uipc_socket.c revision 1.208 1 1.208 para /* $NetBSD: uipc_socket.c,v 1.208 2012/01/27 19:48:40 para Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.59 lukem #include <sys/cdefs.h>
66 1.208 para __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.208 2012/01/27 19:48:40 para Exp $");
67 1.64 thorpej
68 1.179 christos #include "opt_compat_netbsd.h"
69 1.64 thorpej #include "opt_sock_counters.h"
70 1.64 thorpej #include "opt_sosend_loan.h"
71 1.81 martin #include "opt_mbuftrace.h"
72 1.84 ragge #include "opt_somaxkva.h"
73 1.167 ad #include "opt_multiprocessor.h" /* XXX */
74 1.1 cgd
75 1.9 mycroft #include <sys/param.h>
76 1.9 mycroft #include <sys/systm.h>
77 1.9 mycroft #include <sys/proc.h>
78 1.9 mycroft #include <sys/file.h>
79 1.142 dyoung #include <sys/filedesc.h>
80 1.173 plunky #include <sys/kmem.h>
81 1.9 mycroft #include <sys/mbuf.h>
82 1.9 mycroft #include <sys/domain.h>
83 1.9 mycroft #include <sys/kernel.h>
84 1.9 mycroft #include <sys/protosw.h>
85 1.9 mycroft #include <sys/socket.h>
86 1.9 mycroft #include <sys/socketvar.h>
87 1.21 christos #include <sys/signalvar.h>
88 1.9 mycroft #include <sys/resourcevar.h>
89 1.174 pooka #include <sys/uidinfo.h>
90 1.72 jdolecek #include <sys/event.h>
91 1.89 christos #include <sys/poll.h>
92 1.118 elad #include <sys/kauth.h>
93 1.136 ad #include <sys/mutex.h>
94 1.136 ad #include <sys/condvar.h>
95 1.205 bouyer #include <sys/kthread.h>
96 1.37 thorpej
97 1.179 christos #ifdef COMPAT_50
98 1.179 christos #include <compat/sys/time.h>
99 1.184 christos #include <compat/sys/socket.h>
100 1.179 christos #endif
101 1.179 christos
102 1.202 uebayasi #include <uvm/uvm_extern.h>
103 1.202 uebayasi #include <uvm/uvm_loan.h>
104 1.202 uebayasi #include <uvm/uvm_page.h>
105 1.64 thorpej
106 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108 1.37 thorpej
109 1.142 dyoung extern const struct fileops socketops;
110 1.142 dyoung
111 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
112 1.54 lukem int somaxconn = SOMAXCONN;
113 1.160 ad kmutex_t *softnet_lock;
114 1.49 jonathan
115 1.64 thorpej #ifdef SOSEND_COUNTERS
116 1.64 thorpej #include <sys/device.h>
117 1.64 thorpej
118 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 1.64 thorpej NULL, "sosend", "loan big");
120 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 1.64 thorpej NULL, "sosend", "copy big");
122 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 1.64 thorpej NULL, "sosend", "copy small");
124 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 1.64 thorpej NULL, "sosend", "kva limit");
126 1.64 thorpej
127 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128 1.64 thorpej
129 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
130 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
131 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
132 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 1.64 thorpej #else
134 1.64 thorpej
135 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
136 1.64 thorpej
137 1.64 thorpej #endif /* SOSEND_COUNTERS */
138 1.64 thorpej
139 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 1.121 yamt int sock_loan_thresh = -1;
141 1.71 thorpej #else
142 1.121 yamt int sock_loan_thresh = 4096;
143 1.65 thorpej #endif
144 1.64 thorpej
145 1.136 ad static kmutex_t so_pendfree_lock;
146 1.205 bouyer static struct mbuf *so_pendfree = NULL;
147 1.64 thorpej
148 1.84 ragge #ifndef SOMAXKVA
149 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
150 1.84 ragge #endif
151 1.84 ragge int somaxkva = SOMAXKVA;
152 1.113 thorpej static int socurkva;
153 1.136 ad static kcondvar_t socurkva_cv;
154 1.64 thorpej
155 1.191 elad static kauth_listener_t socket_listener;
156 1.191 elad
157 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
158 1.64 thorpej
159 1.205 bouyer static void sopendfree_thread(void *);
160 1.205 bouyer static kcondvar_t pendfree_thread_cv;
161 1.205 bouyer static lwp_t *sopendfree_lwp;
162 1.93 yamt
163 1.178 pooka static void sysctl_kern_somaxkva_setup(void);
164 1.178 pooka static struct sysctllog *socket_sysctllog;
165 1.178 pooka
166 1.113 thorpej static vsize_t
167 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
168 1.80 yamt {
169 1.98 christos int error;
170 1.80 yamt
171 1.136 ad mutex_enter(&so_pendfree_lock);
172 1.80 yamt while (socurkva + len > somaxkva) {
173 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 1.98 christos if (error) {
176 1.98 christos len = 0;
177 1.98 christos break;
178 1.98 christos }
179 1.80 yamt }
180 1.93 yamt socurkva += len;
181 1.136 ad mutex_exit(&so_pendfree_lock);
182 1.98 christos return len;
183 1.95 yamt }
184 1.95 yamt
185 1.113 thorpej static void
186 1.95 yamt sokvaunreserve(vsize_t len)
187 1.95 yamt {
188 1.95 yamt
189 1.136 ad mutex_enter(&so_pendfree_lock);
190 1.95 yamt socurkva -= len;
191 1.136 ad cv_broadcast(&socurkva_cv);
192 1.136 ad mutex_exit(&so_pendfree_lock);
193 1.95 yamt }
194 1.95 yamt
195 1.95 yamt /*
196 1.95 yamt * sokvaalloc: allocate kva for loan.
197 1.95 yamt */
198 1.95 yamt
199 1.95 yamt vaddr_t
200 1.95 yamt sokvaalloc(vsize_t len, struct socket *so)
201 1.95 yamt {
202 1.95 yamt vaddr_t lva;
203 1.95 yamt
204 1.95 yamt /*
205 1.95 yamt * reserve kva.
206 1.95 yamt */
207 1.95 yamt
208 1.98 christos if (sokvareserve(so, len) == 0)
209 1.98 christos return 0;
210 1.93 yamt
211 1.93 yamt /*
212 1.93 yamt * allocate kva.
213 1.93 yamt */
214 1.80 yamt
215 1.109 yamt lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
216 1.95 yamt if (lva == 0) {
217 1.95 yamt sokvaunreserve(len);
218 1.80 yamt return (0);
219 1.95 yamt }
220 1.80 yamt
221 1.80 yamt return lva;
222 1.80 yamt }
223 1.80 yamt
224 1.93 yamt /*
225 1.93 yamt * sokvafree: free kva for loan.
226 1.93 yamt */
227 1.93 yamt
228 1.80 yamt void
229 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
230 1.80 yamt {
231 1.93 yamt
232 1.93 yamt /*
233 1.93 yamt * free kva.
234 1.93 yamt */
235 1.80 yamt
236 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
237 1.93 yamt
238 1.93 yamt /*
239 1.93 yamt * unreserve kva.
240 1.93 yamt */
241 1.93 yamt
242 1.95 yamt sokvaunreserve(len);
243 1.80 yamt }
244 1.80 yamt
245 1.64 thorpej static void
246 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
247 1.64 thorpej {
248 1.156 yamt vaddr_t sva, eva;
249 1.64 thorpej vsize_t len;
250 1.156 yamt int npgs;
251 1.156 yamt
252 1.156 yamt KASSERT(pgs != NULL);
253 1.64 thorpej
254 1.64 thorpej eva = round_page((vaddr_t) buf + size);
255 1.64 thorpej sva = trunc_page((vaddr_t) buf);
256 1.64 thorpej len = eva - sva;
257 1.64 thorpej npgs = len >> PAGE_SHIFT;
258 1.64 thorpej
259 1.64 thorpej pmap_kremove(sva, len);
260 1.64 thorpej pmap_update(pmap_kernel());
261 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
262 1.80 yamt sokvafree(sva, len);
263 1.64 thorpej }
264 1.64 thorpej
265 1.93 yamt /*
266 1.205 bouyer * sopendfree_thread: free mbufs on "pendfree" list.
267 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
268 1.93 yamt */
269 1.93 yamt
270 1.205 bouyer static void
271 1.205 bouyer sopendfree_thread(void *v)
272 1.93 yamt {
273 1.137 ad struct mbuf *m, *next;
274 1.205 bouyer size_t rv;
275 1.93 yamt
276 1.205 bouyer mutex_enter(&so_pendfree_lock);
277 1.64 thorpej
278 1.205 bouyer for (;;) {
279 1.205 bouyer rv = 0;
280 1.205 bouyer while (so_pendfree != NULL) {
281 1.205 bouyer m = so_pendfree;
282 1.205 bouyer so_pendfree = NULL;
283 1.205 bouyer mutex_exit(&so_pendfree_lock);
284 1.205 bouyer
285 1.205 bouyer for (; m != NULL; m = next) {
286 1.205 bouyer next = m->m_next;
287 1.205 bouyer KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
288 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
289 1.205 bouyer
290 1.205 bouyer rv += m->m_ext.ext_size;
291 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
292 1.205 bouyer m->m_ext.ext_size);
293 1.205 bouyer pool_cache_put(mb_cache, m);
294 1.205 bouyer }
295 1.93 yamt
296 1.205 bouyer mutex_enter(&so_pendfree_lock);
297 1.93 yamt }
298 1.205 bouyer if (rv)
299 1.205 bouyer cv_broadcast(&socurkva_cv);
300 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
301 1.64 thorpej }
302 1.205 bouyer panic("sopendfree_thread");
303 1.205 bouyer /* NOTREACHED */
304 1.64 thorpej }
305 1.64 thorpej
306 1.80 yamt void
307 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
308 1.64 thorpej {
309 1.64 thorpej
310 1.156 yamt KASSERT(m != NULL);
311 1.64 thorpej
312 1.93 yamt /*
313 1.93 yamt * postpone freeing mbuf.
314 1.93 yamt *
315 1.93 yamt * we can't do it in interrupt context
316 1.93 yamt * because we need to put kva back to kernel_map.
