1.3 andrew int
721 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
722 1.1 cgd {
723 1.160 ad int error;
724 1.160 ad
725 1.160 ad KASSERT(solocked(so));
726 1.1 cgd
727 1.54 lukem error = 0;
728 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
729 1.1 cgd panic("soaccept: !NOFDREF");
730 1.1 cgd so->so_state &= ~SS_NOFDREF;
731 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
732 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
733 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
734 1.140 dyoung NULL, nam, NULL, NULL);
735 1.41 mycroft else
736 1.53 itojun error = ECONNABORTED;
737 1.52 itojun
738 1.1 cgd return (error);
739 1.1 cgd }
740 1.1 cgd
741 1.3 andrew int
742 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
743 1.1 cgd {
744 1.160 ad int error;
745 1.160 ad
746 1.160 ad KASSERT(solocked(so));
747 1.1 cgd
748 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
749 1.1 cgd return (EOPNOTSUPP);
750 1.1 cgd /*
751 1.1 cgd * If protocol is connection-based, can only connect once.
752 1.1 cgd * Otherwise, if connected, try to disconnect first.
753 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
754 1.1 cgd * a null address.
755 1.1 cgd */
756 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
757 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
758 1.1 cgd (error = sodisconnect(so))))
759 1.1 cgd error = EISCONN;
760 1.1 cgd else
761 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
762 1.140 dyoung NULL, nam, NULL, l);
763 1.1 cgd return (error);
764 1.1 cgd }
765 1.1 cgd
766 1.3 andrew int
767 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
768 1.1 cgd {
769 1.160 ad int error;
770 1.160 ad
771 1.160 ad KASSERT(solocked2(so1, so2));
772 1.1 cgd
773 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
774 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
775 1.1 cgd return (error);
776 1.1 cgd }
777 1.1 cgd
778 1.3 andrew int
779 1.54 lukem sodisconnect(struct socket *so)
780 1.1 cgd {
781 1.160 ad int error;
782 1.160 ad
783 1.160 ad KASSERT(solocked(so));
784 1.1 cgd
785 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
786 1.1 cgd error = ENOTCONN;
787 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
788 1.1 cgd error = EALREADY;
789 1.160 ad } else {
790 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
791 1.160 ad NULL, NULL, NULL, NULL);
792 1.1 cgd }
793 1.117 yamt sodopendfree();
794 1.1 cgd return (error);
795 1.1 cgd }
796 1.1 cgd
797 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
798 1.1 cgd /*
799 1.1 cgd * Send on a socket.
800 1.1 cgd * If send must go all at once and message is larger than
801 1.1 cgd * send buffering, then hard error.
802 1.1 cgd * Lock against other senders.
803 1.1 cgd * If must go all at once and not enough room now, then
804 1.1 cgd * inform user that this would block and do nothing.
805 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
806 1.1 cgd * The data to be sent is described by "uio" if nonzero,
807 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
808 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
809 1.1 cgd * enough to send all at once.
810 1.1 cgd *
811 1.1 cgd * Returns nonzero on error, timeout or signal; callers
812 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
813 1.1 cgd * Data and control buffers are freed on return.
814 1.1 cgd */
815 1.3 andrew int
816 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
817 1.114 christos struct mbuf *control, int flags, struct lwp *l)
818 1.1 cgd {
819 1.54 lukem struct mbuf **mp, *m;
820 1.114 christos struct proc *p;
821 1.58 jdolecek long space, len, resid, clen, mlen;
822 1.58 jdolecek int error, s, dontroute, atomic;
823 1.54 lukem
824 1.114 christos p = l->l_proc;
825 1.117 yamt sodopendfree();
826 1.160 ad clen = 0;
827 1.64 thorpej
828 1.160 ad /*
829 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
830 1.160 ad * protocol processing soft interrupts from interrupting us and
831 1.160 ad * blocking (expensive).
832 1.160 ad */
833 1.160 ad s = splsoftnet();
834 1.160 ad solock(so);
835 1.54 lukem atomic = sosendallatonce(so) || top;
836 1.1 cgd if (uio)
837 1.1 cgd resid = uio->uio_resid;
838 1.1 cgd else
839 1.1 cgd resid = top->m_pkthdr.len;
840 1.7 cgd /*
841 1.7 cgd * In theory resid should be unsigned.
842 1.7 cgd * However, space must be signed, as it might be less than 0
843 1.7 cgd * if we over-committed, and we must use a signed comparison
844 1.7 cgd * of space and resid. On the other hand, a negative resid
845 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
846 1.7 cgd */
847 1.29 mycroft if (resid < 0) {
848 1.29 mycroft error = EINVAL;
849 1.29 mycroft goto out;
850 1.29 mycroft }
851 1.1 cgd dontroute =
852 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
853 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
854 1.165 christos l->l_ru.ru_msgsnd++;
855 1.1 cgd if (control)
856 1.1 cgd clen = control->m_len;
857 1.54 lukem restart:
858 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
859 1.1 cgd goto out;
860 1.1 cgd do {
861 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
862 1.160 ad error = EPIPE;
863 1.160 ad goto release;
864 1.160 ad }
865 1.48 thorpej if (so->so_error) {
866 1.48 thorpej error = so->so_error;
867 1.48 thorpej so->so_error = 0;
868 1.48 thorpej goto release;
869 1.48 thorpej }
870 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
871 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
872 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
873 1.160 ad !(resid == 0 && clen != 0)) {
874 1.160 ad error = ENOTCONN;
875 1.160 ad goto release;
876 1.160 ad }
877 1.160 ad } else if (addr == 0) {
878 1.160 ad error = EDESTADDRREQ;
879 1.160 ad goto release;
880 1.160 ad }
881 1.1 cgd }
882 1.1 cgd space = sbspace(&so->so_snd);
883 1.1 cgd if (flags & MSG_OOB)
884 1.1 cgd space += 1024;
885 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
886 1.160 ad clen > so->so_snd.sb_hiwat) {
887 1.160 ad error = EMSGSIZE;
888 1.160 ad goto release;
889 1.160 ad }
890 1.96 mycroft if (space < resid + clen &&
891 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
892 1.160 ad if (so->so_nbio) {
893 1.160 ad error = EWOULDBLOCK;
894 1.160 ad goto release;
895 1.160 ad }
896 1.1 cgd sbunlock(&so->so_snd);
897 1.1 cgd error = sbwait(&so->so_snd);
898 1.1 cgd if (error)
899 1.1 cgd goto out;
900 1.1 cgd goto restart;
901 1.1 cgd }
902 1.1 cgd mp = ⊤
903 1.1 cgd space -= clen;
904 1.1 cgd do {
905 1.45 tv if (uio == NULL) {
906 1.45 tv /*
907 1.45 tv * Data is prepackaged in "top".
