uipc_socket.c revision 1.213 1 1.213 christos /* $NetBSD: uipc_socket.c,v 1.213 2013/02/14 21:57:58 christos Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.59 lukem #include <sys/cdefs.h>
66 1.213 christos __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.213 2013/02/14 21:57:58 christos Exp $");
67 1.64 thorpej
68 1.179 christos #include "opt_compat_netbsd.h"
69 1.64 thorpej #include "opt_sock_counters.h"
70 1.64 thorpej #include "opt_sosend_loan.h"
71 1.81 martin #include "opt_mbuftrace.h"
72 1.84 ragge #include "opt_somaxkva.h"
73 1.167 ad #include "opt_multiprocessor.h" /* XXX */
74 1.1 cgd
75 1.9 mycroft #include <sys/param.h>
76 1.9 mycroft #include <sys/systm.h>
77 1.9 mycroft #include <sys/proc.h>
78 1.9 mycroft #include <sys/file.h>
79 1.142 dyoung #include <sys/filedesc.h>
80 1.173 plunky #include <sys/kmem.h>
81 1.9 mycroft #include <sys/mbuf.h>
82 1.9 mycroft #include <sys/domain.h>
83 1.9 mycroft #include <sys/kernel.h>
84 1.9 mycroft #include <sys/protosw.h>
85 1.9 mycroft #include <sys/socket.h>
86 1.9 mycroft #include <sys/socketvar.h>
87 1.21 christos #include <sys/signalvar.h>
88 1.9 mycroft #include <sys/resourcevar.h>
89 1.174 pooka #include <sys/uidinfo.h>
90 1.72 jdolecek #include <sys/event.h>
91 1.89 christos #include <sys/poll.h>
92 1.118 elad #include <sys/kauth.h>
93 1.136 ad #include <sys/mutex.h>
94 1.136 ad #include <sys/condvar.h>
95 1.205 bouyer #include <sys/kthread.h>
96 1.37 thorpej
97 1.179 christos #ifdef COMPAT_50
98 1.179 christos #include <compat/sys/time.h>
99 1.184 christos #include <compat/sys/socket.h>
100 1.179 christos #endif
101 1.179 christos
102 1.202 uebayasi #include <uvm/uvm_extern.h>
103 1.202 uebayasi #include <uvm/uvm_loan.h>
104 1.202 uebayasi #include <uvm/uvm_page.h>
105 1.64 thorpej
106 1.77 thorpej MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108 1.37 thorpej
109 1.142 dyoung extern const struct fileops socketops;
110 1.142 dyoung
111 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
112 1.54 lukem int somaxconn = SOMAXCONN;
113 1.160 ad kmutex_t *softnet_lock;
114 1.49 jonathan
115 1.64 thorpej #ifdef SOSEND_COUNTERS
116 1.64 thorpej #include <sys/device.h>
117 1.64 thorpej
118 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 1.64 thorpej NULL, "sosend", "loan big");
120 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 1.64 thorpej NULL, "sosend", "copy big");
122 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 1.64 thorpej NULL, "sosend", "copy small");
124 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 1.64 thorpej NULL, "sosend", "kva limit");
126 1.64 thorpej
127 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128 1.64 thorpej
129 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
130 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
131 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
132 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 1.64 thorpej #else
134 1.64 thorpej
135 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
136 1.64 thorpej
137 1.64 thorpej #endif /* SOSEND_COUNTERS */
138 1.64 thorpej
139 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 1.121 yamt int sock_loan_thresh = -1;
141 1.71 thorpej #else
142 1.121 yamt int sock_loan_thresh = 4096;
143 1.65 thorpej #endif
144 1.64 thorpej
145 1.136 ad static kmutex_t so_pendfree_lock;
146 1.205 bouyer static struct mbuf *so_pendfree = NULL;
147 1.64 thorpej
148 1.84 ragge #ifndef SOMAXKVA
149 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
150 1.84 ragge #endif
151 1.84 ragge int somaxkva = SOMAXKVA;
152 1.113 thorpej static int socurkva;
153 1.136 ad static kcondvar_t socurkva_cv;
154 1.64 thorpej
155 1.191 elad static kauth_listener_t socket_listener;
156 1.191 elad
157 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
158 1.64 thorpej
159 1.205 bouyer static void sopendfree_thread(void *);
160 1.205 bouyer static kcondvar_t pendfree_thread_cv;
161 1.205 bouyer static lwp_t *sopendfree_lwp;
162 1.93 yamt
163 1.212 pooka static void sysctl_kern_socket_setup(void);
164 1.178 pooka static struct sysctllog *socket_sysctllog;
165 1.178 pooka
166 1.113 thorpej static vsize_t
167 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
168 1.80 yamt {
169 1.98 christos int error;
170 1.80 yamt
171 1.136 ad mutex_enter(&so_pendfree_lock);
172 1.80 yamt while (socurkva + len > somaxkva) {
173 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 1.98 christos if (error) {
176 1.98 christos len = 0;
177 1.98 christos break;
178 1.98 christos }
179 1.80 yamt }
180 1.93 yamt socurkva += len;
181 1.136 ad mutex_exit(&so_pendfree_lock);
182 1.98 christos return len;
183 1.95 yamt }
184 1.95 yamt
185 1.113 thorpej static void
186 1.95 yamt sokvaunreserve(vsize_t len)
187 1.95 yamt {
188 1.95 yamt
189 1.136 ad mutex_enter(&so_pendfree_lock);
190 1.95 yamt socurkva -= len;
191 1.136 ad cv_broadcast(&socurkva_cv);
192 1.136 ad mutex_exit(&so_pendfree_lock);
193 1.95 yamt }
194 1.95 yamt
195 1.95 yamt /*
196 1.95 yamt * sokvaalloc: allocate kva for loan.
197 1.95 yamt */
198 1.95 yamt
199 1.95 yamt vaddr_t
200 1.209 matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201 1.95 yamt {
202 1.95 yamt vaddr_t lva;
203 1.95 yamt
204 1.95 yamt /*
205 1.95 yamt * reserve kva.
206 1.95 yamt */
207 1.95 yamt
208 1.98 christos if (sokvareserve(so, len) == 0)
209 1.98 christos return 0;
210 1.93 yamt
211 1.93 yamt /*
212 1.93 yamt * allocate kva.
213 1.93 yamt */
214 1.80 yamt
215 1.209 matt lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216 1.209 matt UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 1.95 yamt if (lva == 0) {
218 1.95 yamt sokvaunreserve(len);
219 1.80 yamt return (0);
220 1.95 yamt }
221 1.80 yamt
222 1.80 yamt return lva;
223 1.80 yamt }
224 1.80 yamt
225 1.93 yamt /*
226 1.93 yamt * sokvafree: free kva for loan.
227 1.93 yamt */
228 1.93 yamt
229 1.80 yamt void
230 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
231 1.80 yamt {
232 1.93 yamt
233 1.93 yamt /*
234 1.93 yamt * free kva.
235 1.93 yamt */
236 1.80 yamt
237 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238 1.93 yamt
239 1.93 yamt /*
240 1.93 yamt * unreserve kva.
241 1.93 yamt */
242 1.93 yamt
243 1.95 yamt sokvaunreserve(len);
244 1.80 yamt }
245 1.80 yamt
246 1.64 thorpej static void
247 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 1.64 thorpej {
249 1.156 yamt vaddr_t sva, eva;
250 1.64 thorpej vsize_t len;
251 1.156 yamt int npgs;
252 1.156 yamt
253 1.156 yamt KASSERT(pgs != NULL);
254 1.64 thorpej
255 1.64 thorpej eva = round_page((vaddr_t) buf + size);
256 1.64 thorpej sva = trunc_page((vaddr_t) buf);
257 1.64 thorpej len = eva - sva;
258 1.64 thorpej npgs = len >> PAGE_SHIFT;
259 1.64 thorpej
260 1.64 thorpej pmap_kremove(sva, len);
261 1.64 thorpej pmap_update(pmap_kernel());
262 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 1.80 yamt sokvafree(sva, len);
264 1.64 thorpej }
265 1.64 thorpej
266 1.93 yamt /*
267 1.205 bouyer * sopendfree_thread: free mbufs on "pendfree" list.
268 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
269 1.93 yamt */
270 1.93 yamt
271 1.205 bouyer static void
272 1.205 bouyer sopendfree_thread(void *v)
273 1.93 yamt {
274 1.137 ad struct mbuf *m, *next;
275 1.205 bouyer size_t rv;
276 1.93 yamt
277 1.205 bouyer mutex_enter(&so_pendfree_lock);
278 1.64 thorpej
279 1.205 bouyer for (;;) {
280 1.205 bouyer rv = 0;
281 1.205 bouyer while (so_pendfree != NULL) {
282 1.205 bouyer m = so_pendfree;
283 1.205 bouyer so_pendfree = NULL;
284 1.205 bouyer mutex_exit(&so_pendfree_lock);
285 1.205 bouyer
286 1.205 bouyer for (; m != NULL; m = next) {
287 1.205 bouyer next = m->m_next;
288 1.205 bouyer KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
290 1.205 bouyer
291 1.205 bouyer rv += m->m_ext.ext_size;
292 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 1.205 bouyer m->m_ext.ext_size);
294 1.205 bouyer pool_cache_put(mb_cache, m);
295 1.205 bouyer }
296 1.93 yamt
297 1.205 bouyer mutex_enter(&so_pendfree_lock);
298 1.93 yamt }
299 1.205 bouyer if (rv)
300 1.205 bouyer cv_broadcast(&socurkva_cv);
301 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 1.64 thorpej }
303 1.205 bouyer panic("sopendfree_thread");
304 1.205 bouyer /* NOTREACHED */
305 1.64 thorpej }
306 1.64 thorpej
307 1.80 yamt void
308 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 1.64 thorpej {
310 1.64 thorpej
311 1.156 yamt KASSERT(m != NULL);
312 1.64 thorpej
313 1.93 yamt /*
314 1.93 yamt * postpone freeing mbuf.
315 1.93 yamt *
316 1.93 yamt * we can't do it in interrupt context
317 1.93 yamt * because we need to put kva back to kernel_map.