317 1.93 yamt */
318 1.93 yamt
319 1.136 ad mutex_enter(&so_pendfree_lock);
320 1.92 yamt m->m_next = so_pendfree;
321 1.92 yamt so_pendfree = m;
322 1.205 bouyer cv_signal(&pendfree_thread_cv);
323 1.136 ad mutex_exit(&so_pendfree_lock);
324 1.64 thorpej }
325 1.64 thorpej
326 1.64 thorpej static long
327 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
328 1.64 thorpej {
329 1.64 thorpej struct iovec *iov = uio->uio_iov;
330 1.64 thorpej vaddr_t sva, eva;
331 1.64 thorpej vsize_t len;
332 1.156 yamt vaddr_t lva;
333 1.156 yamt int npgs, error;
334 1.156 yamt vaddr_t va;
335 1.156 yamt int i;
336 1.64 thorpej
337 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
338 1.64 thorpej return (0);
339 1.64 thorpej
340 1.64 thorpej if (iov->iov_len < (size_t) space)
341 1.64 thorpej space = iov->iov_len;
342 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
343 1.64 thorpej space = SOCK_LOAN_CHUNK;
344 1.64 thorpej
345 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
346 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
347 1.64 thorpej len = eva - sva;
348 1.64 thorpej npgs = len >> PAGE_SHIFT;
349 1.64 thorpej
350 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
351 1.79 thorpej
352 1.80 yamt lva = sokvaalloc(len, so);
353 1.64 thorpej if (lva == 0)
354 1.80 yamt return 0;
355 1.64 thorpej
356 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
357 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
358 1.64 thorpej if (error) {
359 1.80 yamt sokvafree(lva, len);
360 1.64 thorpej return (0);
361 1.64 thorpej }
362 1.64 thorpej
363 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
364 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
365 1.194 cegger VM_PROT_READ, 0);
366 1.64 thorpej pmap_update(pmap_kernel());
367 1.64 thorpej
368 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
369 1.64 thorpej
370 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
371 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
372 1.64 thorpej
373 1.64 thorpej uio->uio_resid -= space;
374 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
375 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
376 1.64 thorpej uio->uio_iov->iov_len -= space;
377 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
378 1.64 thorpej uio->uio_iov++;
379 1.64 thorpej uio->uio_iovcnt--;
380 1.64 thorpej }
381 1.64 thorpej
382 1.64 thorpej return (space);
383 1.64 thorpej }
384 1.64 thorpej
385 1.142 dyoung struct mbuf *
386 1.147 dyoung getsombuf(struct socket *so, int type)
387 1.142 dyoung {
388 1.142 dyoung struct mbuf *m;
389 1.142 dyoung
390 1.147 dyoung m = m_get(M_WAIT, type);
391 1.142 dyoung MCLAIM(m, so->so_mowner);
392 1.142 dyoung return m;
393 1.142 dyoung }
394 1.142 dyoung
395 1.191 elad static int
396 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
397 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
398 1.191 elad {
399 1.191 elad int result;
400 1.191 elad enum kauth_network_req req;
401 1.191 elad
402 1.191 elad result = KAUTH_RESULT_DEFER;
403 1.191 elad req = (enum kauth_network_req)arg0;
404 1.191 elad
405 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
406 1.193 elad (action != KAUTH_NETWORK_BIND))
407 1.191 elad return result;
408 1.191 elad
409 1.191 elad switch (req) {
410 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
411 1.193 elad result = KAUTH_RESULT_ALLOW;
412 1.193 elad break;
413 1.193 elad
414 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
415 1.191 elad /* Normal users can only drop their own connections. */
416 1.191 elad struct socket *so = (struct socket *)arg1;
417 1.191 elad
418 1.199 elad if (proc_uidmatch(cred, so->so_cred))
419 1.191 elad result = KAUTH_RESULT_ALLOW;
420 1.191 elad
421 1.191 elad break;
422 1.191 elad }
423 1.191 elad
424 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
425 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
426 1.203 matt if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
427 1.203 matt || (u_long)arg1 == PF_BLUETOOTH) {
428 1.191 elad result = KAUTH_RESULT_ALLOW;
429 1.203 matt } else {
430 1.191 elad /* Privileged, let secmodel handle this. */
431 1.191 elad if ((u_long)arg2 == SOCK_RAW)
432 1.191 elad break;
433 1.191 elad }
434 1.191 elad
435 1.191 elad result = KAUTH_RESULT_ALLOW;
436 1.191 elad
437 1.191 elad break;
438 1.191 elad
439 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
440 1.192 elad result = KAUTH_RESULT_ALLOW;
441 1.192 elad
442 1.192 elad break;
443 1.192 elad
444 1.191 elad default:
445 1.191 elad break;
446 1.191 elad }
447 1.191 elad
448 1.191 elad return result;
449 1.191 elad }
450 1.191 elad
451 1.119 yamt void
452 1.119 yamt soinit(void)
453 1.119 yamt {
454 1.119 yamt
455 1.178 pooka sysctl_kern_somaxkva_setup();
456 1.178 pooka
457 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
458 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
459 1.136 ad cv_init(&socurkva_cv, "sokva");
460 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
461 1.166 ad soinit2();
462 1.136 ad
463 1.119 yamt /* Set the initial adjusted socket buffer size. */
464 1.119 yamt if (sb_max_set(sb_max))
465 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
466 1.119 yamt
467 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
468 1.191 elad socket_listener_cb, NULL);
469 1.119 yamt }
470 1.119 yamt
471 1.205 bouyer void
472 1.205 bouyer soinit1(void)
473 1.205 bouyer {
474 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
475 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
476 1.205 bouyer if (error)
477 1.205 bouyer panic("soinit1 %d", error);
478 1.205 bouyer }
479 1.205 bouyer
480 1.1 cgd /*
481 1.1 cgd * Socket operation routines.
482 1.1 cgd * These routines are called by the routines in
483 1.1 cgd * sys_socket.c or from a system process, and
484 1.1 cgd * implement the semantics of socket operations by
485 1.1 cgd * switching out to the protocol specific routines.
486 1.1 cgd */
487 1.1 cgd /*ARGSUSED*/
488 1.3 andrew int
489 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
490 1.160 ad struct socket *lockso)
491 1.1 cgd {
492 1.99 matt const struct protosw *prp;
493 1.54 lukem struct socket *so;
494 1.115 yamt uid_t uid;
495 1.160 ad int error;
496 1.160 ad kmutex_t *lock;
497 1.1 cgd
498 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
499 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
500 1.132 elad KAUTH_ARG(proto));
501 1.140 dyoung if (error != 0)
502 1.140 dyoung return error;
503 1.127 elad
504 1.1 cgd if (proto)
505 1.1 cgd prp = pffindproto(dom, proto, type);
506 1.1 cgd else
507 1.1 cgd prp = pffindtype(dom, type);
508 1.140 dyoung if (prp == NULL) {
509 1.120 ginsbach /* no support for domain */
510 1.120 ginsbach if (pffinddomain(dom) == 0)
511 1.140 dyoung return EAFNOSUPPORT;
512 1.120 ginsbach /* no support for socket type */
513 1.120 ginsbach if (proto == 0 && type != 0)
514 1.140 dyoung return EPROTOTYPE;
515 1.140 dyoung return EPROTONOSUPPORT;
516 1.120 ginsbach }
517 1.140 dyoung if (prp->pr_usrreq == NULL)
518 1.140 dyoung return EPROTONOSUPPORT;
519 1.1 cgd if (prp->pr_type != type)
520 1.140 dyoung return EPROTOTYPE;
521 1.160 ad
522 1.160 ad so = soget(true);
523 1.1 cgd so->so_type = type;
524 1.1 cgd so->so_proto = prp;
525 1.33 matt so->so_send = sosend;
526 1.33 matt so->so_receive = soreceive;
527 1.78 matt #ifdef MBUFTRACE
528 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
531 1.78 matt #endif
532 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
533 1.115 yamt so->so_uidinfo = uid_find(uid);
534 1.168 yamt so->so_cpid = l->l_proc->p_pid;
535 1.160 ad if (lockso != NULL) {
536 1.160 ad /* Caller wants us to share a lock. */
537 1.160 ad lock = lockso->so_lock;
538 1.160 ad so->so_lock = lock;
539 1.160 ad mutex_obj_hold(lock);
540 1.160 ad mutex_enter(lock);
541 1.160 ad } else {
542 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
543 1.160 ad }
544 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
545 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
546 1.160 ad KASSERT(solocked(so));
547 1.140 dyoung if (error != 0) {
548 1.1 cgd so->so_state |= SS_NOFDREF;
549 1.1 cgd sofree(so);
550 1.140 dyoung return error;
551 1.1 cgd }
552 1.198 elad so->so_cred = kauth_cred_dup(l->l_cred);
553 1.160 ad sounlock(so);
554 1.1 cgd *aso = so;
555 1.140 dyoung return 0;
556 1.1 cgd }
557 1.1 cgd
558 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
559 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
560 1.142 dyoung */
561 1.142 dyoung int
562 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
563 1.142 dyoung struct lwp *l, int *fdout)
564 1.142 dyoung {
565 1.142 dyoung struct socket *so;
566 1.142 dyoung struct file *fp;
567 1.142 dyoung int fd, error;
568 1.204 christos int flags = type & SOCK_FLAGS_MASK;
569 1.142 dyoung
570 1.204 christos type &= ~SOCK_FLAGS_MASK;
571 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
572 1.204 christos return error;
573 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
574 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
575 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
576 1.142 dyoung fp->f_type = DTYPE_SOCKET;
577 1.142 dyoung fp->f_ops = &socketops;
578 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
579 1.142 dyoung if (error != 0) {
580 1.155 ad fd_abort(curproc, fp, fd);
581 1.142 dyoung } else {
582 1.142 dyoung if (sop != NULL)
583 1.142 dyoung *sop = so;
584 1.142 dyoung fp->f_data = so;
585 1.155 ad fd_affix(curproc, fp, fd);
586 1.142 dyoung *fdout = fd;
587 1.142 dyoung }
588 1.142 dyoung return error;
589 1.142 dyoung }
590 1.142 dyoung
591 1.3 andrew int
592 1.190 dyoung sofamily(const struct socket *so)
593 1.190 dyoung {
594 1.190 dyoung const struct protosw *pr;
595 1.190 dyoung const struct domain *dom;
596 1.190 dyoung
597 1.190 dyoung if ((pr = so->so_proto) == NULL)
598 1.190 dyoung return AF_UNSPEC;
599 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
600 1.190 dyoung return AF_UNSPEC;
601 1.190 dyoung return dom->dom_family;
602 1.190 dyoung }
603 1.190 dyoung
604 1.190 dyoung int
605 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
606 1.1 cgd {
607 1.160 ad int error;
608 1.1 cgd
609 1.160 ad solock(so);
610 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
611 1.160 ad sounlock(so);
612 1.140 dyoung return error;
613 1.1 cgd }
614 1.1 cgd
615 1.3 andrew int
616 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
617 1.1 cgd {
618 1.160 ad int error;
619 1.1 cgd
620 1.160 ad solock(so);
621 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
622 1.163 ad SS_ISDISCONNECTING)) != 0) {
623 1.163 ad sounlock(so);
624 1.158 ad return (EOPNOTSUPP);
625 1.163 ad }
626 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
627 1.150 elad NULL, NULL, l);
628 1.140 dyoung if (error != 0) {
629 1.160 ad sounlock(so);
630 1.140 dyoung return error;
631 1.1 cgd }
632 1.63 matt if (TAILQ_EMPTY(&so->so_q))
633 1.1 cgd so->so_options |= SO_ACCEPTCONN;
634 1.1 cgd if (backlog < 0)
635 1.1 cgd backlog = 0;
636 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
637 1.160 ad sounlock(so);
638 1.140 dyoung return 0;
639 1.1 cgd }
640 1.1 cgd
641 1.21 christos void
642 1.54 lukem sofree(struct socket *so)
643 1.1 cgd {
644 1.161 ad u_int refs;
645 1.1 cgd
646 1.160 ad KASSERT(solocked(so));
647 1.160 ad
648 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
649 1.160 ad sounlock(so);
650 1.1 cgd return;
651 1.160 ad }
652 1.43 mycroft if (so->so_head) {
653 1.43 mycroft /*
654 1.43 mycroft * We must not decommission a socket that's on the accept(2)
655 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
656 1.43 mycroft * indicated that the listening socket was ready.
