uipc_socket.c revision 1.190 1 1.190 dyoung /* $NetBSD: uipc_socket.c,v 1.190 2009/09/11 22:06:29 dyoung Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.59 lukem #include <sys/cdefs.h>
66 1.190 dyoung __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.190 2009/09/11 22:06:29 dyoung Exp $");
67 1.64 thorpej
68 1.179 christos #include "opt_compat_netbsd.h"
69 1.64 thorpej #include "opt_sock_counters.h"
70 1.64 thorpej #include "opt_sosend_loan.h"
71 1.81 martin #include "opt_mbuftrace.h"
72 1.84 ragge #include "opt_somaxkva.h"
73 1.167 ad #include "opt_multiprocessor.h" /* XXX */
74 1.1 cgd
75 1.9 mycroft #include <sys/param.h>
76 1.9 mycroft #include <sys/systm.h>
77 1.9 mycroft #include <sys/proc.h>
78 1.9 mycroft #include <sys/file.h>
79 1.142 dyoung #include <sys/filedesc.h>
80 1.173 plunky #include <sys/kmem.h>
81 1.9 mycroft #include <sys/mbuf.h>
82 1.9 mycroft #include <sys/domain.h>
83 1.9 mycroft #include <sys/kernel.h>
84 1.9 mycroft #include <sys/protosw.h>
85 1.9 mycroft #include <sys/socket.h>
86 1.9 mycroft #include <sys/socketvar.h>
87 1.21 christos #include <sys/signalvar.h>
88 1.9 mycroft #include <sys/resourcevar.h>
89 1.174 pooka #include <sys/uidinfo.h>
90 1.72 jdolecek #include <sys/event.h>
91 1.89 christos #include <sys/poll.h>
92 1.118 elad #include <sys/kauth.h>
93 1.136 ad #include <sys/mutex.h>
94 1.136 ad #include <sys/condvar.h>
95 1.37 thorpej
96 1.179 christos #ifdef COMPAT_50
97 1.179 christos #include <compat/sys/time.h>
98 1.184 christos #include <compat/sys/socket.h>
99 1.179 christos #endif
100 1.179 christos
101 1.64 thorpej #include <uvm/uvm.h>
102 1.64 thorpej
103 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105 1.37 thorpej
106 1.142 dyoung extern const struct fileops socketops;
107 1.142 dyoung
108 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
109 1.54 lukem int somaxconn = SOMAXCONN;
110 1.160 ad kmutex_t *softnet_lock;
111 1.49 jonathan
112 1.64 thorpej #ifdef SOSEND_COUNTERS
113 1.64 thorpej #include <sys/device.h>
114 1.64 thorpej
115 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 1.64 thorpej NULL, "sosend", "loan big");
117 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 1.64 thorpej NULL, "sosend", "copy big");
119 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 1.64 thorpej NULL, "sosend", "copy small");
121 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 1.64 thorpej NULL, "sosend", "kva limit");
123 1.64 thorpej
124 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125 1.64 thorpej
126 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
127 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
128 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
129 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 1.64 thorpej #else
131 1.64 thorpej
132 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
133 1.64 thorpej
134 1.64 thorpej #endif /* SOSEND_COUNTERS */
135 1.64 thorpej
136 1.119 yamt static struct callback_entry sokva_reclaimerentry;
137 1.1 cgd
138 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
139 1.121 yamt int sock_loan_thresh = -1;
140 1.71 thorpej #else
141 1.121 yamt int sock_loan_thresh = 4096;
142 1.65 thorpej #endif
143 1.64 thorpej
144 1.136 ad static kmutex_t so_pendfree_lock;
145 1.113 thorpej static struct mbuf *so_pendfree;
146 1.64 thorpej
147 1.84 ragge #ifndef SOMAXKVA
148 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
149 1.84 ragge #endif
150 1.84 ragge int somaxkva = SOMAXKVA;
151 1.113 thorpej static int socurkva;
152 1.136 ad static kcondvar_t socurkva_cv;
153 1.64 thorpej
154 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
155 1.64 thorpej
156 1.117 yamt static size_t sodopendfree(void);
157 1.117 yamt static size_t sodopendfreel(void);
158 1.93 yamt
159 1.178 pooka static void sysctl_kern_somaxkva_setup(void);
160 1.178 pooka static struct sysctllog *socket_sysctllog;
161 1.178 pooka
162 1.113 thorpej static vsize_t
163 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
164 1.80 yamt {
165 1.98 christos int error;
166 1.80 yamt
167 1.136 ad mutex_enter(&so_pendfree_lock);
168 1.80 yamt while (socurkva + len > somaxkva) {
169 1.93 yamt size_t freed;
170 1.93 yamt
171 1.93 yamt /*
172 1.93 yamt * try to do pendfree.
173 1.93 yamt */
174 1.93 yamt
175 1.117 yamt freed = sodopendfreel();
176 1.93 yamt
177 1.93 yamt /*
178 1.93 yamt * if some kva was freed, try again.
179 1.93 yamt */
180 1.93 yamt
181 1.93 yamt if (freed)
182 1.80 yamt continue;
183 1.93 yamt
184 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
185 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
186 1.98 christos if (error) {
187 1.98 christos len = 0;
188 1.98 christos break;
189 1.98 christos }
190 1.80 yamt }
191 1.93 yamt socurkva += len;
192 1.136 ad mutex_exit(&so_pendfree_lock);
193 1.98 christos return len;
194 1.95 yamt }
195 1.95 yamt
196 1.113 thorpej static void
197 1.95 yamt sokvaunreserve(vsize_t len)
198 1.95 yamt {
199 1.95 yamt
200 1.136 ad mutex_enter(&so_pendfree_lock);
201 1.95 yamt socurkva -= len;
202 1.136 ad cv_broadcast(&socurkva_cv);
203 1.136 ad mutex_exit(&so_pendfree_lock);
204 1.95 yamt }
205 1.95 yamt
206 1.95 yamt /*
207 1.95 yamt * sokvaalloc: allocate kva for loan.
208 1.95 yamt */
209 1.95 yamt
210 1.95 yamt vaddr_t
211 1.95 yamt sokvaalloc(vsize_t len, struct socket *so)
212 1.95 yamt {
213 1.95 yamt vaddr_t lva;
214 1.95 yamt
215 1.95 yamt /*
216 1.95 yamt * reserve kva.
217 1.95 yamt */
218 1.95 yamt
219 1.98 christos if (sokvareserve(so, len) == 0)
220 1.98 christos return 0;
221 1.93 yamt
222 1.93 yamt /*
223 1.93 yamt * allocate kva.
224 1.93 yamt */
225 1.80 yamt
226 1.109 yamt lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 1.95 yamt if (lva == 0) {
228 1.95 yamt sokvaunreserve(len);
229 1.80 yamt return (0);
230 1.95 yamt }
231 1.80 yamt
232 1.80 yamt return lva;
233 1.80 yamt }
234 1.80 yamt
235 1.93 yamt /*
236 1.93 yamt * sokvafree: free kva for loan.
237 1.93 yamt */
238 1.93 yamt
239 1.80 yamt void
240 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
241 1.80 yamt {
242 1.93 yamt
243 1.93 yamt /*
244 1.93 yamt * free kva.
245 1.93 yamt */
246 1.80 yamt
247 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
248 1.93 yamt
249 1.93 yamt /*
250 1.93 yamt * unreserve kva.
251 1.93 yamt */
252 1.93 yamt
253 1.95 yamt sokvaunreserve(len);
254 1.80 yamt }
255 1.80 yamt
256 1.64 thorpej static void
257 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
258 1.64 thorpej {
259 1.156 yamt vaddr_t sva, eva;
260 1.64 thorpej vsize_t len;
261 1.156 yamt int npgs;
262 1.156 yamt
263 1.156 yamt KASSERT(pgs != NULL);
264 1.64 thorpej
265 1.64 thorpej eva = round_page((vaddr_t) buf + size);
266 1.64 thorpej sva = trunc_page((vaddr_t) buf);
267 1.64 thorpej len = eva - sva;
268 1.64 thorpej npgs = len >> PAGE_SHIFT;
269 1.64 thorpej
270 1.64 thorpej pmap_kremove(sva, len);
271 1.64 thorpej pmap_update(pmap_kernel());
272 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
273 1.80 yamt sokvafree(sva, len);
274 1.64 thorpej }
275 1.64 thorpej
276 1.64 thorpej static size_t
277 1.152 matt sodopendfree(void)
278 1.64 thorpej {
279 1.93 yamt size_t rv;
280 1.64 thorpej
281 1.160 ad if (__predict_true(so_pendfree == NULL))
282 1.160 ad return 0;
283 1.160 ad
284 1.136 ad mutex_enter(&so_pendfree_lock);
285 1.117 yamt rv = sodopendfreel();
286 1.136 ad mutex_exit(&so_pendfree_lock);
287 1.93 yamt
288 1.93 yamt return rv;
289 1.93 yamt }
290 1.93 yamt
291 1.93 yamt /*
292 1.93 yamt * sodopendfreel: free mbufs on "pendfree" list.
293 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
294 1.93 yamt *
295 1.136 ad * => called with so_pendfree_lock held.
296 1.93 yamt */
297 1.93 yamt
298 1.93 yamt static size_t
299 1.152 matt sodopendfreel(void)
300 1.93 yamt {
301 1.137 ad struct mbuf *m, *next;
302 1.93 yamt size_t rv = 0;
303 1.93 yamt
304 1.136 ad KASSERT(mutex_owned(&so_pendfree_lock));
305 1.64 thorpej
306 1.137 ad while (so_pendfree != NULL) {
307 1.64 thorpej m = so_pendfree;
308 1.93 yamt so_pendfree = NULL;
309 1.136 ad mutex_exit(&so_pendfree_lock);
310 1.93 yamt
311 1.93 yamt for (; m != NULL; m = next) {
312 1.93 yamt next = m->m_next;
313 1.156 yamt KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
314 1.156 yamt KASSERT(m->m_ext.ext_refcnt == 0);
315 1.93 yamt
316 1.93 yamt rv += m->m_ext.ext_size;
317 1.156 yamt sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
318 1.93 yamt m->m_ext.ext_size);
319 1.145 ad pool_cache_put(mb_cache, m);
320 1.93 yamt }
321 1.64 thorpej
322 1.136 ad mutex_enter(&so_pendfree_lock);
323 1.64 thorpej }
324 1.64 thorpej
325 1.64 thorpej return (rv);
326 1.64 thorpej }
327 1.64 thorpej
328 1.80 yamt void
329 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
330 1.64 thorpej {
331 1.64 thorpej
332 1.156 yamt KASSERT(m != NULL);
333 1.64 thorpej
334 1.93 yamt /*
335 1.93 yamt * postpone freeing mbuf.
336 1.93 yamt *
337 1.93 yamt * we can't do it in interrupt context
338 1.93 yamt * because we need to put kva back to kernel_map.