318 1.93 yamt */
319 1.93 yamt
320 1.136 ad mutex_enter(&so_pendfree_lock);
321 1.92 yamt m->m_next = so_pendfree;
322 1.92 yamt so_pendfree = m;
323 1.205 bouyer cv_signal(&pendfree_thread_cv);
324 1.136 ad mutex_exit(&so_pendfree_lock);
325 1.64 thorpej }
326 1.64 thorpej
327 1.64 thorpej static long
328 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 1.64 thorpej {
330 1.64 thorpej struct iovec *iov = uio->uio_iov;
331 1.64 thorpej vaddr_t sva, eva;
332 1.64 thorpej vsize_t len;
333 1.156 yamt vaddr_t lva;
334 1.156 yamt int npgs, error;
335 1.156 yamt vaddr_t va;
336 1.156 yamt int i;
337 1.64 thorpej
338 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 1.64 thorpej return (0);
340 1.64 thorpej
341 1.64 thorpej if (iov->iov_len < (size_t) space)
342 1.64 thorpej space = iov->iov_len;
343 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
344 1.64 thorpej space = SOCK_LOAN_CHUNK;
345 1.64 thorpej
346 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
347 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
348 1.64 thorpej len = eva - sva;
349 1.64 thorpej npgs = len >> PAGE_SHIFT;
350 1.64 thorpej
351 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
352 1.79 thorpej
353 1.209 matt lva = sokvaalloc(sva, len, so);
354 1.64 thorpej if (lva == 0)
355 1.80 yamt return 0;
356 1.64 thorpej
357 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 1.64 thorpej if (error) {
360 1.80 yamt sokvafree(lva, len);
361 1.64 thorpej return (0);
362 1.64 thorpej }
363 1.64 thorpej
364 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 1.194 cegger VM_PROT_READ, 0);
367 1.64 thorpej pmap_update(pmap_kernel());
368 1.64 thorpej
369 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370 1.64 thorpej
371 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373 1.64 thorpej
374 1.64 thorpej uio->uio_resid -= space;
375 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
376 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 1.64 thorpej uio->uio_iov->iov_len -= space;
378 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
379 1.64 thorpej uio->uio_iov++;
380 1.64 thorpej uio->uio_iovcnt--;
381 1.64 thorpej }
382 1.64 thorpej
383 1.64 thorpej return (space);
384 1.64 thorpej }
385 1.64 thorpej
386 1.142 dyoung struct mbuf *
387 1.147 dyoung getsombuf(struct socket *so, int type)
388 1.142 dyoung {
389 1.142 dyoung struct mbuf *m;
390 1.142 dyoung
391 1.147 dyoung m = m_get(M_WAIT, type);
392 1.142 dyoung MCLAIM(m, so->so_mowner);
393 1.142 dyoung return m;
394 1.142 dyoung }
395 1.142 dyoung
396 1.191 elad static int
397 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
399 1.191 elad {
400 1.191 elad int result;
401 1.191 elad enum kauth_network_req req;
402 1.191 elad
403 1.191 elad result = KAUTH_RESULT_DEFER;
404 1.191 elad req = (enum kauth_network_req)arg0;
405 1.191 elad
406 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
407 1.193 elad (action != KAUTH_NETWORK_BIND))
408 1.191 elad return result;
409 1.191 elad
410 1.191 elad switch (req) {
411 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
412 1.193 elad result = KAUTH_RESULT_ALLOW;
413 1.193 elad break;
414 1.193 elad
415 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416 1.191 elad /* Normal users can only drop their own connections. */
417 1.191 elad struct socket *so = (struct socket *)arg1;
418 1.191 elad
419 1.199 elad if (proc_uidmatch(cred, so->so_cred))
420 1.191 elad result = KAUTH_RESULT_ALLOW;
421 1.191 elad
422 1.191 elad break;
423 1.191 elad }
424 1.191 elad
425 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
427 1.203 matt if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428 1.203 matt || (u_long)arg1 == PF_BLUETOOTH) {
429 1.191 elad result = KAUTH_RESULT_ALLOW;
430 1.203 matt } else {
431 1.191 elad /* Privileged, let secmodel handle this. */
432 1.191 elad if ((u_long)arg2 == SOCK_RAW)
433 1.191 elad break;
434 1.191 elad }
435 1.191 elad
436 1.191 elad result = KAUTH_RESULT_ALLOW;
437 1.191 elad
438 1.191 elad break;
439 1.191 elad
440 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441 1.192 elad result = KAUTH_RESULT_ALLOW;
442 1.192 elad
443 1.192 elad break;
444 1.192 elad
445 1.191 elad default:
446 1.191 elad break;
447 1.191 elad }
448 1.191 elad
449 1.191 elad return result;
450 1.191 elad }
451 1.191 elad
452 1.119 yamt void
453 1.119 yamt soinit(void)
454 1.119 yamt {
455 1.119 yamt
456 1.212 pooka sysctl_kern_socket_setup();
457 1.178 pooka
458 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 1.136 ad cv_init(&socurkva_cv, "sokva");
461 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
462 1.166 ad soinit2();
463 1.136 ad
464 1.119 yamt /* Set the initial adjusted socket buffer size. */
465 1.119 yamt if (sb_max_set(sb_max))
466 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
467 1.119 yamt
468 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 1.191 elad socket_listener_cb, NULL);
470 1.119 yamt }
471 1.119 yamt
472 1.205 bouyer void
473 1.205 bouyer soinit1(void)
474 1.205 bouyer {
475 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 1.205 bouyer if (error)
478 1.205 bouyer panic("soinit1 %d", error);
479 1.205 bouyer }
480 1.205 bouyer
481 1.1 cgd /*
482 1.1 cgd * Socket operation routines.
483 1.1 cgd * These routines are called by the routines in
484 1.1 cgd * sys_socket.c or from a system process, and
485 1.1 cgd * implement the semantics of socket operations by
486 1.1 cgd * switching out to the protocol specific routines.
487 1.1 cgd */
488 1.1 cgd /*ARGSUSED*/
489 1.3 andrew int
490 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491 1.160 ad struct socket *lockso)
492 1.1 cgd {
493 1.99 matt const struct protosw *prp;
494 1.54 lukem struct socket *so;
495 1.115 yamt uid_t uid;
496 1.160 ad int error;
497 1.160 ad kmutex_t *lock;
498 1.1 cgd
499 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501 1.132 elad KAUTH_ARG(proto));
502 1.140 dyoung if (error != 0)
503 1.140 dyoung return error;
504 1.127 elad
505 1.1 cgd if (proto)
506 1.1 cgd prp = pffindproto(dom, proto, type);
507 1.1 cgd else
508 1.1 cgd prp = pffindtype(dom, type);
509 1.140 dyoung if (prp == NULL) {
510 1.120 ginsbach /* no support for domain */
511 1.120 ginsbach if (pffinddomain(dom) == 0)
512 1.140 dyoung return EAFNOSUPPORT;
513 1.120 ginsbach /* no support for socket type */
514 1.120 ginsbach if (proto == 0 && type != 0)
515 1.140 dyoung return EPROTOTYPE;
516 1.140 dyoung return EPROTONOSUPPORT;
517 1.120 ginsbach }
518 1.140 dyoung if (prp->pr_usrreq == NULL)
519 1.140 dyoung return EPROTONOSUPPORT;
520 1.1 cgd if (prp->pr_type != type)
521 1.140 dyoung return EPROTOTYPE;
522 1.160 ad
523 1.160 ad so = soget(true);
524 1.1 cgd so->so_type = type;
525 1.1 cgd so->so_proto = prp;
526 1.33 matt so->so_send = sosend;
527 1.33 matt so->so_receive = soreceive;
528 1.78 matt #ifdef MBUFTRACE
529 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
532 1.78 matt #endif
533 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
534 1.115 yamt so->so_uidinfo = uid_find(uid);
535 1.168 yamt so->so_cpid = l->l_proc->p_pid;
536 1.160 ad if (lockso != NULL) {
537 1.160 ad /* Caller wants us to share a lock. */
538 1.160 ad lock = lockso->so_lock;
539 1.160 ad so->so_lock = lock;
540 1.160 ad mutex_obj_hold(lock);
541 1.160 ad mutex_enter(lock);
542 1.160 ad } else {
543 1.160 ad /* Lock assigned and taken during PRU_ATTACH. */
544 1.160 ad }
545 1.140 dyoung error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
546 1.140 dyoung (struct mbuf *)(long)proto, NULL, l);
547 1.160 ad KASSERT(solocked(so));
548 1.140 dyoung if (error != 0) {
549 1.1 cgd so->so_state |= SS_NOFDREF;
550 1.1 cgd sofree(so);
551 1.140 dyoung return error;
552 1.1 cgd }
553 1.198 elad so->so_cred = kauth_cred_dup(l->l_cred);
554 1.160 ad sounlock(so);
555 1.1 cgd *aso = so;
556 1.140 dyoung return 0;
557 1.1 cgd }
558 1.1 cgd
559 1.142 dyoung /* On success, write file descriptor to fdout and return zero. On
560 1.142 dyoung * failure, return non-zero; *fdout will be undefined.
561 1.142 dyoung */
562 1.142 dyoung int
563 1.142 dyoung fsocreate(int domain, struct socket **sop, int type, int protocol,
564 1.142 dyoung struct lwp *l, int *fdout)
565 1.142 dyoung {
566 1.142 dyoung struct socket *so;
567 1.142 dyoung struct file *fp;
568 1.142 dyoung int fd, error;
569 1.204 christos int flags = type & SOCK_FLAGS_MASK;
570 1.142 dyoung
571 1.204 christos type &= ~SOCK_FLAGS_MASK;
572 1.155 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
573 1.204 christos return error;
574 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
575 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
576 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
577 1.142 dyoung fp->f_type = DTYPE_SOCKET;
578 1.142 dyoung fp->f_ops = &socketops;
579 1.160 ad error = socreate(domain, &so, type, protocol, l, NULL);
580 1.142 dyoung if (error != 0) {
581 1.155 ad fd_abort(curproc, fp, fd);
582 1.142 dyoung } else {
583 1.142 dyoung if (sop != NULL)
584 1.142 dyoung *sop = so;
585 1.142 dyoung fp->f_data = so;
586 1.155 ad fd_affix(curproc, fp, fd);
587 1.142 dyoung *fdout = fd;
588 1.213 christos if (flags & SOCK_NONBLOCK)
589 1.213 christos so->so_state |= SS_NBIO;
590 1.142 dyoung }
591 1.142 dyoung return error;
592 1.142 dyoung }
593 1.142 dyoung
594 1.3 andrew int
595 1.190 dyoung sofamily(const struct socket *so)
596 1.190 dyoung {
597 1.190 dyoung const struct protosw *pr;
598 1.190 dyoung const struct domain *dom;
599 1.190 dyoung
600 1.190 dyoung if ((pr = so->so_proto) == NULL)
601 1.190 dyoung return AF_UNSPEC;
602 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
603 1.190 dyoung return AF_UNSPEC;
604 1.190 dyoung return dom->dom_family;
605 1.190 dyoung }
606 1.190 dyoung
607 1.190 dyoung int
608 1.114 christos sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
609 1.1 cgd {
610 1.160 ad int error;
611 1.1 cgd
612 1.160 ad solock(so);
613 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
614 1.160 ad sounlock(so);
615 1.140 dyoung return error;
616 1.1 cgd }
617 1.1 cgd
618 1.3 andrew int
619 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
620 1.1 cgd {
621 1.160 ad int error;
622 1.1 cgd
623 1.160 ad solock(so);
624 1.158 ad if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
625 1.163 ad SS_ISDISCONNECTING)) != 0) {
626 1.163 ad sounlock(so);
627 1.210 matt return (EINVAL);
628 1.163 ad }
629 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
630 1.150 elad NULL, NULL, l);
631 1.140 dyoung if (error != 0) {
632 1.160 ad sounlock(so);
633 1.140 dyoung return error;
634 1.1 cgd }
635 1.63 matt if (TAILQ_EMPTY(&so->so_q))
636 1.1 cgd so->so_options |= SO_ACCEPTCONN;
637 1.1 cgd if (backlog < 0)
638 1.1 cgd backlog = 0;
639 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
640 1.160 ad sounlock(so);
641 1.140 dyoung return 0;
642 1.1 cgd }
643 1.1 cgd
644 1.21 christos void
645 1.54 lukem sofree(struct socket *so)
646 1.1 cgd {
647 1.161 ad u_int refs;
648 1.1 cgd
649 1.160 ad KASSERT(solocked(so));
650 1.160 ad
651 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
652 1.160 ad sounlock(so);
653 1.1 cgd return;
654 1.160 ad }
655 1.43 mycroft if (so->so_head) {
656 1.43 mycroft /*
657 1.43 mycroft * We must not decommission a socket that's on the accept(2)
658 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
659 1.43 mycroft * indicated that the listening socket was ready.