657 1.43 mycroft */
658 1.160 ad if (!soqremque(so, 0)) {
659 1.160 ad sounlock(so);
660 1.43 mycroft return;
661 1.160 ad }
662 1.43 mycroft }
663 1.98 christos if (so->so_rcv.sb_hiwat)
664 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
665 1.98 christos RLIM_INFINITY);
666 1.98 christos if (so->so_snd.sb_hiwat)
667 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
668 1.98 christos RLIM_INFINITY);
669 1.98 christos sbrelease(&so->so_snd, so);
670 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
671 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
672 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
673 1.1 cgd sorflush(so);
674 1.161 ad refs = so->so_aborting; /* XXX */
675 1.177 ad /* Remove acccept filter if one is present. */
676 1.170 tls if (so->so_accf != NULL)
677 1.177 ad (void)accept_filt_clear(so);
678 1.160 ad sounlock(so);
679 1.161 ad if (refs == 0) /* XXX */
680 1.161 ad soput(so);
681 1.1 cgd }
682 1.1 cgd
683 1.1 cgd /*
684 1.1 cgd * Close a socket on last file table reference removal.
685 1.1 cgd * Initiate disconnect if connected.
686 1.1 cgd * Free socket when disconnect complete.
687 1.1 cgd */
688 1.3 andrew int
689 1.54 lukem soclose(struct socket *so)
690 1.1 cgd {
691 1.54 lukem struct socket *so2;
692 1.160 ad int error;
693 1.160 ad int error2;
694 1.1 cgd
695 1.54 lukem error = 0;
696 1.160 ad solock(so);
697 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
698 1.172 ad for (;;) {
699 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
700 1.160 ad KASSERT(solocked2(so, so2));
701 1.160 ad (void) soqremque(so2, 0);
702 1.160 ad /* soabort drops the lock. */
703 1.160 ad (void) soabort(so2);
704 1.160 ad solock(so);
705 1.172 ad continue;
706 1.160 ad }
707 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
708 1.160 ad KASSERT(solocked2(so, so2));
709 1.160 ad (void) soqremque(so2, 1);
710 1.160 ad /* soabort drops the lock. */
711 1.160 ad (void) soabort(so2);
712 1.160 ad solock(so);
713 1.172 ad continue;
714 1.160 ad }
715 1.172 ad break;
716 1.172 ad }
717 1.1 cgd }
718 1.1 cgd if (so->so_pcb == 0)
719 1.1 cgd goto discard;
720 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
721 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
722 1.1 cgd error = sodisconnect(so);
723 1.1 cgd if (error)
724 1.1 cgd goto drop;
725 1.1 cgd }
726 1.1 cgd if (so->so_options & SO_LINGER) {
727 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
728 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
729 1.1 cgd goto drop;
730 1.21 christos while (so->so_state & SS_ISCONNECTED) {
731 1.185 yamt error = sowait(so, true, so->so_linger * hz);
732 1.21 christos if (error)
733 1.1 cgd break;
734 1.21 christos }
735 1.1 cgd }
736 1.1 cgd }
737 1.54 lukem drop:
738 1.1 cgd if (so->so_pcb) {
739 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
740 1.140 dyoung NULL, NULL, NULL, NULL);
741 1.1 cgd if (error == 0)
742 1.1 cgd error = error2;
743 1.1 cgd }
744 1.54 lukem discard:
745 1.1 cgd if (so->so_state & SS_NOFDREF)
746 1.1 cgd panic("soclose: NOFDREF");
747 1.198 elad kauth_cred_free(so->so_cred);
748 1.1 cgd so->so_state |= SS_NOFDREF;
749 1.1 cgd sofree(so);
750 1.1 cgd return (error);
751 1.1 cgd }
752 1.1 cgd
753 1.1 cgd /*
754 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
755 1.1 cgd */
756 1.3 andrew int
757 1.54 lukem soabort(struct socket *so)
758 1.1 cgd {
759 1.161 ad u_int refs;
760 1.139 yamt int error;
761 1.160 ad
762 1.160 ad KASSERT(solocked(so));
763 1.160 ad KASSERT(so->so_head == NULL);
764 1.1 cgd
765 1.161 ad so->so_aborting++; /* XXX */
766 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
767 1.140 dyoung NULL, NULL, NULL);
768 1.161 ad refs = --so->so_aborting; /* XXX */
769 1.164 drochner if (error || (refs == 0)) {
770 1.139 yamt sofree(so);
771 1.160 ad } else {
772 1.160 ad sounlock(so);
773 1.139 yamt }
774 1.139 yamt return error;
775 1.1 cgd }
776 1.1 cgd
777 1.3 andrew int
778 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
779 1.1 cgd {
780 1.160 ad int error;
781 1.160 ad
782 1.160 ad KASSERT(solocked(so));
783 1.1 cgd
784 1.54 lukem error = 0;
785 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
786 1.1 cgd panic("soaccept: !NOFDREF");
787 1.1 cgd so->so_state &= ~SS_NOFDREF;
788 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
789 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
790 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
791 1.140 dyoung NULL, nam, NULL, NULL);
792 1.41 mycroft else
793 1.53 itojun error = ECONNABORTED;
794 1.52 itojun
795 1.1 cgd return (error);
796 1.1 cgd }
797 1.1 cgd
798 1.3 andrew int
799 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
800 1.1 cgd {
801 1.160 ad int error;
802 1.160 ad
803 1.160 ad KASSERT(solocked(so));
804 1.1 cgd
805 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
806 1.1 cgd return (EOPNOTSUPP);
807 1.1 cgd /*
808 1.1 cgd * If protocol is connection-based, can only connect once.
809 1.1 cgd * Otherwise, if connected, try to disconnect first.
810 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
811 1.1 cgd * a null address.
812 1.1 cgd */
813 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
814 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
815 1.1 cgd (error = sodisconnect(so))))
816 1.1 cgd error = EISCONN;
817 1.1 cgd else
818 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
819 1.140 dyoung NULL, nam, NULL, l);
820 1.1 cgd return (error);
821 1.1 cgd }
822 1.1 cgd
823 1.3 andrew int
824 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
825 1.1 cgd {
826 1.160 ad int error;
827 1.160 ad
828 1.160 ad KASSERT(solocked2(so1, so2));
829 1.1 cgd
830 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
831 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
832 1.1 cgd return (error);
833 1.1 cgd }
834 1.1 cgd
835 1.3 andrew int
836 1.54 lukem sodisconnect(struct socket *so)
837 1.1 cgd {
838 1.160 ad int error;
839 1.160 ad
840 1.160 ad KASSERT(solocked(so));
841 1.1 cgd
842 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
843 1.1 cgd error = ENOTCONN;
844 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
845 1.1 cgd error = EALREADY;
846 1.160 ad } else {
847 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
848 1.160 ad NULL, NULL, NULL, NULL);
849 1.1 cgd }
850 1.1 cgd return (error);
851 1.1 cgd }
852 1.1 cgd
853 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
854 1.1 cgd /*
855 1.1 cgd * Send on a socket.
856 1.1 cgd * If send must go all at once and message is larger than
857 1.1 cgd * send buffering, then hard error.
858 1.1 cgd * Lock against other senders.
859 1.1 cgd * If must go all at once and not enough room now, then
860 1.1 cgd * inform user that this would block and do nothing.
861 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
862 1.1 cgd * The data to be sent is described by "uio" if nonzero,
863 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
864 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
865 1.1 cgd * enough to send all at once.
866 1.1 cgd *
867 1.1 cgd * Returns nonzero on error, timeout or signal; callers
868 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
869 1.1 cgd * Data and control buffers are freed on return.
870 1.1 cgd */
871 1.3 andrew int
872 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
873 1.114 christos struct mbuf *control, int flags, struct lwp *l)
874 1.1 cgd {
875 1.54 lukem struct mbuf **mp, *m;
876 1.114 christos struct proc *p;
877 1.58 jdolecek long space, len, resid, clen, mlen;
878 1.58 jdolecek int error, s, dontroute, atomic;
879 1.196 dsl short wakeup_state = 0;
880 1.54 lukem
881 1.114 christos p = l->l_proc;
882 1.160 ad clen = 0;
883 1.64 thorpej
884 1.160 ad /*
885 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
886 1.160 ad * protocol processing soft interrupts from interrupting us and
887 1.160 ad * blocking (expensive).
888 1.160 ad */
889 1.160 ad s = splsoftnet();
890 1.160 ad solock(so);
891 1.54 lukem atomic = sosendallatonce(so) || top;
892 1.1 cgd if (uio)
893 1.1 cgd resid = uio->uio_resid;
894 1.1 cgd else
895 1.1 cgd resid = top->m_pkthdr.len;
896 1.7 cgd /*
897 1.7 cgd * In theory resid should be unsigned.
898 1.7 cgd * However, space must be signed, as it might be less than 0
899 1.7 cgd * if we over-committed, and we must use a signed comparison
900 1.7 cgd * of space and resid. On the other hand, a negative resid
901 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
902 1.7 cgd */
903 1.29 mycroft if (resid < 0) {
904 1.29 mycroft error = EINVAL;
905 1.29 mycroft goto out;
906 1.29 mycroft }
907 1.1 cgd dontroute =
908 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
909 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
910 1.165 christos l->l_ru.ru_msgsnd++;
911 1.1 cgd if (control)
912 1.1 cgd clen = control->m_len;
913 1.54 lukem restart:
914 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
915 1.1 cgd goto out;
916 1.1 cgd do {
917 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
918 1.160 ad error = EPIPE;
919 1.160 ad goto release;
920 1.160 ad }
921 1.48 thorpej if (so->so_error) {
922 1.48 thorpej error = so->so_error;
923 1.48 thorpej so->so_error = 0;
924 1.48 thorpej goto release;
925 1.48 thorpej }
926 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
927 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
928 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
929 1.160 ad !(resid == 0 && clen != 0)) {
930 1.160 ad error = ENOTCONN;
931 1.160 ad goto release;
932 1.160 ad }
933 1.160 ad } else if (addr == 0) {
934 1.160 ad error = EDESTADDRREQ;
935 1.160 ad goto release;
936 1.160 ad }
937 1.1 cgd }
938 1.1 cgd space = sbspace(&so->so_snd);
939 1.1 cgd if (flags & MSG_OOB)
940 1.1 cgd space += 1024;
941 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
942 1.160 ad clen > so->so_snd.sb_hiwat) {
943 1.160 ad error = EMSGSIZE;
944 1.160 ad goto release;
945 1.160 ad }
946 1.96 mycroft if (space < resid + clen &&
947 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
948 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
949 1.160 ad error = EWOULDBLOCK;
950 1.160 ad goto release;
951 1.160 ad }
952 1.1 cgd sbunlock(&so->so_snd);
953 1.196 dsl if (wakeup_state & SS_RESTARTSYS) {
954 1.196 dsl error = ERESTART;
955 1.196 dsl goto out;
956 1.196 dsl }
957 1.1 cgd error = sbwait(&so->so_snd);
958 1.1 cgd if (error)
959 1.1 cgd goto out;
960 1.196 dsl wakeup_state = so->so_state;
961 1.1 cgd goto restart;
962 1.1 cgd }
963 1.196 dsl wakeup_state = 0;
964 1.1 cgd mp = ⊤
965 1.1 cgd space -= clen;
966 1.1 cgd do {
967 1.45 tv if (uio == NULL) {
968 1.45 tv /*
969 1.45 tv * Data is prepackaged in "top".