908 1.45 tv */
909 1.45 tv resid = 0;
910 1.45 tv if (flags & MSG_EOR)
911 1.45 tv top->m_flags |= M_EOR;
912 1.45 tv } else do {
913 1.160 ad sounlock(so);
914 1.160 ad splx(s);
915 1.144 dyoung if (top == NULL) {
916 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
917 1.45 tv mlen = MHLEN;
918 1.45 tv m->m_pkthdr.len = 0;
919 1.140 dyoung m->m_pkthdr.rcvif = NULL;
920 1.45 tv } else {
921 1.78 matt m = m_get(M_WAIT, MT_DATA);
922 1.45 tv mlen = MLEN;
923 1.45 tv }
924 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
925 1.121 yamt if (sock_loan_thresh >= 0 &&
926 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
927 1.121 yamt space >= sock_loan_thresh &&
928 1.64 thorpej (len = sosend_loan(so, uio, m,
929 1.64 thorpej space)) != 0) {
930 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
931 1.64 thorpej space -= len;
932 1.64 thorpej goto have_data;
933 1.64 thorpej }
934 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
935 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
936 1.78 matt m_clget(m, M_WAIT);
937 1.45 tv if ((m->m_flags & M_EXT) == 0)
938 1.45 tv goto nopages;
939 1.45 tv mlen = MCLBYTES;
940 1.45 tv if (atomic && top == 0) {
941 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
942 1.54 lukem resid);
943 1.45 tv m->m_data += max_hdr;
944 1.45 tv } else
945 1.58 jdolecek len = lmin(MCLBYTES, resid);
946 1.45 tv space -= len;
947 1.45 tv } else {
948 1.64 thorpej nopages:
949 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
950 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
951 1.45 tv space -= len;
952 1.45 tv /*
953 1.45 tv * For datagram protocols, leave room
954 1.45 tv * for protocol headers in first mbuf.
955 1.45 tv */
956 1.45 tv if (atomic && top == 0 && len < mlen)
957 1.45 tv MH_ALIGN(m, len);
958 1.45 tv }
959 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
960 1.64 thorpej have_data:
961 1.45 tv resid = uio->uio_resid;
962 1.45 tv m->m_len = len;
963 1.45 tv *mp = m;
964 1.45 tv top->m_pkthdr.len += len;
965 1.160 ad s = splsoftnet();
966 1.160 ad solock(so);
967 1.144 dyoung if (error != 0)
968 1.45 tv goto release;
969 1.45 tv mp = &m->m_next;
970 1.45 tv if (resid <= 0) {
971 1.45 tv if (flags & MSG_EOR)
972 1.45 tv top->m_flags |= M_EOR;
973 1.45 tv break;
974 1.45 tv }
975 1.45 tv } while (space > 0 && atomic);
976 1.108 perry
977 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
978 1.160 ad error = EPIPE;
979 1.160 ad goto release;
980 1.160 ad }
981 1.45 tv if (dontroute)
982 1.45 tv so->so_options |= SO_DONTROUTE;
983 1.45 tv if (resid > 0)
984 1.45 tv so->so_state |= SS_MORETOCOME;
985 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
986 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
987 1.160 ad top, addr, control, curlwp);
988 1.45 tv if (dontroute)
989 1.45 tv so->so_options &= ~SO_DONTROUTE;
990 1.45 tv if (resid > 0)
991 1.45 tv so->so_state &= ~SS_MORETOCOME;
992 1.45 tv clen = 0;
993 1.144 dyoung control = NULL;
994 1.144 dyoung top = NULL;
995 1.45 tv mp = ⊤
996 1.144 dyoung if (error != 0)
997 1.1 cgd goto release;
998 1.1 cgd } while (resid && space > 0);
999 1.1 cgd } while (resid);
1000 1.1 cgd
1001 1.54 lukem release:
1002 1.1 cgd sbunlock(&so->so_snd);
1003 1.54 lukem out:
1004 1.160 ad sounlock(so);
1005 1.160 ad splx(s);
1006 1.1 cgd if (top)
1007 1.1 cgd m_freem(top);
1008 1.1 cgd if (control)
1009 1.1 cgd m_freem(control);
1010 1.1 cgd return (error);
1011 1.1 cgd }
1012 1.1 cgd
1013 1.1 cgd /*
1014 1.159 ad * Following replacement or removal of the first mbuf on the first
1015 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1016 1.159 ad * into the socket buffer so that other consumers see the values
1017 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1018 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1019 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1020 1.159 ad */
1021 1.159 ad static void
1022 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1023 1.159 ad {
1024 1.159 ad
1025 1.160 ad KASSERT(solocked(sb->sb_so));
1026 1.160 ad
1027 1.159 ad /*
1028 1.159 ad * First, update for the new value of nextrecord. If necessary,
1029 1.159 ad * make it the first record.
1030 1.159 ad */
1031 1.159 ad if (sb->sb_mb != NULL)
1032 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1033 1.159 ad else
1034 1.159 ad sb->sb_mb = nextrecord;
1035 1.159 ad
1036 1.159 ad /*
1037 1.159 ad * Now update any dependent socket buffer fields to reflect
1038 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1039 1.159 ad * the addition of a second clause that takes care of the
1040 1.159 ad * case where sb_mb has been updated, but remains the last
1041 1.159 ad * record.
1042 1.159 ad */
1043 1.159 ad if (sb->sb_mb == NULL) {
1044 1.159 ad sb->sb_mbtail = NULL;
1045 1.159 ad sb->sb_lastrecord = NULL;
1046 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1047 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1048 1.159 ad }
1049 1.159 ad
1050 1.159 ad /*
1051 1.1 cgd * Implement receive operations on a socket.
1052 1.1 cgd * We depend on the way that records are added to the sockbuf
1053 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1054 1.1 cgd * must begin with an address if the protocol so specifies,
1055 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1056 1.1 cgd * and then zero or more mbufs of data.
1057 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1058 1.1 cgd * we splx() while doing the actual copy to user space.
1059 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1060 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1061 1.1 cgd *
1062 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1063 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1064 1.1 cgd * only for the count in uio_resid.
1065 1.1 cgd */
1066 1.3 andrew int
1067 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1068 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1069 1.1 cgd {
1070 1.116 yamt struct lwp *l = curlwp;
1071 1.160 ad struct mbuf *m, **mp, *mt;
1072 1.146 dyoung int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1073 1.99 matt const struct protosw *pr;
1074 1.54 lukem struct mbuf *nextrecord;
1075 1.67 he int mbuf_removed = 0;
1076 1.146 dyoung const struct domain *dom;
1077 1.64 thorpej
1078 1.54 lukem pr = so->so_proto;
1079 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1080 1.146 dyoung dom = pr->pr_domain;
1081 1.1 cgd mp = mp0;
1082 1.54 lukem type = 0;
1083 1.54 lukem orig_resid = uio->uio_resid;
1084 1.102 jonathan
1085 1.144 dyoung if (paddr != NULL)
1086 1.144 dyoung *paddr = NULL;
1087 1.144 dyoung if (controlp != NULL)
1088 1.144 dyoung *controlp = NULL;
1089 1.144 dyoung if (flagsp != NULL)
1090 1.1 cgd flags = *flagsp &~ MSG_EOR;
1091 1.1 cgd else
1092 1.1 cgd flags = 0;
1093 1.66 enami
1094 1.66 enami if ((flags & MSG_DONTWAIT) == 0)
1095 1.117 yamt sodopendfree();
1096 1.66 enami
1097 1.1 cgd if (flags & MSG_OOB) {
1098 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1099 1.160 ad solock(so);
1100 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1101 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1102 1.160 ad sounlock(so);
1103 1.1 cgd if (error)
1104 1.1 cgd goto bad;
1105 1.1 cgd do {
1106 1.134 christos error = uiomove(mtod(m, void *),
1107 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
1108 1.1 cgd m = m_free(m);
1109 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1110 1.54 lukem bad:
1111 1.144 dyoung if (m != NULL)
1112 1.1 cgd m_freem(m);
1113 1.144 dyoung return error;
1114 1.1 cgd }
1115 1.144 dyoung if (mp != NULL)
1116 1.140 dyoung *mp = NULL;
1117 1.160 ad
1118 1.160 ad /*
1119 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1120 1.160 ad * protocol processing soft interrupts from interrupting us and
1121 1.160 ad * blocking (expensive).