660 1.43 mycroft */
661 1.160 ad if (!soqremque(so, 0)) {
662 1.160 ad sounlock(so);
663 1.43 mycroft return;
664 1.160 ad }
665 1.43 mycroft }
666 1.98 christos if (so->so_rcv.sb_hiwat)
667 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
668 1.98 christos RLIM_INFINITY);
669 1.98 christos if (so->so_snd.sb_hiwat)
670 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
671 1.98 christos RLIM_INFINITY);
672 1.98 christos sbrelease(&so->so_snd, so);
673 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
674 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
675 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
676 1.1 cgd sorflush(so);
677 1.161 ad refs = so->so_aborting; /* XXX */
678 1.177 ad /* Remove acccept filter if one is present. */
679 1.170 tls if (so->so_accf != NULL)
680 1.177 ad (void)accept_filt_clear(so);
681 1.160 ad sounlock(so);
682 1.161 ad if (refs == 0) /* XXX */
683 1.161 ad soput(so);
684 1.1 cgd }
685 1.1 cgd
686 1.1 cgd /*
687 1.1 cgd * Close a socket on last file table reference removal.
688 1.1 cgd * Initiate disconnect if connected.
689 1.1 cgd * Free socket when disconnect complete.
690 1.1 cgd */
691 1.3 andrew int
692 1.54 lukem soclose(struct socket *so)
693 1.1 cgd {
694 1.54 lukem struct socket *so2;
695 1.160 ad int error;
696 1.160 ad int error2;
697 1.1 cgd
698 1.54 lukem error = 0;
699 1.160 ad solock(so);
700 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
701 1.172 ad for (;;) {
702 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
703 1.160 ad KASSERT(solocked2(so, so2));
704 1.160 ad (void) soqremque(so2, 0);
705 1.160 ad /* soabort drops the lock. */
706 1.160 ad (void) soabort(so2);
707 1.160 ad solock(so);
708 1.172 ad continue;
709 1.160 ad }
710 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
711 1.160 ad KASSERT(solocked2(so, so2));
712 1.160 ad (void) soqremque(so2, 1);
713 1.160 ad /* soabort drops the lock. */
714 1.160 ad (void) soabort(so2);
715 1.160 ad solock(so);
716 1.172 ad continue;
717 1.160 ad }
718 1.172 ad break;
719 1.172 ad }
720 1.1 cgd }
721 1.1 cgd if (so->so_pcb == 0)
722 1.1 cgd goto discard;
723 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
724 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
725 1.1 cgd error = sodisconnect(so);
726 1.1 cgd if (error)
727 1.1 cgd goto drop;
728 1.1 cgd }
729 1.1 cgd if (so->so_options & SO_LINGER) {
730 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
731 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
732 1.1 cgd goto drop;
733 1.21 christos while (so->so_state & SS_ISCONNECTED) {
734 1.185 yamt error = sowait(so, true, so->so_linger * hz);
735 1.21 christos if (error)
736 1.1 cgd break;
737 1.21 christos }
738 1.1 cgd }
739 1.1 cgd }
740 1.54 lukem drop:
741 1.1 cgd if (so->so_pcb) {
742 1.160 ad error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
743 1.140 dyoung NULL, NULL, NULL, NULL);
744 1.1 cgd if (error == 0)
745 1.1 cgd error = error2;
746 1.1 cgd }
747 1.54 lukem discard:
748 1.1 cgd if (so->so_state & SS_NOFDREF)
749 1.1 cgd panic("soclose: NOFDREF");
750 1.198 elad kauth_cred_free(so->so_cred);
751 1.1 cgd so->so_state |= SS_NOFDREF;
752 1.1 cgd sofree(so);
753 1.1 cgd return (error);
754 1.1 cgd }
755 1.1 cgd
756 1.1 cgd /*
757 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
758 1.1 cgd */
759 1.3 andrew int
760 1.54 lukem soabort(struct socket *so)
761 1.1 cgd {
762 1.161 ad u_int refs;
763 1.139 yamt int error;
764 1.160 ad
765 1.160 ad KASSERT(solocked(so));
766 1.160 ad KASSERT(so->so_head == NULL);
767 1.1 cgd
768 1.161 ad so->so_aborting++; /* XXX */
769 1.140 dyoung error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
770 1.140 dyoung NULL, NULL, NULL);
771 1.161 ad refs = --so->so_aborting; /* XXX */
772 1.164 drochner if (error || (refs == 0)) {
773 1.139 yamt sofree(so);
774 1.160 ad } else {
775 1.160 ad sounlock(so);
776 1.139 yamt }
777 1.139 yamt return error;
778 1.1 cgd }
779 1.1 cgd
780 1.3 andrew int
781 1.54 lukem soaccept(struct socket *so, struct mbuf *nam)
782 1.1 cgd {
783 1.160 ad int error;
784 1.160 ad
785 1.160 ad KASSERT(solocked(so));
786 1.1 cgd
787 1.54 lukem error = 0;
788 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
789 1.1 cgd panic("soaccept: !NOFDREF");
790 1.1 cgd so->so_state &= ~SS_NOFDREF;
791 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
792 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
793 1.41 mycroft error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
794 1.140 dyoung NULL, nam, NULL, NULL);
795 1.41 mycroft else
796 1.53 itojun error = ECONNABORTED;
797 1.52 itojun
798 1.1 cgd return (error);
799 1.1 cgd }
800 1.1 cgd
801 1.3 andrew int
802 1.114 christos soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
803 1.1 cgd {
804 1.160 ad int error;
805 1.160 ad
806 1.160 ad KASSERT(solocked(so));
807 1.1 cgd
808 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
809 1.1 cgd return (EOPNOTSUPP);
810 1.1 cgd /*
811 1.1 cgd * If protocol is connection-based, can only connect once.
812 1.1 cgd * Otherwise, if connected, try to disconnect first.
813 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
814 1.1 cgd * a null address.
815 1.1 cgd */
816 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
817 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
818 1.1 cgd (error = sodisconnect(so))))
819 1.1 cgd error = EISCONN;
820 1.1 cgd else
821 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
822 1.140 dyoung NULL, nam, NULL, l);
823 1.1 cgd return (error);
824 1.1 cgd }
825 1.1 cgd
826 1.3 andrew int
827 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
828 1.1 cgd {
829 1.160 ad int error;
830 1.160 ad
831 1.160 ad KASSERT(solocked2(so1, so2));
832 1.1 cgd
833 1.22 mycroft error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
834 1.140 dyoung NULL, (struct mbuf *)so2, NULL, NULL);
835 1.1 cgd return (error);
836 1.1 cgd }
837 1.1 cgd
838 1.3 andrew int
839 1.54 lukem sodisconnect(struct socket *so)
840 1.1 cgd {
841 1.160 ad int error;
842 1.160 ad
843 1.160 ad KASSERT(solocked(so));
844 1.1 cgd
845 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
846 1.1 cgd error = ENOTCONN;
847 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
848 1.1 cgd error = EALREADY;
849 1.160 ad } else {
850 1.160 ad error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
851 1.160 ad NULL, NULL, NULL, NULL);
852 1.1 cgd }
853 1.1 cgd return (error);
854 1.1 cgd }
855 1.1 cgd
856 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
857 1.1 cgd /*
858 1.1 cgd * Send on a socket.
859 1.1 cgd * If send must go all at once and message is larger than
860 1.1 cgd * send buffering, then hard error.
861 1.1 cgd * Lock against other senders.
862 1.1 cgd * If must go all at once and not enough room now, then
863 1.1 cgd * inform user that this would block and do nothing.
864 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
865 1.1 cgd * The data to be sent is described by "uio" if nonzero,
866 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
867 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
868 1.1 cgd * enough to send all at once.
869 1.1 cgd *
870 1.1 cgd * Returns nonzero on error, timeout or signal; callers
871 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
872 1.1 cgd * Data and control buffers are freed on return.
873 1.1 cgd */
874 1.3 andrew int
875 1.54 lukem sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
876 1.114 christos struct mbuf *control, int flags, struct lwp *l)
877 1.1 cgd {
878 1.54 lukem struct mbuf **mp, *m;
879 1.114 christos struct proc *p;
880 1.58 jdolecek long space, len, resid, clen, mlen;
881 1.58 jdolecek int error, s, dontroute, atomic;
882 1.196 dsl short wakeup_state = 0;
883 1.54 lukem
884 1.114 christos p = l->l_proc;
885 1.160 ad clen = 0;
886 1.64 thorpej
887 1.160 ad /*
888 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
889 1.160 ad * protocol processing soft interrupts from interrupting us and
890 1.160 ad * blocking (expensive).
891 1.160 ad */
892 1.160 ad s = splsoftnet();
893 1.160 ad solock(so);
894 1.54 lukem atomic = sosendallatonce(so) || top;
895 1.1 cgd if (uio)
896 1.1 cgd resid = uio->uio_resid;
897 1.1 cgd else
898 1.1 cgd resid = top->m_pkthdr.len;
899 1.7 cgd /*
900 1.7 cgd * In theory resid should be unsigned.
901 1.7 cgd * However, space must be signed, as it might be less than 0
902 1.7 cgd * if we over-committed, and we must use a signed comparison
903 1.7 cgd * of space and resid. On the other hand, a negative resid
904 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
905 1.7 cgd */
906 1.29 mycroft if (resid < 0) {
907 1.29 mycroft error = EINVAL;
908 1.29 mycroft goto out;
909 1.29 mycroft }
910 1.1 cgd dontroute =
911 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
912 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
913 1.165 christos l->l_ru.ru_msgsnd++;
914 1.1 cgd if (control)
915 1.1 cgd clen = control->m_len;
916 1.54 lukem restart:
917 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
918 1.1 cgd goto out;
919 1.1 cgd do {
920 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
921 1.160 ad error = EPIPE;
922 1.160 ad goto release;
923 1.160 ad }
924 1.48 thorpej if (so->so_error) {
925 1.48 thorpej error = so->so_error;
926 1.48 thorpej so->so_error = 0;
927 1.48 thorpej goto release;
928 1.48 thorpej }
929 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
930 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
931 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
932 1.160 ad !(resid == 0 && clen != 0)) {
933 1.160 ad error = ENOTCONN;
934 1.160 ad goto release;
935 1.160 ad }
936 1.160 ad } else if (addr == 0) {
937 1.160 ad error = EDESTADDRREQ;
938 1.160 ad goto release;
939 1.160 ad }
940 1.1 cgd }
941 1.1 cgd space = sbspace(&so->so_snd);
942 1.1 cgd if (flags & MSG_OOB)
943 1.1 cgd space += 1024;
944 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
945 1.160 ad clen > so->so_snd.sb_hiwat) {
946 1.160 ad error = EMSGSIZE;
947 1.160 ad goto release;
948 1.160 ad }
949 1.96 mycroft if (space < resid + clen &&
950 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
951 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
952 1.160 ad error = EWOULDBLOCK;
953 1.160 ad goto release;
954 1.160 ad }
955 1.1 cgd sbunlock(&so->so_snd);
956 1.196 dsl if (wakeup_state & SS_RESTARTSYS) {
957 1.196 dsl error = ERESTART;
958 1.196 dsl goto out;
959 1.196 dsl }
960 1.1 cgd error = sbwait(&so->so_snd);
961 1.1 cgd if (error)
962 1.1 cgd goto out;
963 1.196 dsl wakeup_state = so->so_state;
964 1.1 cgd goto restart;
965 1.1 cgd }
966 1.196 dsl wakeup_state = 0;
967 1.1 cgd mp = ⊤
968 1.1 cgd space -= clen;
969 1.1 cgd do {
970 1.45 tv if (uio == NULL) {
971 1.45 tv /*
972 1.45 tv * Data is prepackaged in "top".
