uipc_socket.c revision 1.235.2.3 1 1.235.2.3 skrll /* $NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.222 rmind /*
66 1.222 rmind * Socket operation routines.
67 1.222 rmind *
68 1.222 rmind * These routines are called by the routines in sys_socket.c or from a
69 1.222 rmind * system process, and implement the semantics of socket operations by
70 1.222 rmind * switching out to the protocol specific routines.
71 1.222 rmind */
72 1.222 rmind
73 1.59 lukem #include <sys/cdefs.h>
74 1.235.2.3 skrll __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $");
75 1.64 thorpej
76 1.235.2.3 skrll #ifdef _KERNEL_OPT
77 1.179 christos #include "opt_compat_netbsd.h"
78 1.64 thorpej #include "opt_sock_counters.h"
79 1.64 thorpej #include "opt_sosend_loan.h"
80 1.81 martin #include "opt_mbuftrace.h"
81 1.84 ragge #include "opt_somaxkva.h"
82 1.167 ad #include "opt_multiprocessor.h" /* XXX */
83 1.235.2.3 skrll #endif
84 1.1 cgd
85 1.9 mycroft #include <sys/param.h>
86 1.9 mycroft #include <sys/systm.h>
87 1.9 mycroft #include <sys/proc.h>
88 1.9 mycroft #include <sys/file.h>
89 1.142 dyoung #include <sys/filedesc.h>
90 1.173 plunky #include <sys/kmem.h>
91 1.9 mycroft #include <sys/mbuf.h>
92 1.9 mycroft #include <sys/domain.h>
93 1.9 mycroft #include <sys/kernel.h>
94 1.9 mycroft #include <sys/protosw.h>
95 1.9 mycroft #include <sys/socket.h>
96 1.9 mycroft #include <sys/socketvar.h>
97 1.21 christos #include <sys/signalvar.h>
98 1.9 mycroft #include <sys/resourcevar.h>
99 1.174 pooka #include <sys/uidinfo.h>
100 1.72 jdolecek #include <sys/event.h>
101 1.89 christos #include <sys/poll.h>
102 1.118 elad #include <sys/kauth.h>
103 1.136 ad #include <sys/mutex.h>
104 1.136 ad #include <sys/condvar.h>
105 1.205 bouyer #include <sys/kthread.h>
106 1.37 thorpej
107 1.179 christos #ifdef COMPAT_50
108 1.179 christos #include <compat/sys/time.h>
109 1.184 christos #include <compat/sys/socket.h>
110 1.179 christos #endif
111 1.179 christos
112 1.202 uebayasi #include <uvm/uvm_extern.h>
113 1.202 uebayasi #include <uvm/uvm_loan.h>
114 1.202 uebayasi #include <uvm/uvm_page.h>
115 1.64 thorpej
116 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
117 1.37 thorpej
118 1.142 dyoung extern const struct fileops socketops;
119 1.142 dyoung
120 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
121 1.54 lukem int somaxconn = SOMAXCONN;
122 1.160 ad kmutex_t *softnet_lock;
123 1.49 jonathan
124 1.64 thorpej #ifdef SOSEND_COUNTERS
125 1.64 thorpej #include <sys/device.h>
126 1.64 thorpej
127 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 1.64 thorpej NULL, "sosend", "loan big");
129 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 1.64 thorpej NULL, "sosend", "copy big");
131 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 1.64 thorpej NULL, "sosend", "copy small");
133 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 1.64 thorpej NULL, "sosend", "kva limit");
135 1.64 thorpej
136 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
137 1.64 thorpej
138 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
139 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
140 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
141 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
142 1.64 thorpej #else
143 1.64 thorpej
144 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
145 1.64 thorpej
146 1.64 thorpej #endif /* SOSEND_COUNTERS */
147 1.64 thorpej
148 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
149 1.121 yamt int sock_loan_thresh = -1;
150 1.71 thorpej #else
151 1.121 yamt int sock_loan_thresh = 4096;
152 1.65 thorpej #endif
153 1.64 thorpej
154 1.136 ad static kmutex_t so_pendfree_lock;
155 1.205 bouyer static struct mbuf *so_pendfree = NULL;
156 1.64 thorpej
157 1.84 ragge #ifndef SOMAXKVA
158 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
159 1.84 ragge #endif
160 1.84 ragge int somaxkva = SOMAXKVA;
161 1.113 thorpej static int socurkva;
162 1.136 ad static kcondvar_t socurkva_cv;
163 1.64 thorpej
164 1.191 elad static kauth_listener_t socket_listener;
165 1.191 elad
166 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
167 1.64 thorpej
168 1.205 bouyer static void sopendfree_thread(void *);
169 1.205 bouyer static kcondvar_t pendfree_thread_cv;
170 1.205 bouyer static lwp_t *sopendfree_lwp;
171 1.93 yamt
172 1.212 pooka static void sysctl_kern_socket_setup(void);
173 1.178 pooka static struct sysctllog *socket_sysctllog;
174 1.178 pooka
175 1.113 thorpej static vsize_t
176 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
177 1.80 yamt {
178 1.98 christos int error;
179 1.80 yamt
180 1.136 ad mutex_enter(&so_pendfree_lock);
181 1.80 yamt while (socurkva + len > somaxkva) {
182 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
183 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
184 1.98 christos if (error) {
185 1.98 christos len = 0;
186 1.98 christos break;
187 1.98 christos }
188 1.80 yamt }
189 1.93 yamt socurkva += len;
190 1.136 ad mutex_exit(&so_pendfree_lock);
191 1.98 christos return len;
192 1.95 yamt }
193 1.95 yamt
194 1.113 thorpej static void
195 1.95 yamt sokvaunreserve(vsize_t len)
196 1.95 yamt {
197 1.95 yamt
198 1.136 ad mutex_enter(&so_pendfree_lock);
199 1.95 yamt socurkva -= len;
200 1.136 ad cv_broadcast(&socurkva_cv);
201 1.136 ad mutex_exit(&so_pendfree_lock);
202 1.95 yamt }
203 1.95 yamt
204 1.95 yamt /*
205 1.95 yamt * sokvaalloc: allocate kva for loan.
206 1.95 yamt */
207 1.95 yamt
208 1.95 yamt vaddr_t
209 1.209 matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
210 1.95 yamt {
211 1.95 yamt vaddr_t lva;
212 1.95 yamt
213 1.95 yamt /*
214 1.95 yamt * reserve kva.
215 1.95 yamt */
216 1.95 yamt
217 1.98 christos if (sokvareserve(so, len) == 0)
218 1.98 christos return 0;
219 1.93 yamt
220 1.93 yamt /*
221 1.93 yamt * allocate kva.
222 1.93 yamt */
223 1.80 yamt
224 1.209 matt lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
225 1.209 matt UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
226 1.95 yamt if (lva == 0) {
227 1.95 yamt sokvaunreserve(len);
228 1.80 yamt return (0);
229 1.95 yamt }
230 1.80 yamt
231 1.80 yamt return lva;
232 1.80 yamt }
233 1.80 yamt
234 1.93 yamt /*
235 1.93 yamt * sokvafree: free kva for loan.
236 1.93 yamt */
237 1.93 yamt
238 1.80 yamt void
239 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
240 1.80 yamt {
241 1.93 yamt
242 1.93 yamt /*
243 1.93 yamt * free kva.