339 1.93 yamt */
340 1.93 yamt
341 1.136 ad mutex_enter(&so_pendfree_lock);
342 1.92 yamt m->m_next = so_pendfree;
343 1.92 yamt so_pendfree = m;
344 1.136 ad cv_broadcast(&socurkva_cv);
345 1.136 ad mutex_exit(&so_pendfree_lock);
346 1.64 thorpej }
347 1.64 thorpej
348 1.64 thorpej static long
349 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
350 1.64 thorpej {
351 1.64 thorpej struct iovec *iov = uio->uio_iov;
352 1.64 thorpej vaddr_t sva, eva;
353 1.64 thorpej vsize_t len;
354 1.156 yamt vaddr_t lva;
355 1.156 yamt int npgs, error;
356 1.156 yamt vaddr_t va;
357 1.156 yamt int i;
358 1.64 thorpej
359 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
360 1.64 thorpej return (0);
361 1.64 thorpej
362 1.64 thorpej if (iov->iov_len < (size_t) space)
363 1.64 thorpej space = iov->iov_len;
364 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
365 1.64 thorpej space = SOCK_LOAN_CHUNK;
366 1.64 thorpej
367 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
368 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
369 1.64 thorpej len = eva - sva;
370 1.64 thorpej npgs = len >> PAGE_SHIFT;
371 1.64 thorpej
372 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
373 1.79 thorpej
374 1.80 yamt lva = sokvaalloc(len, so);
375 1.64 thorpej if (lva == 0)
376 1.80 yamt return 0;
377 1.64 thorpej
378 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
379 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
380 1.64 thorpej if (error) {
381 1.80 yamt sokvafree(lva, len);
382 1.64 thorpej return (0);
383 1.64 thorpej }
384 1.64 thorpej
385 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
386 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
387 1.79 thorpej VM_PROT_READ);
388 1.64 thorpej pmap_update(pmap_kernel());
389 1.64 thorpej
390 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
391 1.64 thorpej
392 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
393 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
394 1.64 thorpej
395 1.64 thorpej uio->uio_resid -= space;
396 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
397 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
398 1.64 thorpej uio->uio_iov->iov_len -= space;
399 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
400 1.64 thorpej uio->uio_iov++;
401 1.64 thorpej uio->uio_iovcnt--;
402 1.64 thorpej }
403 1.64 thorpej
404 1.64 thorpej return (space);
405 1.64 thorpej }
406 1.64 thorpej
407 1.119 yamt static int
408 1.129 yamt sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
409 1.119 yamt {
410 1.119 yamt
411 1.119 yamt KASSERT(ce == &sokva_reclaimerentry);
412 1.119 yamt KASSERT(obj == NULL);
413 1.119 yamt
414 1.119 yamt sodopendfree();
415 1.119 yamt if (!vm_map_starved_p(kernel_map)) {
416 1.119 yamt return CALLBACK_CHAIN_ABORT;
417 1.119 yamt }
418 1.119 yamt return CALLBACK_CHAIN_CONTINUE;
419 1.119 yamt }
420 1.119 yamt
421 1.142 dyoung struct mbuf *
422 1.147 dyoung getsombuf(struct socket *so, int type)
423 1.142 dyoung {
424 1.142 dyoung struct mbuf *m;
425 1.142 dyoung
426 1.147 dyoung m = m_get(M_WAIT, type);
427 1.142 dyoung MCLAIM(m, so->so_mowner);
428 1.142 dyoung return m;
429 1.142 dyoung }
430 1.142 dyoung
431 1.119 yamt void
432 1.119 yamt soinit(void)
433 1.119 yamt {
434 1.119 yamt
435 1.178 pooka sysctl_kern_somaxkva_setup();
436 1.178 pooka
437 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
438 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
439 1.136 ad cv_init(&socurkva_cv, "sokva");
440 1.166 ad soinit2();
441 1.136 ad
442 1.119 yamt /* Set the initial adjusted socket buffer size. */
443 1.119 yamt if (sb_max_set(sb_max))
444 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
445 1.119 yamt
446 1.119 yamt callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
447 1.119 yamt &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
448 1.119 yamt }
449 1.119 yamt
450 1.1 cgd /*
451 1.1 cgd * Socket operation routines.
452 1.1 cgd * These routines are called by the routines in
453 1.1 cgd * sys_socket.c or from a system process, and
454 1.1 cgd * implement the semantics of socket operations by
455 1.1 cgd * switching out to the protocol specific routines.
456 1.1 cgd */
457 1.1 cgd /*ARGSUSED*/
458 1.3 andrew int
459 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
460 1.160 ad struct socket *lockso)
461 1.1 cgd {
462 1.99 matt const struct protosw *prp;
463 1.54 lukem struct socket *so;
464 1.115 yamt uid_t uid;
465 1.160 ad int error;
466 1.160 ad kmutex_t *lock;
467 1.1 cgd
468 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
469 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
470 1.132 elad KAUTH_ARG(proto));
471 1.140 dyoung if (error != 0)
472 1.140 dyoung return error;
473 1.127 elad
474 1.1 cgd if (proto)
475 1.1 cgd prp = pffindproto(dom, proto, type);
476 1.1 cgd else
477 1.1 cgd prp = pffindtype(dom, type);
478 1.140 dyoung if (prp == NULL) {
479 1.120 ginsbach /* no support for domain */
480 1.120 ginsbach if (pffinddomain(dom) == 0)
481 1.140 dyoung return EAFNOSUPPORT;
482 1.120 ginsbach /* no support for socket type */
483 1.120 ginsbach if (proto == 0 && type != 0)
484 1.140 dyoung return EPROTOTYPE;
485 1.140 dyoung return EPROTONOSUPPORT;
486 1.120 ginsbach }
487 1.140 dyoung if (prp->pr_usrreq == NULL)
488 1.140 dyoung return EPROTONOSUPPORT;
489 1.1 cgd if (prp->pr_type != type)
490 1.140 dyoung return EPROTOTYPE;
491 1.160 ad
492 1.160 ad so = soget(true);
493 1.1 cgd so->so_type = type;
494 1.1 cgd so->so_proto = prp;
495 1.33 matt so->so_send = sosend;
496 1.33 matt so->so_receive = soreceive;
497 1.78 matt #ifdef MBUFTRACE
498 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
499 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
500 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
501 1.78 matt #endif
502 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
503 1.115 yamt so->so_uidinfo = uid_find(uid);
504 1.168 yamt so->so_egid = kauth_cred_getegid(l->l_cred);
505 1.168 yamt so->so_cpid = l->l_proc->p_pid;
506 1.160 ad if (lockso != NULL) {
507 1.160 ad /* Caller wants us to share a lock. */
508 1.160 ad lock = lockso->so_lock;
509 1.160 ad so->so_lock = lock;
510 1.160 ad mutex_obj_hold(lock);
511 1.160 ad mutex_enter(lock);
512 1.160 ad } else {
513 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
514 1.160 ad }
515 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
516 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
517 1.160 ad KASSERT(solocked(so));
518 1.140 dyoung if (error != 0) {
519 1.1 cgd so->so_state |= SS_NOFDREF;
520 1.1 cgd sofree(so);
521 1.140 dyoung return error;
522 1.1 cgd }
523 1.160 ad sounlock(so);
524 1.1 cgd *aso = so;
525 1.140 dyoung return 0;
526 1.1 cgd }
527 1.1 cgd
528 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
529 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
530 1.142 dyoung */
531 1.142 dyoung int
532 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
533 1.142 dyoung struct lwp *l, int *fdout)
534 1.142 dyoung {
535 1.142 dyoung struct socket *so;
536 1.142 dyoung struct file *fp;
537 1.142 dyoung int fd, error;
538 1.142 dyoung
539 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
540 1.142 dyoung return (error);
541 1.142 dyoung fp->f_flag = FREAD|FWRITE;
542 1.142 dyoung fp->f_type = DTYPE_SOCKET;
543 1.142 dyoung fp->f_ops = &socketops;
544 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
545 1.142 dyoung if (error != 0) {
546 1.155 ad fd_abort(curproc, fp, fd);
547 1.142 dyoung } else {
548 1.142 dyoung if (sop != NULL)
549 1.142 dyoung *sop = so;
550 1.142 dyoung fp->f_data = so;
551 1.155 ad fd_affix(curproc, fp, fd);
552 1.142 dyoung *fdout = fd;
553 1.142 dyoung }
554 1.142 dyoung return error;
555 1.142 dyoung }
556 1.142 dyoung
557 1.3 andrew int
558 1.190 dyoung sofamily(const struct socket *so)
559 1.190 dyoung {
560 1.190 dyoung const struct protosw *pr;
561 1.190 dyoung const struct domain *dom;
562 1.190 dyoung
563 1.190 dyoung if ((pr = so->so_proto) == NULL)
564 1.190 dyoung return AF_UNSPEC;
565 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
566 1.190 dyoung return AF_UNSPEC;
567 1.190 dyoung return dom->dom_family;
568 1.190 dyoung }
569 1.190 dyoung
570 1.190 dyoung int
571 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
572 1.1 cgd {
573 1.160 ad int error;
574 1.1 cgd
575 1.160 ad solock(so);
576 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
577 1.160 ad sounlock(so);
578 1.140 dyoung return error;
579 1.1 cgd }
580 1.1 cgd
581 1.3 andrew int
582 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
583 1.1 cgd {
584 1.160 ad int error;
585 1.1 cgd
586 1.160 ad solock(so);
587 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
588 1.163 ad SS_ISDISCONNECTING)) != 0) {
589 1.163 ad sounlock(so);
590 1.158 ad return (EOPNOTSUPP);
591 1.163 ad }
592 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
593 1.150 elad NULL, NULL, l);
594 1.140 dyoung if (error != 0) {
595 1.160 ad sounlock(so);
596 1.140 dyoung return error;
597 1.1 cgd }
598 1.63 matt if (TAILQ_EMPTY(&so->so_q))
599 1.1 cgd so->so_options |= SO_ACCEPTCONN;
600 1.1 cgd if (backlog < 0)
601 1.1 cgd backlog = 0;
602 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
603 1.160 ad sounlock(so);
604 1.140 dyoung return 0;
605 1.1 cgd }
606 1.1 cgd
607 1.21 christos void
608 1.54 lukem sofree(struct socket *so)
609 1.1 cgd {
610 1.161 ad u_int refs;
611 1.1 cgd
612 1.160 ad KASSERT(solocked(so));
613 1.160 ad
614 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
615 1.160 ad sounlock(so);
616 1.1 cgd return;
617 1.160 ad }
618 1.43 mycroft if (so->so_head) {
619 1.43 mycroft /*
620 1.43 mycroft * We must not decommission a socket that's on the accept(2)
621 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
622 1.43 mycroft * indicated that the listening socket was ready.