1122 1.160 ad */
1123 1.160 ad s = splsoftnet();
1124 1.160 ad solock(so);
1125 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1126 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1127 1.1 cgd
1128 1.54 lukem restart:
1129 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1130 1.160 ad sounlock(so);
1131 1.160 ad splx(s);
1132 1.144 dyoung return error;
1133 1.160 ad }
1134 1.1 cgd
1135 1.1 cgd m = so->so_rcv.sb_mb;
1136 1.1 cgd /*
1137 1.1 cgd * If we have less data than requested, block awaiting more
1138 1.1 cgd * (subject to any timeout) if:
1139 1.15 mycroft * 1. the current count is less than the low water mark,
1140 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1141 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1142 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1143 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1144 1.1 cgd * we have to do the receive in sections, and thus risk returning
1145 1.1 cgd * a short count if a timeout or signal occurs after we start.
1146 1.1 cgd */
1147 1.144 dyoung if (m == NULL ||
1148 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1149 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1150 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1151 1.144 dyoung ((flags & MSG_WAITALL) &&
1152 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1153 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1154 1.1 cgd #ifdef DIAGNOSTIC
1155 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1156 1.1 cgd panic("receive 1");
1157 1.1 cgd #endif
1158 1.1 cgd if (so->so_error) {
1159 1.144 dyoung if (m != NULL)
1160 1.15 mycroft goto dontblock;
1161 1.1 cgd error = so->so_error;
1162 1.1 cgd if ((flags & MSG_PEEK) == 0)
1163 1.1 cgd so->so_error = 0;
1164 1.1 cgd goto release;
1165 1.1 cgd }
1166 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1167 1.144 dyoung if (m != NULL)
1168 1.15 mycroft goto dontblock;
1169 1.1 cgd else
1170 1.1 cgd goto release;
1171 1.1 cgd }
1172 1.144 dyoung for (; m != NULL; m = m->m_next)
1173 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1174 1.1 cgd m = so->so_rcv.sb_mb;
1175 1.1 cgd goto dontblock;
1176 1.1 cgd }
1177 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1178 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1179 1.1 cgd error = ENOTCONN;
1180 1.1 cgd goto release;
1181 1.1 cgd }
1182 1.1 cgd if (uio->uio_resid == 0)
1183 1.1 cgd goto release;
1184 1.151 ad if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1185 1.1 cgd error = EWOULDBLOCK;
1186 1.1 cgd goto release;
1187 1.1 cgd }
1188 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1189 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1190 1.1 cgd sbunlock(&so->so_rcv);
1191 1.1 cgd error = sbwait(&so->so_rcv);
1192 1.160 ad if (error != 0) {
1193 1.160 ad sounlock(so);
1194 1.160 ad splx(s);
1195 1.144 dyoung return error;
1196 1.160 ad }
1197 1.1 cgd goto restart;
1198 1.1 cgd }
1199 1.54 lukem dontblock:
1200 1.69 thorpej /*
1201 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1202 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1203 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1204 1.159 ad * various socket buffer pointers and local stack versions of the
1205 1.159 ad * pointers in sync, pushing out modifications before dropping the
1206 1.160 ad * socket lock, and re-reading them when picking it up.
1207 1.159 ad *
1208 1.159 ad * Otherwise, we will race with the network stack appending new data
1209 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1210 1.159 ad * versions of the field, possibly resulting in socket buffer
1211 1.159 ad * corruption.
1212 1.159 ad *
1213 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1214 1.159 ad * readers from pulling off the front of the socket buffer.
1215 1.69 thorpej */
1216 1.144 dyoung if (l != NULL)
1217 1.157 ad l->l_ru.ru_msgrcv++;
1218 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1219 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1220 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1221 1.1 cgd nextrecord = m->m_nextpkt;
1222 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1223 1.1 cgd #ifdef DIAGNOSTIC
1224 1.1 cgd if (m->m_type != MT_SONAME)
1225 1.1 cgd panic("receive 1a");
1226 1.1 cgd #endif
1227 1.3 andrew orig_resid = 0;
1228 1.1 cgd if (flags & MSG_PEEK) {
1229 1.1 cgd if (paddr)
1230 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1231 1.1 cgd m = m->m_next;
1232 1.1 cgd } else {
1233 1.1 cgd sbfree(&so->so_rcv, m);
1234 1.67 he mbuf_removed = 1;
1235 1.144 dyoung if (paddr != NULL) {
1236 1.1 cgd *paddr = m;
1237 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1238 1.144 dyoung m->m_next = NULL;
1239 1.1 cgd m = so->so_rcv.sb_mb;
1240 1.1 cgd } else {
1241 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1242 1.1 cgd m = so->so_rcv.sb_mb;
1243 1.1 cgd }
1244 1.159 ad sbsync(&so->so_rcv, nextrecord);
1245 1.1 cgd }
1246 1.1 cgd }
1247 1.159 ad
1248 1.159 ad /*
1249 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1250 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1251 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1252 1.159 ad * perform externalization (or freeing if controlp == NULL).
1253 1.159 ad */
1254 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1255 1.159 ad struct mbuf *cm = NULL, *cmn;
1256 1.159 ad struct mbuf **cme = &cm;
1257 1.159 ad
1258 1.159 ad do {
1259 1.159 ad if (flags & MSG_PEEK) {
1260 1.159 ad if (controlp != NULL) {
1261 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1262 1.159 ad controlp = &(*controlp)->m_next;
1263 1.159 ad }
1264 1.159 ad m = m->m_next;
1265 1.159 ad } else {
1266 1.159 ad sbfree(&so->so_rcv, m);
1267 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1268 1.144 dyoung m->m_next = NULL;
1269 1.159 ad *cme = m;
1270 1.159 ad cme = &(*cme)->m_next;
1271 1.1 cgd m = so->so_rcv.sb_mb;
1272 1.159 ad }
1273 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1274 1.159 ad if ((flags & MSG_PEEK) == 0)
1275 1.159 ad sbsync(&so->so_rcv, nextrecord);
1276 1.159 ad for (; cm != NULL; cm = cmn) {
1277 1.159 ad cmn = cm->m_next;
1278 1.159 ad cm->m_next = NULL;
1279 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1280 1.159 ad if (controlp != NULL) {
1281 1.159 ad if (dom->dom_externalize != NULL &&
1282 1.159 ad type == SCM_RIGHTS) {
1283 1.160 ad sounlock(so);
1284 1.159 ad splx(s);
1285 1.159 ad error = (*dom->dom_externalize)(cm, l);
1286 1.159 ad s = splsoftnet();
1287 1.160 ad solock(so);
1288 1.159 ad }
1289 1.159 ad *controlp = cm;
1290 1.159 ad while (*controlp != NULL)
1291 1.159 ad controlp = &(*controlp)->m_next;
1292 1.1 cgd } else {
1293 1.106 itojun /*
1294 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1295 1.106 itojun * through the read path rather than recv.