244 1.93 yamt */
245 1.80 yamt
246 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
247 1.93 yamt
248 1.93 yamt /*
249 1.93 yamt * unreserve kva.
250 1.93 yamt */
251 1.93 yamt
252 1.95 yamt sokvaunreserve(len);
253 1.80 yamt }
254 1.80 yamt
255 1.64 thorpej static void
256 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
257 1.64 thorpej {
258 1.156 yamt vaddr_t sva, eva;
259 1.64 thorpej vsize_t len;
260 1.156 yamt int npgs;
261 1.156 yamt
262 1.156 yamt KASSERT(pgs != NULL);
263 1.64 thorpej
264 1.64 thorpej eva = round_page((vaddr_t) buf + size);
265 1.64 thorpej sva = trunc_page((vaddr_t) buf);
266 1.64 thorpej len = eva - sva;
267 1.64 thorpej npgs = len >> PAGE_SHIFT;
268 1.64 thorpej
269 1.64 thorpej pmap_kremove(sva, len);
270 1.64 thorpej pmap_update(pmap_kernel());
271 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
272 1.80 yamt sokvafree(sva, len);
273 1.64 thorpej }
274 1.64 thorpej
275 1.93 yamt /*
276 1.205 bouyer * sopendfree_thread: free mbufs on "pendfree" list.
277 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
278 1.93 yamt */
279 1.93 yamt
280 1.205 bouyer static void
281 1.205 bouyer sopendfree_thread(void *v)
282 1.93 yamt {
283 1.137 ad struct mbuf *m, *next;
284 1.205 bouyer size_t rv;
285 1.93 yamt
286 1.205 bouyer mutex_enter(&so_pendfree_lock);
287 1.64 thorpej
288 1.205 bouyer for (;;) {
289 1.205 bouyer rv = 0;
290 1.205 bouyer while (so_pendfree != NULL) {
291 1.205 bouyer m = so_pendfree;
292 1.205 bouyer so_pendfree = NULL;
293 1.205 bouyer mutex_exit(&so_pendfree_lock);
294 1.205 bouyer
295 1.205 bouyer for (; m != NULL; m = next) {
296 1.205 bouyer next = m->m_next;
297 1.205 bouyer KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
298 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
299 1.205 bouyer
300 1.205 bouyer rv += m->m_ext.ext_size;
301 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
302 1.205 bouyer m->m_ext.ext_size);
303 1.205 bouyer pool_cache_put(mb_cache, m);
304 1.205 bouyer }
305 1.93 yamt
306 1.205 bouyer mutex_enter(&so_pendfree_lock);
307 1.93 yamt }
308 1.205 bouyer if (rv)
309 1.205 bouyer cv_broadcast(&socurkva_cv);
310 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
311 1.64 thorpej }
312 1.205 bouyer panic("sopendfree_thread");
313 1.205 bouyer /* NOTREACHED */
314 1.64 thorpej }
315 1.64 thorpej
316 1.80 yamt void
317 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
318 1.64 thorpej {
319 1.64 thorpej
320 1.156 yamt KASSERT(m != NULL);
321 1.64 thorpej
322 1.93 yamt /*
323 1.93 yamt * postpone freeing mbuf.
324 1.93 yamt *
325 1.93 yamt * we can't do it in interrupt context
326 1.93 yamt * because we need to put kva back to kernel_map.
327 1.93 yamt */
328 1.93 yamt
329 1.136 ad mutex_enter(&so_pendfree_lock);
330 1.92 yamt m->m_next = so_pendfree;
331 1.92 yamt so_pendfree = m;
332 1.205 bouyer cv_signal(&pendfree_thread_cv);
333 1.136 ad mutex_exit(&so_pendfree_lock);
334 1.64 thorpej }
335 1.64 thorpej
336 1.64 thorpej static long
337 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
338 1.64 thorpej {
339 1.64 thorpej struct iovec *iov = uio->uio_iov;
340 1.64 thorpej vaddr_t sva, eva;
341 1.64 thorpej vsize_t len;
342 1.156 yamt vaddr_t lva;
343 1.156 yamt int npgs, error;
344 1.156 yamt vaddr_t va;
345 1.156 yamt int i;
346 1.64 thorpej
347 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
348 1.64 thorpej return (0);
349 1.64 thorpej
350 1.64 thorpej if (iov->iov_len < (size_t) space)
351 1.64 thorpej space = iov->iov_len;
352 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
353 1.64 thorpej space = SOCK_LOAN_CHUNK;
354 1.64 thorpej
355 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
356 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
357 1.64 thorpej len = eva - sva;
358 1.64 thorpej npgs = len >> PAGE_SHIFT;
359 1.64 thorpej
360 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
361 1.79 thorpej
362 1.209 matt lva = sokvaalloc(sva, len, so);
363 1.64 thorpej if (lva == 0)
364 1.80 yamt return 0;
365 1.64 thorpej
366 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
367 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
368 1.64 thorpej if (error) {
369 1.80 yamt sokvafree(lva, len);
370 1.64 thorpej return (0);
371 1.64 thorpej }
372 1.64 thorpej
373 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
374 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
375 1.194 cegger VM_PROT_READ, 0);
376 1.64 thorpej pmap_update(pmap_kernel());
377 1.64 thorpej
378 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
379 1.64 thorpej
380 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
381 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
382 1.64 thorpej
383 1.64 thorpej uio->uio_resid -= space;
384 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
385 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
386 1.64 thorpej uio->uio_iov->iov_len -= space;
387 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
388 1.64 thorpej uio->uio_iov++;
389 1.64 thorpej uio->uio_iovcnt--;
390 1.64 thorpej }
391 1.64 thorpej
392 1.64 thorpej return (space);
393 1.64 thorpej }
394 1.64 thorpej
395 1.142 dyoung struct mbuf *
396 1.147 dyoung getsombuf(struct socket *so, int type)
397 1.142 dyoung {
398 1.142 dyoung struct mbuf *m;
399 1.142 dyoung
400 1.147 dyoung m = m_get(M_WAIT, type);
401 1.142 dyoung MCLAIM(m, so->so_mowner);
402 1.142 dyoung return m;
403 1.142 dyoung }
404 1.142 dyoung
405 1.191 elad static int
406 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
407 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
408 1.191 elad {
409 1.191 elad int result;
410 1.191 elad enum kauth_network_req req;
411 1.191 elad
412 1.191 elad result = KAUTH_RESULT_DEFER;
413 1.191 elad req = (enum kauth_network_req)arg0;
414 1.191 elad
415 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
416 1.193 elad (action != KAUTH_NETWORK_BIND))
417 1.191 elad return result;
418 1.191 elad
419 1.191 elad switch (req) {
420 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
421 1.193 elad result = KAUTH_RESULT_ALLOW;
422 1.193 elad break;
423 1.193 elad
424 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
425 1.191 elad /* Normal users can only drop their own connections. */
426 1.191 elad struct socket *so = (struct socket *)arg1;
427 1.191 elad
428 1.220 christos if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
429 1.191 elad result = KAUTH_RESULT_ALLOW;
430 1.191 elad
431 1.191 elad break;
432 1.191 elad }
433 1.191 elad
434 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
435 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
436 1.203 matt if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
437 1.203 matt || (u_long)arg1 == PF_BLUETOOTH) {
438 1.191 elad result = KAUTH_RESULT_ALLOW;
439 1.203 matt } else {
440 1.191 elad /* Privileged, let secmodel handle this. */
441 1.191 elad if ((u_long)arg2 == SOCK_RAW)
442 1.191 elad break;
443 1.191 elad }
444 1.191 elad
445 1.191 elad result = KAUTH_RESULT_ALLOW;
446 1.191 elad
447 1.191 elad break;
448 1.191 elad
449 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
450 1.192 elad result = KAUTH_RESULT_ALLOW;
451 1.192 elad
452 1.192 elad break;
453 1.192 elad
454 1.191 elad default:
455 1.191 elad break;
456 1.191 elad }
457 1.191 elad
458 1.191 elad return result;
459 1.191 elad }
460 1.191 elad
461 1.119 yamt void
462 1.119 yamt soinit(void)
463 1.119 yamt {
464 1.119 yamt
465 1.212 pooka sysctl_kern_socket_setup();
466 1.178 pooka
467 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
468 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
469 1.136 ad cv_init(&socurkva_cv, "sokva");
470 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
471 1.166 ad soinit2();
472 1.136 ad
473 1.119 yamt /* Set the initial adjusted socket buffer size. */
474 1.119 yamt if (sb_max_set(sb_max))
475 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
476 1.119 yamt
477 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
478 1.191 elad socket_listener_cb, NULL);
479 1.119 yamt }
480 1.119 yamt
481 1.205 bouyer void
482 1.205 bouyer soinit1(void)
483 1.205 bouyer {
484 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
485 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
486 1.205 bouyer if (error)
487 1.205 bouyer panic("soinit1 %d", error);
488 1.205 bouyer }
489 1.205 bouyer
490 1.1 cgd /*
491 1.222 rmind * socreate: create a new socket of the specified type and the protocol.