973 1.45 tv */
974 1.45 tv resid = 0;
975 1.45 tv if (flags & MSG_EOR)
976 1.45 tv top->m_flags |= M_EOR;
977 1.45 tv } else do {
978 1.160 ad sounlock(so);
979 1.160 ad splx(s);
980 1.144 dyoung if (top == NULL) {
981 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
982 1.45 tv mlen = MHLEN;
983 1.45 tv m->m_pkthdr.len = 0;
984 1.140 dyoung m->m_pkthdr.rcvif = NULL;
985 1.45 tv } else {
986 1.78 matt m = m_get(M_WAIT, MT_DATA);
987 1.45 tv mlen = MLEN;
988 1.45 tv }
989 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
990 1.121 yamt if (sock_loan_thresh >= 0 &&
991 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
992 1.121 yamt space >= sock_loan_thresh &&
993 1.64 thorpej (len = sosend_loan(so, uio, m,
994 1.64 thorpej space)) != 0) {
995 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
996 1.64 thorpej space -= len;
997 1.64 thorpej goto have_data;
998 1.64 thorpej }
999 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
1000 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
1001 1.201 oki m_clget(m, M_DONTWAIT);
1002 1.45 tv if ((m->m_flags & M_EXT) == 0)
1003 1.45 tv goto nopages;
1004 1.45 tv mlen = MCLBYTES;
1005 1.45 tv if (atomic && top == 0) {
1006 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1007 1.54 lukem resid);
1008 1.45 tv m->m_data += max_hdr;
1009 1.45 tv } else
1010 1.58 jdolecek len = lmin(MCLBYTES, resid);
1011 1.45 tv space -= len;
1012 1.45 tv } else {
1013 1.64 thorpej nopages:
1014 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1015 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1016 1.45 tv space -= len;
1017 1.45 tv /*
1018 1.45 tv * For datagram protocols, leave room
1019 1.45 tv * for protocol headers in first mbuf.
1020 1.45 tv */
1021 1.45 tv if (atomic && top == 0 && len < mlen)
1022 1.45 tv MH_ALIGN(m, len);
1023 1.45 tv }
1024 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1025 1.64 thorpej have_data:
1026 1.45 tv resid = uio->uio_resid;
1027 1.45 tv m->m_len = len;
1028 1.45 tv *mp = m;
1029 1.45 tv top->m_pkthdr.len += len;
1030 1.160 ad s = splsoftnet();
1031 1.160 ad solock(so);
1032 1.144 dyoung if (error != 0)
1033 1.45 tv goto release;
1034 1.45 tv mp = &m->m_next;
1035 1.45 tv if (resid <= 0) {
1036 1.45 tv if (flags & MSG_EOR)
1037 1.45 tv top->m_flags |= M_EOR;
1038 1.45 tv break;
1039 1.45 tv }
1040 1.45 tv } while (space > 0 && atomic);
1041 1.108 perry
1042 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1043 1.160 ad error = EPIPE;
1044 1.160 ad goto release;
1045 1.160 ad }
1046 1.45 tv if (dontroute)
1047 1.45 tv so->so_options |= SO_DONTROUTE;
1048 1.45 tv if (resid > 0)
1049 1.45 tv so->so_state |= SS_MORETOCOME;
1050 1.46 sommerfe error = (*so->so_proto->pr_usrreq)(so,
1051 1.46 sommerfe (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1052 1.160 ad top, addr, control, curlwp);
1053 1.45 tv if (dontroute)
1054 1.45 tv so->so_options &= ~SO_DONTROUTE;
1055 1.45 tv if (resid > 0)
1056 1.45 tv so->so_state &= ~SS_MORETOCOME;
1057 1.45 tv clen = 0;
1058 1.144 dyoung control = NULL;
1059 1.144 dyoung top = NULL;
1060 1.45 tv mp = ⊤
1061 1.144 dyoung if (error != 0)
1062 1.1 cgd goto release;
1063 1.1 cgd } while (resid && space > 0);
1064 1.1 cgd } while (resid);
1065 1.1 cgd
1066 1.54 lukem release:
1067 1.1 cgd sbunlock(&so->so_snd);
1068 1.54 lukem out:
1069 1.160 ad sounlock(so);
1070 1.160 ad splx(s);
1071 1.1 cgd if (top)
1072 1.1 cgd m_freem(top);
1073 1.1 cgd if (control)
1074 1.1 cgd m_freem(control);
1075 1.1 cgd return (error);
1076 1.1 cgd }
1077 1.1 cgd
1078 1.1 cgd /*
1079 1.159 ad * Following replacement or removal of the first mbuf on the first
1080 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1081 1.159 ad * into the socket buffer so that other consumers see the values
1082 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1083 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1084 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1085 1.159 ad */
1086 1.159 ad static void
1087 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1088 1.159 ad {
1089 1.159 ad
1090 1.160 ad KASSERT(solocked(sb->sb_so));
1091 1.160 ad
1092 1.159 ad /*
1093 1.159 ad * First, update for the new value of nextrecord. If necessary,
1094 1.159 ad * make it the first record.
1095 1.159 ad */
1096 1.159 ad if (sb->sb_mb != NULL)
1097 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1098 1.159 ad else
1099 1.159 ad sb->sb_mb = nextrecord;
1100 1.159 ad
1101 1.159 ad /*
1102 1.159 ad * Now update any dependent socket buffer fields to reflect
1103 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1104 1.159 ad * the addition of a second clause that takes care of the
1105 1.159 ad * case where sb_mb has been updated, but remains the last
1106 1.159 ad * record.
1107 1.159 ad */
1108 1.159 ad if (sb->sb_mb == NULL) {
1109 1.159 ad sb->sb_mbtail = NULL;
1110 1.159 ad sb->sb_lastrecord = NULL;
1111 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1112 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1113 1.159 ad }
1114 1.159 ad
1115 1.159 ad /*
1116 1.1 cgd * Implement receive operations on a socket.
1117 1.1 cgd * We depend on the way that records are added to the sockbuf
1118 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1119 1.1 cgd * must begin with an address if the protocol so specifies,
1120 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1121 1.1 cgd * and then zero or more mbufs of data.
1122 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1123 1.1 cgd * we splx() while doing the actual copy to user space.
1124 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1125 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1126 1.1 cgd *
1127 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1128 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1129 1.1 cgd * only for the count in uio_resid.
1130 1.1 cgd */
1131 1.3 andrew int
1132 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1133 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1134 1.1 cgd {
1135 1.116 yamt struct lwp *l = curlwp;
1136 1.160 ad struct mbuf *m, **mp, *mt;
1137 1.211 chs size_t len, offset, moff, orig_resid;
1138 1.211 chs int atomic, flags, error, s, type;
1139 1.99 matt const struct protosw *pr;
1140 1.54 lukem struct mbuf *nextrecord;
1141 1.67 he int mbuf_removed = 0;
1142 1.146 dyoung const struct domain *dom;
1143 1.196 dsl short wakeup_state = 0;
1144 1.64 thorpej
1145 1.54 lukem pr = so->so_proto;
1146 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1147 1.146 dyoung dom = pr->pr_domain;
1148 1.1 cgd mp = mp0;
1149 1.54 lukem type = 0;
1150 1.54 lukem orig_resid = uio->uio_resid;
1151 1.102 jonathan
1152 1.144 dyoung if (paddr != NULL)
1153 1.144 dyoung *paddr = NULL;
1154 1.144 dyoung if (controlp != NULL)
1155 1.144 dyoung *controlp = NULL;
1156 1.144 dyoung if (flagsp != NULL)
1157 1.1 cgd flags = *flagsp &~ MSG_EOR;
1158 1.1 cgd else
1159 1.1 cgd flags = 0;
1160 1.66 enami
1161 1.1 cgd if (flags & MSG_OOB) {
1162 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1163 1.160 ad solock(so);
1164 1.17 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1165 1.140 dyoung (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1166 1.160 ad sounlock(so);
1167 1.1 cgd if (error)
1168 1.1 cgd goto bad;
1169 1.1 cgd do {
1170 1.134 christos error = uiomove(mtod(m, void *),
1171 1.211 chs MIN(uio->uio_resid, m->m_len), uio);
1172 1.1 cgd m = m_free(m);
1173 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1174 1.54 lukem bad:
1175 1.144 dyoung if (m != NULL)
1176 1.1 cgd m_freem(m);
1177 1.144 dyoung return error;
1178 1.1 cgd }
1179 1.144 dyoung if (mp != NULL)
1180 1.140 dyoung *mp = NULL;
1181 1.160 ad
1182 1.160 ad /*
1183 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1184 1.160 ad * protocol processing soft interrupts from interrupting us and
1185 1.160 ad * blocking (expensive).
1186 1.160 ad */
1187 1.160 ad s = splsoftnet();
1188 1.160 ad solock(so);
1189 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1190 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1191 1.1 cgd
1192 1.54 lukem restart:
1193 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1194 1.160 ad sounlock(so);
1195 1.160 ad splx(s);
1196 1.144 dyoung return error;
1197 1.160 ad }
1198 1.1 cgd
1199 1.1 cgd m = so->so_rcv.sb_mb;
1200 1.1 cgd /*
1201 1.1 cgd * If we have less data than requested, block awaiting more
1202 1.1 cgd * (subject to any timeout) if:
1203 1.15 mycroft * 1. the current count is less than the low water mark,
1204 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1205 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1206 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1207 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1208 1.1 cgd * we have to do the receive in sections, and thus risk returning
1209 1.1 cgd * a short count if a timeout or signal occurs after we start.
1210 1.1 cgd */
1211 1.144 dyoung if (m == NULL ||
1212 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1213 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1214 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1215 1.144 dyoung ((flags & MSG_WAITALL) &&
1216 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1217 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1218 1.1 cgd #ifdef DIAGNOSTIC
1219 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1220 1.1 cgd panic("receive 1");
1221 1.1 cgd #endif
1222 1.1 cgd if (so->so_error) {
1223 1.144 dyoung if (m != NULL)
1224 1.15 mycroft goto dontblock;
1225 1.1 cgd error = so->so_error;
1226 1.1 cgd if ((flags & MSG_PEEK) == 0)
1227 1.1 cgd so->so_error = 0;
1228 1.1 cgd goto release;
1229 1.1 cgd }
1230 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1231 1.144 dyoung if (m != NULL)
1232 1.15 mycroft goto dontblock;
1233 1.1 cgd else
1234 1.1 cgd goto release;
1235 1.1 cgd }
1236 1.144 dyoung for (; m != NULL; m = m->m_next)
1237 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1238 1.1 cgd m = so->so_rcv.sb_mb;
1239 1.1 cgd goto dontblock;
1240 1.1 cgd }
1241 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1242 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1243 1.1 cgd error = ENOTCONN;
1244 1.1 cgd goto release;
1245 1.1 cgd }
1246 1.1 cgd if (uio->uio_resid == 0)
1247 1.1 cgd goto release;
1248 1.206 christos if ((so->so_state & SS_NBIO) ||
1249 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1250 1.1 cgd error = EWOULDBLOCK;
1251 1.1 cgd goto release;
1252 1.1 cgd }
1253 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1254 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1255 1.1 cgd sbunlock(&so->so_rcv);
1256 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1257 1.196 dsl error = ERESTART;
1258 1.196 dsl else
1259 1.196 dsl error = sbwait(&so->so_rcv);
1260 1.160 ad if (error != 0) {
1261 1.160 ad sounlock(so);
1262 1.160 ad splx(s);
1263 1.144 dyoung return error;
1264 1.160 ad }
1265 1.196 dsl wakeup_state = so->so_state;
1266 1.1 cgd goto restart;
1267 1.1 cgd }
1268 1.54 lukem dontblock:
1269 1.69 thorpej /*
1270 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1271 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1272 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1273 1.159 ad * various socket buffer pointers and local stack versions of the
1274 1.159 ad * pointers in sync, pushing out modifications before dropping the
1275 1.160 ad * socket lock, and re-reading them when picking it up.