623 1.43 mycroft */
624 1.160 ad if (!soqremque(so, 0)) {
625 1.160 ad sounlock(so);
626 1.43 mycroft return;
627 1.160 ad }
628 1.43 mycroft }
629 1.98 christos if (so->so_rcv.sb_hiwat)
630 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
631 1.98 christos RLIM_INFINITY);
632 1.98 christos if (so->so_snd.sb_hiwat)
633 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
634 1.98 christos RLIM_INFINITY);
635 1.98 christos sbrelease(&so->so_snd, so);
636 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
637 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
638 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
639 1.1 cgd sorflush(so);
640 1.161 ad refs = so->so_aborting; /* XXX */
641 1.177 ad /* Remove acccept filter if one is present. */
642 1.170 tls if (so->so_accf != NULL)
643 1.177 ad (void)accept_filt_clear(so);
644 1.160 ad sounlock(so);
645 1.161 ad if (refs == 0) /* XXX */
646 1.161 ad soput(so);
647 1.1 cgd }
648 1.1 cgd
649 1.1 cgd /*
650 1.1 cgd * Close a socket on last file table reference removal.
651 1.1 cgd * Initiate disconnect if connected.
652 1.1 cgd * Free socket when disconnect complete.
653 1.1 cgd */
654 1.3 andrew int
655 1.54 lukem soclose(struct socket *so)
656 1.1 cgd {
657 1.54 lukem struct socket *so2;
658 1.160 ad int error;
659 1.160 ad int error2;
660 1.1 cgd
661 1.54 lukem error = 0;
662 1.160 ad solock(so);
663 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
664 1.172 ad for (;;) {
665 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
666 1.160 ad KASSERT(solocked2(so, so2));
667 1.160 ad (void) soqremque(so2, 0);
668 1.160 ad /* soabort drops the lock. */
669 1.160 ad (void) soabort(so2);
670 1.160 ad solock(so);
671 1.172 ad continue;
672 1.160 ad }
673 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
674 1.160 ad KASSERT(solocked2(so, so2));
675 1.160 ad (void) soqremque(so2, 1);
676 1.160 ad /* soabort drops the lock. */
677 1.160 ad (void) soabort(so2);
678 1.160 ad solock(so);
679 1.172 ad continue;
680 1.160 ad }
681 1.172 ad break;
682 1.172 ad }
683 1.1 cgd }
684 1.1 cgd if (so->so_pcb == 0)
685 1.1 cgd goto discard;
686 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
687 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
688 1.1 cgd error = sodisconnect(so);
689 1.1 cgd if (error)
690 1.1 cgd goto drop;
691 1.1 cgd }
692 1.1 cgd if (so->so_options & SO_LINGER) {
693 1.151 ad if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
694 1.1 cgd goto drop;
695 1.21 christos while (so->so_state & SS_ISCONNECTED) {
696 1.185 yamt error = sowait(so, true, so->so_linger * hz);
697 1.21 christos if (error)
698 1.1 cgd break;
699 1.21 christos }
700 1.1 cgd }
701 1.1 cgd }
702 1.54 lukem drop:
703 1.1 cgd if (so->so_pcb) {
704 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
705 1.140 dyoung NULL, NULL, NULL, NULL);
706 1.1 cgd if (error == 0)
707 1.1 cgd error = error2;
708 1.1 cgd }
709 1.54 lukem discard:
710 1.1 cgd if (so->so_state & SS_NOFDREF)
711 1.1 cgd panic("soclose: NOFDREF");
712 1.1 cgd so->so_state |= SS_NOFDREF;
713 1.1 cgd sofree(so);
714 1.1 cgd return (error);
715 1.1 cgd }
716 1.1 cgd
717 1.1 cgd /*
718 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
719 1.1 cgd */
720 1.3 andrew int
721 1.54 lukem soabort(struct socket *so)
722 1.1 cgd {
723 1.161 ad u_int refs;
724 1.139 yamt int error;
725 1.160 ad
726 1.160 ad KASSERT(solocked(so));
727 1.160 ad KASSERT(so->so_head == NULL);
728 1.1 cgd
729 1.161 ad so->so_aborting++; /* XXX */
730 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
731 1.140 dyoung NULL, NULL, NULL);
732 1.161 ad refs = --so->so_aborting; /* XXX */
733 1.164 drochner if (error || (refs == 0)) {
734 1.139 yamt sofree(so);
735 1.160 ad } else {
736 1.160 ad sounlock(so);
737 1.139 yamt }
738 1.139 yamt return error;
739 1.1 cgd }
740 1.1 cgd
741 1.3 andrew int
742 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
743 1.1 cgd {
744 1.160 ad int error;
745 1.160 ad
746 1.160 ad KASSERT(solocked(so));
747 1.1 cgd
748 1.54 lukem error = 0;
749 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
750 1.1 cgd panic("soaccept: !NOFDREF");
751 1.1 cgd so->so_state &= ~SS_NOFDREF;
752 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
753 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
754 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
755 1.140 dyoung NULL, nam, NULL, NULL);
756 1.41 mycroft else
757 1.53 itojun error = ECONNABORTED;
758 1.52 itojun
759 1.1 cgd return (error);
760 1.1 cgd }
761 1.1 cgd
762 1.3 andrew int
763 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
764 1.1 cgd {
765 1.160 ad int error;
766 1.160 ad
767 1.160 ad KASSERT(solocked(so));
768 1.1 cgd
769 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
770 1.1 cgd return (EOPNOTSUPP);
771 1.1 cgd /*
772 1.1 cgd * If protocol is connection-based, can only connect once.
773 1.1 cgd * Otherwise, if connected, try to disconnect first.
774 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
775 1.1 cgd * a null address.
776 1.1 cgd */
777 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
778 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
779 1.1 cgd (error = sodisconnect(so))))
780 1.1 cgd error = EISCONN;
781 1.1 cgd else
782 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
783 1.140 dyoung NULL, nam, NULL, l);
784 1.1 cgd return (error);
785 1.1 cgd }
786 1.1 cgd
787 1.3 andrew int
788 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
789 1.1 cgd {
790 1.160 ad int error;
791 1.160 ad
792 1.160 ad KASSERT(solocked2(so1, so2));
793 1.1 cgd
794 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
795 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
796 1.1 cgd return (error);
797 1.1 cgd }
798 1.1 cgd
799 1.3 andrew int
800 1.54 lukem sodisconnect(struct socket *so)
801 1.1 cgd {
802 1.160 ad int error;
803 1.160 ad
804 1.160 ad KASSERT(solocked(so));
805 1.1 cgd
806 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
807 1.1 cgd error = ENOTCONN;
808 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
809 1.1 cgd error = EALREADY;
810 1.160 ad } else {
811 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
812 1.160 ad NULL, NULL, NULL, NULL);
813 1.1 cgd }
814 1.117 yamt sodopendfree();
815 1.1 cgd return (error);
816 1.1 cgd }
817 1.1 cgd
818 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
819 1.1 cgd /*
820 1.1 cgd * Send on a socket.
821 1.1 cgd * If send must go all at once and message is larger than
822 1.1 cgd * send buffering, then hard error.
823 1.1 cgd * Lock against other senders.
824 1.1 cgd * If must go all at once and not enough room now, then
825 1.1 cgd * inform user that this would block and do nothing.
826 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
827 1.1 cgd * The data to be sent is described by "uio" if nonzero,
828 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
829 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
830 1.1 cgd * enough to send all at once.
831 1.1 cgd *
832 1.1 cgd * Returns nonzero on error, timeout or signal; callers
833 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
834 1.1 cgd * Data and control buffers are freed on return.
835 1.1 cgd */
836 1.3 andrew int
837 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
838 1.114 christos struct mbuf *control, int flags, struct lwp *l)
839 1.1 cgd {
840 1.54 lukem struct mbuf **mp, *m;
841 1.114 christos struct proc *p;
842 1.58 jdolecek long space, len, resid, clen, mlen;
843 1.58 jdolecek int error, s, dontroute, atomic;
844 1.54 lukem
845 1.114 christos p = l->l_proc;
846 1.117 yamt sodopendfree();
847 1.160 ad clen = 0;
848 1.64 thorpej
849 1.160 ad /*
850 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
851 1.160 ad * protocol processing soft interrupts from interrupting us and
852 1.160 ad * blocking (expensive).
853 1.160 ad */
854 1.160 ad s = splsoftnet();
855 1.160 ad solock(so);
856 1.54 lukem atomic = sosendallatonce(so) || top;
857 1.1 cgd if (uio)
858 1.1 cgd resid = uio->uio_resid;
859 1.1 cgd else
860 1.1 cgd resid = top->m_pkthdr.len;
861 1.7 cgd /*
862 1.7 cgd * In theory resid should be unsigned.
863 1.7 cgd * However, space must be signed, as it might be less than 0
864 1.7 cgd * if we over-committed, and we must use a signed comparison
865 1.7 cgd * of space and resid. On the other hand, a negative resid
866 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
867 1.7 cgd */
868 1.29 mycroft if (resid < 0) {
869 1.29 mycroft error = EINVAL;
870 1.29 mycroft goto out;
871 1.29 mycroft }
872 1.1 cgd dontroute =
873 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
874 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
875 1.165 christos l->l_ru.ru_msgsnd++;
876 1.1 cgd if (control)
877 1.1 cgd clen = control->m_len;
878 1.54 lukem restart:
879 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
880 1.1 cgd goto out;
881 1.1 cgd do {
882 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
883 1.160 ad error = EPIPE;
884 1.160 ad goto release;
885 1.160 ad }
886 1.48 thorpej if (so->so_error) {
887 1.48 thorpej error = so->so_error;
888 1.48 thorpej so->so_error = 0;
889 1.48 thorpej goto release;
890 1.48 thorpej }
891 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
892 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
893 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
894 1.160 ad !(resid == 0 && clen != 0)) {
895 1.160 ad error = ENOTCONN;
896 1.160 ad goto release;
897 1.160 ad }
898 1.160 ad } else if (addr == 0) {
899 1.160 ad error = EDESTADDRREQ;
900 1.160 ad goto release;
901 1.160 ad }
902 1.1 cgd }
903 1.1 cgd space = sbspace(&so->so_snd);
904 1.1 cgd if (flags & MSG_OOB)
905 1.1 cgd space += 1024;
906 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
907 1.160 ad clen > so->so_snd.sb_hiwat) {
908 1.160 ad error = EMSGSIZE;
909 1.160 ad goto release;
910 1.160 ad }
911 1.96 mycroft if (space < resid + clen &&
912 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
913 1.160 ad if (so->so_nbio) {
914 1.160 ad error = EWOULDBLOCK;
915 1.160 ad goto release;
916 1.160 ad }
917 1.1 cgd sbunlock(&so->so_snd);
918 1.1 cgd error = sbwait(&so->so_snd);
919 1.1 cgd if (error)
920 1.1 cgd goto out;
921 1.1 cgd goto restart;
922 1.1 cgd }
923 1.1 cgd mp = ⊤
924 1.1 cgd space -= clen;
925 1.1 cgd do {
926 1.45 tv if (uio == NULL) {
927 1.45 tv /*
928 1.45 tv * Data is prepackaged in "top".