492 1.222 rmind *
493 1.222 rmind * => Caller may specify another socket for lock sharing (must not be held).
494 1.222 rmind * => Returns the new socket without lock held.
495 1.224 rmind */
496 1.3 andrew int
497 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
498 1.160 ad struct socket *lockso)
499 1.1 cgd {
500 1.99 matt const struct protosw *prp;
501 1.54 lukem struct socket *so;
502 1.115 yamt uid_t uid;
503 1.160 ad int error;
504 1.160 ad kmutex_t *lock;
505 1.1 cgd
506 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
507 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
508 1.132 elad KAUTH_ARG(proto));
509 1.140 dyoung if (error != 0)
510 1.140 dyoung return error;
511 1.127 elad
512 1.1 cgd if (proto)
513 1.1 cgd prp = pffindproto(dom, proto, type);
514 1.1 cgd else
515 1.1 cgd prp = pffindtype(dom, type);
516 1.140 dyoung if (prp == NULL) {
517 1.120 ginsbach /* no support for domain */
518 1.120 ginsbach if (pffinddomain(dom) == 0)
519 1.140 dyoung return EAFNOSUPPORT;
520 1.120 ginsbach /* no support for socket type */
521 1.120 ginsbach if (proto == 0 && type != 0)
522 1.140 dyoung return EPROTOTYPE;
523 1.140 dyoung return EPROTONOSUPPORT;
524 1.120 ginsbach }
525 1.223 rmind if (prp->pr_usrreqs == NULL)
526 1.140 dyoung return EPROTONOSUPPORT;
527 1.1 cgd if (prp->pr_type != type)
528 1.140 dyoung return EPROTOTYPE;
529 1.160 ad
530 1.160 ad so = soget(true);
531 1.1 cgd so->so_type = type;
532 1.1 cgd so->so_proto = prp;
533 1.33 matt so->so_send = sosend;
534 1.33 matt so->so_receive = soreceive;
535 1.78 matt #ifdef MBUFTRACE
536 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
537 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
538 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
539 1.78 matt #endif
540 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
541 1.115 yamt so->so_uidinfo = uid_find(uid);
542 1.168 yamt so->so_cpid = l->l_proc->p_pid;
543 1.224 rmind
544 1.224 rmind /*
545 1.224 rmind * Lock assigned and taken during PCB attach, unless we share
546 1.224 rmind * the lock with another socket, e.g. socketpair(2) case.
547 1.224 rmind */
548 1.224 rmind if (lockso) {
549 1.160 ad lock = lockso->so_lock;
550 1.160 ad so->so_lock = lock;
551 1.160 ad mutex_obj_hold(lock);
552 1.160 ad mutex_enter(lock);
553 1.160 ad }
554 1.224 rmind
555 1.224 rmind /* Attach the PCB (returns with the socket lock held). */
556 1.224 rmind error = (*prp->pr_usrreqs->pr_attach)(so, proto);
557 1.160 ad KASSERT(solocked(so));
558 1.224 rmind
559 1.224 rmind if (error) {
560 1.222 rmind KASSERT(so->so_pcb == NULL);
561 1.1 cgd so->so_state |= SS_NOFDREF;
562 1.1 cgd sofree(so);
563 1.140 dyoung return error;
564 1.1 cgd }
565 1.198 elad so->so_cred = kauth_cred_dup(l->l_cred);
566 1.160 ad sounlock(so);
567 1.224 rmind
568 1.1 cgd *aso = so;
569 1.140 dyoung return 0;
570 1.1 cgd }
571 1.1 cgd
572 1.222 rmind /*
573 1.222 rmind * fsocreate: create a socket and a file descriptor associated with it.
574 1.222 rmind *
575 1.222 rmind * => On success, write file descriptor to fdout and return zero.
576 1.222 rmind * => On failure, return non-zero; *fdout will be undefined.