970 1.45 tv */
971 1.45 tv resid = 0;
972 1.45 tv if (flags & MSG_EOR)
973 1.45 tv top->m_flags |= M_EOR;
974 1.45 tv } else do {
975 1.160 ad sounlock(so);
976 1.160 ad splx(s);
977 1.144 dyoung if (top == NULL) {
978 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
979 1.45 tv mlen = MHLEN;
980 1.45 tv m->m_pkthdr.len = 0;
981 1.140 dyoung m->m_pkthdr.rcvif = NULL;
982 1.45 tv } else {
983 1.78 matt m = m_get(M_WAIT, MT_DATA);
984 1.45 tv mlen = MLEN;
985 1.45 tv }
986 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
987 1.121 yamt if (sock_loan_thresh >= 0 &&
988 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
989 1.121 yamt space >= sock_loan_thresh &&
990 1.64 thorpej (len = sosend_loan(so, uio, m,
991 1.64 thorpej space)) != 0) {
992 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
993 1.64 thorpej space -= len;
994 1.64 thorpej goto have_data;
995 1.64 thorpej }
996 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
997 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
998 1.201 oki m_clget(m, M_DONTWAIT);
999 1.45 tv if ((m->m_flags & M_EXT) == 0)
1000 1.45 tv goto nopages;
1001 1.45 tv mlen = MCLBYTES;
1002 1.45 tv if (atomic && top == 0) {
1003 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1004 1.54 lukem resid);
1005 1.45 tv m->m_data += max_hdr;
1006 1.45 tv } else
1007 1.58 jdolecek len = lmin(MCLBYTES, resid);
1008 1.45 tv space -= len;
1009 1.45 tv } else {
1010 1.64 thorpej nopages:
1011 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1012 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1013 1.45 tv space -= len;
1014 1.45 tv /*
1015 1.45 tv * For datagram protocols, leave room
1016 1.45 tv * for protocol headers in first mbuf.
1017 1.45 tv */
1018 1.45 tv if (atomic && top == 0 && len < mlen)
1019 1.45 tv MH_ALIGN(m, len);
1020 1.45 tv }
1021 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1022 1.64 thorpej have_data:
1023 1.45 tv resid = uio->uio_resid;
1024 1.45 tv m->m_len = len;
1025 1.45 tv *mp = m;
1026 1.45 tv top->m_pkthdr.len += len;
1027 1.160 ad s = splsoftnet();
1028 1.160 ad solock(so);
1029 1.144 dyoung if (error != 0)
1030 1.45 tv goto release;
1031 1.45 tv mp = &m->m_next;
1032 1.45 tv if (resid <= 0) {
1033 1.45 tv if (flags & MSG_EOR)
1034 1.45 tv top->m_flags |= M_EOR;
1035 1.45 tv break;
1036 1.45 tv }
1037 1.45 tv } while (space > 0 && atomic);
1038 1.108 perry
1039 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1040 1.160 ad error = EPIPE;
1041 1.160 ad goto release;
1042 1.160 ad }
1043 1.45 tv if (dontroute)
1044 1.45 tv so->so_options |= SO_DONTROUTE;
1045 1.45 tv if (resid > 0)
1046 1.45 tv so->so_state |= SS_MORETOCOME;
1047 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
1048 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1049 1.160 ad top, addr, control, curlwp);
1050 1.45 tv if (dontroute)
1051 1.45 tv so->so_options &= ~SO_DONTROUTE;
1052 1.45 tv if (resid > 0)
1053 1.45 tv so->so_state &= ~SS_MORETOCOME;
1054 1.45 tv clen = 0;
1055 1.144 dyoung control = NULL;
1056 1.144 dyoung top = NULL;
1057 1.45 tv mp = ⊤
1058 1.144 dyoung if (error != 0)
1059 1.1 cgd goto release;
1060 1.1 cgd } while (resid && space > 0);
1061 1.1 cgd } while (resid);
1062 1.1 cgd
1063 1.54 lukem release:
1064 1.1 cgd sbunlock(&so->so_snd);
1065 1.54 lukem out:
1066 1.160 ad sounlock(so);
1067 1.160 ad splx(s);
1068 1.1 cgd if (top)
1069 1.1 cgd m_freem(top);
1070 1.1 cgd if (control)
1071 1.1 cgd m_freem(control);
1072 1.1 cgd return (error);
1073 1.1 cgd }
1074 1.1 cgd
1075 1.1 cgd /*
1076 1.159 ad * Following replacement or removal of the first mbuf on the first
1077 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1078 1.159 ad * into the socket buffer so that other consumers see the values
1079 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1080 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1081 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1082 1.159 ad */
1083 1.159 ad static void
1084 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1085 1.159 ad {
1086 1.159 ad
1087 1.160 ad KASSERT(solocked(sb->sb_so));
1088 1.160 ad
1089 1.159 ad /*
1090 1.159 ad * First, update for the new value of nextrecord. If necessary,
1091 1.159 ad * make it the first record.
1092 1.159 ad */
1093 1.159 ad if (sb->sb_mb != NULL)
1094 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1095 1.159 ad else
1096 1.159 ad sb->sb_mb = nextrecord;
1097 1.159 ad
1098 1.159 ad /*
1099 1.159 ad * Now update any dependent socket buffer fields to reflect
1100 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1101 1.159 ad * the addition of a second clause that takes care of the
1102 1.159 ad * case where sb_mb has been updated, but remains the last
1103 1.159 ad * record.
1104 1.159 ad */
1105 1.159 ad if (sb->sb_mb == NULL) {
1106 1.159 ad sb->sb_mbtail = NULL;
1107 1.159 ad sb->sb_lastrecord = NULL;
1108 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1109 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1110 1.159 ad }
1111 1.159 ad
1112 1.159 ad /*
1113 1.1 cgd * Implement receive operations on a socket.
1114 1.1 cgd * We depend on the way that records are added to the sockbuf
1115 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1116 1.1 cgd * must begin with an address if the protocol so specifies,
1117 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1118 1.1 cgd * and then zero or more mbufs of data.
1119 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1120 1.1 cgd * we splx() while doing the actual copy to user space.
1121 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1122 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1123 1.1 cgd *
1124 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1125 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1126 1.1 cgd * only for the count in uio_resid.
1127 1.1 cgd */
1128 1.3 andrew int
1129 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1130 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1131 1.1 cgd {
1132 1.116 yamt struct lwp *l = curlwp;
1133 1.160 ad struct mbuf *m, **mp, *mt;
1134 1.146 dyoung int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1135 1.99 matt const struct protosw *pr;
1136 1.54 lukem struct mbuf *nextrecord;
1137 1.67 he int mbuf_removed = 0;
1138 1.146 dyoung const struct domain *dom;
1139 1.196 dsl short wakeup_state = 0;
1140 1.64 thorpej
1141 1.54 lukem pr = so->so_proto;
1142 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1143 1.146 dyoung dom = pr->pr_domain;
1144 1.1 cgd mp = mp0;
1145 1.54 lukem type = 0;
1146 1.54 lukem orig_resid = uio->uio_resid;
1147 1.102 jonathan
1148 1.144 dyoung if (paddr != NULL)
1149 1.144 dyoung *paddr = NULL;
1150 1.144 dyoung if (controlp != NULL)
1151 1.144 dyoung *controlp = NULL;
1152 1.144 dyoung if (flagsp != NULL)
1153 1.1 cgd flags = *flagsp &~ MSG_EOR;
1154 1.1 cgd else
1155 1.1 cgd flags = 0;
1156 1.66 enami
1157 1.1 cgd if (flags & MSG_OOB) {
1158 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1159 1.160 ad solock(so);
1160 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1161 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1162 1.160 ad sounlock(so);
1163 1.1 cgd if (error)
1164 1.1 cgd goto bad;
1165 1.1 cgd do {
1166 1.134 christos error = uiomove(mtod(m, void *),
1167 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
1168 1.1 cgd m = m_free(m);
1169 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1170 1.54 lukem bad:
1171 1.144 dyoung if (m != NULL)
1172 1.1 cgd m_freem(m);
1173 1.144 dyoung return error;
1174 1.1 cgd }
1175 1.144 dyoung if (mp != NULL)
1176 1.140 dyoung *mp = NULL;
1177 1.160 ad
1178 1.160 ad /*
1179 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1180 1.160 ad * protocol processing soft interrupts from interrupting us and
1181 1.160 ad * blocking (expensive).
1182 1.160 ad */
1183 1.160 ad s = splsoftnet();
1184 1.160 ad solock(so);
1185 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1186 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1187 1.1 cgd
1188 1.54 lukem restart:
1189 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1190 1.160 ad sounlock(so);
1191 1.160 ad splx(s);
1192 1.144 dyoung return error;
1193 1.160 ad }
1194 1.1 cgd
1195 1.1 cgd m = so->so_rcv.sb_mb;
1196 1.1 cgd /*
1197 1.1 cgd * If we have less data than requested, block awaiting more
1198 1.1 cgd * (subject to any timeout) if:
1199 1.15 mycroft * 1. the current count is less than the low water mark,
1200 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1201 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1202 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1203 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1204 1.1 cgd * we have to do the receive in sections, and thus risk returning
1205 1.1 cgd * a short count if a timeout or signal occurs after we start.