929 1.45 tv */
930 1.45 tv resid = 0;
931 1.45 tv if (flags & MSG_EOR)
932 1.45 tv top->m_flags |= M_EOR;
933 1.45 tv } else do {
934 1.160 ad sounlock(so);
935 1.160 ad splx(s);
936 1.144 dyoung if (top == NULL) {
937 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
938 1.45 tv mlen = MHLEN;
939 1.45 tv m->m_pkthdr.len = 0;
940 1.140 dyoung m->m_pkthdr.rcvif = NULL;
941 1.45 tv } else {
942 1.78 matt m = m_get(M_WAIT, MT_DATA);
943 1.45 tv mlen = MLEN;
944 1.45 tv }
945 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
946 1.121 yamt if (sock_loan_thresh >= 0 &&
947 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
948 1.121 yamt space >= sock_loan_thresh &&
949 1.64 thorpej (len = sosend_loan(so, uio, m,
950 1.64 thorpej space)) != 0) {
951 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
952 1.64 thorpej space -= len;
953 1.64 thorpej goto have_data;
954 1.64 thorpej }
955 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
956 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
957 1.78 matt m_clget(m, M_WAIT);
958 1.45 tv if ((m->m_flags & M_EXT) == 0)
959 1.45 tv goto nopages;
960 1.45 tv mlen = MCLBYTES;
961 1.45 tv if (atomic && top == 0) {
962 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
963 1.54 lukem resid);
964 1.45 tv m->m_data += max_hdr;
965 1.45 tv } else
966 1.58 jdolecek len = lmin(MCLBYTES, resid);
967 1.45 tv space -= len;
968 1.45 tv } else {
969 1.64 thorpej nopages:
970 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
971 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
972 1.45 tv space -= len;
973 1.45 tv /*
974 1.45 tv * For datagram protocols, leave room
975 1.45 tv * for protocol headers in first mbuf.
976 1.45 tv */
977 1.45 tv if (atomic && top == 0 && len < mlen)
978 1.45 tv MH_ALIGN(m, len);
979 1.45 tv }
980 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
981 1.64 thorpej have_data:
982 1.45 tv resid = uio->uio_resid;
983 1.45 tv m->m_len = len;
984 1.45 tv *mp = m;
985 1.45 tv top->m_pkthdr.len += len;
986 1.160 ad s = splsoftnet();
987 1.160 ad solock(so);
988 1.144 dyoung if (error != 0)
989 1.45 tv goto release;
990 1.45 tv mp = &m->m_next;
991 1.45 tv if (resid <= 0) {
992 1.45 tv if (flags & MSG_EOR)
993 1.45 tv top->m_flags |= M_EOR;
994 1.45 tv break;
995 1.45 tv }
996 1.45 tv } while (space > 0 && atomic);
997 1.108 perry
998 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
999 1.160 ad error = EPIPE;
1000 1.160 ad goto release;
1001 1.160 ad }
1002 1.45 tv if (dontroute)
1003 1.45 tv so->so_options |= SO_DONTROUTE;
1004 1.45 tv if (resid > 0)
1005 1.45 tv so->so_state |= SS_MORETOCOME;
1006 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
1007 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1008 1.160 ad top, addr, control, curlwp);
1009 1.45 tv if (dontroute)
1010 1.45 tv so->so_options &= ~SO_DONTROUTE;
1011 1.45 tv if (resid > 0)
1012 1.45 tv so->so_state &= ~SS_MORETOCOME;
1013 1.45 tv clen = 0;
1014 1.144 dyoung control = NULL;
1015 1.144 dyoung top = NULL;
1016 1.45 tv mp = ⊤
1017 1.144 dyoung if (error != 0)
1018 1.1 cgd goto release;
1019 1.1 cgd } while (resid && space > 0);
1020 1.1 cgd } while (resid);
1021 1.1 cgd
1022 1.54 lukem release:
1023 1.1 cgd sbunlock(&so->so_snd);
1024 1.54 lukem out:
1025 1.160 ad sounlock(so);
1026 1.160 ad splx(s);
1027 1.1 cgd if (top)
1028 1.1 cgd m_freem(top);
1029 1.1 cgd if (control)
1030 1.1 cgd m_freem(control);
1031 1.1 cgd return (error);
1032 1.1 cgd }
1033 1.1 cgd
1034 1.1 cgd /*
1035 1.159 ad * Following replacement or removal of the first mbuf on the first
1036 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1037 1.159 ad * into the socket buffer so that other consumers see the values
1038 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1039 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1040 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1041 1.159 ad */
1042 1.159 ad static void
1043 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1044 1.159 ad {
1045 1.159 ad
1046 1.160 ad KASSERT(solocked(sb->sb_so));
1047 1.160 ad
1048 1.159 ad /*
1049 1.159 ad * First, update for the new value of nextrecord. If necessary,
1050 1.159 ad * make it the first record.
1051 1.159 ad */
1052 1.159 ad if (sb->sb_mb != NULL)
1053 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1054 1.159 ad else
1055 1.159 ad sb->sb_mb = nextrecord;
1056 1.159 ad
1057 1.159 ad /*
1058 1.159 ad * Now update any dependent socket buffer fields to reflect
1059 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1060 1.159 ad * the addition of a second clause that takes care of the
1061 1.159 ad * case where sb_mb has been updated, but remains the last
1062 1.159 ad * record.
1063 1.159 ad */
1064 1.159 ad if (sb->sb_mb == NULL) {
1065 1.159 ad sb->sb_mbtail = NULL;
1066 1.159 ad sb->sb_lastrecord = NULL;
1067 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1068 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1069 1.159 ad }
1070 1.159 ad
1071 1.159 ad /*
1072 1.1 cgd * Implement receive operations on a socket.
1073 1.1 cgd * We depend on the way that records are added to the sockbuf
1074 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1075 1.1 cgd * must begin with an address if the protocol so specifies,
1076 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1077 1.1 cgd * and then zero or more mbufs of data.
1078 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1079 1.1 cgd * we splx() while doing the actual copy to user space.
1080 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1081 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1082 1.1 cgd *
1083 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1084 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1085 1.1 cgd * only for the count in uio_resid.
1086 1.1 cgd */
1087 1.3 andrew int
1088 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1089 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1090 1.1 cgd {
1091 1.116 yamt struct lwp *l = curlwp;
1092 1.160 ad struct mbuf *m, **mp, *mt;
1093 1.146 dyoung int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1094 1.99 matt const struct protosw *pr;
1095 1.54 lukem struct mbuf *nextrecord;
1096 1.67 he int mbuf_removed = 0;
1097 1.146 dyoung const struct domain *dom;
1098 1.64 thorpej
1099 1.54 lukem pr = so->so_proto;
1100 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1101 1.146 dyoung dom = pr->pr_domain;
1102 1.1 cgd mp = mp0;
1103 1.54 lukem type = 0;
1104 1.54 lukem orig_resid = uio->uio_resid;
1105 1.102 jonathan
1106 1.144 dyoung if (paddr != NULL)
1107 1.144 dyoung *paddr = NULL;
1108 1.144 dyoung if (controlp != NULL)
1109 1.144 dyoung *controlp = NULL;
1110 1.144 dyoung if (flagsp != NULL)
1111 1.1 cgd flags = *flagsp &~ MSG_EOR;
1112 1.1 cgd else
1113 1.1 cgd flags = 0;
1114 1.66 enami
1115 1.66 enami if ((flags & MSG_DONTWAIT) == 0)
1116 1.117 yamt sodopendfree();
1117 1.66 enami
1118 1.1 cgd if (flags & MSG_OOB) {
1119 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1120 1.160 ad solock(so);
1121 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1122 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1123 1.160 ad sounlock(so);
1124 1.1 cgd if (error)
1125 1.1 cgd goto bad;
1126 1.1 cgd do {
1127 1.134 christos error = uiomove(mtod(m, void *),
1128 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
1129 1.1 cgd m = m_free(m);
1130 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1131 1.54 lukem bad:
1132 1.144 dyoung if (m != NULL)
1133 1.1 cgd m_freem(m);
1134 1.144 dyoung return error;
1135 1.1 cgd }
1136 1.144 dyoung if (mp != NULL)
1137 1.140 dyoung *mp = NULL;
1138 1.160 ad
1139 1.160 ad /*
1140 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1141 1.160 ad * protocol processing soft interrupts from interrupting us and
1142 1.160 ad * blocking (expensive).
1143 1.160 ad */
1144 1.160 ad s = splsoftnet();
1145 1.160 ad solock(so);
1146 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1147 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1148 1.1 cgd
1149 1.54 lukem restart:
1150 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1151 1.160 ad sounlock(so);
1152 1.160 ad splx(s);
1153 1.144 dyoung return error;
1154 1.160 ad }
1155 1.1 cgd
1156 1.1 cgd m = so->so_rcv.sb_mb;
1157 1.1 cgd /*
1158 1.1 cgd * If we have less data than requested, block awaiting more
1159 1.1 cgd * (subject to any timeout) if:
1160 1.15 mycroft * 1. the current count is less than the low water mark,
1161 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1162 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1163 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1164 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1165 1.1 cgd * we have to do the receive in sections, and thus risk returning
1166 1.1 cgd * a short count if a timeout or signal occurs after we start.
1167 1.1 cgd */
1168 1.144 dyoung if (m == NULL ||
1169 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1170 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1171 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1172 1.144 dyoung ((flags & MSG_WAITALL) &&
1173 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1174 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1175 1.1 cgd #ifdef DIAGNOSTIC
1176 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1177 1.1 cgd panic("receive 1");
1178 1.1 cgd #endif
1179 1.1 cgd if (so->so_error) {
1180 1.144 dyoung if (m != NULL)
1181 1.15 mycroft goto dontblock;
1182 1.1 cgd error = so->so_error;
1183 1.1 cgd if ((flags & MSG_PEEK) == 0)
1184 1.1 cgd so->so_error = 0;
1185 1.1 cgd goto release;
1186 1.1 cgd }
1187 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1188 1.144 dyoung if (m != NULL)
1189 1.15 mycroft goto dontblock;
1190 1.1 cgd else
1191 1.1 cgd goto release;
1192 1.1 cgd }
1193 1.144 dyoung for (; m != NULL; m = m->m_next)
1194 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1195 1.1 cgd m = so->so_rcv.sb_mb;
1196 1.1 cgd goto dontblock;
1197 1.1 cgd }
1198 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1199 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1200 1.1 cgd error = ENOTCONN;
1201 1.1 cgd goto release;
1202 1.1 cgd }
1203 1.1 cgd if (uio->uio_resid == 0)
1204 1.1 cgd goto release;
1205 1.151 ad if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1206 1.1 cgd error = EWOULDBLOCK;
1207 1.1 cgd goto release;
1208 1.1 cgd }
1209 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1210 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1211 1.1 cgd sbunlock(&so->so_rcv);
1212 1.1 cgd error = sbwait(&so->so_rcv);
1213 1.160 ad if (error != 0) {
1214 1.160 ad sounlock(so);
1215 1.160 ad splx(s);
1216 1.144 dyoung return error;
1217 1.160 ad }
1218 1.1 cgd goto restart;
1219 1.1 cgd }
1220 1.54 lukem dontblock:
1221 1.69 thorpej /*
1222 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1223 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1224 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1225 1.159 ad * various socket buffer pointers and local stack versions of the
1226 1.159 ad * pointers in sync, pushing out modifications before dropping the
1227 1.160 ad * socket lock, and re-reading them when picking it up.