577 1.142 dyoung */
578 1.142 dyoung int
579 1.222 rmind fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
580 1.142 dyoung {
581 1.222 rmind lwp_t *l = curlwp;
582 1.222 rmind int error, fd, flags;
583 1.222 rmind struct socket *so;
584 1.222 rmind struct file *fp;
585 1.142 dyoung
586 1.222 rmind if ((error = fd_allocfile(&fp, &fd)) != 0) {
587 1.204 christos return error;
588 1.222 rmind }
589 1.222 rmind flags = type & SOCK_FLAGS_MASK;
590 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
591 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
592 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
593 1.142 dyoung fp->f_type = DTYPE_SOCKET;
594 1.142 dyoung fp->f_ops = &socketops;
595 1.222 rmind
596 1.222 rmind type &= ~SOCK_FLAGS_MASK;
597 1.222 rmind error = socreate(domain, &so, type, proto, l, NULL);
598 1.222 rmind if (error) {
599 1.155 ad fd_abort(curproc, fp, fd);
600 1.222 rmind return error;
601 1.222 rmind }
602 1.222 rmind if (flags & SOCK_NONBLOCK) {
603 1.222 rmind so->so_state |= SS_NBIO;
604 1.222 rmind }
605 1.235 matt fp->f_socket = so;
606 1.222 rmind fd_affix(curproc, fp, fd);
607 1.222 rmind
608 1.222 rmind if (sop != NULL) {
609 1.222 rmind *sop = so;
610 1.142 dyoung }
611 1.222 rmind *fdout = fd;
612 1.142 dyoung return error;
613 1.142 dyoung }
614 1.142 dyoung
615 1.3 andrew int
616 1.190 dyoung sofamily(const struct socket *so)
617 1.190 dyoung {
618 1.190 dyoung const struct protosw *pr;
619 1.190 dyoung const struct domain *dom;
620 1.190 dyoung
621 1.190 dyoung if ((pr = so->so_proto) == NULL)
622 1.190 dyoung return AF_UNSPEC;
623 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
624 1.190 dyoung return AF_UNSPEC;
625 1.190 dyoung return dom->dom_family;
626 1.190 dyoung }
627 1.190 dyoung
628 1.190 dyoung int
629 1.235.2.1 skrll sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
630 1.1 cgd {
631 1.160 ad int error;
632 1.1 cgd
633 1.160 ad solock(so);
634 1.235.2.1 skrll if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
635 1.235.2.1 skrll sounlock(so);
636 1.235.2.1 skrll return EAFNOSUPPORT;
637 1.235.2.1 skrll }
638 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
639 1.160 ad sounlock(so);
640 1.140 dyoung return error;
641 1.1 cgd }
642 1.1 cgd
643 1.3 andrew int
644 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
645 1.1 cgd {
646 1.160 ad int error;
647 1.1 cgd
648 1.160 ad solock(so);
649 1.235.2.2 skrll if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
650 1.163 ad SS_ISDISCONNECTING)) != 0) {
651 1.222 rmind sounlock(so);
652 1.222 rmind return EINVAL;
653 1.163 ad }
654 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
655 1.140 dyoung if (error != 0) {
656 1.160 ad sounlock(so);
657 1.140 dyoung return error;
658 1.1 cgd }
659 1.63 matt if (TAILQ_EMPTY(&so->so_q))
660 1.1 cgd so->so_options |= SO_ACCEPTCONN;
661 1.1 cgd if (backlog < 0)
662 1.1 cgd backlog = 0;
663 1.49 jonathan so->so_qlimit = min(backlog, somaxconn);
664 1.160 ad sounlock(so);
665 1.140 dyoung return 0;
666 1.1 cgd }
667 1.1 cgd
668 1.21 christos void
669 1.54 lukem sofree(struct socket *so)
670 1.1 cgd {
671 1.161 ad u_int refs;
672 1.1 cgd
673 1.160 ad KASSERT(solocked(so));
674 1.160 ad
675 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
676 1.160 ad sounlock(so);
677 1.1 cgd return;
678 1.160 ad }
679 1.43 mycroft if (so->so_head) {
680 1.43 mycroft /*
681 1.43 mycroft * We must not decommission a socket that's on the accept(2)
682 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
683 1.43 mycroft * indicated that the listening socket was ready.
684 1.43 mycroft */
685 1.160 ad if (!soqremque(so, 0)) {
686 1.160 ad sounlock(so);
687 1.43 mycroft return;
688 1.160 ad }
689 1.43 mycroft }
690 1.98 christos if (so->so_rcv.sb_hiwat)
691 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
692 1.98 christos RLIM_INFINITY);
693 1.98 christos if (so->so_snd.sb_hiwat)
694 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
695 1.98 christos RLIM_INFINITY);
696 1.98 christos sbrelease(&so->so_snd, so);
697 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
698 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
699 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
700 1.1 cgd sorflush(so);
701 1.161 ad refs = so->so_aborting; /* XXX */
702 1.177 ad /* Remove acccept filter if one is present. */
703 1.170 tls if (so->so_accf != NULL)
704 1.177 ad (void)accept_filt_clear(so);
705 1.160 ad sounlock(so);
706 1.161 ad if (refs == 0) /* XXX */
707 1.161 ad soput(so);
708 1.1 cgd }
709 1.1 cgd
710 1.1 cgd /*
711 1.222 rmind * soclose: close a socket on last file table reference removal.
712 1.222 rmind * Initiate disconnect if connected. Free socket when disconnect complete.
713 1.1 cgd */
714 1.3 andrew int
715 1.54 lukem soclose(struct socket *so)
716 1.1 cgd {
717 1.222 rmind struct socket *so2;
718 1.222 rmind int error = 0;
719 1.1 cgd
720 1.160 ad solock(so);
721 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
722 1.172 ad for (;;) {
723 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
724 1.160 ad KASSERT(solocked2(so, so2));
725 1.160 ad (void) soqremque(so2, 0);
726 1.160 ad /* soabort drops the lock. */
727 1.160 ad (void) soabort(so2);
728 1.160 ad solock(so);
729 1.172 ad continue;
730 1.160 ad }
731 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
732 1.160 ad KASSERT(solocked2(so, so2));
733 1.160 ad (void) soqremque(so2, 1);
734 1.160 ad /* soabort drops the lock. */
735 1.160 ad (void) soabort(so2);
736 1.160 ad solock(so);
737 1.172 ad continue;
738 1.160 ad }
739 1.172 ad break;
740 1.172 ad }
741 1.1 cgd }
742 1.222 rmind if (so->so_pcb == NULL)
743 1.1 cgd goto discard;
744 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
745 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
746 1.1 cgd error = sodisconnect(so);
747 1.1 cgd if (error)
748 1.1 cgd goto drop;
749 1.1 cgd }
750 1.1 cgd if (so->so_options & SO_LINGER) {
751 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
752 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
753 1.1 cgd goto drop;
754 1.21 christos while (so->so_state & SS_ISCONNECTED) {
755 1.185 yamt error = sowait(so, true, so->so_linger * hz);
756 1.21 christos if (error)
757 1.1 cgd break;
758 1.21 christos }
759 1.1 cgd }
760 1.1 cgd }
761 1.54 lukem drop:
762 1.1 cgd if (so->so_pcb) {
763 1.224 rmind KASSERT(solocked(so));
764 1.224 rmind (*so->so_proto->pr_usrreqs->pr_detach)(so);
765 1.1 cgd }
766 1.54 lukem discard:
767 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) == 0);
768 1.198 elad kauth_cred_free(so->so_cred);
769 1.1 cgd so->so_state |= SS_NOFDREF;
770 1.1 cgd sofree(so);
771 1.222 rmind return error;
772 1.1 cgd }
773 1.1 cgd
774 1.1 cgd /*
775 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
776 1.1 cgd */
777 1.3 andrew int
778 1.54 lukem soabort(struct socket *so)
779 1.1 cgd {
780 1.161 ad u_int refs;
781 1.139 yamt int error;
782 1.235.2.2 skrll
783 1.160 ad KASSERT(solocked(so));
784 1.160 ad KASSERT(so->so_head == NULL);
785 1.1 cgd
786 1.161 ad so->so_aborting++; /* XXX */
787 1.230 mrg error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
788 1.161 ad refs = --so->so_aborting; /* XXX */
789 1.164 drochner if (error || (refs == 0)) {
790 1.139 yamt sofree(so);
791 1.160 ad } else {
792 1.160 ad sounlock(so);
793 1.139 yamt }
794 1.139 yamt return error;
795 1.1 cgd }
796 1.1 cgd
797 1.3 andrew int
798 1.235.2.2 skrll soaccept(struct socket *so, struct sockaddr *nam)
799 1.1 cgd {
800 1.222 rmind int error;
801 1.160 ad
802 1.160 ad KASSERT(solocked(so));
803 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) != 0);
804 1.1 cgd
805 1.1 cgd so->so_state &= ~SS_NOFDREF;
806 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
807 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
808 1.225 rtr error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
809 1.41 mycroft else
810 1.53 itojun error = ECONNABORTED;
811 1.52 itojun
812 1.222 rmind return error;
813 1.1 cgd }
814 1.1 cgd
815 1.3 andrew int
816 1.235.2.2 skrll soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
817 1.1 cgd {
818 1.222 rmind int error;
819 1.160 ad
820 1.160 ad KASSERT(solocked(so));
821 1.1 cgd
822 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
823 1.222 rmind return EOPNOTSUPP;
824 1.1 cgd /*
825 1.1 cgd * If protocol is connection-based, can only connect once.