1206 1.1 cgd */
1207 1.144 dyoung if (m == NULL ||
1208 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1209 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1210 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1211 1.144 dyoung ((flags & MSG_WAITALL) &&
1212 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1213 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1214 1.1 cgd #ifdef DIAGNOSTIC
1215 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1216 1.1 cgd panic("receive 1");
1217 1.1 cgd #endif
1218 1.1 cgd if (so->so_error) {
1219 1.144 dyoung if (m != NULL)
1220 1.15 mycroft goto dontblock;
1221 1.1 cgd error = so->so_error;
1222 1.1 cgd if ((flags & MSG_PEEK) == 0)
1223 1.1 cgd so->so_error = 0;
1224 1.1 cgd goto release;
1225 1.1 cgd }
1226 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1227 1.144 dyoung if (m != NULL)
1228 1.15 mycroft goto dontblock;
1229 1.1 cgd else
1230 1.1 cgd goto release;
1231 1.1 cgd }
1232 1.144 dyoung for (; m != NULL; m = m->m_next)
1233 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1234 1.1 cgd m = so->so_rcv.sb_mb;
1235 1.1 cgd goto dontblock;
1236 1.1 cgd }
1237 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1238 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1239 1.1 cgd error = ENOTCONN;
1240 1.1 cgd goto release;
1241 1.1 cgd }
1242 1.1 cgd if (uio->uio_resid == 0)
1243 1.1 cgd goto release;
1244 1.206 christos if ((so->so_state & SS_NBIO) ||
1245 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1246 1.1 cgd error = EWOULDBLOCK;
1247 1.1 cgd goto release;
1248 1.1 cgd }
1249 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1250 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1251 1.1 cgd sbunlock(&so->so_rcv);
1252 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1253 1.196 dsl error = ERESTART;
1254 1.196 dsl else
1255 1.196 dsl error = sbwait(&so->so_rcv);
1256 1.160 ad if (error != 0) {
1257 1.160 ad sounlock(so);
1258 1.160 ad splx(s);
1259 1.144 dyoung return error;
1260 1.160 ad }
1261 1.196 dsl wakeup_state = so->so_state;
1262 1.1 cgd goto restart;
1263 1.1 cgd }
1264 1.54 lukem dontblock:
1265 1.69 thorpej /*
1266 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1267 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1268 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1269 1.159 ad * various socket buffer pointers and local stack versions of the
1270 1.159 ad * pointers in sync, pushing out modifications before dropping the
1271 1.160 ad * socket lock, and re-reading them when picking it up.
1272 1.159 ad *
1273 1.159 ad * Otherwise, we will race with the network stack appending new data
1274 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1275 1.159 ad * versions of the field, possibly resulting in socket buffer
1276 1.159 ad * corruption.
1277 1.159 ad *
1278 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1279 1.159 ad * readers from pulling off the front of the socket buffer.
1280 1.69 thorpej */
1281 1.144 dyoung if (l != NULL)
1282 1.157 ad l->l_ru.ru_msgrcv++;
1283 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1284 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1285 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1286 1.1 cgd nextrecord = m->m_nextpkt;
1287 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1288 1.1 cgd #ifdef DIAGNOSTIC
1289 1.1 cgd if (m->m_type != MT_SONAME)
1290 1.1 cgd panic("receive 1a");
1291 1.1 cgd #endif
1292 1.3 andrew orig_resid = 0;
1293 1.1 cgd if (flags & MSG_PEEK) {
1294 1.1 cgd if (paddr)
1295 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1296 1.1 cgd m = m->m_next;
1297 1.1 cgd } else {
1298 1.1 cgd sbfree(&so->so_rcv, m);
1299 1.67 he mbuf_removed = 1;
1300 1.144 dyoung if (paddr != NULL) {
1301 1.1 cgd *paddr = m;
1302 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1303 1.144 dyoung m->m_next = NULL;
1304 1.1 cgd m = so->so_rcv.sb_mb;
1305 1.1 cgd } else {
1306 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1307 1.1 cgd m = so->so_rcv.sb_mb;
1308 1.1 cgd }
1309 1.159 ad sbsync(&so->so_rcv, nextrecord);
1310 1.1 cgd }
1311 1.1 cgd }
1312 1.159 ad
1313 1.159 ad /*
1314 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1315 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1316 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1317 1.159 ad * perform externalization (or freeing if controlp == NULL).
1318 1.159 ad */
1319 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1320 1.159 ad struct mbuf *cm = NULL, *cmn;
1321 1.159 ad struct mbuf **cme = &cm;
1322 1.159 ad
1323 1.159 ad do {
1324 1.159 ad if (flags & MSG_PEEK) {
1325 1.159 ad if (controlp != NULL) {
1326 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1327 1.159 ad controlp = &(*controlp)->m_next;
1328 1.159 ad }
1329 1.159 ad m = m->m_next;
1330 1.159 ad } else {
1331 1.159 ad sbfree(&so->so_rcv, m);
1332 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1333 1.144 dyoung m->m_next = NULL;
1334 1.159 ad *cme = m;
1335 1.159 ad cme = &(*cme)->m_next;
1336 1.1 cgd m = so->so_rcv.sb_mb;
1337 1.159 ad }
1338 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1339 1.159 ad if ((flags & MSG_PEEK) == 0)
1340 1.159 ad sbsync(&so->so_rcv, nextrecord);
1341 1.159 ad for (; cm != NULL; cm = cmn) {
1342 1.159 ad cmn = cm->m_next;
1343 1.159 ad cm->m_next = NULL;
1344 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1345 1.159 ad if (controlp != NULL) {
1346 1.159 ad if (dom->dom_externalize != NULL &&
1347 1.159 ad type == SCM_RIGHTS) {
1348 1.160 ad sounlock(so);
1349 1.159 ad splx(s);
1350 1.204 christos error = (*dom->dom_externalize)(cm, l,
1351 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1352 1.204 christos O_CLOEXEC : 0);
1353 1.159 ad s = splsoftnet();
1354 1.160 ad solock(so);
1355 1.159 ad }
1356 1.159 ad *controlp = cm;
1357 1.159 ad while (*controlp != NULL)
1358 1.159 ad controlp = &(*controlp)->m_next;
1359 1.1 cgd } else {
1360 1.106 itojun /*
1361 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1362 1.106 itojun * through the read path rather than recv.
1363 1.106 itojun */
1364 1.159 ad if (dom->dom_dispose != NULL &&
1365 1.159 ad type == SCM_RIGHTS) {
1366 1.160 ad sounlock(so);
1367 1.159 ad (*dom->dom_dispose)(cm);
1368 1.160 ad solock(so);
1369 1.159 ad }
1370 1.159 ad m_freem(cm);
1371 1.1 cgd }
1372 1.1 cgd }
1373 1.159 ad if (m != NULL)
1374 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1375 1.159 ad else
1376 1.159 ad nextrecord = so->so_rcv.sb_mb;
1377 1.159 ad orig_resid = 0;
1378 1.1 cgd }
1379 1.69 thorpej
1380 1.159 ad /* If m is non-NULL, we have some data to read. */
1381 1.159 ad if (__predict_true(m != NULL)) {
1382 1.1 cgd type = m->m_type;
1383 1.1 cgd if (type == MT_OOBDATA)
1384 1.1 cgd flags |= MSG_OOB;
1385 1.1 cgd }
1386 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1387 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1388 1.69 thorpej
1389 1.1 cgd moff = 0;
1390 1.1 cgd offset = 0;
1391 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1392 1.1 cgd if (m->m_type == MT_OOBDATA) {
1393 1.1 cgd if (type != MT_OOBDATA)
1394 1.1 cgd break;
1395 1.1 cgd } else if (type == MT_OOBDATA)
1396 1.1 cgd break;
1397 1.1 cgd #ifdef DIAGNOSTIC
1398 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1399 1.1 cgd panic("receive 3");
1400 1.1 cgd #endif
1401 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1402 1.196 dsl wakeup_state = 0;
1403 1.1 cgd len = uio->uio_resid;
1404 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1405 1.1 cgd len = so->so_oobmark - offset;
1406 1.1 cgd if (len > m->m_len - moff)
1407 1.1 cgd len = m->m_len - moff;
1408 1.1 cgd /*
1409 1.1 cgd * If mp is set, just pass back the mbufs.
1410 1.1 cgd * Otherwise copy them out via the uio, then free.
1411 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1412 1.1 cgd * it points to next record) when we drop priority;
1413 1.1 cgd * we must note any additions to the sockbuf when we
1414 1.1 cgd * block interrupts again.
1415 1.1 cgd */
1416 1.144 dyoung if (mp == NULL) {
1417 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1418 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1419 1.160 ad sounlock(so);
1420 1.1 cgd splx(s);
1421 1.134 christos error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1422 1.20 mycroft s = splsoftnet();
1423 1.160 ad solock(so);
1424 1.144 dyoung if (error != 0) {
1425 1.67 he /*
1426 1.67 he * If any part of the record has been removed
1427 1.67 he * (such as the MT_SONAME mbuf, which will
1428 1.67 he * happen when PR_ADDR, and thus also
1429 1.67 he * PR_ATOMIC, is set), then drop the entire
1430 1.67 he * record to maintain the atomicity of the
1431 1.67 he * receive operation.
1432 1.67 he *
1433 1.67 he * This avoids a later panic("receive 1a")
1434 1.67 he * when compiled with DIAGNOSTIC.
1435 1.67 he */
1436 1.146 dyoung if (m && mbuf_removed && atomic)
1437 1.67 he (void) sbdroprecord(&so->so_rcv);
1438 1.67 he
1439 1.57 jdolecek goto release;
1440 1.67 he }
1441 1.1 cgd } else
1442 1.1 cgd uio->uio_resid -= len;
1443 1.1 cgd if (len == m->m_len - moff) {
1444 1.1 cgd if (m->m_flags & M_EOR)
1445 1.1 cgd flags |= MSG_EOR;
1446 1.1 cgd if (flags & MSG_PEEK) {
1447 1.1 cgd m = m->m_next;
1448 1.1 cgd moff = 0;
1449 1.1 cgd } else {
1450 1.1 cgd nextrecord = m->m_nextpkt;
1451 1.1 cgd sbfree(&so->so_rcv, m);
1452 1.1 cgd if (mp) {
1453 1.1 cgd *mp = m;
1454 1.1 cgd mp = &m->m_next;
1455 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1456 1.140 dyoung *mp = NULL;
1457 1.1 cgd } else {
1458 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1459 1.1 cgd m = so->so_rcv.sb_mb;
1460 1.1 cgd }
1461 1.69 thorpej /*
1462 1.69 thorpej * If m != NULL, we also know that
1463 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1464 1.69 thorpej */
1465 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1466 1.69 thorpej if (m) {
1467 1.1 cgd m->m_nextpkt = nextrecord;
1468 1.69 thorpej if (nextrecord == NULL)
1469 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1470 1.69 thorpej } else {
1471 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1472 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1473 1.69 thorpej }
1474 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1475 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1476 1.1 cgd }
1477 1.144 dyoung } else if (flags & MSG_PEEK)
1478 1.144 dyoung moff += len;
1479 1.144 dyoung else {
1480 1.160 ad if (mp != NULL) {
1481 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1482 1.160 ad if (__predict_false(mt == NULL)) {
1483 1.160 ad sounlock(so);
1484 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1485 1.160 ad solock(so);
1486 1.160 ad }
1487 1.160 ad *mp = mt;
1488 1.160 ad }
1489 1.144 dyoung m->m_data += len;
1490 1.144 dyoung m->m_len -= len;
1491 1.144 dyoung so->so_rcv.sb_cc -= len;
1492 1.1 cgd }
1493 1.1 cgd if (so->so_oobmark) {
1494 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1495 1.1 cgd so->so_oobmark -= len;
1496 1.1 cgd if (so->so_oobmark == 0) {
1497 1.1 cgd so->so_state |= SS_RCVATMARK;
1498 1.1 cgd break;
1499 1.1 cgd }
1500 1.7 cgd } else {
1501 1.1 cgd offset += len;
1502 1.7 cgd if (offset == so->so_oobmark)
1503 1.7 cgd break;
1504 1.7 cgd }
1505 1.1 cgd }
1506 1.1 cgd if (flags & MSG_EOR)
1507 1.1 cgd break;
1508 1.1 cgd /*
1509 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1510 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1511 1.1 cgd * termination. If a signal/timeout occurs, return
1512 1.1 cgd * with a short count but without error.