1296 1.106 itojun */
1297 1.159 ad if (dom->dom_dispose != NULL &&
1298 1.159 ad type == SCM_RIGHTS) {
1299 1.160 ad sounlock(so);
1300 1.159 ad (*dom->dom_dispose)(cm);
1301 1.160 ad solock(so);
1302 1.159 ad }
1303 1.159 ad m_freem(cm);
1304 1.1 cgd }
1305 1.1 cgd }
1306 1.159 ad if (m != NULL)
1307 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1308 1.159 ad else
1309 1.159 ad nextrecord = so->so_rcv.sb_mb;
1310 1.159 ad orig_resid = 0;
1311 1.1 cgd }
1312 1.69 thorpej
1313 1.159 ad /* If m is non-NULL, we have some data to read. */
1314 1.159 ad if (__predict_true(m != NULL)) {
1315 1.1 cgd type = m->m_type;
1316 1.1 cgd if (type == MT_OOBDATA)
1317 1.1 cgd flags |= MSG_OOB;
1318 1.1 cgd }
1319 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1320 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1321 1.69 thorpej
1322 1.1 cgd moff = 0;
1323 1.1 cgd offset = 0;
1324 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1325 1.1 cgd if (m->m_type == MT_OOBDATA) {
1326 1.1 cgd if (type != MT_OOBDATA)
1327 1.1 cgd break;
1328 1.1 cgd } else if (type == MT_OOBDATA)
1329 1.1 cgd break;
1330 1.1 cgd #ifdef DIAGNOSTIC
1331 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1332 1.1 cgd panic("receive 3");
1333 1.1 cgd #endif
1334 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1335 1.1 cgd len = uio->uio_resid;
1336 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1337 1.1 cgd len = so->so_oobmark - offset;
1338 1.1 cgd if (len > m->m_len - moff)
1339 1.1 cgd len = m->m_len - moff;
1340 1.1 cgd /*
1341 1.1 cgd * If mp is set, just pass back the mbufs.
1342 1.1 cgd * Otherwise copy them out via the uio, then free.
1343 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1344 1.1 cgd * it points to next record) when we drop priority;
1345 1.1 cgd * we must note any additions to the sockbuf when we
1346 1.1 cgd * block interrupts again.
1347 1.1 cgd */
1348 1.144 dyoung if (mp == NULL) {
1349 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1350 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1351 1.160 ad sounlock(so);
1352 1.1 cgd splx(s);
1353 1.134 christos error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1354 1.20 mycroft s = splsoftnet();
1355 1.160 ad solock(so);
1356 1.144 dyoung if (error != 0) {
1357 1.67 he /*
1358 1.67 he * If any part of the record has been removed
1359 1.67 he * (such as the MT_SONAME mbuf, which will
1360 1.67 he * happen when PR_ADDR, and thus also
1361 1.67 he * PR_ATOMIC, is set), then drop the entire
1362 1.67 he * record to maintain the atomicity of the
1363 1.67 he * receive operation.
1364 1.67 he *
1365 1.67 he * This avoids a later panic("receive 1a")
1366 1.67 he * when compiled with DIAGNOSTIC.
1367 1.67 he */
1368 1.146 dyoung if (m && mbuf_removed && atomic)
1369 1.67 he (void) sbdroprecord(&so->so_rcv);
1370 1.67 he
1371 1.57 jdolecek goto release;
1372 1.67 he }
1373 1.1 cgd } else
1374 1.1 cgd uio->uio_resid -= len;
1375 1.1 cgd if (len == m->m_len - moff) {
1376 1.1 cgd if (m->m_flags & M_EOR)
1377 1.1 cgd flags |= MSG_EOR;
1378 1.1 cgd if (flags & MSG_PEEK) {
1379 1.1 cgd m = m->m_next;
1380 1.1 cgd moff = 0;
1381 1.1 cgd } else {
1382 1.1 cgd nextrecord = m->m_nextpkt;
1383 1.1 cgd sbfree(&so->so_rcv, m);
1384 1.1 cgd if (mp) {
1385 1.1 cgd *mp = m;
1386 1.1 cgd mp = &m->m_next;
1387 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1388 1.140 dyoung *mp = NULL;
1389 1.1 cgd } else {
1390 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1391 1.1 cgd m = so->so_rcv.sb_mb;
1392 1.1 cgd }
1393 1.69 thorpej /*
1394 1.69 thorpej * If m != NULL, we also know that
1395 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1396 1.69 thorpej */
1397 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1398 1.69 thorpej if (m) {
1399 1.1 cgd m->m_nextpkt = nextrecord;
1400 1.69 thorpej if (nextrecord == NULL)
1401 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1402 1.69 thorpej } else {
1403 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1404 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1405 1.69 thorpej }
1406 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1407 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1408 1.1 cgd }
1409 1.144 dyoung } else if (flags & MSG_PEEK)
1410 1.144 dyoung moff += len;
1411 1.144 dyoung else {
1412 1.160 ad if (mp != NULL) {
1413 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1414 1.160 ad if (__predict_false(mt == NULL)) {
1415 1.160 ad sounlock(so);
1416 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1417 1.160 ad solock(so);
1418 1.160 ad }
1419 1.160 ad *mp = mt;
1420 1.160 ad }
1421 1.144 dyoung m->m_data += len;
1422 1.144 dyoung m->m_len -= len;
1423 1.144 dyoung so->so_rcv.sb_cc -= len;
1424 1.1 cgd }
1425 1.1 cgd if (so->so_oobmark) {
1426 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1427 1.1 cgd so->so_oobmark -= len;
1428 1.1 cgd if (so->so_oobmark == 0) {
1429 1.1 cgd so->so_state |= SS_RCVATMARK;
1430 1.1 cgd break;
1431 1.1 cgd }
1432 1.7 cgd } else {
1433 1.1 cgd offset += len;
1434 1.7 cgd if (offset == so->so_oobmark)
1435 1.7 cgd break;
1436 1.7 cgd }
1437 1.1 cgd }
1438 1.1 cgd if (flags & MSG_EOR)
1439 1.1 cgd break;
1440 1.1 cgd /*
1441 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1442 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1443 1.1 cgd * termination. If a signal/timeout occurs, return
1444 1.1 cgd * with a short count but without error.
1445 1.1 cgd * Keep sockbuf locked against other readers.
1446 1.1 cgd */
1447 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1448 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1449 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1450 1.1 cgd break;
1451 1.68 matt /*
1452 1.68 matt * If we are peeking and the socket receive buffer is
1453 1.68 matt * full, stop since we can't get more data to peek at.
1454 1.68 matt */
1455 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1456 1.68 matt break;
1457 1.68 matt /*
1458 1.68 matt * If we've drained the socket buffer, tell the
1459 1.68 matt * protocol in case it needs to do something to
1460 1.68 matt * get it filled again.
1461 1.68 matt */
1462 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1463 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1464 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1465 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1466 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1467 1.1 cgd error = sbwait(&so->so_rcv);
1468 1.144 dyoung if (error != 0) {
1469 1.1 cgd sbunlock(&so->so_rcv);
1470 1.160 ad sounlock(so);
1471 1.1 cgd splx(s);
1472 1.144 dyoung return 0;
1473 1.1 cgd }
1474 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1475 1.1 cgd nextrecord = m->m_nextpkt;
1476 1.1 cgd }
1477 1.1 cgd }
1478 1.3 andrew
1479 1.146 dyoung if (m && atomic) {
1480 1.3 andrew flags |= MSG_TRUNC;
1481 1.3 andrew if ((flags & MSG_PEEK) == 0)
1482 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1483 1.3 andrew }
1484 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1485 1.144 dyoung if (m == NULL) {
1486 1.69 thorpej /*
1487 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1488 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1489 1.69 thorpej * there is still data in the socket buffer.