1276 1.159 ad *
1277 1.159 ad * Otherwise, we will race with the network stack appending new data
1278 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1279 1.159 ad * versions of the field, possibly resulting in socket buffer
1280 1.159 ad * corruption.
1281 1.159 ad *
1282 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1283 1.159 ad * readers from pulling off the front of the socket buffer.
1284 1.69 thorpej */
1285 1.144 dyoung if (l != NULL)
1286 1.157 ad l->l_ru.ru_msgrcv++;
1287 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1288 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1289 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1290 1.1 cgd nextrecord = m->m_nextpkt;
1291 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1292 1.1 cgd #ifdef DIAGNOSTIC
1293 1.1 cgd if (m->m_type != MT_SONAME)
1294 1.1 cgd panic("receive 1a");
1295 1.1 cgd #endif
1296 1.3 andrew orig_resid = 0;
1297 1.1 cgd if (flags & MSG_PEEK) {
1298 1.1 cgd if (paddr)
1299 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1300 1.1 cgd m = m->m_next;
1301 1.1 cgd } else {
1302 1.1 cgd sbfree(&so->so_rcv, m);
1303 1.67 he mbuf_removed = 1;
1304 1.144 dyoung if (paddr != NULL) {
1305 1.1 cgd *paddr = m;
1306 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1307 1.144 dyoung m->m_next = NULL;
1308 1.1 cgd m = so->so_rcv.sb_mb;
1309 1.1 cgd } else {
1310 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1311 1.1 cgd m = so->so_rcv.sb_mb;
1312 1.1 cgd }
1313 1.159 ad sbsync(&so->so_rcv, nextrecord);
1314 1.1 cgd }
1315 1.1 cgd }
1316 1.159 ad
1317 1.159 ad /*
1318 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1319 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1320 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1321 1.159 ad * perform externalization (or freeing if controlp == NULL).
1322 1.159 ad */
1323 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1324 1.159 ad struct mbuf *cm = NULL, *cmn;
1325 1.159 ad struct mbuf **cme = &cm;
1326 1.159 ad
1327 1.159 ad do {
1328 1.159 ad if (flags & MSG_PEEK) {
1329 1.159 ad if (controlp != NULL) {
1330 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1331 1.159 ad controlp = &(*controlp)->m_next;
1332 1.159 ad }
1333 1.159 ad m = m->m_next;
1334 1.159 ad } else {
1335 1.159 ad sbfree(&so->so_rcv, m);
1336 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1337 1.144 dyoung m->m_next = NULL;
1338 1.159 ad *cme = m;
1339 1.159 ad cme = &(*cme)->m_next;
1340 1.1 cgd m = so->so_rcv.sb_mb;
1341 1.159 ad }
1342 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1343 1.159 ad if ((flags & MSG_PEEK) == 0)
1344 1.159 ad sbsync(&so->so_rcv, nextrecord);
1345 1.159 ad for (; cm != NULL; cm = cmn) {
1346 1.159 ad cmn = cm->m_next;
1347 1.159 ad cm->m_next = NULL;
1348 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1349 1.159 ad if (controlp != NULL) {
1350 1.159 ad if (dom->dom_externalize != NULL &&
1351 1.159 ad type == SCM_RIGHTS) {
1352 1.160 ad sounlock(so);
1353 1.159 ad splx(s);
1354 1.204 christos error = (*dom->dom_externalize)(cm, l,
1355 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1356 1.204 christos O_CLOEXEC : 0);
1357 1.159 ad s = splsoftnet();
1358 1.160 ad solock(so);
1359 1.159 ad }
1360 1.159 ad *controlp = cm;
1361 1.159 ad while (*controlp != NULL)
1362 1.159 ad controlp = &(*controlp)->m_next;
1363 1.1 cgd } else {
1364 1.106 itojun /*
1365 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1366 1.106 itojun * through the read path rather than recv.
1367 1.106 itojun */
1368 1.159 ad if (dom->dom_dispose != NULL &&
1369 1.159 ad type == SCM_RIGHTS) {
1370 1.160 ad sounlock(so);
1371 1.159 ad (*dom->dom_dispose)(cm);
1372 1.160 ad solock(so);
1373 1.159 ad }
1374 1.159 ad m_freem(cm);
1375 1.1 cgd }
1376 1.1 cgd }
1377 1.159 ad if (m != NULL)
1378 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1379 1.159 ad else
1380 1.159 ad nextrecord = so->so_rcv.sb_mb;
1381 1.159 ad orig_resid = 0;
1382 1.1 cgd }
1383 1.69 thorpej
1384 1.159 ad /* If m is non-NULL, we have some data to read. */
1385 1.159 ad if (__predict_true(m != NULL)) {
1386 1.1 cgd type = m->m_type;
1387 1.1 cgd if (type == MT_OOBDATA)
1388 1.1 cgd flags |= MSG_OOB;
1389 1.1 cgd }
1390 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1391 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1392 1.69 thorpej
1393 1.1 cgd moff = 0;
1394 1.1 cgd offset = 0;
1395 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1396 1.1 cgd if (m->m_type == MT_OOBDATA) {
1397 1.1 cgd if (type != MT_OOBDATA)
1398 1.1 cgd break;
1399 1.1 cgd } else if (type == MT_OOBDATA)
1400 1.1 cgd break;
1401 1.1 cgd #ifdef DIAGNOSTIC
1402 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1403 1.1 cgd panic("receive 3");
1404 1.1 cgd #endif
1405 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1406 1.196 dsl wakeup_state = 0;
1407 1.1 cgd len = uio->uio_resid;
1408 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1409 1.1 cgd len = so->so_oobmark - offset;
1410 1.1 cgd if (len > m->m_len - moff)
1411 1.1 cgd len = m->m_len - moff;
1412 1.1 cgd /*
1413 1.1 cgd * If mp is set, just pass back the mbufs.
1414 1.1 cgd * Otherwise copy them out via the uio, then free.
1415 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1416 1.1 cgd * it points to next record) when we drop priority;
1417 1.1 cgd * we must note any additions to the sockbuf when we
1418 1.1 cgd * block interrupts again.
1419 1.1 cgd */
1420 1.144 dyoung if (mp == NULL) {
1421 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1422 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1423 1.160 ad sounlock(so);
1424 1.1 cgd splx(s);
1425 1.211 chs error = uiomove(mtod(m, char *) + moff, len, uio);
1426 1.20 mycroft s = splsoftnet();
1427 1.160 ad solock(so);
1428 1.144 dyoung if (error != 0) {
1429 1.67 he /*
1430 1.67 he * If any part of the record has been removed
1431 1.67 he * (such as the MT_SONAME mbuf, which will
1432 1.67 he * happen when PR_ADDR, and thus also
1433 1.67 he * PR_ATOMIC, is set), then drop the entire
1434 1.67 he * record to maintain the atomicity of the
1435 1.67 he * receive operation.
1436 1.67 he *
1437 1.67 he * This avoids a later panic("receive 1a")
1438 1.67 he * when compiled with DIAGNOSTIC.
1439 1.67 he */
1440 1.146 dyoung if (m && mbuf_removed && atomic)
1441 1.67 he (void) sbdroprecord(&so->so_rcv);
1442 1.67 he
1443 1.57 jdolecek goto release;
1444 1.67 he }
1445 1.1 cgd } else
1446 1.1 cgd uio->uio_resid -= len;
1447 1.1 cgd if (len == m->m_len - moff) {
1448 1.1 cgd if (m->m_flags & M_EOR)
1449 1.1 cgd flags |= MSG_EOR;
1450 1.1 cgd if (flags & MSG_PEEK) {
1451 1.1 cgd m = m->m_next;
1452 1.1 cgd moff = 0;
1453 1.1 cgd } else {
1454 1.1 cgd nextrecord = m->m_nextpkt;
1455 1.1 cgd sbfree(&so->so_rcv, m);
1456 1.1 cgd if (mp) {
1457 1.1 cgd *mp = m;
1458 1.1 cgd mp = &m->m_next;
1459 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1460 1.140 dyoung *mp = NULL;
1461 1.1 cgd } else {
1462 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1463 1.1 cgd m = so->so_rcv.sb_mb;
1464 1.1 cgd }
1465 1.69 thorpej /*
1466 1.69 thorpej * If m != NULL, we also know that
1467 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1468 1.69 thorpej */
1469 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1470 1.69 thorpej if (m) {
1471 1.1 cgd m->m_nextpkt = nextrecord;
1472 1.69 thorpej if (nextrecord == NULL)
1473 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1474 1.69 thorpej } else {
1475 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1476 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1477 1.69 thorpej }
1478 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1479 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1480 1.1 cgd }
1481 1.144 dyoung } else if (flags & MSG_PEEK)
1482 1.144 dyoung moff += len;
1483 1.144 dyoung else {
1484 1.160 ad if (mp != NULL) {
1485 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1486 1.160 ad if (__predict_false(mt == NULL)) {
1487 1.160 ad sounlock(so);
1488 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1489 1.160 ad solock(so);
1490 1.160 ad }
1491 1.160 ad *mp = mt;
1492 1.160 ad }
1493 1.144 dyoung m->m_data += len;
1494 1.144 dyoung m->m_len -= len;
1495 1.144 dyoung so->so_rcv.sb_cc -= len;
1496 1.1 cgd }
1497 1.1 cgd if (so->so_oobmark) {
1498 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1499 1.1 cgd so->so_oobmark -= len;
1500 1.1 cgd if (so->so_oobmark == 0) {
1501 1.1 cgd so->so_state |= SS_RCVATMARK;
1502 1.1 cgd break;
1503 1.1 cgd }
1504 1.7 cgd } else {
1505 1.1 cgd offset += len;
1506 1.7 cgd if (offset == so->so_oobmark)
1507 1.7 cgd break;
1508 1.7 cgd }
1509 1.1 cgd }
1510 1.1 cgd if (flags & MSG_EOR)
1511 1.1 cgd break;
1512 1.1 cgd /*
1513 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1514 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1515 1.1 cgd * termination. If a signal/timeout occurs, return
1516 1.1 cgd * with a short count but without error.
1517 1.1 cgd * Keep sockbuf locked against other readers.
1518 1.1 cgd */
1519 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1520 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1521 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1522 1.1 cgd break;
1523 1.68 matt /*
1524 1.68 matt * If we are peeking and the socket receive buffer is
1525 1.68 matt * full, stop since we can't get more data to peek at.
1526 1.68 matt */
1527 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1528 1.68 matt break;
1529 1.68 matt /*
1530 1.68 matt * If we've drained the socket buffer, tell the
1531 1.68 matt * protocol in case it needs to do something to
1532 1.68 matt * get it filled again.