1228 1.159 ad *
1229 1.159 ad * Otherwise, we will race with the network stack appending new data
1230 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1231 1.159 ad * versions of the field, possibly resulting in socket buffer
1232 1.159 ad * corruption.
1233 1.159 ad *
1234 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1235 1.159 ad * readers from pulling off the front of the socket buffer.
1236 1.69 thorpej */
1237 1.144 dyoung if (l != NULL)
1238 1.157 ad l->l_ru.ru_msgrcv++;
1239 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1240 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1241 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1242 1.1 cgd nextrecord = m->m_nextpkt;
1243 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1244 1.1 cgd #ifdef DIAGNOSTIC
1245 1.1 cgd if (m->m_type != MT_SONAME)
1246 1.1 cgd panic("receive 1a");
1247 1.1 cgd #endif
1248 1.3 andrew orig_resid = 0;
1249 1.1 cgd if (flags & MSG_PEEK) {
1250 1.1 cgd if (paddr)
1251 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1252 1.1 cgd m = m->m_next;
1253 1.1 cgd } else {
1254 1.1 cgd sbfree(&so->so_rcv, m);
1255 1.67 he mbuf_removed = 1;
1256 1.144 dyoung if (paddr != NULL) {
1257 1.1 cgd *paddr = m;
1258 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1259 1.144 dyoung m->m_next = NULL;
1260 1.1 cgd m = so->so_rcv.sb_mb;
1261 1.1 cgd } else {
1262 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1263 1.1 cgd m = so->so_rcv.sb_mb;
1264 1.1 cgd }
1265 1.159 ad sbsync(&so->so_rcv, nextrecord);
1266 1.1 cgd }
1267 1.1 cgd }
1268 1.159 ad
1269 1.159 ad /*
1270 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1271 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1272 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1273 1.159 ad * perform externalization (or freeing if controlp == NULL).
1274 1.159 ad */
1275 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1276 1.159 ad struct mbuf *cm = NULL, *cmn;
1277 1.159 ad struct mbuf **cme = &cm;
1278 1.159 ad
1279 1.159 ad do {
1280 1.159 ad if (flags & MSG_PEEK) {
1281 1.159 ad if (controlp != NULL) {
1282 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1283 1.159 ad controlp = &(*controlp)->m_next;
1284 1.159 ad }
1285 1.159 ad m = m->m_next;
1286 1.159 ad } else {
1287 1.159 ad sbfree(&so->so_rcv, m);
1288 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1289 1.144 dyoung m->m_next = NULL;
1290 1.159 ad *cme = m;
1291 1.159 ad cme = &(*cme)->m_next;
1292 1.1 cgd m = so->so_rcv.sb_mb;
1293 1.159 ad }
1294 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1295 1.159 ad if ((flags & MSG_PEEK) == 0)
1296 1.159 ad sbsync(&so->so_rcv, nextrecord);
1297 1.159 ad for (; cm != NULL; cm = cmn) {
1298 1.159 ad cmn = cm->m_next;
1299 1.159 ad cm->m_next = NULL;
1300 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1301 1.159 ad if (controlp != NULL) {
1302 1.159 ad if (dom->dom_externalize != NULL &&
1303 1.159 ad type == SCM_RIGHTS) {
1304 1.160 ad sounlock(so);
1305 1.159 ad splx(s);
1306 1.159 ad error = (*dom->dom_externalize)(cm, l);
1307 1.159 ad s = splsoftnet();
1308 1.160 ad solock(so);
1309 1.159 ad }
1310 1.159 ad *controlp = cm;
1311 1.159 ad while (*controlp != NULL)
1312 1.159 ad controlp = &(*controlp)->m_next;
1313 1.1 cgd } else {
1314 1.106 itojun /*
1315 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1316 1.106 itojun * through the read path rather than recv.
1317 1.106 itojun */
1318 1.159 ad if (dom->dom_dispose != NULL &&
1319 1.159 ad type == SCM_RIGHTS) {
1320 1.160 ad sounlock(so);
1321 1.159 ad (*dom->dom_dispose)(cm);
1322 1.160 ad solock(so);
1323 1.159 ad }
1324 1.159 ad m_freem(cm);
1325 1.1 cgd }
1326 1.1 cgd }
1327 1.159 ad if (m != NULL)
1328 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1329 1.159 ad else
1330 1.159 ad nextrecord = so->so_rcv.sb_mb;
1331 1.159 ad orig_resid = 0;
1332 1.1 cgd }
1333 1.69 thorpej
1334 1.159 ad /* If m is non-NULL, we have some data to read. */
1335 1.159 ad if (__predict_true(m != NULL)) {
1336 1.1 cgd type = m->m_type;
1337 1.1 cgd if (type == MT_OOBDATA)
1338 1.1 cgd flags |= MSG_OOB;
1339 1.1 cgd }
1340 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1341 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1342 1.69 thorpej
1343 1.1 cgd moff = 0;
1344 1.1 cgd offset = 0;
1345 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1346 1.1 cgd if (m->m_type == MT_OOBDATA) {
1347 1.1 cgd if (type != MT_OOBDATA)
1348 1.1 cgd break;
1349 1.1 cgd } else if (type == MT_OOBDATA)
1350 1.1 cgd break;
1351 1.1 cgd #ifdef DIAGNOSTIC
1352 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1353 1.1 cgd panic("receive 3");
1354 1.1 cgd #endif
1355 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1356 1.1 cgd len = uio->uio_resid;
1357 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1358 1.1 cgd len = so->so_oobmark - offset;
1359 1.1 cgd if (len > m->m_len - moff)
1360 1.1 cgd len = m->m_len - moff;
1361 1.1 cgd /*
1362 1.1 cgd * If mp is set, just pass back the mbufs.
1363 1.1 cgd * Otherwise copy them out via the uio, then free.
1364 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1365 1.1 cgd * it points to next record) when we drop priority;
1366 1.1 cgd * we must note any additions to the sockbuf when we
1367 1.1 cgd * block interrupts again.
1368 1.1 cgd */
1369 1.144 dyoung if (mp == NULL) {
1370 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1371 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1372 1.160 ad sounlock(so);
1373 1.1 cgd splx(s);
1374 1.134 christos error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1375 1.20 mycroft s = splsoftnet();
1376 1.160 ad solock(so);
1377 1.144 dyoung if (error != 0) {
1378 1.67 he /*
1379 1.67 he * If any part of the record has been removed
1380 1.67 he * (such as the MT_SONAME mbuf, which will
1381 1.67 he * happen when PR_ADDR, and thus also
1382 1.67 he * PR_ATOMIC, is set), then drop the entire
1383 1.67 he * record to maintain the atomicity of the
1384 1.67 he * receive operation.
1385 1.67 he *
1386 1.67 he * This avoids a later panic("receive 1a")
1387 1.67 he * when compiled with DIAGNOSTIC.
1388 1.67 he */
1389 1.146 dyoung if (m && mbuf_removed && atomic)
1390 1.67 he (void) sbdroprecord(&so->so_rcv);
1391 1.67 he
1392 1.57 jdolecek goto release;
1393 1.67 he }
1394 1.1 cgd } else
1395 1.1 cgd uio->uio_resid -= len;
1396 1.1 cgd if (len == m->m_len - moff) {
1397 1.1 cgd if (m->m_flags & M_EOR)
1398 1.1 cgd flags |= MSG_EOR;
1399 1.1 cgd if (flags & MSG_PEEK) {
1400 1.1 cgd m = m->m_next;
1401 1.1 cgd moff = 0;
1402 1.1 cgd } else {
1403 1.1 cgd nextrecord = m->m_nextpkt;
1404 1.1 cgd sbfree(&so->so_rcv, m);
1405 1.1 cgd if (mp) {
1406 1.1 cgd *mp = m;
1407 1.1 cgd mp = &m->m_next;
1408 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1409 1.140 dyoung *mp = NULL;
1410 1.1 cgd } else {
1411 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1412 1.1 cgd m = so->so_rcv.sb_mb;
1413 1.1 cgd }
1414 1.69 thorpej /*
1415 1.69 thorpej * If m != NULL, we also know that
1416 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1417 1.69 thorpej */
1418 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1419 1.69 thorpej if (m) {
1420 1.1 cgd m->m_nextpkt = nextrecord;
1421 1.69 thorpej if (nextrecord == NULL)
1422 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1423 1.69 thorpej } else {
1424 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1425 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1426 1.69 thorpej }
1427 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1428 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1429 1.1 cgd }
1430 1.144 dyoung } else if (flags & MSG_PEEK)
1431 1.144 dyoung moff += len;
1432 1.144 dyoung else {
1433 1.160 ad if (mp != NULL) {
1434 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1435 1.160 ad if (__predict_false(mt == NULL)) {
1436 1.160 ad sounlock(so);
1437 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1438 1.160 ad solock(so);
1439 1.160 ad }
1440 1.160 ad *mp = mt;
1441 1.160 ad }
1442 1.144 dyoung m->m_data += len;
1443 1.144 dyoung m->m_len -= len;
1444 1.144 dyoung so->so_rcv.sb_cc -= len;
1445 1.1 cgd }
1446 1.1 cgd if (so->so_oobmark) {
1447 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1448 1.1 cgd so->so_oobmark -= len;
1449 1.1 cgd if (so->so_oobmark == 0) {
1450 1.1 cgd so->so_state |= SS_RCVATMARK;
1451 1.1 cgd break;
1452 1.1 cgd }
1453 1.7 cgd } else {
1454 1.1 cgd offset += len;
1455 1.7 cgd if (offset == so->so_oobmark)
1456 1.7 cgd break;
1457 1.7 cgd }
1458 1.1 cgd }
1459 1.1 cgd if (flags & MSG_EOR)
1460 1.1 cgd break;
1461 1.1 cgd /*
1462 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1463 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1464 1.1 cgd * termination. If a signal/timeout occurs, return
1465 1.1 cgd * with a short count but without error.
1466 1.1 cgd * Keep sockbuf locked against other readers.