826 1.1 cgd * Otherwise, if connected, try to disconnect first.
827 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
828 1.1 cgd * a null address.
829 1.1 cgd */
830 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
831 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
832 1.235.2.2 skrll (error = sodisconnect(so)))) {
833 1.1 cgd error = EISCONN;
834 1.235.2.2 skrll } else {
835 1.235.2.2 skrll if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
836 1.235.2.2 skrll return EAFNOSUPPORT;
837 1.235.2.2 skrll }
838 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
839 1.235.2.2 skrll }
840 1.222 rmind
841 1.222 rmind return error;
842 1.1 cgd }
843 1.1 cgd
844 1.3 andrew int
845 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
846 1.1 cgd {
847 1.160 ad KASSERT(solocked2(so1, so2));
848 1.1 cgd
849 1.234 rtr return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
850 1.1 cgd }
851 1.1 cgd
852 1.3 andrew int
853 1.54 lukem sodisconnect(struct socket *so)
854 1.1 cgd {
855 1.160 ad int error;
856 1.160 ad
857 1.160 ad KASSERT(solocked(so));
858 1.1 cgd
859 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
860 1.1 cgd error = ENOTCONN;
861 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
862 1.1 cgd error = EALREADY;
863 1.160 ad } else {
864 1.229 rtr error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
865 1.1 cgd }
866 1.1 cgd return (error);
867 1.1 cgd }
868 1.1 cgd
869 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
870 1.1 cgd /*
871 1.1 cgd * Send on a socket.
872 1.1 cgd * If send must go all at once and message is larger than
873 1.1 cgd * send buffering, then hard error.
874 1.1 cgd * Lock against other senders.
875 1.1 cgd * If must go all at once and not enough room now, then
876 1.1 cgd * inform user that this would block and do nothing.
877 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
878 1.1 cgd * The data to be sent is described by "uio" if nonzero,
879 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
880 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
881 1.1 cgd * enough to send all at once.
882 1.1 cgd *
883 1.1 cgd * Returns nonzero on error, timeout or signal; callers
884 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
885 1.1 cgd * Data and control buffers are freed on return.
886 1.1 cgd */
887 1.3 andrew int
888 1.235.2.2 skrll sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
889 1.235.2.2 skrll struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
890 1.1 cgd {
891 1.54 lukem struct mbuf **mp, *m;
892 1.58 jdolecek long space, len, resid, clen, mlen;
893 1.58 jdolecek int error, s, dontroute, atomic;
894 1.196 dsl short wakeup_state = 0;
895 1.54 lukem
896 1.160 ad clen = 0;
897 1.64 thorpej
898 1.160 ad /*
899 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
900 1.160 ad * protocol processing soft interrupts from interrupting us and
901 1.160 ad * blocking (expensive).
902 1.160 ad */
903 1.160 ad s = splsoftnet();
904 1.160 ad solock(so);
905 1.54 lukem atomic = sosendallatonce(so) || top;
906 1.1 cgd if (uio)
907 1.1 cgd resid = uio->uio_resid;
908 1.1 cgd else
909 1.1 cgd resid = top->m_pkthdr.len;
910 1.7 cgd /*
911 1.7 cgd * In theory resid should be unsigned.
912 1.7 cgd * However, space must be signed, as it might be less than 0
913 1.7 cgd * if we over-committed, and we must use a signed comparison
914 1.7 cgd * of space and resid. On the other hand, a negative resid
915 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
916 1.7 cgd */
917 1.29 mycroft if (resid < 0) {
918 1.29 mycroft error = EINVAL;
919 1.29 mycroft goto out;
920 1.29 mycroft }
921 1.1 cgd dontroute =
922 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
923 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
924 1.165 christos l->l_ru.ru_msgsnd++;
925 1.1 cgd if (control)
926 1.1 cgd clen = control->m_len;
927 1.54 lukem restart:
928 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
929 1.1 cgd goto out;
930 1.1 cgd do {
931 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
932 1.160 ad error = EPIPE;
933 1.160 ad goto release;
934 1.160 ad }
935 1.48 thorpej if (so->so_error) {
936 1.48 thorpej error = so->so_error;
937 1.48 thorpej so->so_error = 0;
938 1.48 thorpej goto release;
939 1.48 thorpej }
940 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
941 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
942 1.217 rmind if (resid || clen == 0) {
943 1.160 ad error = ENOTCONN;
944 1.160 ad goto release;
945 1.160 ad }
946 1.235.2.2 skrll } else if (addr == NULL) {
947 1.160 ad error = EDESTADDRREQ;
948 1.160 ad goto release;
949 1.160 ad }
950 1.1 cgd }
951 1.1 cgd space = sbspace(&so->so_snd);
952 1.1 cgd if (flags & MSG_OOB)
953 1.1 cgd space += 1024;
954 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
955 1.160 ad clen > so->so_snd.sb_hiwat) {
956 1.160 ad error = EMSGSIZE;
957 1.160 ad goto release;
958 1.160 ad }
959 1.96 mycroft if (space < resid + clen &&
960 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
961 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
962 1.160 ad error = EWOULDBLOCK;
963 1.160 ad goto release;
964 1.160 ad }
965 1.1 cgd sbunlock(&so->so_snd);
966 1.196 dsl if (wakeup_state & SS_RESTARTSYS) {
967 1.196 dsl error = ERESTART;
968 1.196 dsl goto out;
969 1.196 dsl }
970 1.1 cgd error = sbwait(&so->so_snd);
971 1.1 cgd if (error)
972 1.1 cgd goto out;
973 1.196 dsl wakeup_state = so->so_state;
974 1.1 cgd goto restart;
975 1.1 cgd }
976 1.196 dsl wakeup_state = 0;
977 1.1 cgd mp = ⊤
978 1.1 cgd space -= clen;
979 1.1 cgd do {
980 1.45 tv if (uio == NULL) {
981 1.45 tv /*
982 1.45 tv * Data is prepackaged in "top".
983 1.45 tv */
984 1.45 tv resid = 0;
985 1.45 tv if (flags & MSG_EOR)
986 1.45 tv top->m_flags |= M_EOR;
987 1.45 tv } else do {
988 1.160 ad sounlock(so);
989 1.160 ad splx(s);
990 1.144 dyoung if (top == NULL) {
991 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
992 1.45 tv mlen = MHLEN;
993 1.45 tv m->m_pkthdr.len = 0;
994 1.140 dyoung m->m_pkthdr.rcvif = NULL;
995 1.45 tv } else {
996 1.78 matt m = m_get(M_WAIT, MT_DATA);
997 1.45 tv mlen = MLEN;
998 1.45 tv }
999 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
1000 1.121 yamt if (sock_loan_thresh >= 0 &&
1001 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
1002 1.121 yamt space >= sock_loan_thresh &&
1003 1.64 thorpej (len = sosend_loan(so, uio, m,
1004 1.64 thorpej space)) != 0) {
1005 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
1006 1.64 thorpej space -= len;
1007 1.64 thorpej goto have_data;
1008 1.64 thorpej }
1009 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
1010 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
1011 1.201 oki m_clget(m, M_DONTWAIT);
1012 1.45 tv if ((m->m_flags & M_EXT) == 0)
1013 1.45 tv goto nopages;
1014 1.45 tv mlen = MCLBYTES;
1015 1.45 tv if (atomic && top == 0) {
1016 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1017 1.54 lukem resid);
1018 1.45 tv m->m_data += max_hdr;
1019 1.45 tv } else
1020 1.58 jdolecek len = lmin(MCLBYTES, resid);
1021 1.45 tv space -= len;
1022 1.45 tv } else {
1023 1.64 thorpej nopages:
1024 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1025 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1026 1.45 tv space -= len;
1027 1.45 tv /*
1028 1.45 tv * For datagram protocols, leave room
1029 1.45 tv * for protocol headers in first mbuf.