1513 1.1 cgd * Keep sockbuf locked against other readers.
1514 1.1 cgd */
1515 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1516 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1517 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1518 1.1 cgd break;
1519 1.68 matt /*
1520 1.68 matt * If we are peeking and the socket receive buffer is
1521 1.68 matt * full, stop since we can't get more data to peek at.
1522 1.68 matt */
1523 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1524 1.68 matt break;
1525 1.68 matt /*
1526 1.68 matt * If we've drained the socket buffer, tell the
1527 1.68 matt * protocol in case it needs to do something to
1528 1.68 matt * get it filled again.
1529 1.68 matt */
1530 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1531 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1532 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1533 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1534 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1535 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1536 1.196 dsl error = ERESTART;
1537 1.196 dsl else
1538 1.196 dsl error = sbwait(&so->so_rcv);
1539 1.144 dyoung if (error != 0) {
1540 1.1 cgd sbunlock(&so->so_rcv);
1541 1.160 ad sounlock(so);
1542 1.1 cgd splx(s);
1543 1.144 dyoung return 0;
1544 1.1 cgd }
1545 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1546 1.1 cgd nextrecord = m->m_nextpkt;
1547 1.196 dsl wakeup_state = so->so_state;
1548 1.1 cgd }
1549 1.1 cgd }
1550 1.3 andrew
1551 1.146 dyoung if (m && atomic) {
1552 1.3 andrew flags |= MSG_TRUNC;
1553 1.3 andrew if ((flags & MSG_PEEK) == 0)
1554 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1555 1.3 andrew }
1556 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1557 1.144 dyoung if (m == NULL) {
1558 1.69 thorpej /*
1559 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1560 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1561 1.69 thorpej * there is still data in the socket buffer.
1562 1.69 thorpej */
1563 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1564 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1565 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1566 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1567 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1568 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1569 1.69 thorpej }
1570 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1571 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1572 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1573 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1574 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1575 1.1 cgd }
1576 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1577 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1578 1.3 andrew sbunlock(&so->so_rcv);
1579 1.3 andrew goto restart;
1580 1.3 andrew }
1581 1.108 perry
1582 1.144 dyoung if (flagsp != NULL)
1583 1.1 cgd *flagsp |= flags;
1584 1.54 lukem release:
1585 1.1 cgd sbunlock(&so->so_rcv);
1586 1.160 ad sounlock(so);
1587 1.1 cgd splx(s);
1588 1.144 dyoung return error;
1589 1.1 cgd }
1590 1.1 cgd
1591 1.14 mycroft int
1592 1.54 lukem soshutdown(struct socket *so, int how)
1593 1.1 cgd {
1594 1.99 matt const struct protosw *pr;
1595 1.160 ad int error;
1596 1.160 ad
1597 1.160 ad KASSERT(solocked(so));
1598 1.34 kleink
1599 1.54 lukem pr = so->so_proto;
1600 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1601 1.34 kleink return (EINVAL);
1602 1.1 cgd
1603 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1604 1.1 cgd sorflush(so);
1605 1.160 ad error = 0;
1606 1.160 ad }
1607 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1608 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1609 1.140 dyoung NULL, NULL, NULL);
1610 1.160 ad
1611 1.160 ad return error;
1612 1.1 cgd }
1613 1.1 cgd
1614 1.195 dsl void
1615 1.196 dsl sorestart(struct socket *so)
1616 1.188 ad {
1617 1.196 dsl /*
1618 1.196 dsl * An application has called close() on an fd on which another
1619 1.196 dsl * of its threads has called a socket system call.
1620 1.196 dsl * Mark this and wake everyone up, and code that would block again
1621 1.196 dsl * instead returns ERESTART.
1622 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1623 1.196 dsl * Any other fd will block again on the 2nd syscall.
1624 1.196 dsl */
1625 1.188 ad solock(so);
1626 1.196 dsl so->so_state |= SS_RESTARTSYS;
1627 1.188 ad cv_broadcast(&so->so_cv);
1628 1.196 dsl cv_broadcast(&so->so_snd.sb_cv);
1629 1.196 dsl cv_broadcast(&so->so_rcv.sb_cv);
1630 1.188 ad sounlock(so);
1631 1.188 ad }
1632 1.188 ad
1633 1.14 mycroft void
1634 1.54 lukem sorflush(struct socket *so)
1635 1.1 cgd {
1636 1.54 lukem struct sockbuf *sb, asb;
1637 1.99 matt const struct protosw *pr;
1638 1.160 ad
1639 1.160 ad KASSERT(solocked(so));
1640 1.1 cgd
1641 1.54 lukem sb = &so->so_rcv;
1642 1.54 lukem pr = so->so_proto;
1643 1.160 ad socantrcvmore(so);
1644 1.1 cgd sb->sb_flags |= SB_NOINTR;
1645 1.160 ad (void )sblock(sb, M_WAITOK);
1646 1.1 cgd sbunlock(sb);
1647 1.1 cgd asb = *sb;
1648 1.86 wrstuden /*
1649 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1650 1.86 wrstuden * fields valid.
1651 1.86 wrstuden */
1652 1.86 wrstuden memset(&sb->sb_startzero, 0,
1653 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1654 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1655 1.160 ad sounlock(so);
1656 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1657 1.160 ad solock(so);
1658 1.160 ad }
1659 1.98 christos sbrelease(&asb, so);
1660 1.1 cgd }
1661 1.1 cgd
1662 1.171 plunky /*
1663 1.171 plunky * internal set SOL_SOCKET options
1664 1.171 plunky */
1665 1.142 dyoung static int
1666 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1667 1.1 cgd {
1668 1.182 christos int error = EINVAL, optval, opt;
1669 1.171 plunky struct linger l;
1670 1.171 plunky struct timeval tv;
1671 1.142 dyoung
1672 1.179 christos switch ((opt = sopt->sopt_name)) {
1673 1.142 dyoung
1674 1.170 tls case SO_ACCEPTFILTER:
1675 1.177 ad error = accept_filt_setopt(so, sopt);
1676 1.177 ad KASSERT(solocked(so));
1677 1.170 tls break;
1678 1.170 tls
1679 1.171 plunky case SO_LINGER:
1680 1.171 plunky error = sockopt_get(sopt, &l, sizeof(l));
1681 1.177 ad solock(so);
1682 1.171 plunky if (error)
1683 1.177 ad break;
1684 1.171 plunky if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1685 1.177 ad l.l_linger > (INT_MAX / hz)) {
1686 1.177 ad error = EDOM;
1687 1.177 ad break;
1688 1.177 ad }
1689 1.171 plunky so->so_linger = l.l_linger;
1690 1.171 plunky if (l.l_onoff)
1691 1.171 plunky so->so_options |= SO_LINGER;
1692 1.171 plunky else
1693 1.171 plunky so->so_options &= ~SO_LINGER;
1694 1.177 ad break;
1695 1.1 cgd
1696 1.142 dyoung case SO_DEBUG:
1697 1.142 dyoung case SO_KEEPALIVE:
1698 1.142 dyoung case SO_DONTROUTE:
1699 1.142 dyoung case SO_USELOOPBACK:
1700 1.142 dyoung case SO_BROADCAST:
1701 1.142 dyoung case SO_REUSEADDR:
1702 1.142 dyoung case SO_REUSEPORT:
1703 1.142 dyoung case SO_OOBINLINE:
1704 1.142 dyoung case SO_TIMESTAMP:
1705 1.207 christos case SO_NOSIGPIPE:
1706 1.184 christos #ifdef SO_OTIMESTAMP
1707 1.184 christos case SO_OTIMESTAMP:
1708 1.184 christos #endif
1709 1.171 plunky error = sockopt_getint(sopt, &optval);
1710 1.177 ad solock(so);
1711 1.171 plunky if (error)
1712 1.177 ad break;
1713 1.171 plunky if (optval)
1714 1.179 christos so->so_options |= opt;
1715 1.142 dyoung else
1716 1.179 christos so->so_options &= ~opt;
1717 1.142 dyoung break;
1718 1.142 dyoung
1719 1.142 dyoung case SO_SNDBUF:
1720 1.142 dyoung case SO_RCVBUF:
1721 1.142 dyoung case SO_SNDLOWAT:
1722 1.142 dyoung case SO_RCVLOWAT:
1723 1.171 plunky error = sockopt_getint(sopt, &optval);
1724 1.177 ad solock(so);
1725 1.171 plunky if (error)
1726 1.177 ad break;
1727 1.1 cgd
1728 1.142 dyoung /*
1729 1.142 dyoung * Values < 1 make no sense for any of these
1730 1.142 dyoung * options, so disallow them.
1731 1.142 dyoung */
1732 1.177 ad if (optval < 1) {
1733 1.177 ad error = EINVAL;
1734 1.177 ad break;
1735 1.177 ad }
1736 1.1 cgd
1737 1.179 christos switch (opt) {
1738 1.171 plunky case SO_SNDBUF:
1739 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1740 1.177 ad error = ENOBUFS;
1741 1.177 ad break;
1742 1.177 ad }
1743 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1744 1.171 plunky break;
1745 1.1 cgd
1746 1.1 cgd case SO_RCVBUF:
1747 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1748 1.177 ad error = ENOBUFS;
1749 1.177 ad break;
1750 1.177 ad }
1751 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1752 1.142 dyoung break;
1753 1.142 dyoung
1754 1.142 dyoung /*
1755 1.142 dyoung * Make sure the low-water is never greater than
1756 1.142 dyoung * the high-water.