1467 1.1 cgd */
1468 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1469 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1470 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1471 1.1 cgd break;
1472 1.68 matt /*
1473 1.68 matt * If we are peeking and the socket receive buffer is
1474 1.68 matt * full, stop since we can't get more data to peek at.
1475 1.68 matt */
1476 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1477 1.68 matt break;
1478 1.68 matt /*
1479 1.68 matt * If we've drained the socket buffer, tell the
1480 1.68 matt * protocol in case it needs to do something to
1481 1.68 matt * get it filled again.
1482 1.68 matt */
1483 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1484 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1485 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1486 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1487 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1488 1.1 cgd error = sbwait(&so->so_rcv);
1489 1.144 dyoung if (error != 0) {
1490 1.1 cgd sbunlock(&so->so_rcv);
1491 1.160 ad sounlock(so);
1492 1.1 cgd splx(s);
1493 1.144 dyoung return 0;
1494 1.1 cgd }
1495 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1496 1.1 cgd nextrecord = m->m_nextpkt;
1497 1.1 cgd }
1498 1.1 cgd }
1499 1.3 andrew
1500 1.146 dyoung if (m && atomic) {
1501 1.3 andrew flags |= MSG_TRUNC;
1502 1.3 andrew if ((flags & MSG_PEEK) == 0)
1503 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1504 1.3 andrew }
1505 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1506 1.144 dyoung if (m == NULL) {
1507 1.69 thorpej /*
1508 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1509 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1510 1.69 thorpej * there is still data in the socket buffer.
1511 1.69 thorpej */
1512 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1513 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1514 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1515 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1516 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1517 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1518 1.69 thorpej }
1519 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1520 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1521 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1522 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1523 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1524 1.1 cgd }
1525 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1526 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1527 1.3 andrew sbunlock(&so->so_rcv);
1528 1.3 andrew goto restart;
1529 1.3 andrew }
1530 1.108 perry
1531 1.144 dyoung if (flagsp != NULL)
1532 1.1 cgd *flagsp |= flags;
1533 1.54 lukem release:
1534 1.1 cgd sbunlock(&so->so_rcv);
1535 1.160 ad sounlock(so);
1536 1.1 cgd splx(s);
1537 1.144 dyoung return error;
1538 1.1 cgd }
1539 1.1 cgd
1540 1.14 mycroft int
1541 1.54 lukem soshutdown(struct socket *so, int how)
1542 1.1 cgd {
1543 1.99 matt const struct protosw *pr;
1544 1.160 ad int error;
1545 1.160 ad
1546 1.160 ad KASSERT(solocked(so));
1547 1.34 kleink
1548 1.54 lukem pr = so->so_proto;
1549 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1550 1.34 kleink return (EINVAL);
1551 1.1 cgd
1552 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1553 1.1 cgd sorflush(so);
1554 1.160 ad error = 0;
1555 1.160 ad }
1556 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1557 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1558 1.140 dyoung NULL, NULL, NULL);
1559 1.160 ad
1560 1.160 ad return error;
1561 1.1 cgd }
1562 1.1 cgd
1563 1.188 ad int
1564 1.188 ad sodrain(struct socket *so)
1565 1.188 ad {
1566 1.188 ad int error;
1567 1.188 ad
1568 1.188 ad solock(so);
1569 1.188 ad so->so_state |= SS_ISDRAINING;
1570 1.188 ad cv_broadcast(&so->so_cv);
1571 1.188 ad error = soshutdown(so, SHUT_RDWR);
1572 1.188 ad sounlock(so);
1573 1.188 ad
1574 1.188 ad return error;
1575 1.188 ad }
1576 1.188 ad
1577 1.14 mycroft void
1578 1.54 lukem sorflush(struct socket *so)
1579 1.1 cgd {
1580 1.54 lukem struct sockbuf *sb, asb;
1581 1.99 matt const struct protosw *pr;
1582 1.160 ad
1583 1.160 ad KASSERT(solocked(so));
1584 1.1 cgd
1585 1.54 lukem sb = &so->so_rcv;
1586 1.54 lukem pr = so->so_proto;
1587 1.160 ad socantrcvmore(so);
1588 1.1 cgd sb->sb_flags |= SB_NOINTR;
1589 1.160 ad (void )sblock(sb, M_WAITOK);
1590 1.1 cgd sbunlock(sb);
1591 1.1 cgd asb = *sb;
1592 1.86 wrstuden /*
1593 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1594 1.86 wrstuden * fields valid.
1595 1.86 wrstuden */
1596 1.86 wrstuden memset(&sb->sb_startzero, 0,
1597 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1598 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1599 1.160 ad sounlock(so);
1600 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1601 1.160 ad solock(so);
1602 1.160 ad }
1603 1.98 christos sbrelease(&asb, so);
1604 1.1 cgd }
1605 1.1 cgd
1606 1.171 plunky /*
1607 1.171 plunky * internal set SOL_SOCKET options
1608 1.171 plunky */
1609 1.142 dyoung static int
1610 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1611 1.1 cgd {
1612 1.182 christos int error = EINVAL, optval, opt;
1613 1.171 plunky struct linger l;
1614 1.171 plunky struct timeval tv;
1615 1.142 dyoung
1616 1.179 christos switch ((opt = sopt->sopt_name)) {
1617 1.142 dyoung
1618 1.170 tls case SO_ACCEPTFILTER:
1619 1.177 ad error = accept_filt_setopt(so, sopt);
1620 1.177 ad KASSERT(solocked(so));
1621 1.170 tls break;
1622 1.170 tls
1623 1.171 plunky case SO_LINGER:
1624 1.171 plunky error = sockopt_get(sopt, &l, sizeof(l));
1625 1.177 ad solock(so);
1626 1.171 plunky if (error)
1627 1.177 ad break;
1628 1.171 plunky if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1629 1.177 ad l.l_linger > (INT_MAX / hz)) {
1630 1.177 ad error = EDOM;
1631 1.177 ad break;
1632 1.177 ad }
1633 1.171 plunky so->so_linger = l.l_linger;
1634 1.171 plunky if (l.l_onoff)
1635 1.171 plunky so->so_options |= SO_LINGER;
1636 1.171 plunky else
1637 1.171 plunky so->so_options &= ~SO_LINGER;
1638 1.177 ad break;
1639 1.1 cgd
1640 1.142 dyoung case SO_DEBUG:
1641 1.142 dyoung case SO_KEEPALIVE:
1642 1.142 dyoung case SO_DONTROUTE:
1643 1.142 dyoung case SO_USELOOPBACK:
1644 1.142 dyoung case SO_BROADCAST:
1645 1.142 dyoung case SO_REUSEADDR:
1646 1.142 dyoung case SO_REUSEPORT:
1647 1.142 dyoung case SO_OOBINLINE:
1648 1.142 dyoung case SO_TIMESTAMP:
1649 1.184 christos #ifdef SO_OTIMESTAMP
1650 1.184 christos case SO_OTIMESTAMP:
1651 1.184 christos #endif
1652 1.171 plunky error = sockopt_getint(sopt, &optval);
1653 1.177 ad solock(so);
1654 1.171 plunky if (error)
1655 1.177 ad break;
1656 1.171 plunky if (optval)
1657 1.179 christos so->so_options |= opt;
1658 1.142 dyoung else
1659 1.179 christos so->so_options &= ~opt;
1660 1.142 dyoung break;
1661 1.142 dyoung
1662 1.142 dyoung case SO_SNDBUF:
1663 1.142 dyoung case SO_RCVBUF:
1664 1.142 dyoung case SO_SNDLOWAT:
1665 1.142 dyoung case SO_RCVLOWAT:
1666 1.171 plunky error = sockopt_getint(sopt, &optval);
1667 1.177 ad solock(so);
1668 1.171 plunky if (error)
1669 1.177 ad break;
1670 1.1 cgd
1671 1.142 dyoung /*
1672 1.142 dyoung * Values < 1 make no sense for any of these
1673 1.142 dyoung * options, so disallow them.
1674 1.142 dyoung */
1675 1.177 ad if (optval < 1) {
1676 1.177 ad error = EINVAL;
1677 1.177 ad break;
1678 1.177 ad }
1679 1.1 cgd
1680 1.179 christos switch (opt) {
1681 1.171 plunky case SO_SNDBUF:
1682 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1683 1.177 ad error = ENOBUFS;
1684 1.177 ad break;
1685 1.177 ad }
1686 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1687 1.171 plunky break;
1688 1.1 cgd
1689 1.1 cgd case SO_RCVBUF:
1690 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1691 1.177 ad error = ENOBUFS;
1692 1.177 ad break;
1693 1.177 ad }
1694 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1695 1.142 dyoung break;
1696 1.142 dyoung
1697 1.142 dyoung /*
1698 1.142 dyoung * Make sure the low-water is never greater than
1699 1.142 dyoung * the high-water.