1533 1.68 matt */
1534 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1535 1.68 matt (*pr->pr_usrreq)(so, PRU_RCVD,
1536 1.140 dyoung NULL, (struct mbuf *)(long)flags, NULL, l);
1537 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1538 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1539 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1540 1.196 dsl error = ERESTART;
1541 1.196 dsl else
1542 1.196 dsl error = sbwait(&so->so_rcv);
1543 1.144 dyoung if (error != 0) {
1544 1.1 cgd sbunlock(&so->so_rcv);
1545 1.160 ad sounlock(so);
1546 1.1 cgd splx(s);
1547 1.144 dyoung return 0;
1548 1.1 cgd }
1549 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1550 1.1 cgd nextrecord = m->m_nextpkt;
1551 1.196 dsl wakeup_state = so->so_state;
1552 1.1 cgd }
1553 1.1 cgd }
1554 1.3 andrew
1555 1.146 dyoung if (m && atomic) {
1556 1.3 andrew flags |= MSG_TRUNC;
1557 1.3 andrew if ((flags & MSG_PEEK) == 0)
1558 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1559 1.3 andrew }
1560 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1561 1.144 dyoung if (m == NULL) {
1562 1.69 thorpej /*
1563 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1564 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1565 1.69 thorpej * there is still data in the socket buffer.
1566 1.69 thorpej */
1567 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1568 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1569 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1570 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1571 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1572 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1573 1.69 thorpej }
1574 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1575 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1576 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1577 1.140 dyoung (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1578 1.140 dyoung (struct mbuf *)(long)flags, NULL, l);
1579 1.1 cgd }
1580 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1581 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1582 1.3 andrew sbunlock(&so->so_rcv);
1583 1.3 andrew goto restart;
1584 1.3 andrew }
1585 1.108 perry
1586 1.144 dyoung if (flagsp != NULL)
1587 1.1 cgd *flagsp |= flags;
1588 1.54 lukem release:
1589 1.1 cgd sbunlock(&so->so_rcv);
1590 1.160 ad sounlock(so);
1591 1.1 cgd splx(s);
1592 1.144 dyoung return error;
1593 1.1 cgd }
1594 1.1 cgd
1595 1.14 mycroft int
1596 1.54 lukem soshutdown(struct socket *so, int how)
1597 1.1 cgd {
1598 1.99 matt const struct protosw *pr;
1599 1.160 ad int error;
1600 1.160 ad
1601 1.160 ad KASSERT(solocked(so));
1602 1.34 kleink
1603 1.54 lukem pr = so->so_proto;
1604 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1605 1.34 kleink return (EINVAL);
1606 1.1 cgd
1607 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1608 1.1 cgd sorflush(so);
1609 1.160 ad error = 0;
1610 1.160 ad }
1611 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1612 1.160 ad error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1613 1.140 dyoung NULL, NULL, NULL);
1614 1.160 ad
1615 1.160 ad return error;
1616 1.1 cgd }
1617 1.1 cgd
1618 1.195 dsl void
1619 1.196 dsl sorestart(struct socket *so)
1620 1.188 ad {
1621 1.196 dsl /*
1622 1.196 dsl * An application has called close() on an fd on which another
1623 1.196 dsl * of its threads has called a socket system call.
1624 1.196 dsl * Mark this and wake everyone up, and code that would block again
1625 1.196 dsl * instead returns ERESTART.
1626 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1627 1.196 dsl * Any other fd will block again on the 2nd syscall.
1628 1.196 dsl */
1629 1.188 ad solock(so);
1630 1.196 dsl so->so_state |= SS_RESTARTSYS;
1631 1.188 ad cv_broadcast(&so->so_cv);
1632 1.196 dsl cv_broadcast(&so->so_snd.sb_cv);
1633 1.196 dsl cv_broadcast(&so->so_rcv.sb_cv);
1634 1.188 ad sounlock(so);
1635 1.188 ad }
1636 1.188 ad
1637 1.14 mycroft void
1638 1.54 lukem sorflush(struct socket *so)
1639 1.1 cgd {
1640 1.54 lukem struct sockbuf *sb, asb;
1641 1.99 matt const struct protosw *pr;
1642 1.160 ad
1643 1.160 ad KASSERT(solocked(so));
1644 1.1 cgd
1645 1.54 lukem sb = &so->so_rcv;
1646 1.54 lukem pr = so->so_proto;
1647 1.160 ad socantrcvmore(so);
1648 1.1 cgd sb->sb_flags |= SB_NOINTR;
1649 1.160 ad (void )sblock(sb, M_WAITOK);
1650 1.1 cgd sbunlock(sb);
1651 1.1 cgd asb = *sb;
1652 1.86 wrstuden /*
1653 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1654 1.86 wrstuden * fields valid.
1655 1.86 wrstuden */
1656 1.86 wrstuden memset(&sb->sb_startzero, 0,
1657 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1658 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1659 1.160 ad sounlock(so);
1660 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1661 1.160 ad solock(so);
1662 1.160 ad }
1663 1.98 christos sbrelease(&asb, so);
1664 1.1 cgd }
1665 1.1 cgd
1666 1.171 plunky /*
1667 1.171 plunky * internal set SOL_SOCKET options
1668 1.171 plunky */
1669 1.142 dyoung static int
1670 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1671 1.1 cgd {
1672 1.182 christos int error = EINVAL, optval, opt;
1673 1.171 plunky struct linger l;
1674 1.171 plunky struct timeval tv;
1675 1.142 dyoung
1676 1.179 christos switch ((opt = sopt->sopt_name)) {
1677 1.142 dyoung
1678 1.170 tls case SO_ACCEPTFILTER:
1679 1.177 ad error = accept_filt_setopt(so, sopt);
1680 1.177 ad KASSERT(solocked(so));
1681 1.170 tls break;
1682 1.170 tls
1683 1.171 plunky case SO_LINGER:
1684 1.171 plunky error = sockopt_get(sopt, &l, sizeof(l));
1685 1.177 ad solock(so);
1686 1.171 plunky if (error)
1687 1.177 ad break;
1688 1.171 plunky if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1689 1.177 ad l.l_linger > (INT_MAX / hz)) {
1690 1.177 ad error = EDOM;
1691 1.177 ad break;
1692 1.177 ad }
1693 1.171 plunky so->so_linger = l.l_linger;
1694 1.171 plunky if (l.l_onoff)
1695 1.171 plunky so->so_options |= SO_LINGER;
1696 1.171 plunky else
1697 1.171 plunky so->so_options &= ~SO_LINGER;
1698 1.177 ad break;
1699 1.1 cgd
1700 1.142 dyoung case SO_DEBUG:
1701 1.142 dyoung case SO_KEEPALIVE:
1702 1.142 dyoung case SO_DONTROUTE:
1703 1.142 dyoung case SO_USELOOPBACK:
1704 1.142 dyoung case SO_BROADCAST:
1705 1.142 dyoung case SO_REUSEADDR:
1706 1.142 dyoung case SO_REUSEPORT:
1707 1.142 dyoung case SO_OOBINLINE:
1708 1.142 dyoung case SO_TIMESTAMP:
1709 1.207 christos case SO_NOSIGPIPE:
1710 1.184 christos #ifdef SO_OTIMESTAMP
1711 1.184 christos case SO_OTIMESTAMP:
1712 1.184 christos #endif
1713 1.171 plunky error = sockopt_getint(sopt, &optval);
1714 1.177 ad solock(so);
1715 1.171 plunky if (error)
1716 1.177 ad break;
1717 1.171 plunky if (optval)
1718 1.179 christos so->so_options |= opt;
1719 1.142 dyoung else
1720 1.179 christos so->so_options &= ~opt;
1721 1.142 dyoung break;
1722 1.142 dyoung
1723 1.142 dyoung case SO_SNDBUF:
1724 1.142 dyoung case SO_RCVBUF:
1725 1.142 dyoung case SO_SNDLOWAT:
1726 1.142 dyoung case SO_RCVLOWAT:
1727 1.171 plunky error = sockopt_getint(sopt, &optval);
1728 1.177 ad solock(so);
1729 1.171 plunky if (error)
1730 1.177 ad break;
1731 1.1 cgd
1732 1.142 dyoung /*
1733 1.142 dyoung * Values < 1 make no sense for any of these
1734 1.142 dyoung * options, so disallow them.
1735 1.142 dyoung */
1736 1.177 ad if (optval < 1) {
1737 1.177 ad error = EINVAL;
1738 1.177 ad break;
1739 1.177 ad }
1740 1.1 cgd
1741 1.179 christos switch (opt) {
1742 1.171 plunky case SO_SNDBUF:
1743 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1744 1.177 ad error = ENOBUFS;
1745 1.177 ad break;
1746 1.177 ad }
1747 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1748 1.171 plunky break;
1749 1.1 cgd
1750 1.1 cgd case SO_RCVBUF:
1751 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1752 1.177 ad error = ENOBUFS;
1753 1.177 ad break;
1754 1.177 ad }
1755 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1756 1.142 dyoung break;
1757 1.142 dyoung
1758 1.142 dyoung /*
1759 1.142 dyoung * Make sure the low-water is never greater than
1760 1.142 dyoung * the high-water.