1030 1.45 tv */
1031 1.45 tv if (atomic && top == 0 && len < mlen)
1032 1.45 tv MH_ALIGN(m, len);
1033 1.45 tv }
1034 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1035 1.64 thorpej have_data:
1036 1.45 tv resid = uio->uio_resid;
1037 1.45 tv m->m_len = len;
1038 1.45 tv *mp = m;
1039 1.45 tv top->m_pkthdr.len += len;
1040 1.160 ad s = splsoftnet();
1041 1.160 ad solock(so);
1042 1.144 dyoung if (error != 0)
1043 1.45 tv goto release;
1044 1.45 tv mp = &m->m_next;
1045 1.45 tv if (resid <= 0) {
1046 1.45 tv if (flags & MSG_EOR)
1047 1.45 tv top->m_flags |= M_EOR;
1048 1.45 tv break;
1049 1.45 tv }
1050 1.45 tv } while (space > 0 && atomic);
1051 1.108 perry
1052 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1053 1.160 ad error = EPIPE;
1054 1.160 ad goto release;
1055 1.160 ad }
1056 1.45 tv if (dontroute)
1057 1.45 tv so->so_options |= SO_DONTROUTE;
1058 1.45 tv if (resid > 0)
1059 1.45 tv so->so_state |= SS_MORETOCOME;
1060 1.235.2.2 skrll if (flags & MSG_OOB) {
1061 1.226 rtr error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1062 1.226 rtr top, control);
1063 1.235.2.2 skrll } else {
1064 1.232 rtr error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1065 1.232 rtr top, addr, control, l);
1066 1.235.2.2 skrll }
1067 1.45 tv if (dontroute)
1068 1.45 tv so->so_options &= ~SO_DONTROUTE;
1069 1.45 tv if (resid > 0)
1070 1.45 tv so->so_state &= ~SS_MORETOCOME;
1071 1.45 tv clen = 0;
1072 1.144 dyoung control = NULL;
1073 1.144 dyoung top = NULL;
1074 1.45 tv mp = ⊤
1075 1.144 dyoung if (error != 0)
1076 1.1 cgd goto release;
1077 1.1 cgd } while (resid && space > 0);
1078 1.1 cgd } while (resid);
1079 1.1 cgd
1080 1.54 lukem release:
1081 1.1 cgd sbunlock(&so->so_snd);
1082 1.54 lukem out:
1083 1.160 ad sounlock(so);
1084 1.160 ad splx(s);
1085 1.1 cgd if (top)
1086 1.1 cgd m_freem(top);
1087 1.1 cgd if (control)
1088 1.1 cgd m_freem(control);
1089 1.1 cgd return (error);
1090 1.1 cgd }
1091 1.1 cgd
1092 1.1 cgd /*
1093 1.159 ad * Following replacement or removal of the first mbuf on the first
1094 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1095 1.159 ad * into the socket buffer so that other consumers see the values
1096 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1097 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1098 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1099 1.159 ad */
1100 1.159 ad static void
1101 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1102 1.159 ad {
1103 1.159 ad
1104 1.160 ad KASSERT(solocked(sb->sb_so));
1105 1.160 ad
1106 1.159 ad /*
1107 1.159 ad * First, update for the new value of nextrecord. If necessary,
1108 1.159 ad * make it the first record.
1109 1.159 ad */
1110 1.159 ad if (sb->sb_mb != NULL)
1111 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1112 1.159 ad else
1113 1.159 ad sb->sb_mb = nextrecord;
1114 1.159 ad
1115 1.159 ad /*
1116 1.159 ad * Now update any dependent socket buffer fields to reflect
1117 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1118 1.159 ad * the addition of a second clause that takes care of the
1119 1.159 ad * case where sb_mb has been updated, but remains the last
1120 1.159 ad * record.
1121 1.159 ad */
1122 1.159 ad if (sb->sb_mb == NULL) {
1123 1.159 ad sb->sb_mbtail = NULL;
1124 1.159 ad sb->sb_lastrecord = NULL;
1125 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1126 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1127 1.159 ad }
1128 1.159 ad
1129 1.159 ad /*
1130 1.1 cgd * Implement receive operations on a socket.
1131 1.1 cgd * We depend on the way that records are added to the sockbuf
1132 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1133 1.1 cgd * must begin with an address if the protocol so specifies,
1134 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1135 1.1 cgd * and then zero or more mbufs of data.
1136 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1137 1.1 cgd * we splx() while doing the actual copy to user space.
1138 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1139 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1140 1.1 cgd *
1141 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1142 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1143 1.1 cgd * only for the count in uio_resid.
1144 1.1 cgd */
1145 1.3 andrew int
1146 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1147 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1148 1.1 cgd {
1149 1.116 yamt struct lwp *l = curlwp;
1150 1.160 ad struct mbuf *m, **mp, *mt;
1151 1.211 chs size_t len, offset, moff, orig_resid;
1152 1.211 chs int atomic, flags, error, s, type;
1153 1.99 matt const struct protosw *pr;
1154 1.54 lukem struct mbuf *nextrecord;
1155 1.67 he int mbuf_removed = 0;
1156 1.146 dyoung const struct domain *dom;
1157 1.196 dsl short wakeup_state = 0;
1158 1.64 thorpej
1159 1.54 lukem pr = so->so_proto;
1160 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1161 1.146 dyoung dom = pr->pr_domain;
1162 1.1 cgd mp = mp0;
1163 1.54 lukem type = 0;
1164 1.54 lukem orig_resid = uio->uio_resid;
1165 1.102 jonathan
1166 1.144 dyoung if (paddr != NULL)
1167 1.144 dyoung *paddr = NULL;
1168 1.144 dyoung if (controlp != NULL)
1169 1.144 dyoung *controlp = NULL;
1170 1.144 dyoung if (flagsp != NULL)
1171 1.1 cgd flags = *flagsp &~ MSG_EOR;
1172 1.1 cgd else
1173 1.1 cgd flags = 0;
1174 1.66 enami
1175 1.1 cgd if (flags & MSG_OOB) {
1176 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1177 1.160 ad solock(so);
1178 1.226 rtr error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1179 1.160 ad sounlock(so);
1180 1.1 cgd if (error)
1181 1.1 cgd goto bad;
1182 1.1 cgd do {
1183 1.134 christos error = uiomove(mtod(m, void *),
1184 1.211 chs MIN(uio->uio_resid, m->m_len), uio);
1185 1.1 cgd m = m_free(m);
1186 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1187 1.54 lukem bad:
1188 1.144 dyoung if (m != NULL)
1189 1.1 cgd m_freem(m);
1190 1.144 dyoung return error;
1191 1.1 cgd }
1192 1.144 dyoung if (mp != NULL)
1193 1.140 dyoung *mp = NULL;
1194 1.160 ad
1195 1.160 ad /*
1196 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1197 1.160 ad * protocol processing soft interrupts from interrupting us and
1198 1.160 ad * blocking (expensive).