1700 1.142 dyoung */
1701 1.1 cgd case SO_SNDLOWAT:
1702 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1703 1.171 plunky optval = so->so_snd.sb_hiwat;
1704 1.171 plunky
1705 1.171 plunky so->so_snd.sb_lowat = optval;
1706 1.142 dyoung break;
1707 1.171 plunky
1708 1.1 cgd case SO_RCVLOWAT:
1709 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1710 1.171 plunky optval = so->so_rcv.sb_hiwat;
1711 1.171 plunky
1712 1.171 plunky so->so_rcv.sb_lowat = optval;
1713 1.142 dyoung break;
1714 1.142 dyoung }
1715 1.142 dyoung break;
1716 1.28 thorpej
1717 1.179 christos #ifdef COMPAT_50
1718 1.179 christos case SO_OSNDTIMEO:
1719 1.179 christos case SO_ORCVTIMEO: {
1720 1.179 christos struct timeval50 otv;
1721 1.179 christos error = sockopt_get(sopt, &otv, sizeof(otv));
1722 1.186 pooka if (error) {
1723 1.186 pooka solock(so);
1724 1.183 christos break;
1725 1.186 pooka }
1726 1.179 christos timeval50_to_timeval(&otv, &tv);
1727 1.179 christos opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1728 1.182 christos error = 0;
1729 1.179 christos /*FALLTHROUGH*/
1730 1.179 christos }
1731 1.179 christos #endif /* COMPAT_50 */
1732 1.179 christos
1733 1.142 dyoung case SO_SNDTIMEO:
1734 1.142 dyoung case SO_RCVTIMEO:
1735 1.182 christos if (error)
1736 1.179 christos error = sockopt_get(sopt, &tv, sizeof(tv));
1737 1.177 ad solock(so);
1738 1.171 plunky if (error)
1739 1.177 ad break;
1740 1.171 plunky
1741 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1742 1.177 ad error = EDOM;
1743 1.177 ad break;
1744 1.177 ad }
1745 1.28 thorpej
1746 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1747 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1748 1.171 plunky optval = 1;
1749 1.28 thorpej
1750 1.179 christos switch (opt) {
1751 1.142 dyoung case SO_SNDTIMEO:
1752 1.171 plunky so->so_snd.sb_timeo = optval;
1753 1.1 cgd break;
1754 1.1 cgd case SO_RCVTIMEO:
1755 1.171 plunky so->so_rcv.sb_timeo = optval;
1756 1.142 dyoung break;
1757 1.142 dyoung }
1758 1.142 dyoung break;
1759 1.1 cgd
1760 1.142 dyoung default:
1761 1.177 ad solock(so);
1762 1.177 ad error = ENOPROTOOPT;
1763 1.177 ad break;
1764 1.142 dyoung }
1765 1.177 ad KASSERT(solocked(so));
1766 1.177 ad return error;
1767 1.142 dyoung }
1768 1.1 cgd
1769 1.142 dyoung int
1770 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1771 1.142 dyoung {
1772 1.142 dyoung int error, prerr;
1773 1.1 cgd
1774 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1775 1.171 plunky error = sosetopt1(so, sopt);
1776 1.177 ad KASSERT(solocked(so));
1777 1.177 ad } else {
1778 1.142 dyoung error = ENOPROTOOPT;
1779 1.177 ad solock(so);
1780 1.177 ad }
1781 1.1 cgd
1782 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1783 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1784 1.142 dyoung /* give the protocol stack a shot */
1785 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1786 1.142 dyoung if (prerr == 0)
1787 1.142 dyoung error = 0;
1788 1.142 dyoung else if (prerr != ENOPROTOOPT)
1789 1.142 dyoung error = prerr;
1790 1.171 plunky }
1791 1.160 ad sounlock(so);
1792 1.142 dyoung return error;
1793 1.1 cgd }
1794 1.1 cgd
1795 1.171 plunky /*
1796 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1797 1.171 plunky */
1798 1.171 plunky int
1799 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1800 1.171 plunky const void *val, size_t valsize)
1801 1.171 plunky {
1802 1.171 plunky struct sockopt sopt;
1803 1.171 plunky int error;
1804 1.171 plunky
1805 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1806 1.171 plunky
1807 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1808 1.171 plunky sockopt_set(&sopt, val, valsize);
1809 1.171 plunky
1810 1.171 plunky error = sosetopt(so, &sopt);
1811 1.171 plunky
1812 1.171 plunky sockopt_destroy(&sopt);
1813 1.171 plunky
1814 1.171 plunky return error;
1815 1.171 plunky }
1816 1.171 plunky
1817 1.171 plunky /*
1818 1.171 plunky * internal get SOL_SOCKET options
1819 1.171 plunky */
1820 1.171 plunky static int
1821 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1822 1.171 plunky {
1823 1.179 christos int error, optval, opt;
1824 1.171 plunky struct linger l;
1825 1.171 plunky struct timeval tv;
1826 1.171 plunky
1827 1.179 christos switch ((opt = sopt->sopt_name)) {
1828 1.171 plunky
1829 1.171 plunky case SO_ACCEPTFILTER:
1830 1.177 ad error = accept_filt_getopt(so, sopt);
1831 1.171 plunky break;
1832 1.171 plunky
1833 1.171 plunky case SO_LINGER:
1834 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1835 1.171 plunky l.l_linger = so->so_linger;
1836 1.171 plunky
1837 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1838 1.171 plunky break;
1839 1.171 plunky
1840 1.171 plunky case SO_USELOOPBACK:
1841 1.171 plunky case SO_DONTROUTE:
1842 1.171 plunky case SO_DEBUG:
1843 1.171 plunky case SO_KEEPALIVE:
1844 1.171 plunky case SO_REUSEADDR:
1845 1.171 plunky case SO_REUSEPORT:
1846 1.171 plunky case SO_BROADCAST:
1847 1.171 plunky case SO_OOBINLINE:
1848 1.171 plunky case SO_TIMESTAMP:
1849 1.184 christos #ifdef SO_OTIMESTAMP
1850 1.184 christos case SO_OTIMESTAMP:
1851 1.184 christos #endif
1852 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1853 1.171 plunky break;
1854 1.171 plunky
1855 1.171 plunky case SO_TYPE:
1856 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1857 1.171 plunky break;
1858 1.171 plunky
1859 1.171 plunky case SO_ERROR:
1860 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1861 1.171 plunky so->so_error = 0;
1862 1.171 plunky break;
1863 1.171 plunky
1864 1.171 plunky case SO_SNDBUF:
1865 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1866 1.171 plunky break;
1867 1.171 plunky
1868 1.171 plunky case SO_RCVBUF:
1869 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1870 1.171 plunky break;
1871 1.171 plunky
1872 1.171 plunky case SO_SNDLOWAT:
1873 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1874 1.171 plunky break;
1875 1.171 plunky
1876 1.171 plunky case SO_RCVLOWAT:
1877 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1878 1.171 plunky break;
1879 1.171 plunky
1880 1.179 christos #ifdef COMPAT_50
1881 1.179 christos case SO_OSNDTIMEO:
1882 1.179 christos case SO_ORCVTIMEO: {
1883 1.179 christos struct timeval50 otv;
1884 1.179 christos
1885 1.179 christos optval = (opt == SO_OSNDTIMEO ?
1886 1.179 christos so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1887 1.179 christos
1888 1.179 christos otv.tv_sec = optval / hz;
1889 1.179 christos otv.tv_usec = (optval % hz) * tick;
1890 1.179 christos
1891 1.179 christos error = sockopt_set(sopt, &otv, sizeof(otv));
1892 1.179 christos break;
1893 1.179 christos }
1894 1.179 christos #endif /* COMPAT_50 */
1895 1.179 christos
1896 1.171 plunky case SO_SNDTIMEO:
1897 1.171 plunky case SO_RCVTIMEO:
1898 1.179 christos optval = (opt == SO_SNDTIMEO ?
1899 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1900 1.171 plunky
1901 1.171 plunky tv.tv_sec = optval / hz;
1902 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1903 1.171 plunky
1904 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1905 1.171 plunky break;
1906 1.171 plunky
1907 1.171 plunky case SO_OVERFLOWED:
1908 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1909 1.171 plunky break;
1910 1.171 plunky
1911 1.171 plunky default:
1912 1.171 plunky error = ENOPROTOOPT;
1913 1.171 plunky break;
1914 1.171 plunky }
1915 1.171 plunky
1916 1.171 plunky return (error);
1917 1.171 plunky }
1918 1.171 plunky
1919 1.14 mycroft int
1920 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
1921 1.1 cgd {
1922 1.160 ad int error;
1923 1.1 cgd
1924 1.160 ad solock(so);
1925 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
1926 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1927 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1928 1.171 plunky (PRCO_GETOPT, so, sopt));
1929 1.1 cgd } else
1930 1.160 ad error = (ENOPROTOOPT);
1931 1.1 cgd } else {
1932 1.171 plunky error = sogetopt1(so, sopt);
1933 1.171 plunky }
1934 1.171 plunky sounlock(so);
1935 1.171 plunky return (error);
1936 1.171 plunky }
1937 1.171 plunky
1938 1.171 plunky /*
1939 1.171 plunky * alloc sockopt data buffer buffer
1940 1.171 plunky * - will be released at destroy
1941 1.171 plunky */
1942 1.176 plunky static int
1943 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
1944 1.171 plunky {
1945 1.171 plunky
1946 1.171 plunky KASSERT(sopt->sopt_size == 0);
1947 1.171 plunky
1948 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
1949 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
1950 1.176 plunky if (sopt->sopt_data == NULL)
1951 1.176 plunky return ENOMEM;
1952 1.176 plunky } else
1953 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
1954 1.171 plunky
1955 1.171 plunky sopt->sopt_size = len;
1956 1.176 plunky return 0;
1957 1.171 plunky }
1958 1.171 plunky
1959 1.171 plunky /*
1960 1.171 plunky * initialise sockopt storage
1961 1.176 plunky * - MAY sleep during allocation
1962 1.171 plunky */
1963 1.171 plunky void
1964 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1965 1.171 plunky {
1966 1.1 cgd
1967 1.171 plunky memset(sopt, 0, sizeof(*sopt));
1968 1.1 cgd
1969 1.171 plunky sopt->sopt_level = level;
1970 1.171 plunky sopt->sopt_name = name;
1971 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
1972 1.171 plunky }
1973 1.171 plunky
1974 1.171 plunky /*
1975 1.171 plunky * destroy sockopt storage
1976 1.171 plunky * - will release any held memory references
1977 1.171 plunky */
1978 1.171 plunky void
1979 1.171 plunky sockopt_destroy(struct sockopt *sopt)
1980 1.171 plunky {
1981 1.171 plunky
1982 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
1983 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
1984 1.171 plunky
1985 1.171 plunky memset(sopt, 0, sizeof(*sopt));
1986 1.171 plunky }
1987 1.171 plunky
1988 1.171 plunky /*
1989 1.171 plunky * set sockopt value
1990 1.171 plunky * - value is copied into sockopt
1991 1.176 plunky * - memory is allocated when necessary, will not sleep
1992 1.171 plunky */
1993 1.171 plunky int
1994 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1995 1.171 plunky {
1996 1.176 plunky int error;
1997 1.171 plunky
1998 1.176 plunky if (sopt->sopt_size == 0) {
1999 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2000 1.176 plunky if (error)
2001 1.176 plunky return error;
2002 1.176 plunky }
2003 1.171 plunky
2004 1.171 plunky KASSERT(sopt->sopt_size == len);
2005 1.171 plunky memcpy(sopt->sopt_data, buf, len);
2006 1.171 plunky return 0;
2007 1.171 plunky }
2008 1.171 plunky
2009 1.171 plunky /*
2010 1.171 plunky * common case of set sockopt integer value
2011 1.171 plunky */
2012 1.171 plunky int
2013 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2014 1.171 plunky {
2015 1.171 plunky
2016 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2017 1.171 plunky }
2018 1.171 plunky
2019 1.171 plunky /*
2020 1.171 plunky * get sockopt value
2021 1.171 plunky * - correct size must be given
2022 1.171 plunky */
2023 1.171 plunky int
2024 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2025 1.171 plunky {
2026 1.170 tls
2027 1.171 plunky if (sopt->sopt_size != len)
2028 1.171 plunky return EINVAL;
2029 1.1 cgd
2030 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2031 1.171 plunky return 0;
2032 1.171 plunky }
2033 1.1 cgd
2034 1.171 plunky /*
2035 1.171 plunky * common case of get sockopt integer value
2036 1.171 plunky */
2037 1.171 plunky int