1761 1.142 dyoung */
1762 1.1 cgd case SO_SNDLOWAT:
1763 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1764 1.171 plunky optval = so->so_snd.sb_hiwat;
1765 1.171 plunky
1766 1.171 plunky so->so_snd.sb_lowat = optval;
1767 1.142 dyoung break;
1768 1.171 plunky
1769 1.1 cgd case SO_RCVLOWAT:
1770 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1771 1.171 plunky optval = so->so_rcv.sb_hiwat;
1772 1.171 plunky
1773 1.171 plunky so->so_rcv.sb_lowat = optval;
1774 1.142 dyoung break;
1775 1.142 dyoung }
1776 1.142 dyoung break;
1777 1.28 thorpej
1778 1.179 christos #ifdef COMPAT_50
1779 1.179 christos case SO_OSNDTIMEO:
1780 1.179 christos case SO_ORCVTIMEO: {
1781 1.179 christos struct timeval50 otv;
1782 1.179 christos error = sockopt_get(sopt, &otv, sizeof(otv));
1783 1.186 pooka if (error) {
1784 1.186 pooka solock(so);
1785 1.183 christos break;
1786 1.186 pooka }
1787 1.179 christos timeval50_to_timeval(&otv, &tv);
1788 1.179 christos opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1789 1.182 christos error = 0;
1790 1.179 christos /*FALLTHROUGH*/
1791 1.179 christos }
1792 1.179 christos #endif /* COMPAT_50 */
1793 1.179 christos
1794 1.142 dyoung case SO_SNDTIMEO:
1795 1.142 dyoung case SO_RCVTIMEO:
1796 1.182 christos if (error)
1797 1.179 christos error = sockopt_get(sopt, &tv, sizeof(tv));
1798 1.177 ad solock(so);
1799 1.171 plunky if (error)
1800 1.177 ad break;
1801 1.171 plunky
1802 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1803 1.177 ad error = EDOM;
1804 1.177 ad break;
1805 1.177 ad }
1806 1.28 thorpej
1807 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1808 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1809 1.171 plunky optval = 1;
1810 1.28 thorpej
1811 1.179 christos switch (opt) {
1812 1.142 dyoung case SO_SNDTIMEO:
1813 1.171 plunky so->so_snd.sb_timeo = optval;
1814 1.1 cgd break;
1815 1.1 cgd case SO_RCVTIMEO:
1816 1.171 plunky so->so_rcv.sb_timeo = optval;
1817 1.142 dyoung break;
1818 1.142 dyoung }
1819 1.142 dyoung break;
1820 1.1 cgd
1821 1.142 dyoung default:
1822 1.177 ad solock(so);
1823 1.177 ad error = ENOPROTOOPT;
1824 1.177 ad break;
1825 1.142 dyoung }
1826 1.177 ad KASSERT(solocked(so));
1827 1.177 ad return error;
1828 1.142 dyoung }
1829 1.1 cgd
1830 1.142 dyoung int
1831 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1832 1.142 dyoung {
1833 1.142 dyoung int error, prerr;
1834 1.1 cgd
1835 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1836 1.171 plunky error = sosetopt1(so, sopt);
1837 1.177 ad KASSERT(solocked(so));
1838 1.177 ad } else {
1839 1.142 dyoung error = ENOPROTOOPT;
1840 1.177 ad solock(so);
1841 1.177 ad }
1842 1.1 cgd
1843 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1844 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1845 1.142 dyoung /* give the protocol stack a shot */
1846 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1847 1.142 dyoung if (prerr == 0)
1848 1.142 dyoung error = 0;
1849 1.142 dyoung else if (prerr != ENOPROTOOPT)
1850 1.142 dyoung error = prerr;
1851 1.171 plunky }
1852 1.160 ad sounlock(so);
1853 1.142 dyoung return error;
1854 1.1 cgd }
1855 1.1 cgd
1856 1.171 plunky /*
1857 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1858 1.171 plunky */
1859 1.171 plunky int
1860 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1861 1.171 plunky const void *val, size_t valsize)
1862 1.171 plunky {
1863 1.171 plunky struct sockopt sopt;
1864 1.171 plunky int error;
1865 1.171 plunky
1866 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1867 1.171 plunky
1868 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1869 1.171 plunky sockopt_set(&sopt, val, valsize);
1870 1.171 plunky
1871 1.171 plunky error = sosetopt(so, &sopt);
1872 1.171 plunky
1873 1.171 plunky sockopt_destroy(&sopt);
1874 1.171 plunky
1875 1.171 plunky return error;
1876 1.171 plunky }
1877 1.171 plunky
1878 1.171 plunky /*
1879 1.171 plunky * internal get SOL_SOCKET options
1880 1.171 plunky */
1881 1.171 plunky static int
1882 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1883 1.171 plunky {
1884 1.179 christos int error, optval, opt;
1885 1.171 plunky struct linger l;
1886 1.171 plunky struct timeval tv;
1887 1.171 plunky
1888 1.179 christos switch ((opt = sopt->sopt_name)) {
1889 1.171 plunky
1890 1.171 plunky case SO_ACCEPTFILTER:
1891 1.177 ad error = accept_filt_getopt(so, sopt);
1892 1.171 plunky break;
1893 1.171 plunky
1894 1.171 plunky case SO_LINGER:
1895 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1896 1.171 plunky l.l_linger = so->so_linger;
1897 1.171 plunky
1898 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1899 1.171 plunky break;
1900 1.171 plunky
1901 1.171 plunky case SO_USELOOPBACK:
1902 1.171 plunky case SO_DONTROUTE:
1903 1.171 plunky case SO_DEBUG:
1904 1.171 plunky case SO_KEEPALIVE:
1905 1.171 plunky case SO_REUSEADDR:
1906 1.171 plunky case SO_REUSEPORT:
1907 1.171 plunky case SO_BROADCAST:
1908 1.171 plunky case SO_OOBINLINE:
1909 1.171 plunky case SO_TIMESTAMP:
1910 1.207 christos case SO_NOSIGPIPE:
1911 1.184 christos #ifdef SO_OTIMESTAMP
1912 1.184 christos case SO_OTIMESTAMP:
1913 1.184 christos #endif
1914 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1915 1.171 plunky break;
1916 1.171 plunky
1917 1.171 plunky case SO_TYPE:
1918 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1919 1.171 plunky break;
1920 1.171 plunky
1921 1.171 plunky case SO_ERROR:
1922 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1923 1.171 plunky so->so_error = 0;
1924 1.171 plunky break;
1925 1.171 plunky
1926 1.171 plunky case SO_SNDBUF:
1927 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1928 1.171 plunky break;
1929 1.171 plunky
1930 1.171 plunky case SO_RCVBUF:
1931 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1932 1.171 plunky break;
1933 1.171 plunky
1934 1.171 plunky case SO_SNDLOWAT:
1935 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1936 1.171 plunky break;
1937 1.171 plunky
1938 1.171 plunky case SO_RCVLOWAT:
1939 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1940 1.171 plunky break;
1941 1.171 plunky
1942 1.179 christos #ifdef COMPAT_50
1943 1.179 christos case SO_OSNDTIMEO:
1944 1.179 christos case SO_ORCVTIMEO: {
1945 1.179 christos struct timeval50 otv;
1946 1.179 christos
1947 1.179 christos optval = (opt == SO_OSNDTIMEO ?
1948 1.179 christos so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1949 1.179 christos
1950 1.179 christos otv.tv_sec = optval / hz;
1951 1.179 christos otv.tv_usec = (optval % hz) * tick;
1952 1.179 christos
1953 1.179 christos error = sockopt_set(sopt, &otv, sizeof(otv));
1954 1.179 christos break;
1955 1.179 christos }
1956 1.179 christos #endif /* COMPAT_50 */
1957 1.179 christos
1958 1.171 plunky case SO_SNDTIMEO:
1959 1.171 plunky case SO_RCVTIMEO:
1960 1.179 christos optval = (opt == SO_SNDTIMEO ?
1961 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1962 1.171 plunky
1963 1.171 plunky tv.tv_sec = optval / hz;
1964 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1965 1.171 plunky
1966 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1967 1.171 plunky break;
1968 1.171 plunky
1969 1.171 plunky case SO_OVERFLOWED:
1970 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1971 1.171 plunky break;
1972 1.171 plunky
1973 1.171 plunky default:
1974 1.171 plunky error = ENOPROTOOPT;
1975 1.171 plunky break;
1976 1.171 plunky }
1977 1.171 plunky
1978 1.171 plunky return (error);
1979 1.171 plunky }
1980 1.171 plunky
1981 1.14 mycroft int
1982 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
1983 1.1 cgd {
1984 1.160 ad int error;
1985 1.1 cgd
1986 1.160 ad solock(so);
1987 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
1988 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1989 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1990 1.171 plunky (PRCO_GETOPT, so, sopt));
1991 1.1 cgd } else
1992 1.160 ad error = (ENOPROTOOPT);
1993 1.1 cgd } else {
1994 1.171 plunky error = sogetopt1(so, sopt);
1995 1.171 plunky }
1996 1.171 plunky sounlock(so);
1997 1.171 plunky return (error);
1998 1.171 plunky }
1999 1.171 plunky
2000 1.171 plunky /*
2001 1.171 plunky * alloc sockopt data buffer buffer
2002 1.171 plunky * - will be released at destroy
2003 1.171 plunky */
2004 1.176 plunky static int
2005 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2006 1.171 plunky {
2007 1.171 plunky
2008 1.171 plunky KASSERT(sopt->sopt_size == 0);
2009 1.171 plunky
2010 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2011 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
2012 1.176 plunky if (sopt->sopt_data == NULL)
2013 1.176 plunky return ENOMEM;
2014 1.176 plunky } else
2015 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2016 1.171 plunky
2017 1.171 plunky sopt->sopt_size = len;
2018 1.176 plunky return 0;
2019 1.171 plunky }
2020 1.171 plunky
2021 1.171 plunky /*
2022 1.171 plunky * initialise sockopt storage
2023 1.176 plunky * - MAY sleep during allocation
2024 1.171 plunky */
2025 1.171 plunky void
2026 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2027 1.171 plunky {
2028 1.1 cgd
2029 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2030 1.1 cgd
2031 1.171 plunky sopt->sopt_level = level;
2032 1.171 plunky sopt->sopt_name = name;
2033 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2034 1.171 plunky }
2035 1.171 plunky
2036 1.171 plunky /*
2037 1.171 plunky * destroy sockopt storage
2038 1.171 plunky * - will release any held memory references
2039 1.171 plunky */
2040 1.171 plunky void
2041 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2042 1.171 plunky {
2043 1.171 plunky
2044 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2045 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2046 1.171 plunky
2047 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2048 1.171 plunky }
2049 1.171 plunky
2050 1.171 plunky /*
2051 1.171 plunky * set sockopt value
2052 1.171 plunky * - value is copied into sockopt
2053 1.176 plunky * - memory is allocated when necessary, will not sleep
2054 1.171 plunky */
2055 1.171 plunky int
2056 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2057 1.171 plunky {
2058 1.176 plunky int error;
2059 1.171 plunky
2060 1.176 plunky if (sopt->sopt_size == 0) {
2061 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2062 1.176 plunky if (error)
2063 1.176 plunky return error;
2064 1.176 plunky }
2065 1.171 plunky
2066 1.171 plunky KASSERT(sopt->sopt_size == len);
2067 1.171 plunky memcpy(sopt->sopt_data, buf, len);
2068 1.171 plunky return 0;
2069 1.171 plunky }
2070 1.171 plunky
2071 1.171 plunky /*
2072 1.171 plunky * common case of set sockopt integer value
2073 1.171 plunky */
2074 1.171 plunky int
2075 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2076 1.171 plunky {
2077 1.171 plunky
2078 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2079 1.171 plunky }
2080 1.171 plunky
2081 1.171 plunky /*
2082 1.171 plunky * get sockopt value
2083 1.171 plunky * - correct size must be given
2084 1.171 plunky */
2085 1.171 plunky int
2086 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2087 1.171 plunky {
2088 1.170 tls
2089 1.171 plunky if (sopt->sopt_size != len)
2090 1.171 plunky return EINVAL;
2091 1.1 cgd
2092 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2093 1.171 plunky return 0;
2094 1.171 plunky }
2095 1.1 cgd
2096 1.171 plunky /*
2097 1.171 plunky * common case of get sockopt integer value
2098 1.171 plunky */
2099 1.171 plunky int
2100 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2101 1.171 plunky {
2102 1.1 cgd
2103 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2104 1.171 plunky }
2105 1.1 cgd
2106 1.171 plunky /*
2107 1.171 plunky * set sockopt value from mbuf
2108 1.171 plunky * - ONLY for legacy code
2109 1.171 plunky * - mbuf is released by sockopt
2110 1.176 plunky * - will not sleep
2111 1.171 plunky */
2112 1.171 plunky int
2113 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2114 1.171 plunky {
2115 1.171 plunky size_t len;
2116 1.176 plunky int error;
2117 1.1 cgd
2118 1.171 plunky len = m_length(m);
2119 1.1 cgd