1199 1.160 ad */
1200 1.160 ad s = splsoftnet();
1201 1.160 ad solock(so);
1202 1.54 lukem restart:
1203 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1204 1.160 ad sounlock(so);
1205 1.160 ad splx(s);
1206 1.144 dyoung return error;
1207 1.160 ad }
1208 1.1 cgd
1209 1.1 cgd m = so->so_rcv.sb_mb;
1210 1.1 cgd /*
1211 1.1 cgd * If we have less data than requested, block awaiting more
1212 1.1 cgd * (subject to any timeout) if:
1213 1.15 mycroft * 1. the current count is less than the low water mark,
1214 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1215 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1216 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1217 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1218 1.1 cgd * we have to do the receive in sections, and thus risk returning
1219 1.1 cgd * a short count if a timeout or signal occurs after we start.
1220 1.1 cgd */
1221 1.144 dyoung if (m == NULL ||
1222 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1223 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1224 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1225 1.144 dyoung ((flags & MSG_WAITALL) &&
1226 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1227 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1228 1.1 cgd #ifdef DIAGNOSTIC
1229 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1230 1.1 cgd panic("receive 1");
1231 1.1 cgd #endif
1232 1.1 cgd if (so->so_error) {
1233 1.144 dyoung if (m != NULL)
1234 1.15 mycroft goto dontblock;
1235 1.1 cgd error = so->so_error;
1236 1.1 cgd if ((flags & MSG_PEEK) == 0)
1237 1.1 cgd so->so_error = 0;
1238 1.1 cgd goto release;
1239 1.1 cgd }
1240 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1241 1.144 dyoung if (m != NULL)
1242 1.15 mycroft goto dontblock;
1243 1.1 cgd else
1244 1.1 cgd goto release;
1245 1.1 cgd }
1246 1.144 dyoung for (; m != NULL; m = m->m_next)
1247 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1248 1.1 cgd m = so->so_rcv.sb_mb;
1249 1.1 cgd goto dontblock;
1250 1.1 cgd }
1251 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1252 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1253 1.1 cgd error = ENOTCONN;
1254 1.1 cgd goto release;
1255 1.1 cgd }
1256 1.1 cgd if (uio->uio_resid == 0)
1257 1.1 cgd goto release;
1258 1.206 christos if ((so->so_state & SS_NBIO) ||
1259 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1260 1.1 cgd error = EWOULDBLOCK;
1261 1.1 cgd goto release;
1262 1.1 cgd }
1263 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1264 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1265 1.1 cgd sbunlock(&so->so_rcv);
1266 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1267 1.196 dsl error = ERESTART;
1268 1.196 dsl else
1269 1.196 dsl error = sbwait(&so->so_rcv);
1270 1.160 ad if (error != 0) {
1271 1.160 ad sounlock(so);
1272 1.160 ad splx(s);
1273 1.144 dyoung return error;
1274 1.160 ad }
1275 1.196 dsl wakeup_state = so->so_state;
1276 1.1 cgd goto restart;
1277 1.1 cgd }
1278 1.54 lukem dontblock:
1279 1.69 thorpej /*
1280 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1281 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1282 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1283 1.159 ad * various socket buffer pointers and local stack versions of the
1284 1.159 ad * pointers in sync, pushing out modifications before dropping the
1285 1.160 ad * socket lock, and re-reading them when picking it up.
1286 1.159 ad *
1287 1.159 ad * Otherwise, we will race with the network stack appending new data
1288 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1289 1.159 ad * versions of the field, possibly resulting in socket buffer
1290 1.159 ad * corruption.
1291 1.159 ad *
1292 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1293 1.159 ad * readers from pulling off the front of the socket buffer.
1294 1.69 thorpej */
1295 1.144 dyoung if (l != NULL)
1296 1.157 ad l->l_ru.ru_msgrcv++;
1297 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1298 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1299 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1300 1.1 cgd nextrecord = m->m_nextpkt;
1301 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1302 1.1 cgd #ifdef DIAGNOSTIC
1303 1.1 cgd if (m->m_type != MT_SONAME)
1304 1.1 cgd panic("receive 1a");
1305 1.1 cgd #endif
1306 1.3 andrew orig_resid = 0;
1307 1.1 cgd if (flags & MSG_PEEK) {
1308 1.1 cgd if (paddr)
1309 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
1310 1.1 cgd m = m->m_next;
1311 1.1 cgd } else {
1312 1.1 cgd sbfree(&so->so_rcv, m);
1313 1.67 he mbuf_removed = 1;
1314 1.144 dyoung if (paddr != NULL) {
1315 1.1 cgd *paddr = m;
1316 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1317 1.144 dyoung m->m_next = NULL;
1318 1.1 cgd m = so->so_rcv.sb_mb;
1319 1.1 cgd } else {
1320 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1321 1.1 cgd m = so->so_rcv.sb_mb;
1322 1.1 cgd }
1323 1.159 ad sbsync(&so->so_rcv, nextrecord);
1324 1.1 cgd }
1325 1.1 cgd }
1326 1.159 ad
1327 1.159 ad /*
1328 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1329 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1330 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1331 1.159 ad * perform externalization (or freeing if controlp == NULL).
1332 1.159 ad */
1333 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1334 1.159 ad struct mbuf *cm = NULL, *cmn;
1335 1.159 ad struct mbuf **cme = &cm;
1336 1.159 ad
1337 1.159 ad do {
1338 1.159 ad if (flags & MSG_PEEK) {
1339 1.159 ad if (controlp != NULL) {
1340 1.159 ad *controlp = m_copy(m, 0, m->m_len);
1341 1.159 ad controlp = &(*controlp)->m_next;
1342 1.159 ad }
1343 1.159 ad m = m->m_next;
1344 1.159 ad } else {
1345 1.159 ad sbfree(&so->so_rcv, m);
1346 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1347 1.144 dyoung m->m_next = NULL;
1348 1.159 ad *cme = m;
1349 1.159 ad cme = &(*cme)->m_next;
1350 1.1 cgd m = so->so_rcv.sb_mb;
1351 1.159 ad }
1352 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1353 1.159 ad if ((flags & MSG_PEEK) == 0)
1354 1.159 ad sbsync(&so->so_rcv, nextrecord);
1355 1.159 ad for (; cm != NULL; cm = cmn) {
1356 1.159 ad cmn = cm->m_next;
1357 1.159 ad cm->m_next = NULL;
1358 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1359 1.159 ad if (controlp != NULL) {
1360 1.159 ad if (dom->dom_externalize != NULL &&
1361 1.159 ad type == SCM_RIGHTS) {
1362 1.160 ad sounlock(so);
1363 1.159 ad splx(s);
1364 1.204 christos error = (*dom->dom_externalize)(cm, l,
1365 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1366 1.204 christos O_CLOEXEC : 0);
1367 1.159 ad s = splsoftnet();
1368 1.160 ad solock(so);
1369 1.159 ad }
1370 1.159 ad *controlp = cm;
1371 1.159 ad while (*controlp != NULL)
1372 1.159 ad controlp = &(*controlp)->m_next;
1373 1.1 cgd } else {
1374 1.106 itojun /*
1375 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1376 1.106 itojun * through the read path rather than recv.