2038 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2039 1.171 plunky {
2040 1.1 cgd
2041 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2042 1.171 plunky }
2043 1.1 cgd
2044 1.171 plunky /*
2045 1.171 plunky * set sockopt value from mbuf
2046 1.171 plunky * - ONLY for legacy code
2047 1.171 plunky * - mbuf is released by sockopt
2048 1.176 plunky * - will not sleep
2049 1.171 plunky */
2050 1.171 plunky int
2051 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2052 1.171 plunky {
2053 1.171 plunky size_t len;
2054 1.176 plunky int error;
2055 1.1 cgd
2056 1.171 plunky len = m_length(m);
2057 1.1 cgd
2058 1.176 plunky if (sopt->sopt_size == 0) {
2059 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2060 1.176 plunky if (error)
2061 1.176 plunky return error;
2062 1.176 plunky }
2063 1.1 cgd
2064 1.171 plunky KASSERT(sopt->sopt_size == len);
2065 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
2066 1.171 plunky m_freem(m);
2067 1.1 cgd
2068 1.171 plunky return 0;
2069 1.171 plunky }
2070 1.1 cgd
2071 1.171 plunky /*
2072 1.171 plunky * get sockopt value into mbuf
2073 1.171 plunky * - ONLY for legacy code
2074 1.171 plunky * - mbuf to be released by the caller
2075 1.176 plunky * - will not sleep
2076 1.171 plunky */
2077 1.171 plunky struct mbuf *
2078 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2079 1.171 plunky {
2080 1.171 plunky struct mbuf *m;
2081 1.107 darrenr
2082 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2083 1.176 plunky return NULL;
2084 1.176 plunky
2085 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2086 1.171 plunky if (m == NULL)
2087 1.171 plunky return NULL;
2088 1.171 plunky
2089 1.176 plunky if (sopt->sopt_size > MLEN) {
2090 1.176 plunky MCLGET(m, M_DONTWAIT);
2091 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2092 1.176 plunky m_free(m);
2093 1.176 plunky return NULL;
2094 1.176 plunky }
2095 1.1 cgd }
2096 1.176 plunky
2097 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2098 1.176 plunky m->m_len = sopt->sopt_size;
2099 1.160 ad
2100 1.171 plunky return m;
2101 1.1 cgd }
2102 1.1 cgd
2103 1.14 mycroft void
2104 1.54 lukem sohasoutofband(struct socket *so)
2105 1.1 cgd {
2106 1.153 rmind
2107 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2108 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2109 1.1 cgd }
2110 1.72 jdolecek
2111 1.72 jdolecek static void
2112 1.72 jdolecek filt_sordetach(struct knote *kn)
2113 1.72 jdolecek {
2114 1.72 jdolecek struct socket *so;
2115 1.72 jdolecek
2116 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2117 1.160 ad solock(so);
2118 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2119 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2120 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2121 1.160 ad sounlock(so);
2122 1.72 jdolecek }
2123 1.72 jdolecek
2124 1.72 jdolecek /*ARGSUSED*/
2125 1.72 jdolecek static int
2126 1.129 yamt filt_soread(struct knote *kn, long hint)
2127 1.72 jdolecek {
2128 1.72 jdolecek struct socket *so;
2129 1.160 ad int rv;
2130 1.72 jdolecek
2131 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2132 1.160 ad if (hint != NOTE_SUBMIT)
2133 1.160 ad solock(so);
2134 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2135 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2136 1.108 perry kn->kn_flags |= EV_EOF;
2137 1.72 jdolecek kn->kn_fflags = so->so_error;
2138 1.160 ad rv = 1;
2139 1.160 ad } else if (so->so_error) /* temporary udp error */
2140 1.160 ad rv = 1;
2141 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2142 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2143 1.160 ad else
2144 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2145 1.160 ad if (hint != NOTE_SUBMIT)
2146 1.160 ad sounlock(so);
2147 1.160 ad return rv;
2148 1.72 jdolecek }
2149 1.72 jdolecek
2150 1.72 jdolecek static void
2151 1.72 jdolecek filt_sowdetach(struct knote *kn)
2152 1.72 jdolecek {
2153 1.72 jdolecek struct socket *so;
2154 1.72 jdolecek
2155 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2156 1.160 ad solock(so);
2157 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2158 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2159 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2160 1.160 ad sounlock(so);
2161 1.72 jdolecek }
2162 1.72 jdolecek
2163 1.72 jdolecek /*ARGSUSED*/
2164 1.72 jdolecek static int
2165 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2166 1.72 jdolecek {
2167 1.72 jdolecek struct socket *so;
2168 1.160 ad int rv;
2169 1.72 jdolecek
2170 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2171 1.160 ad if (hint != NOTE_SUBMIT)
2172 1.160 ad solock(so);
2173 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2174 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2175 1.108 perry kn->kn_flags |= EV_EOF;
2176 1.72 jdolecek kn->kn_fflags = so->so_error;
2177 1.160 ad rv = 1;
2178 1.160 ad } else if (so->so_error) /* temporary udp error */
2179 1.160 ad rv = 1;
2180 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2181 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2182 1.160 ad rv = 0;
2183 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2184 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2185 1.160 ad else
2186 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2187 1.160 ad if (hint != NOTE_SUBMIT)
2188 1.160 ad sounlock(so);
2189 1.160 ad return rv;
2190 1.72 jdolecek }
2191 1.72 jdolecek
2192 1.72 jdolecek /*ARGSUSED*/
2193 1.72 jdolecek static int
2194 1.129 yamt filt_solisten(struct knote *kn, long hint)
2195 1.72 jdolecek {
2196 1.72 jdolecek struct socket *so;
2197 1.160 ad int rv;
2198 1.72 jdolecek
2199 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2200 1.72 jdolecek
2201 1.72 jdolecek /*
2202 1.72 jdolecek * Set kn_data to number of incoming connections, not
2203 1.72 jdolecek * counting partial (incomplete) connections.
2204 1.108 perry */
2205 1.160 ad if (hint != NOTE_SUBMIT)
2206 1.160 ad solock(so);
2207 1.72 jdolecek kn->kn_data = so->so_qlen;
2208 1.160 ad rv = (kn->kn_data > 0);
2209 1.160 ad if (hint != NOTE_SUBMIT)
2210 1.160 ad sounlock(so);
2211 1.160 ad return rv;
2212 1.72 jdolecek }
2213 1.72 jdolecek
2214 1.72 jdolecek static const struct filterops solisten_filtops =
2215 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
2216 1.72 jdolecek static const struct filterops soread_filtops =
2217 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
2218 1.72 jdolecek static const struct filterops sowrite_filtops =
2219 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
2220 1.72 jdolecek
2221 1.72 jdolecek int
2222 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2223 1.72 jdolecek {
2224 1.72 jdolecek struct socket *so;
2225 1.72 jdolecek struct sockbuf *sb;
2226 1.72 jdolecek
2227 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2228 1.160 ad solock(so);
2229 1.72 jdolecek switch (kn->kn_filter) {
2230 1.72 jdolecek case EVFILT_READ:
2231 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2232 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2233 1.72 jdolecek else
2234 1.72 jdolecek kn->kn_fop = &soread_filtops;
2235 1.72 jdolecek sb = &so->so_rcv;
2236 1.72 jdolecek break;
2237 1.72 jdolecek case EVFILT_WRITE:
2238 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2239 1.72 jdolecek sb = &so->so_snd;
2240 1.72 jdolecek break;
2241 1.72 jdolecek default:
2242 1.160 ad sounlock(so);
2243 1.149 pooka return (EINVAL);
2244 1.72 jdolecek }
2245 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2246 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2247 1.160 ad sounlock(so);
2248 1.72 jdolecek return (0);
2249 1.72 jdolecek }
2250 1.72 jdolecek
2251 1.154 ad static int
2252 1.154 ad sodopoll(struct socket *so, int events)
2253 1.154 ad {
2254 1.154 ad int revents;
2255 1.154 ad
2256 1.154 ad revents = 0;
2257 1.154 ad
2258 1.154 ad if (events & (POLLIN | POLLRDNORM))
2259 1.154 ad if (soreadable(so))
2260 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2261 1.154 ad
2262 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2263 1.154 ad if (sowritable(so))
2264 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2265 1.154 ad
2266 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2267 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2268 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2269 1.154 ad
2270 1.154 ad return revents;
2271 1.154 ad }
2272 1.154 ad
2273 1.154 ad int
2274 1.154 ad sopoll(struct socket *so, int events)
2275 1.154 ad {
2276 1.154 ad int revents = 0;
2277 1.154 ad
2278 1.160 ad #ifndef DIAGNOSTIC
2279 1.160 ad /*
2280 1.160 ad * Do a quick, unlocked check in expectation that the socket
2281 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2282 1.160 ad * as the solocked() assertions will fail.
2283 1.160 ad */
2284 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2285 1.154 ad return revents;
2286 1.160 ad #endif
2287 1.154 ad
2288 1.160 ad solock(so);
2289 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2290 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2291 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2292 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2293 1.154 ad }
2294 1.154 ad
2295 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2296 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2297 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2298 1.154 ad }
2299 1.154 ad }
2300 1.160 ad sounlock(so);
2301 1.154 ad
2302 1.154 ad return revents;
2303 1.154 ad }
2304 1.154 ad
2305 1.154 ad
2306 1.94 yamt #include <sys/sysctl.h>
2307 1.94 yamt
2308 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2309 1.94 yamt
2310 1.94 yamt /*
2311 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2312 1.94 yamt * value is not too small.
2313 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2314 1.94 yamt */
2315 1.94 yamt static int
2316 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2317 1.94 yamt {
2318 1.94 yamt int error, new_somaxkva;
2319 1.94 yamt struct sysctlnode node;
2320 1.94 yamt
2321 1.94 yamt new_somaxkva = somaxkva;
2322 1.94 yamt node = *rnode;
2323 1.94 yamt node.sysctl_data = &new_somaxkva;
2324 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2325 1.94 yamt if (error || newp == NULL)
2326 1.94 yamt return (error);
2327 1.94 yamt
2328 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2329 1.94 yamt return (EINVAL);
2330 1.94 yamt
2331 1.136 ad mutex_enter(&so_pendfree_lock);
2332 1.94 yamt somaxkva = new_somaxkva;
2333 1.136 ad cv_broadcast(&socurkva_cv);
2334 1.136 ad mutex_exit(&so_pendfree_lock);
2335 1.94 yamt
2336 1.94 yamt return (error);
2337 1.94 yamt }
2338 1.94 yamt
2339 1.178 pooka static void
2340 1.187 cegger sysctl_kern_somaxkva_setup(void)
2341 1.94 yamt {
2342 1.94 yamt
2343 1.178 pooka KASSERT(socket_sysctllog == NULL);
2344 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2345 1.97 atatat CTLFLAG_PERMANENT,
2346 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2347 1.97 atatat NULL, 0, NULL, 0,
2348 1.97 atatat CTL_KERN, CTL_EOL);
2349 1.97 atatat
2350 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2351 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2352 1.103 atatat CTLTYPE_INT, "somaxkva",
2353 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2354 1.103 atatat "used for socket buffers"),
2355 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2356 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2357 1.94 yamt }
2358