1490 1.69 thorpej */
1491 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1492 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1493 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1494 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1495 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1496 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1497 1.69 thorpej }
1498 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1499 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1500 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1501 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1502 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1503 1.1 cgd }
1504 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1505 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1506 1.3 andrew sbunlock(&so->so_rcv);
1507 1.3 andrew goto restart;
1508 1.3 andrew }
1509 1.108 perry
1510 1.144 dyoung if (flagsp != NULL)
1511 1.1 cgd *flagsp |= flags;
1512 1.54 lukem release:
1513 1.1 cgd sbunlock(&so->so_rcv);
1514 1.160 ad sounlock(so);
1515 1.1 cgd splx(s);
1516 1.144 dyoung return error;
1517 1.1 cgd }
1518 1.1 cgd
1519 1.14 mycroft int
1520 1.54 lukem soshutdown(struct socket *so, int how)
1521 1.1 cgd {
1522 1.99 matt const struct protosw *pr;
1523 1.160 ad int error;
1524 1.160 ad
1525 1.160 ad KASSERT(solocked(so));
1526 1.34 kleink
1527 1.54 lukem pr = so->so_proto;
1528 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1529 1.34 kleink return (EINVAL);
1530 1.1 cgd
1531 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1532 1.1 cgd sorflush(so);
1533 1.160 ad error = 0;
1534 1.160 ad }
1535 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1536 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1537 1.140 dyoung NULL, NULL, NULL);
1538 1.160 ad
1539 1.160 ad return error;
1540 1.1 cgd }
1541 1.1 cgd
1542 1.14 mycroft void
1543 1.54 lukem sorflush(struct socket *so)
1544 1.1 cgd {
1545 1.54 lukem struct sockbuf *sb, asb;
1546 1.99 matt const struct protosw *pr;
1547 1.160 ad
1548 1.160 ad KASSERT(solocked(so));
1549 1.1 cgd
1550 1.54 lukem sb = &so->so_rcv;
1551 1.54 lukem pr = so->so_proto;
1552 1.160 ad socantrcvmore(so);
1553 1.1 cgd sb->sb_flags |= SB_NOINTR;
1554 1.160 ad (void )sblock(sb, M_WAITOK);
1555 1.1 cgd sbunlock(sb);
1556 1.1 cgd asb = *sb;
1557 1.86 wrstuden /*
1558 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1559 1.86 wrstuden * fields valid.
1560 1.86 wrstuden */
1561 1.86 wrstuden memset(&sb->sb_startzero, 0,
1562 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1563 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1564 1.160 ad sounlock(so);
1565 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1566 1.160 ad solock(so);
1567 1.160 ad }
1568 1.98 christos sbrelease(&asb, so);
1569 1.1 cgd }
1570 1.1 cgd
1571 1.171 plunky /*
1572 1.171 plunky * internal set SOL_SOCKET options
1573 1.171 plunky */
1574 1.142 dyoung static int
1575 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1576 1.1 cgd {
1577 1.171 plunky int error, optval;
1578 1.171 plunky struct linger l;
1579 1.171 plunky struct timeval tv;
1580 1.142 dyoung
1581 1.171 plunky switch (sopt->sopt_name) {
1582 1.142 dyoung
1583 1.170 tls #ifdef INET
1584 1.170 tls case SO_ACCEPTFILTER:
1585 1.171 plunky error = do_setopt_accept_filter(so, sopt);
1586 1.170 tls if (error)
1587 1.170 tls return error;
1588 1.170 tls break;
1589 1.170 tls #endif
1590 1.170 tls
1591 1.171 plunky case SO_LINGER:
1592 1.171 plunky error = sockopt_get(sopt, &l, sizeof(l));
1593 1.171 plunky if (error)
1594 1.171 plunky return (error);
1595 1.171 plunky
1596 1.171 plunky if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1597 1.171 plunky l.l_linger > (INT_MAX / hz))
1598 1.142 dyoung return EDOM;
1599 1.171 plunky so->so_linger = l.l_linger;
1600 1.171 plunky if (l.l_onoff)
1601 1.171 plunky so->so_options |= SO_LINGER;
1602 1.171 plunky else
1603 1.171 plunky so->so_options &= ~SO_LINGER;
1604 1.171 plunky
1605 1.171 plunky break;
1606 1.1 cgd
1607 1.142 dyoung case SO_DEBUG:
1608 1.142 dyoung case SO_KEEPALIVE:
1609 1.142 dyoung case SO_DONTROUTE:
1610 1.142 dyoung case SO_USELOOPBACK:
1611 1.142 dyoung case SO_BROADCAST:
1612 1.142 dyoung case SO_REUSEADDR:
1613 1.142 dyoung case SO_REUSEPORT:
1614 1.142 dyoung case SO_OOBINLINE:
1615 1.142 dyoung case SO_TIMESTAMP:
1616 1.171 plunky error = sockopt_getint(sopt, &optval);
1617 1.171 plunky if (error)
1618 1.171 plunky return (error);
1619 1.171 plunky
1620 1.171 plunky if (optval)
1621 1.171 plunky so->so_options |= sopt->sopt_name;
1622 1.142 dyoung else
1623 1.171 plunky so->so_options &= ~sopt->sopt_name;
1624 1.142 dyoung break;
1625 1.142 dyoung
1626 1.142 dyoung case SO_SNDBUF:
1627 1.142 dyoung case SO_RCVBUF:
1628 1.142 dyoung case SO_SNDLOWAT:
1629 1.142 dyoung case SO_RCVLOWAT:
1630 1.171 plunky error = sockopt_getint(sopt, &optval);
1631 1.171 plunky if (error)
1632 1.171 plunky return (error);
1633 1.1 cgd
1634 1.142 dyoung /*
1635 1.142 dyoung * Values < 1 make no sense for any of these
1636 1.142 dyoung * options, so disallow them.
1637 1.142 dyoung */
1638 1.142 dyoung if (optval < 1)
1639 1.142 dyoung return EINVAL;
1640 1.1 cgd
1641 1.171 plunky switch (sopt->sopt_name) {
1642 1.171 plunky case SO_SNDBUF:
1643 1.171 plunky if (sbreserve(&so->so_snd, (u_long)optval, so) == 0)
1644 1.171 plunky return ENOBUFS;
1645 1.171 plunky
1646 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1647 1.171 plunky break;
1648 1.1 cgd
1649 1.1 cgd case SO_RCVBUF:
1650 1.171 plunky if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0)
1651 1.142 dyoung return ENOBUFS;
1652 1.171 plunky
1653 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1654 1.142 dyoung break;
1655 1.142 dyoung
1656 1.142 dyoung /*
1657 1.142 dyoung * Make sure the low-water is never greater than
1658 1.142 dyoung * the high-water.