2120 1.176 plunky if (sopt->sopt_size == 0) {
2121 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2122 1.176 plunky if (error)
2123 1.176 plunky return error;
2124 1.176 plunky }
2125 1.1 cgd
2126 1.171 plunky KASSERT(sopt->sopt_size == len);
2127 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
2128 1.171 plunky m_freem(m);
2129 1.1 cgd
2130 1.171 plunky return 0;
2131 1.171 plunky }
2132 1.1 cgd
2133 1.171 plunky /*
2134 1.171 plunky * get sockopt value into mbuf
2135 1.171 plunky * - ONLY for legacy code
2136 1.171 plunky * - mbuf to be released by the caller
2137 1.176 plunky * - will not sleep
2138 1.171 plunky */
2139 1.171 plunky struct mbuf *
2140 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2141 1.171 plunky {
2142 1.171 plunky struct mbuf *m;
2143 1.107 darrenr
2144 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2145 1.176 plunky return NULL;
2146 1.176 plunky
2147 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2148 1.171 plunky if (m == NULL)
2149 1.171 plunky return NULL;
2150 1.171 plunky
2151 1.176 plunky if (sopt->sopt_size > MLEN) {
2152 1.176 plunky MCLGET(m, M_DONTWAIT);
2153 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2154 1.176 plunky m_free(m);
2155 1.176 plunky return NULL;
2156 1.176 plunky }
2157 1.1 cgd }
2158 1.176 plunky
2159 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2160 1.176 plunky m->m_len = sopt->sopt_size;
2161 1.160 ad
2162 1.171 plunky return m;
2163 1.1 cgd }
2164 1.1 cgd
2165 1.14 mycroft void
2166 1.54 lukem sohasoutofband(struct socket *so)
2167 1.1 cgd {
2168 1.153 rmind
2169 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2170 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2171 1.1 cgd }
2172 1.72 jdolecek
2173 1.72 jdolecek static void
2174 1.72 jdolecek filt_sordetach(struct knote *kn)
2175 1.72 jdolecek {
2176 1.72 jdolecek struct socket *so;
2177 1.72 jdolecek
2178 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2179 1.160 ad solock(so);
2180 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2181 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2182 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2183 1.160 ad sounlock(so);
2184 1.72 jdolecek }
2185 1.72 jdolecek
2186 1.72 jdolecek /*ARGSUSED*/
2187 1.72 jdolecek static int
2188 1.129 yamt filt_soread(struct knote *kn, long hint)
2189 1.72 jdolecek {
2190 1.72 jdolecek struct socket *so;
2191 1.160 ad int rv;
2192 1.72 jdolecek
2193 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2194 1.160 ad if (hint != NOTE_SUBMIT)
2195 1.160 ad solock(so);
2196 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2197 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2198 1.108 perry kn->kn_flags |= EV_EOF;
2199 1.72 jdolecek kn->kn_fflags = so->so_error;
2200 1.160 ad rv = 1;
2201 1.160 ad } else if (so->so_error) /* temporary udp error */
2202 1.160 ad rv = 1;
2203 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2204 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2205 1.160 ad else
2206 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2207 1.160 ad if (hint != NOTE_SUBMIT)
2208 1.160 ad sounlock(so);
2209 1.160 ad return rv;
2210 1.72 jdolecek }
2211 1.72 jdolecek
2212 1.72 jdolecek static void
2213 1.72 jdolecek filt_sowdetach(struct knote *kn)
2214 1.72 jdolecek {
2215 1.72 jdolecek struct socket *so;
2216 1.72 jdolecek
2217 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2218 1.160 ad solock(so);
2219 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2220 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2221 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2222 1.160 ad sounlock(so);
2223 1.72 jdolecek }
2224 1.72 jdolecek
2225 1.72 jdolecek /*ARGSUSED*/
2226 1.72 jdolecek static int
2227 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2228 1.72 jdolecek {
2229 1.72 jdolecek struct socket *so;
2230 1.160 ad int rv;
2231 1.72 jdolecek
2232 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2233 1.160 ad if (hint != NOTE_SUBMIT)
2234 1.160 ad solock(so);
2235 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2236 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2237 1.108 perry kn->kn_flags |= EV_EOF;
2238 1.72 jdolecek kn->kn_fflags = so->so_error;
2239 1.160 ad rv = 1;
2240 1.160 ad } else if (so->so_error) /* temporary udp error */
2241 1.160 ad rv = 1;
2242 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2243 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2244 1.160 ad rv = 0;
2245 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2246 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2247 1.160 ad else
2248 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2249 1.160 ad if (hint != NOTE_SUBMIT)
2250 1.160 ad sounlock(so);
2251 1.160 ad return rv;
2252 1.72 jdolecek }
2253 1.72 jdolecek
2254 1.72 jdolecek /*ARGSUSED*/
2255 1.72 jdolecek static int
2256 1.129 yamt filt_solisten(struct knote *kn, long hint)
2257 1.72 jdolecek {
2258 1.72 jdolecek struct socket *so;
2259 1.160 ad int rv;
2260 1.72 jdolecek
2261 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2262 1.72 jdolecek
2263 1.72 jdolecek /*
2264 1.72 jdolecek * Set kn_data to number of incoming connections, not
2265 1.72 jdolecek * counting partial (incomplete) connections.
2266 1.108 perry */
2267 1.160 ad if (hint != NOTE_SUBMIT)
2268 1.160 ad solock(so);
2269 1.72 jdolecek kn->kn_data = so->so_qlen;
2270 1.160 ad rv = (kn->kn_data > 0);
2271 1.160 ad if (hint != NOTE_SUBMIT)
2272 1.160 ad sounlock(so);
2273 1.160 ad return rv;
2274 1.72 jdolecek }
2275 1.72 jdolecek
2276 1.72 jdolecek static const struct filterops solisten_filtops =
2277 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
2278 1.72 jdolecek static const struct filterops soread_filtops =
2279 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
2280 1.72 jdolecek static const struct filterops sowrite_filtops =
2281 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
2282 1.72 jdolecek
2283 1.72 jdolecek int
2284 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2285 1.72 jdolecek {
2286 1.72 jdolecek struct socket *so;
2287 1.72 jdolecek struct sockbuf *sb;
2288 1.72 jdolecek
2289 1.155 ad so = ((file_t *)kn->kn_obj)->f_data;
2290 1.160 ad solock(so);
2291 1.72 jdolecek switch (kn->kn_filter) {
2292 1.72 jdolecek case EVFILT_READ:
2293 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2294 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2295 1.72 jdolecek else
2296 1.72 jdolecek kn->kn_fop = &soread_filtops;
2297 1.72 jdolecek sb = &so->so_rcv;
2298 1.72 jdolecek break;
2299 1.72 jdolecek case EVFILT_WRITE:
2300 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2301 1.72 jdolecek sb = &so->so_snd;
2302 1.72 jdolecek break;
2303 1.72 jdolecek default:
2304 1.160 ad sounlock(so);
2305 1.149 pooka return (EINVAL);
2306 1.72 jdolecek }
2307 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2308 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2309 1.160 ad sounlock(so);
2310 1.72 jdolecek return (0);
2311 1.72 jdolecek }
2312 1.72 jdolecek
2313 1.154 ad static int
2314 1.154 ad sodopoll(struct socket *so, int events)
2315 1.154 ad {
2316 1.154 ad int revents;
2317 1.154 ad
2318 1.154 ad revents = 0;
2319 1.154 ad
2320 1.154 ad if (events & (POLLIN | POLLRDNORM))
2321 1.154 ad if (soreadable(so))
2322 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2323 1.154 ad
2324 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2325 1.154 ad if (sowritable(so))
2326 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2327 1.154 ad
2328 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2329 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2330 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2331 1.154 ad
2332 1.154 ad return revents;
2333 1.154 ad }
2334 1.154 ad
2335 1.154 ad int
2336 1.154 ad sopoll(struct socket *so, int events)
2337 1.154 ad {
2338 1.154 ad int revents = 0;
2339 1.154 ad
2340 1.160 ad #ifndef DIAGNOSTIC
2341 1.160 ad /*
2342 1.160 ad * Do a quick, unlocked check in expectation that the socket
2343 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2344 1.160 ad * as the solocked() assertions will fail.
2345 1.160 ad */
2346 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2347 1.154 ad return revents;
2348 1.160 ad #endif
2349 1.154 ad
2350 1.160 ad solock(so);
2351 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2352 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2353 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2354 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2355 1.154 ad }
2356 1.154 ad
2357 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2358 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2359 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2360 1.154 ad }
2361 1.154 ad }
2362 1.160 ad sounlock(so);
2363 1.154 ad
2364 1.154 ad return revents;
2365 1.154 ad }
2366 1.154 ad
2367 1.154 ad
2368 1.94 yamt #include <sys/sysctl.h>
2369 1.94 yamt
2370 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2371 1.212 pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2372 1.94 yamt
2373 1.94 yamt /*
2374 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2375 1.94 yamt * value is not too small.
2376 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2377 1.94 yamt */
2378 1.94 yamt static int
2379 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2380 1.94 yamt {
2381 1.94 yamt int error, new_somaxkva;
2382 1.94 yamt struct sysctlnode node;
2383 1.94 yamt
2384 1.94 yamt new_somaxkva = somaxkva;
2385 1.94 yamt node = *rnode;
2386 1.94 yamt node.sysctl_data = &new_somaxkva;
2387 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2388 1.94 yamt if (error || newp == NULL)
2389 1.94 yamt return (error);
2390 1.94 yamt
2391 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2392 1.94 yamt return (EINVAL);
2393 1.94 yamt
2394 1.136 ad mutex_enter(&so_pendfree_lock);
2395 1.94 yamt somaxkva = new_somaxkva;
2396 1.136 ad cv_broadcast(&socurkva_cv);
2397 1.136 ad mutex_exit(&so_pendfree_lock);
2398 1.94 yamt
2399 1.94 yamt return (error);
2400 1.94 yamt }
2401 1.94 yamt
2402 1.212 pooka /*
2403 1.212 pooka * sysctl helper routine for kern.sbmax. Basically just ensures that
2404 1.212 pooka * any new value is not too small.
2405 1.212 pooka */
2406 1.212 pooka static int
2407 1.212 pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
2408 1.212 pooka {
2409 1.212 pooka int error, new_sbmax;
2410 1.212 pooka struct sysctlnode node;
2411 1.212 pooka
2412 1.212 pooka new_sbmax = sb_max;
2413 1.212 pooka node = *rnode;
2414 1.212 pooka node.sysctl_data = &new_sbmax;
2415 1.212 pooka error = sysctl_lookup(SYSCTLFN_CALL(&node));
2416 1.212 pooka if (error || newp == NULL)
2417 1.212 pooka return (error);
2418 1.212 pooka
2419 1.212 pooka KERNEL_LOCK(1, NULL);
2420 1.212 pooka error = sb_max_set(new_sbmax);
2421 1.212 pooka KERNEL_UNLOCK_ONE(NULL);
2422 1.212 pooka
2423 1.212 pooka return (error);
2424 1.212 pooka }
2425 1.212 pooka
2426 1.178 pooka static void
2427 1.212 pooka sysctl_kern_socket_setup(void)
2428 1.94 yamt {
2429 1.94 yamt
2430 1.178 pooka KASSERT(socket_sysctllog == NULL);
2431 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2432 1.97 atatat CTLFLAG_PERMANENT,
2433 1.97 atatat CTLTYPE_NODE, "kern", NULL,
2434 1.97 atatat NULL, 0, NULL, 0,
2435 1.97 atatat CTL_KERN, CTL_EOL);
2436 1.97 atatat
2437 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2438 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2439 1.103 atatat CTLTYPE_INT, "somaxkva",
2440 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2441 1.103 atatat "used for socket buffers"),
2442 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2443 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2444 1.212 pooka
2445 1.212 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2446 1.212 pooka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2447 1.212 pooka CTLTYPE_INT, "sbmax",
2448 1.212 pooka SYSCTL_DESCR("Maximum socket buffer size"),
2449 1.212 pooka sysctl_kern_sbmax, 0, NULL, 0,
2450 1.212 pooka CTL_KERN, KERN_SBMAX, CTL_EOL);
2451 1.94 yamt }
2452