1757 1.142 dyoung */
1758 1.1 cgd case SO_SNDLOWAT:
1759 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1760 1.171 plunky optval = so->so_snd.sb_hiwat;
1761 1.171 plunky
1762 1.171 plunky so->so_snd.sb_lowat = optval;
1763 1.142 dyoung break;
1764 1.171 plunky
1765 1.1 cgd case SO_RCVLOWAT:
1766 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1767 1.171 plunky optval = so->so_rcv.sb_hiwat;
1768 1.171 plunky
1769 1.171 plunky so->so_rcv.sb_lowat = optval;
1770 1.142 dyoung break;
1771 1.142 dyoung }
1772 1.142 dyoung break;
1773 1.28 thorpej
1774 1.179 christos #ifdef COMPAT_50
1775 1.179 christos case SO_OSNDTIMEO:
1776 1.179 christos case SO_ORCVTIMEO: {
1777 1.179 christos struct timeval50 otv;
1778 1.179 christos error = sockopt_get(sopt, &otv, sizeof(otv));
1779 1.186 pooka if (error) {
1780 1.186 pooka solock(so);
1781 1.183 christos break;
1782 1.186 pooka }
1783 1.179 christos timeval50_to_timeval(&otv, &tv);
1784 1.179 christos opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1785 1.182 christos error = 0;
1786 1.179 christos /*FALLTHROUGH*/
1787 1.179 christos }
1788 1.179 christos #endif /* COMPAT_50 */
1789 1.179 christos
1790 1.142 dyoung case SO_SNDTIMEO:
1791 1.142 dyoung case SO_RCVTIMEO:
1792 1.182 christos if (error)
1793 1.179 christos error = sockopt_get(sopt, &tv, sizeof(tv));
1794 1.177 ad solock(so);
1795 1.171 plunky if (error)
1796 1.177 ad break;
1797 1.171 plunky
1798 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1799 1.177 ad error = EDOM;
1800 1.177 ad break;
1801 1.177 ad }
1802 1.28 thorpej
1803 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1804 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1805 1.171 plunky optval = 1;
1806 1.28 thorpej
1807 1.179 christos switch (opt) {
1808 1.142 dyoung case SO_SNDTIMEO:
1809 1.171 plunky so->so_snd.sb_timeo = optval;
1810 1.1 cgd break;
1811 1.1 cgd case SO_RCVTIMEO:
1812 1.171 plunky so->so_rcv.sb_timeo = optval;
1813 1.142 dyoung break;
1814 1.142 dyoung }
1815 1.142 dyoung break;
1816 1.1 cgd
1817 1.142 dyoung default:
1818 1.177 ad solock(so);
1819 1.177 ad error = ENOPROTOOPT;
1820 1.177 ad break;
1821 1.142 dyoung }
1822 1.177 ad KASSERT(solocked(so));
1823 1.177 ad return error;
1824 1.142 dyoung }
1825 1.1 cgd
1826 1.142 dyoung int
1827 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1828 1.142 dyoung {
1829 1.142 dyoung int error, prerr;
1830 1.1 cgd
1831 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1832 1.171 plunky error = sosetopt1(so, sopt);
1833 1.177 ad KASSERT(solocked(so));
1834 1.177 ad } else {
1835 1.142 dyoung error = ENOPROTOOPT;
1836 1.177 ad solock(so);
1837 1.177 ad }
1838 1.1 cgd
1839 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1840 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1841 1.142 dyoung /* give the protocol stack a shot */
1842 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1843 1.142 dyoung if (prerr == 0)
1844 1.142 dyoung error = 0;
1845 1.142 dyoung else if (prerr != ENOPROTOOPT)
1846 1.142 dyoung error = prerr;
1847 1.171 plunky }
1848 1.160 ad sounlock(so);
1849 1.142 dyoung return error;
1850 1.1 cgd }
1851 1.1 cgd
1852 1.171 plunky /*
1853 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1854 1.171 plunky */
1855 1.171 plunky int
1856 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1857 1.171 plunky const void *val, size_t valsize)
1858 1.171 plunky {
1859 1.171 plunky struct sockopt sopt;
1860 1.171 plunky int error;
1861 1.171 plunky
1862 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1863 1.171 plunky
1864 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1865 1.171 plunky sockopt_set(&sopt, val, valsize);
1866 1.171 plunky
1867 1.171 plunky error = sosetopt(so, &sopt);
1868 1.171 plunky
1869 1.171 plunky sockopt_destroy(&sopt);
1870 1.171 plunky
1871 1.171 plunky return error;
1872 1.171 plunky }
1873 1.171 plunky
1874 1.171 plunky /*
1875 1.171 plunky * internal get SOL_SOCKET options
1876 1.171 plunky */
1877 1.171 plunky static int
1878 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1879 1.171 plunky {
1880 1.179 christos int error, optval, opt;
1881 1.171 plunky struct linger l;
1882 1.171 plunky struct timeval tv;
1883 1.171 plunky
1884 1.179 christos switch ((opt = sopt->sopt_name)) {
1885 1.171 plunky
1886 1.171 plunky case SO_ACCEPTFILTER:
1887 1.177 ad error = accept_filt_getopt(so, sopt);
1888 1.171 plunky break;
1889 1.171 plunky
1890 1.171 plunky case SO_LINGER:
1891 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1892 1.171 plunky l.l_linger = so->so_linger;
1893 1.171 plunky
1894 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1895 1.171 plunky break;
1896 1.171 plunky
1897 1.171 plunky case SO_USELOOPBACK:
1898 1.171 plunky case SO_DONTROUTE:
1899 1.171 plunky case SO_DEBUG:
1900 1.171 plunky case SO_KEEPALIVE:
1901 1.171 plunky case SO_REUSEADDR:
1902 1.171 plunky case SO_REUSEPORT:
1903 1.171 plunky case SO_BROADCAST:
1904 1.171 plunky case SO_OOBINLINE:
1905 1.171 plunky case SO_TIMESTAMP:
1906 1.207 christos case SO_NOSIGPIPE:
1907 1.184 christos #ifdef SO_OTIMESTAMP
1908 1.184 christos case SO_OTIMESTAMP:
1909 1.184 christos #endif
1910 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1911 1.171 plunky break;
1912 1.171 plunky
1913 1.171 plunky case SO_TYPE:
1914 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1915 1.171 plunky break;
1916 1.171 plunky
1917 1.171 plunky case SO_ERROR:
1918 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1919 1.171 plunky so->so_error = 0;
1920 1.171 plunky break;
1921 1.171 plunky
1922 1.171 plunky case SO_SNDBUF:
1923 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1924 1.171 plunky break;
1925 1.171 plunky
1926 1.171 plunky case SO_RCVBUF:
1927 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1928 1.171 plunky break;
1929 1.171 plunky
1930 1.171 plunky case SO_SNDLOWAT:
1931 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1932 1.171 plunky break;
1933 1.171 plunky
1934 1.171 plunky case SO_RCVLOWAT:
1935 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1936 1.171 plunky break;
1937 1.171 plunky
1938 1.179 christos #ifdef COMPAT_50
1939 1.179 christos case SO_OSNDTIMEO:
1940 1.179 christos case SO_ORCVTIMEO: {
1941 1.179 christos struct timeval50 otv;
1942 1.179 christos
1943 1.179 christos optval = (opt == SO_OSNDTIMEO ?
1944 1.179 christos so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1945 1.179 christos
1946 1.179 christos otv.tv_sec = optval / hz;
1947 1.179 christos otv.tv_usec = (optval % hz) * tick;
1948 1.179 christos
1949 1.179 christos error = sockopt_set(sopt, &otv, sizeof(otv));
1950 1.179 christos break;
1951 1.179 christos }
1952 1.179 christos #endif /* COMPAT_50 */
1953 1.179 christos
1954 1.171 plunky case SO_SNDTIMEO:
1955 1.171 plunky case SO_RCVTIMEO:
1956 1.179 christos optval = (opt == SO_SNDTIMEO ?
1957 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1958 1.171 plunky
1959 1.171 plunky tv.tv_sec = optval / hz;
1960 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1961 1.171 plunky
1962 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1963 1.171 plunky break;
1964 1.171 plunky
1965 1.171 plunky case SO_OVERFLOWED:
1966 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1967 1.171 plunky break;
1968 1.171 plunky
1969 1.171 plunky default:
1970 1.171 plunky error = ENOPROTOOPT;
1971 1.171 plunky break;
1972 1.171 plunky }
1973 1.171 plunky
1974 1.171 plunky return (error);
1975 1.171 plunky }
1976 1.171 plunky
1977 1.14 mycroft int
1978 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
1979 1.1 cgd {
1980 1.160 ad int error;
1981 1.1 cgd
1982 1.160 ad solock(so);
1983 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
1984 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1985 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1986 1.171 plunky (PRCO_GETOPT, so, sopt));
1987 1.1 cgd } else
1988 1.160 ad error = (ENOPROTOOPT);
1989 1.1 cgd } else {
1990 1.171 plunky error = sogetopt1(so, sopt);
1991 1.171 plunky }
1992 1.171 plunky sounlock(so);
1993 1.171 plunky return (error);
1994 1.171 plunky }
1995 1.171 plunky
1996 1.171 plunky /*
1997 1.171 plunky * alloc sockopt data buffer buffer
1998 1.171 plunky * - will be released at destroy
1999 1.171 plunky */
2000 1.176 plunky static int
2001 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2002 1.171 plunky {
2003 1.171 plunky
2004 1.171 plunky KASSERT(sopt->sopt_size == 0);
2005 1.171 plunky
2006 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2007 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
2008 1.176 plunky if (sopt->sopt_data == NULL)
2009 1.176 plunky return ENOMEM;
2010 1.176 plunky } else
2011 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2012 1.171 plunky
2013 1.171 plunky sopt->sopt_size = len;
2014 1.176 plunky return 0;
2015 1.171 plunky }
2016 1.171 plunky
2017 1.171 plunky /*
2018 1.171 plunky * initialise sockopt storage
2019 1.176 plunky * - MAY sleep during allocation
2020 1.171 plunky */
2021 1.171 plunky void
2022 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2023 1.171 plunky {
2024 1.1 cgd
2025 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2026 1.1 cgd
2027 1.171 plunky sopt->sopt_level = level;
2028 1.171 plunky sopt->sopt_name = name;
2029 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2030 1.171 plunky }
2031 1.171 plunky
2032 1.171 plunky /*
2033 1.171 plunky * destroy sockopt storage
2034 1.171 plunky * - will release any held memory references
2035 1.171 plunky */
2036 1.171 plunky void
2037 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2038 1.171 plunky {
2039 1.171 plunky
2040 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2041 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2042 1.171 plunky
2043 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2044 1.171 plunky }
2045 1.171 plunky
2046 1.171 plunky /*
2047 1.171 plunky * set sockopt value
2048 1.171 plunky * - value is copied into sockopt
2049 1.176 plunky * - memory is allocated when necessary, will not sleep
2050 1.171 plunky */
2051 1.171 plunky int
2052 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2053 1.171 plunky {
2054 1.176 plunky int error;
2055 1.171 plunky
2056 1.176 plunky if (sopt->sopt_size == 0) {
2057 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2058 1.176 plunky if (error)
2059 1.176 plunky return error;
2060 1.176 plunky }
2061 1.171 plunky
2062 1.171 plunky KASSERT(sopt->sopt_size == len);
2063 1.171 plunky memcpy(sopt->sopt_data, buf, len);
2064 1.171 plunky return 0;
2065 1.171 plunky }
2066 1.171 plunky
2067 1.171 plunky /*
2068 1.171 plunky * common case of set sockopt integer value
2069 1.171 plunky */
2070 1.171 plunky int
2071 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2072 1.171 plunky {
2073 1.171 plunky
2074 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2075 1.171 plunky }
2076 1.171 plunky
2077 1.171 plunky /*
2078 1.171 plunky * get sockopt value
2079 1.171 plunky * - correct size must be given
2080 1.171 plunky */
2081 1.171 plunky int
2082 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2083 1.171 plunky {
2084 1.170 tls
2085 1.171 plunky if (sopt->sopt_size != len)
2086 1.171 plunky return EINVAL;
2087 1.1 cgd
2088 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2089 1.171 plunky return 0;
2090 1.171 plunky }
2091 1.1 cgd
2092 1.171 plunky /*
2093 1.171 plunky * common case of get sockopt integer value
2094 1.171 plunky */
2095 1.171 plunky int