1659 1.142 dyoung */
1660 1.1 cgd case SO_SNDLOWAT:
1661 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1662 1.171 plunky optval = so->so_snd.sb_hiwat;
1663 1.171 plunky
1664 1.171 plunky so->so_snd.sb_lowat = optval;
1665 1.142 dyoung break;
1666 1.171 plunky
1667 1.1 cgd case SO_RCVLOWAT:
1668 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1669 1.171 plunky optval = so->so_rcv.sb_hiwat;
1670 1.171 plunky
1671 1.171 plunky so->so_rcv.sb_lowat = optval;
1672 1.142 dyoung break;
1673 1.142 dyoung }
1674 1.142 dyoung break;
1675 1.28 thorpej
1676 1.142 dyoung case SO_SNDTIMEO:
1677 1.142 dyoung case SO_RCVTIMEO:
1678 1.171 plunky error = sockopt_get(sopt, &tv, sizeof(tv));
1679 1.171 plunky if (error)
1680 1.171 plunky return (error);
1681 1.171 plunky
1682 1.171 plunky if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz)
1683 1.142 dyoung return EDOM;
1684 1.28 thorpej
1685 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1686 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1687 1.171 plunky optval = 1;
1688 1.28 thorpej
1689 1.171 plunky switch (sopt->sopt_name) {
1690 1.142 dyoung case SO_SNDTIMEO:
1691 1.171 plunky so->so_snd.sb_timeo = optval;
1692 1.1 cgd break;
1693 1.1 cgd case SO_RCVTIMEO:
1694 1.171 plunky so->so_rcv.sb_timeo = optval;
1695 1.142 dyoung break;
1696 1.142 dyoung }
1697 1.142 dyoung break;
1698 1.1 cgd
1699 1.142 dyoung default:
1700 1.142 dyoung return ENOPROTOOPT;
1701 1.142 dyoung }
1702 1.142 dyoung return 0;
1703 1.142 dyoung }
1704 1.1 cgd
1705 1.142 dyoung int
1706 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1707 1.142 dyoung {
1708 1.142 dyoung int error, prerr;
1709 1.1 cgd
1710 1.160 ad solock(so);
1711 1.171 plunky if (sopt->sopt_level == SOL_SOCKET)
1712 1.171 plunky error = sosetopt1(so, sopt);
1713 1.142 dyoung else
1714 1.142 dyoung error = ENOPROTOOPT;
1715 1.1 cgd
1716 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1717 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1718 1.142 dyoung /* give the protocol stack a shot */
1719 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1720 1.142 dyoung if (prerr == 0)
1721 1.142 dyoung error = 0;
1722 1.142 dyoung else if (prerr != ENOPROTOOPT)
1723 1.142 dyoung error = prerr;
1724 1.171 plunky }
1725 1.160 ad sounlock(so);
1726 1.142 dyoung return error;
1727 1.1 cgd }
1728 1.1 cgd
1729 1.171 plunky /*
1730 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1731 1.171 plunky */
1732 1.171 plunky int
1733 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1734 1.171 plunky const void *val, size_t valsize)
1735 1.171 plunky {
1736 1.171 plunky struct sockopt sopt;
1737 1.171 plunky int error;
1738 1.171 plunky
1739 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1740 1.171 plunky
1741 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1742 1.171 plunky sockopt_set(&sopt, val, valsize);
1743 1.171 plunky
1744 1.171 plunky error = sosetopt(so, &sopt);
1745 1.171 plunky
1746 1.171 plunky sockopt_destroy(&sopt);
1747 1.171 plunky
1748 1.171 plunky return error;
1749 1.171 plunky }
1750 1.171 plunky
1751 1.171 plunky /*
1752 1.171 plunky * internal get SOL_SOCKET options
1753 1.171 plunky */
1754 1.171 plunky static int
1755 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1756 1.171 plunky {
1757 1.171 plunky int error, optval;
1758 1.171 plunky struct linger l;
1759 1.171 plunky struct timeval tv;
1760 1.171 plunky
1761 1.171 plunky switch (sopt->sopt_name) {
1762 1.171 plunky
1763 1.171 plunky #ifdef INET
1764 1.171 plunky case SO_ACCEPTFILTER:
1765 1.171 plunky error = do_getopt_accept_filter(so, sopt);
1766 1.171 plunky break;
1767 1.171 plunky #endif
1768 1.171 plunky
1769 1.171 plunky case SO_LINGER:
1770 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1771 1.171 plunky l.l_linger = so->so_linger;
1772 1.171 plunky
1773 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1774 1.171 plunky break;
1775 1.171 plunky
1776 1.171 plunky case SO_USELOOPBACK:
1777 1.171 plunky case SO_DONTROUTE:
1778 1.171 plunky case SO_DEBUG:
1779 1.171 plunky case SO_KEEPALIVE:
1780 1.171 plunky case SO_REUSEADDR:
1781 1.171 plunky case SO_REUSEPORT:
1782 1.171 plunky case SO_BROADCAST:
1783 1.171 plunky case SO_OOBINLINE:
1784 1.171 plunky case SO_TIMESTAMP:
1785 1.171 plunky error = sockopt_setint(sopt,
1786 1.171 plunky (so->so_options & sopt->sopt_name) ? 1 : 0);
1787 1.171 plunky break;
1788 1.171 plunky
1789 1.171 plunky case SO_TYPE:
1790 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1791 1.171 plunky break;
1792 1.171 plunky
1793 1.171 plunky case SO_ERROR:
1794 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1795 1.171 plunky so->so_error = 0;
1796 1.171 plunky break;
1797 1.171 plunky
1798 1.171 plunky case SO_SNDBUF:
1799 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1800 1.171 plunky break;
1801 1.171 plunky
1802 1.171 plunky case SO_RCVBUF:
1803 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1804 1.171 plunky break;
1805 1.171 plunky
1806 1.171 plunky case SO_SNDLOWAT:
1807 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1808 1.171 plunky break;
1809 1.171 plunky
1810 1.171 plunky case SO_RCVLOWAT:
1811 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1812 1.171 plunky break;
1813 1.171 plunky
1814 1.171 plunky case SO_SNDTIMEO:
1815 1.171 plunky case SO_RCVTIMEO:
1816 1.171 plunky optval = (sopt->sopt_name == SO_SNDTIMEO ?
1817 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1818 1.171 plunky
1819 1.171 plunky tv.tv_sec = optval / hz;
1820 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1821 1.171 plunky
1822 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1823 1.171 plunky break;
1824 1.171 plunky
1825 1.171 plunky case SO_OVERFLOWED:
1826 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1827 1.171 plunky break;
1828 1.171 plunky
1829 1.171 plunky default:
1830 1.171 plunky error = ENOPROTOOPT;
1831 1.171 plunky break;
1832 1.171 plunky }
1833 1.171 plunky
1834 1.171 plunky return (error);
1835 1.171 plunky }
1836 1.171 plunky
1837 1.14 mycroft int
1838 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
1839 1.1 cgd {
1840 1.160 ad int error;
1841 1.1 cgd
1842 1.160 ad solock(so);
1843 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
1844 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1845 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1846 1.171 plunky (PRCO_GETOPT, so, sopt));
1847 1.1 cgd } else
1848 1.160 ad error = (ENOPROTOOPT);
1849 1.1 cgd } else {
1850 1.171 plunky error = sogetopt1(so, sopt);
1851 1.171 plunky }
1852 1.171 plunky sounlock(so);
1853 1.171 plunky return (error);
1854 1.171 plunky }
1855 1.171 plunky
1856 1.171 plunky /*
1857 1.171 plunky * alloc sockopt data buffer buffer
1858 1.171 plunky * - will be released at destroy
1859 1.171 plunky */
1860 1.171 plunky static void
1861 1.171 plunky sockopt_alloc(struct sockopt *sopt, size_t len)
1862 1.171 plunky {
1863 1.171 plunky
1864 1.171 plunky KASSERT(sopt->sopt_size == 0);
1865 1.171 plunky
1866 1.171 plunky if (len > sizeof(sopt->sopt_buf))
1867 1.173 plunky sopt->sopt_data = kmem_zalloc(len, KM_SLEEP);
1868 1.171 plunky else
1869 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
1870 1.171 plunky
1871 1.171 plunky sopt->sopt_size = len;
1872 1.171 plunky }
1873 1.171 plunky
1874 1.171 plunky /*
1875 1.171 plunky * initialise sockopt storage
1876 1.171 plunky */
1877 1.171 plunky void
1878 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1879 1.171 plunky {
1880 1.1 cgd
1881 1.171 plunky memset(sopt, 0, sizeof(*sopt));
1882 1.1 cgd
1883 1.171 plunky sopt->sopt_level = level;
1884 1.171 plunky sopt->sopt_name = name;
1885 1.171 plunky sockopt_alloc(sopt, size);
1886 1.171 plunky }
1887 1.171 plunky
1888 1.171 plunky /*
1889 1.171 plunky * destroy sockopt storage
1890 1.171 plunky * - will release any held memory references
1891 1.171 plunky */
1892 1.171 plunky void
1893 1.171 plunky sockopt_destroy(struct sockopt *sopt)
1894 1.171 plunky {
1895 1.171 plunky
1896 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
1897 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
1898 1.171 plunky
1899 1.171 plunky memset(sopt, 0, sizeof(*sopt));
1900 1.171 plunky }
1901 1.171 plunky
1902 1.171 plunky /*
1903 1.171 plunky * set sockopt value
1904 1.171 plunky * - value is copied into sockopt
1905 1.171 plunky * - memory is allocated when necessary
1906 1.171 plunky */
1907 1.171 plunky int
1908 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1909 1.171 plunky {
1910 1.171 plunky
1911 1.171 plunky if (sopt->sopt_size == 0)
1912 1.171 plunky sockopt_alloc(sopt, len);
1913 1.171 plunky
1914 1.171 plunky KASSERT(sopt->sopt_size == len);
1915 1.171 plunky memcpy(sopt->sopt_data, buf, len);
1916 1.171 plunky return 0;
1917 1.171 plunky }
1918 1.171 plunky
1919 1.171 plunky /*
1920 1.171 plunky * common case of set sockopt integer value
1921 1.171 plunky */
1922 1.171 plunky int
1923 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
1924 1.171 plunky {
1925 1.171 plunky
1926 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
1927 1.171 plunky }
1928 1.171 plunky
1929 1.171 plunky /*
1930 1.171 plunky * get sockopt value
1931 1.171 plunky * - correct size must be given
1932 1.171 plunky */
1933 1.171 plunky int
1934 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
1935 1.171 plunky {
1936 1.170 tls
1937 1.171 plunky if (sopt->sopt_size != len)
1938 1.171 plunky return EINVAL;
1939 1.1 cgd
1940 1.171 plunky memcpy(buf, sopt->sopt_data, len);
1941 1.171 plunky return 0;
1942 1.171 plunky }
1943 1.1 cgd
1944 1.171 plunky /*
1945 1.171 plunky * common case of get sockopt integer value
1946 1.171 plunky */
1947 1.171 plunky int
1948 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
1949 1.171 plunky {
1950 1.1 cgd
1951 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
1952 1.171 plunky }
1953 1.1 cgd
1954 1.171 plunky /*
1955 1.171 plunky * set sockopt value from mbuf
1956 1.171 plunky * - ONLY for legacy code
1957 1.171 plunky * - mbuf is released by sockopt
1958 1.171 plunky */
1959 1.171 plunky int
1960 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
1961 1.171 plunky {
1962 1.171 plunky size_t len;
1963 1.1 cgd
1964 1.171 plunky len = m_length(m);
1965 1.1 cgd
1966 1.171 plunky if (sopt->sopt_size == 0)
1967 1.171 plunky sockopt_alloc(sopt, len);
1968 1.1 cgd
1969 1.171 plunky KASSERT(sopt->sopt_size == len);
1970 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
1971 1.171 plunky m_freem(m);
1972 1.1 cgd
1973 1.171 plunky return 0;
1974 1.171 plunky }
1975 1.1 cgd
1976 1.171 plunky /*
1977 1.171 plunky * get sockopt value into mbuf
1978 1.171 plunky * - ONLY for legacy code
1979 1.171 plunky * - mbuf to be released by the caller
1980 1.171 plunky */
1981 1.171 plunky struct mbuf *
1982 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
1983 1.171 plunky {
1984 1.171 plunky struct mbuf *m;
1985 1.107 darrenr
1986 1.171 plunky m = m_get(M_WAIT, MT_SOOPTS);
1987 1.171 plunky if (m == NULL)
1988 1.171 plunky return NULL;
1989 1.171 plunky
1990 1.171 plunky m->m_len = MLEN;
1991 1.171 plunky m_copyback(m, 0, sopt->sopt_size, sopt->sopt_data);
1992 1.171 plunky if (m_length(m) != max(sopt->sopt_size, MLEN)) {
1993 1.171 plunky m_freem(m);
1994 1.171 plunky return NULL;
1995 1.1 cgd }
1996 1.171 plunky m->m_len = min(sopt->sopt_size, MLEN);
1997 1.160 ad
1998 1.171 plunky return m;
1999 1.1 cgd }
2000 1.1 cgd
2001 1.14 mycroft void
2002 1.54 lukem sohasoutofband(struct socket *so)
2003 1.1 cgd {
2004 1.153 rmind
2005 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2006 1.153 rmind selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
2007 1.1 cgd }
2008 1.72 jdolecek
2009 1.72 jdolecek static void
2010 1.72 jdolecek filt_sordetach(struct knote *kn)
2011 1.72 jdolecek {
2012 1.72 jdolecek struct socket *so;
2013 1.72 jdolecek
2014 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2015 1.160 ad solock(so);
2016 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2017 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2018 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2019 1.160 ad sounlock(so);
2020 1.72 jdolecek }
2021 1.72 jdolecek
2022 1.72 jdolecek /*ARGSUSED*/
2023 1.72 jdolecek static int
2024 1.129 yamt filt_soread(struct knote *kn, long hint)
2025 1.72 jdolecek {
2026 1.72 jdolecek struct socket *so;
2027 1.160 ad int rv;
2028 1.72 jdolecek
2029 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2030 1.160 ad if (hint != NOTE_SUBMIT)
2031 1.160 ad solock(so);
2032 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2033 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2034 1.108 perry kn->kn_flags |= EV_EOF;
2035 1.72 jdolecek kn->kn_fflags = so->so_error;
2036 1.160 ad rv = 1;
2037 1.160 ad } else if (so->so_error) /* temporary udp error */
2038 1.160 ad rv = 1;
2039 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2040 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2041 1.160 ad else
2042 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2043 1.160 ad if (hint != NOTE_SUBMIT)
2044 1.160 ad sounlock(so);
2045 1.160 ad return rv;
2046 1.72 jdolecek }
2047 1.72 jdolecek
2048 1.72 jdolecek static void
2049 1.72 jdolecek filt_sowdetach(struct knote *kn)
2050 1.72 jdolecek {
2051 1.72 jdolecek struct socket *so;
2052 1.72 jdolecek
2053 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2054 1.160 ad solock(so);
2055 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2056 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2057 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2058 1.160 ad sounlock(so);
2059 1.72 jdolecek }
2060 1.72 jdolecek
2061 1.72 jdolecek /*ARGSUSED*/
2062 1.72 jdolecek static int
2063 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2064 1.72 jdolecek {
2065 1.72 jdolecek struct socket *so;
2066 1.160 ad int rv;
2067 1.72 jdolecek
2068 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2069 1.160 ad if (hint != NOTE_SUBMIT)
2070 1.160 ad solock(so);
2071 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2072 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2073 1.108 perry kn->kn_flags |= EV_EOF;
2074 1.72 jdolecek kn->kn_fflags = so->so_error;
2075 1.160 ad rv = 1;
2076 1.160 ad } else if (so->so_error) /* temporary udp error */
2077 1.160 ad rv = 1;
2078 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2079 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2080 1.160 ad rv = 0;
2081 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2082 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2083 1.160 ad else
2084 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2085 1.160 ad if (hint != NOTE_SUBMIT)
2086 1.160 ad sounlock(so);
2087 1.160 ad return rv;
2088 1.72 jdolecek }
2089 1.72 jdolecek
2090 1.72 jdolecek /*ARGSUSED*/
2091 1.72 jdolecek static int
2092 1.129 yamt filt_solisten(struct knote *kn, long hint)
2093 1.72 jdolecek {
2094 1.72 jdolecek struct socket *so;
2095 1.160 ad int rv;
2096 1.72 jdolecek
2097 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2098 1.72 jdolecek
2099 1.72 jdolecek /*
2100 1.72 jdolecek * Set kn_data to number of incoming connections, not
2101 1.72 jdolecek * counting partial (incomplete) connections.