2096 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2097 1.171 plunky {
2098 1.1 cgd
2099 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2100 1.171 plunky }
2101 1.1 cgd
2102 1.171 plunky /*
2103 1.171 plunky * set sockopt value from mbuf
2104 1.171 plunky * - ONLY for legacy code
2105 1.171 plunky * - mbuf is released by sockopt
2106 1.176 plunky * - will not sleep
2107 1.171 plunky */
2108 1.171 plunky int
2109 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2110 1.171 plunky {
2111 1.171 plunky size_t len;
2112 1.176 plunky int error;
2113 1.1 cgd
2114 1.171 plunky len = m_length(m);
2115 1.1 cgd
2116 1.176 plunky if (sopt->sopt_size == 0) {
2117 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2118 1.176 plunky if (error)
2119 1.176 plunky return error;
2120 1.176 plunky }
2121 1.1 cgd
2122 1.171 plunky KASSERT(sopt->sopt_size == len);
2123 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
2124 1.171 plunky m_freem(m);
2125 1.1 cgd
2126 1.171 plunky return 0;
2127 1.171 plunky }
2128 1.1 cgd
2129 1.171 plunky /*
2130 1.171 plunky * get sockopt value into mbuf
2131 1.171 plunky * - ONLY for legacy code
2132 1.171 plunky * - mbuf to be released by the caller
2133 1.176 plunky * - will not sleep
2134 1.171 plunky */
2135 1.171 plunky struct mbuf *
2136 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2137 1.171 plunky {
2138 1.171 plunky struct mbuf *m;
2139 1.107 darrenr
2140 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2141 1.176 plunky return NULL;
2142 1.176 plunky
2143 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2144 1.171 plunky if (m == NULL)
2145 1.171 plunky return NULL;
2146 1.171 plunky
2147 1.176 plunky if (sopt->sopt_size > MLEN) {
2148 1.176 plunky MCLGET(m, M_DONTWAIT);
2149 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2150 1.176 plunky m_free(m);
2151 1.176 plunky return NULL;
2152 1.176 plunky }
2153 1.1 cgd }
2154 1.176 plunky
2155 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2156 1.176 plunky m->m_len = sopt->sopt_size;
2157 1.160 ad
2158 1.171 plunky return m;
2159 1.1 cgd }
2160 1.1 cgd
2161 1.14 mycroft void
2162 1.54 lukem sohasoutofband(struct socket *so)
2163 1.1 cgd {
2164 1.153 rmind
2165 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2166 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2167 1.1 cgd }
2168 1.72 jdolecek
2169 1.72 jdolecek static void
2170 1.72 jdolecek filt_sordetach(struct knote *kn)
2171 1.72 jdolecek {
2172 1.72 jdolecek struct socket *so;
2173 1.72 jdolecek
2174 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2175 1.160 ad solock(so);
2176 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2177 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2178 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2179 1.160 ad sounlock(so);
2180 1.72 jdolecek }
2181 1.72 jdolecek
2182 1.72 jdolecek /*ARGSUSED*/
2183 1.72 jdolecek static int
2184 1.129 yamt filt_soread(struct knote *kn, long hint)
2185 1.72 jdolecek {
2186 1.72 jdolecek struct socket *so;
2187 1.160 ad int rv;
2188 1.72 jdolecek
2189 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2190 1.160 ad if (hint != NOTE_SUBMIT)
2191 1.160 ad solock(so);
2192 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2193 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2194 1.108 perry kn->kn_flags |= EV_EOF;
2195 1.72 jdolecek kn->kn_fflags = so->so_error;
2196 1.160 ad rv = 1;
2197 1.160 ad } else if (so->so_error) /* temporary udp error */
2198 1.160 ad rv = 1;
2199 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2200 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2201 1.160 ad else
2202 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2203 1.160 ad if (hint != NOTE_SUBMIT)
2204 1.160 ad sounlock(so);
2205 1.160 ad return rv;
2206 1.72 jdolecek }
2207 1.72 jdolecek
2208 1.72 jdolecek static void
2209 1.72 jdolecek filt_sowdetach(struct knote *kn)
2210 1.72 jdolecek {
2211 1.72 jdolecek struct socket *so;
2212 1.72 jdolecek
2213 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2214 1.160 ad solock(so);
2215 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2216 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2217 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2218 1.160 ad sounlock(so);
2219 1.72 jdolecek }
2220 1.72 jdolecek
2221 1.72 jdolecek /*ARGSUSED*/
2222 1.72 jdolecek static int
2223 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2224 1.72 jdolecek {
2225 1.72 jdolecek struct socket *so;
2226 1.160 ad int rv;
2227 1.72 jdolecek
2228 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2229 1.160 ad if (hint != NOTE_SUBMIT)
2230 1.160 ad solock(so);
2231 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2232 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2233 1.108 perry kn->kn_flags |= EV_EOF;
2234 1.72 jdolecek kn->kn_fflags = so->so_error;
2235 1.160 ad rv = 1;
2236 1.160 ad } else if (so->so_error) /* temporary udp error */
2237 1.160 ad rv = 1;
2238 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2239 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2240 1.160 ad rv = 0;
2241 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2242 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2243 1.160 ad else
2244 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2245 1.160 ad if (hint != NOTE_SUBMIT)
2246 1.160 ad sounlock(so);
2247 1.160 ad return rv;
2248 1.72 jdolecek }
2249 1.72 jdolecek
2250 1.72 jdolecek /*ARGSUSED*/
2251 1.72 jdolecek static int
2252 1.129 yamt filt_solisten(struct knote *kn, long hint)
2253 1.72 jdolecek {
2254 1.72 jdolecek struct socket *so;
2255 1.160 ad int rv;
2256 1.72 jdolecek
2257 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2258 1.72 jdolecek
2259 1.72 jdolecek /*
2260 1.72 jdolecek * Set kn_data to number of incoming connections, not
2261 1.72 jdolecek * counting partial (incomplete) connections.
2262 1.108 perry */
2263 1.160 ad if (hint != NOTE_SUBMIT)
2264 1.160 ad solock(so);
2265 1.72 jdolecek kn->kn_data = so->so_qlen;
2266 1.160 ad rv = (kn->kn_data > 0);
2267 1.160 ad if (hint != NOTE_SUBMIT)
2268 1.160 ad sounlock(so);
2269 1.160 ad return rv;
2270 1.72 jdolecek }
2271 1.72 jdolecek
2272 1.72 jdolecek static const struct filterops solisten_filtops =
2273 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
2274 1.72 jdolecek static const struct filterops soread_filtops =
2275 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
2276 1.72 jdolecek static const struct filterops sowrite_filtops =
2277 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
2278 1.72 jdolecek
2279 1.72 jdolecek int
2280 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2281 1.72 jdolecek {
2282 1.72 jdolecek struct socket *so;
2283 1.72 jdolecek struct sockbuf *sb;
2284 1.72 jdolecek
2285 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2286 1.160 ad solock(so);
2287 1.72 jdolecek switch (kn->kn_filter) {
2288 1.72 jdolecek case EVFILT_READ:
2289 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2290 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2291 1.72 jdolecek else
2292 1.72 jdolecek kn->kn_fop = &soread_filtops;
2293 1.72 jdolecek sb = &so->so_rcv;
2294 1.72 jdolecek break;
2295 1.72 jdolecek case EVFILT_WRITE:
2296 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2297 1.72 jdolecek sb = &so->so_snd;
2298 1.72 jdolecek break;
2299 1.72 jdolecek default:
2300 1.160 ad sounlock(so);
2301 1.149 pooka return (EINVAL);
2302 1.72 jdolecek }
2303 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2304 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2305 1.160 ad sounlock(so);
2306 1.72 jdolecek return (0);
2307 1.72 jdolecek }
2308 1.72 jdolecek
2309 1.154 ad static int
2310 1.154 ad sodopoll(struct socket *so, int events)
2311 1.154 ad {
2312 1.154 ad int revents;
2313 1.154 ad
2314 1.154 ad revents = 0;
2315 1.154 ad
2316 1.154 ad if (events & (POLLIN | POLLRDNORM))
2317 1.154 ad if (soreadable(so))
2318 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2319 1.154 ad
2320 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2321 1.154 ad if (sowritable(so))
2322 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2323 1.154 ad
2324 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2325 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2326 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2327 1.154 ad
2328 1.154 ad return revents;
2329 1.154 ad }
2330 1.154 ad
2331 1.154 ad int
2332 1.154 ad sopoll(struct socket *so, int events)
2333 1.154 ad {
2334 1.154 ad int revents = 0;
2335 1.154 ad
2336 1.160 ad #ifndef DIAGNOSTIC
2337 1.160 ad /*
2338 1.160 ad * Do a quick, unlocked check in expectation that the socket
2339 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2340 1.160 ad * as the solocked() assertions will fail.
2341 1.160 ad */
2342 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2343 1.154 ad return revents;
2344 1.160 ad #endif
2345 1.154 ad
2346 1.160 ad solock(so);
2347 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2348 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2349 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2350 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2351 1.154 ad }
2352 1.154 ad
2353 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2354 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2355 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2356 1.154 ad }
2357 1.154 ad }
2358 1.160 ad sounlock(so);
2359 1.154 ad
2360 1.154 ad return revents;
2361 1.154 ad }
2362 1.154 ad
2363 1.154 ad
2364 1.94 yamt #include <sys/sysctl.h>
2365 1.94 yamt
2366 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2367 1.94 yamt
2368 1.94 yamt /*
2369 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2370 1.94 yamt * value is not too small.
2371 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2372 1.94 yamt */
2373 1.94 yamt static int
2374 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2375 1.94 yamt {
2376 1.94 yamt int error, new_somaxkva;
2377 1.94 yamt struct sysctlnode node;
2378 1.94 yamt
2379 1.94 yamt new_somaxkva = somaxkva;
2380 1.94 yamt node = *rnode;
2381 1.94 yamt node.sysctl_data = &new_somaxkva;
2382 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2383 1.94 yamt if (error || newp == NULL)
2384 1.94 yamt return (error);
2385 1.94 yamt
2386 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2387 1.94 yamt return (EINVAL);
2388 1.94 yamt
2389 1.136 ad mutex_enter(&so_pendfree_lock);
2390 1.94 yamt somaxkva = new_somaxkva;
2391 1.136 ad cv_broadcast(&socurkva_cv);
2392 1.136 ad mutex_exit(&so_pendfree_lock);
2393 1.94 yamt
2394 1.94 yamt return (error);
2395 1.94 yamt }
2396 1.94 yamt
2397 1.178 pooka static void
2398 1.187 cegger sysctl_kern_somaxkva_setup(void)
2399 1.94 yamt {
2400 1.94 yamt
2401 1.178 pooka KASSERT(socket_sysctllog == NULL);
2402 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2403 1.97 atatat CTLFLAG_PERMANENT,
2404 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2405 1.97 atatat NULL, 0, NULL, 0,
2406 1.97 atatat CTL_KERN, CTL_EOL);
2407 1.97 atatat
2408 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2409 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2410 1.103 atatat CTLTYPE_INT, "somaxkva",
2411 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2412 1.103 atatat "used for socket buffers"),
2413 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2414 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2415 1.94 yamt }
2416