2102 1.108 perry */
2103 1.160 ad if (hint != NOTE_SUBMIT)
2104 1.160 ad solock(so);
2105 1.72 jdolecek kn->kn_data = so->so_qlen;
2106 1.160 ad rv = (kn->kn_data > 0);
2107 1.160 ad if (hint != NOTE_SUBMIT)
2108 1.160 ad sounlock(so);
2109 1.160 ad return rv;
2110 1.72 jdolecek }
2111 1.72 jdolecek
2112 1.72 jdolecek static const struct filterops solisten_filtops =
2113 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
2114 1.72 jdolecek static const struct filterops soread_filtops =
2115 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
2116 1.72 jdolecek static const struct filterops sowrite_filtops =
2117 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
2118 1.72 jdolecek
2119 1.72 jdolecek int
2120 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2121 1.72 jdolecek {
2122 1.72 jdolecek struct socket *so;
2123 1.72 jdolecek struct sockbuf *sb;
2124 1.72 jdolecek
2125 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2126 1.160 ad solock(so);
2127 1.72 jdolecek switch (kn->kn_filter) {
2128 1.72 jdolecek case EVFILT_READ:
2129 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2130 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2131 1.72 jdolecek else
2132 1.72 jdolecek kn->kn_fop = &soread_filtops;
2133 1.72 jdolecek sb = &so->so_rcv;
2134 1.72 jdolecek break;
2135 1.72 jdolecek case EVFILT_WRITE:
2136 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2137 1.72 jdolecek sb = &so->so_snd;
2138 1.72 jdolecek break;
2139 1.72 jdolecek default:
2140 1.160 ad sounlock(so);
2141 1.149 pooka return (EINVAL);
2142 1.72 jdolecek }
2143 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2144 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2145 1.160 ad sounlock(so);
2146 1.72 jdolecek return (0);
2147 1.72 jdolecek }
2148 1.72 jdolecek
2149 1.154 ad static int
2150 1.154 ad sodopoll(struct socket *so, int events)
2151 1.154 ad {
2152 1.154 ad int revents;
2153 1.154 ad
2154 1.154 ad revents = 0;
2155 1.154 ad
2156 1.154 ad if (events & (POLLIN | POLLRDNORM))
2157 1.154 ad if (soreadable(so))
2158 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2159 1.154 ad
2160 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2161 1.154 ad if (sowritable(so))
2162 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2163 1.154 ad
2164 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2165 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2166 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2167 1.154 ad
2168 1.154 ad return revents;
2169 1.154 ad }
2170 1.154 ad
2171 1.154 ad int
2172 1.154 ad sopoll(struct socket *so, int events)
2173 1.154 ad {
2174 1.154 ad int revents = 0;
2175 1.154 ad
2176 1.160 ad #ifndef DIAGNOSTIC
2177 1.160 ad /*
2178 1.160 ad * Do a quick, unlocked check in expectation that the socket
2179 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2180 1.160 ad * as the solocked() assertions will fail.
2181 1.160 ad */
2182 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2183 1.154 ad return revents;
2184 1.160 ad #endif
2185 1.154 ad
2186 1.160 ad solock(so);
2187 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2188 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2189 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2190 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2191 1.154 ad }
2192 1.154 ad
2193 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2194 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2195 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2196 1.154 ad }
2197 1.154 ad }
2198 1.160 ad sounlock(so);
2199 1.154 ad
2200 1.154 ad return revents;
2201 1.154 ad }
2202 1.154 ad
2203 1.154 ad
2204 1.94 yamt #include <sys/sysctl.h>
2205 1.94 yamt
2206 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2207 1.94 yamt
2208 1.94 yamt /*
2209 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2210 1.94 yamt * value is not too small.
2211 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2212 1.94 yamt */
2213 1.94 yamt static int
2214 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2215 1.94 yamt {
2216 1.94 yamt int error, new_somaxkva;
2217 1.94 yamt struct sysctlnode node;
2218 1.94 yamt
2219 1.94 yamt new_somaxkva = somaxkva;
2220 1.94 yamt node = *rnode;
2221 1.94 yamt node.sysctl_data = &new_somaxkva;
2222 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2223 1.94 yamt if (error || newp == NULL)
2224 1.94 yamt return (error);
2225 1.94 yamt
2226 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2227 1.94 yamt return (EINVAL);
2228 1.94 yamt
2229 1.136 ad mutex_enter(&so_pendfree_lock);
2230 1.94 yamt somaxkva = new_somaxkva;
2231 1.136 ad cv_broadcast(&socurkva_cv);
2232 1.136 ad mutex_exit(&so_pendfree_lock);
2233 1.94 yamt
2234 1.94 yamt return (error);
2235 1.94 yamt }
2236 1.94 yamt
2237 1.94 yamt SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2238 1.94 yamt {
2239 1.94 yamt
2240 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2241 1.97 atatat CTLFLAG_PERMANENT,
2242 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2243 1.97 atatat NULL, 0, NULL, 0,
2244 1.97 atatat CTL_KERN, CTL_EOL);
2245 1.97 atatat
2246 1.97 atatat sysctl_createv(clog, 0, NULL, NULL,
2247 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2248 1.103 atatat CTLTYPE_INT, "somaxkva",
2249 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2250 1.103 atatat "used for socket buffers"),
2251 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2252 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2253 1.94 yamt }
2254