1377 1.106 itojun */
1378 1.159 ad if (dom->dom_dispose != NULL &&
1379 1.159 ad type == SCM_RIGHTS) {
1380 1.160 ad sounlock(so);
1381 1.159 ad (*dom->dom_dispose)(cm);
1382 1.160 ad solock(so);
1383 1.159 ad }
1384 1.159 ad m_freem(cm);
1385 1.1 cgd }
1386 1.1 cgd }
1387 1.159 ad if (m != NULL)
1388 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1389 1.159 ad else
1390 1.159 ad nextrecord = so->so_rcv.sb_mb;
1391 1.159 ad orig_resid = 0;
1392 1.1 cgd }
1393 1.69 thorpej
1394 1.159 ad /* If m is non-NULL, we have some data to read. */
1395 1.159 ad if (__predict_true(m != NULL)) {
1396 1.1 cgd type = m->m_type;
1397 1.1 cgd if (type == MT_OOBDATA)
1398 1.1 cgd flags |= MSG_OOB;
1399 1.1 cgd }
1400 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1401 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1402 1.69 thorpej
1403 1.1 cgd moff = 0;
1404 1.1 cgd offset = 0;
1405 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1406 1.1 cgd if (m->m_type == MT_OOBDATA) {
1407 1.1 cgd if (type != MT_OOBDATA)
1408 1.1 cgd break;
1409 1.1 cgd } else if (type == MT_OOBDATA)
1410 1.1 cgd break;
1411 1.1 cgd #ifdef DIAGNOSTIC
1412 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1413 1.1 cgd panic("receive 3");
1414 1.1 cgd #endif
1415 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1416 1.196 dsl wakeup_state = 0;
1417 1.1 cgd len = uio->uio_resid;
1418 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1419 1.1 cgd len = so->so_oobmark - offset;
1420 1.1 cgd if (len > m->m_len - moff)
1421 1.1 cgd len = m->m_len - moff;
1422 1.1 cgd /*
1423 1.1 cgd * If mp is set, just pass back the mbufs.
1424 1.1 cgd * Otherwise copy them out via the uio, then free.
1425 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1426 1.1 cgd * it points to next record) when we drop priority;
1427 1.1 cgd * we must note any additions to the sockbuf when we
1428 1.1 cgd * block interrupts again.
1429 1.1 cgd */
1430 1.144 dyoung if (mp == NULL) {
1431 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1432 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1433 1.160 ad sounlock(so);
1434 1.1 cgd splx(s);
1435 1.211 chs error = uiomove(mtod(m, char *) + moff, len, uio);
1436 1.20 mycroft s = splsoftnet();
1437 1.160 ad solock(so);
1438 1.144 dyoung if (error != 0) {
1439 1.67 he /*
1440 1.67 he * If any part of the record has been removed
1441 1.67 he * (such as the MT_SONAME mbuf, which will
1442 1.67 he * happen when PR_ADDR, and thus also
1443 1.67 he * PR_ATOMIC, is set), then drop the entire
1444 1.67 he * record to maintain the atomicity of the
1445 1.67 he * receive operation.
1446 1.67 he *
1447 1.67 he * This avoids a later panic("receive 1a")
1448 1.67 he * when compiled with DIAGNOSTIC.
1449 1.67 he */
1450 1.146 dyoung if (m && mbuf_removed && atomic)
1451 1.67 he (void) sbdroprecord(&so->so_rcv);
1452 1.67 he
1453 1.57 jdolecek goto release;
1454 1.67 he }
1455 1.1 cgd } else
1456 1.1 cgd uio->uio_resid -= len;
1457 1.1 cgd if (len == m->m_len - moff) {
1458 1.1 cgd if (m->m_flags & M_EOR)
1459 1.1 cgd flags |= MSG_EOR;
1460 1.1 cgd if (flags & MSG_PEEK) {
1461 1.1 cgd m = m->m_next;
1462 1.1 cgd moff = 0;
1463 1.1 cgd } else {
1464 1.1 cgd nextrecord = m->m_nextpkt;
1465 1.1 cgd sbfree(&so->so_rcv, m);
1466 1.1 cgd if (mp) {
1467 1.1 cgd *mp = m;
1468 1.1 cgd mp = &m->m_next;
1469 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1470 1.140 dyoung *mp = NULL;
1471 1.1 cgd } else {
1472 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
1473 1.1 cgd m = so->so_rcv.sb_mb;
1474 1.1 cgd }
1475 1.69 thorpej /*
1476 1.69 thorpej * If m != NULL, we also know that
1477 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1478 1.69 thorpej */
1479 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1480 1.69 thorpej if (m) {
1481 1.1 cgd m->m_nextpkt = nextrecord;
1482 1.69 thorpej if (nextrecord == NULL)
1483 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1484 1.69 thorpej } else {
1485 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1486 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1487 1.69 thorpej }
1488 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1489 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1490 1.1 cgd }
1491 1.144 dyoung } else if (flags & MSG_PEEK)
1492 1.144 dyoung moff += len;
1493 1.144 dyoung else {
1494 1.160 ad if (mp != NULL) {
1495 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1496 1.160 ad if (__predict_false(mt == NULL)) {
1497 1.160 ad sounlock(so);
1498 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1499 1.160 ad solock(so);
1500 1.160 ad }
1501 1.160 ad *mp = mt;
1502 1.160 ad }
1503 1.144 dyoung m->m_data += len;
1504 1.144 dyoung m->m_len -= len;
1505 1.144 dyoung so->so_rcv.sb_cc -= len;
1506 1.1 cgd }
1507 1.1 cgd if (so->so_oobmark) {
1508 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1509 1.1 cgd so->so_oobmark -= len;
1510 1.1 cgd if (so->so_oobmark == 0) {
1511 1.1 cgd so->so_state |= SS_RCVATMARK;
1512 1.1 cgd break;
1513 1.1 cgd }
1514 1.7 cgd } else {
1515 1.1 cgd offset += len;
1516 1.7 cgd if (offset == so->so_oobmark)
1517 1.7 cgd break;
1518 1.7 cgd }
1519 1.1 cgd }
1520 1.1 cgd if (flags & MSG_EOR)
1521 1.1 cgd break;
1522 1.1 cgd /*
1523 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1524 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1525 1.1 cgd * termination. If a signal/timeout occurs, return
1526 1.1 cgd * with a short count but without error.
1527 1.1 cgd * Keep sockbuf locked against other readers.
1528 1.1 cgd */
1529 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1530 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1531 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1532 1.1 cgd break;
1533 1.68 matt /*
1534 1.68 matt * If we are peeking and the socket receive buffer is
1535 1.68 matt * full, stop since we can't get more data to peek at.
1536 1.68 matt */
1537 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1538 1.68 matt break;
1539 1.68 matt /*
1540 1.68 matt * If we've drained the socket buffer, tell the
1541 1.68 matt * protocol in case it needs to do something to
1542 1.68 matt * get it filled again.
1543 1.68 matt */
1544 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1545 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1546 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1547 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1548 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1549 1.196 dsl error = ERESTART;
1550 1.196 dsl else
1551 1.196 dsl error = sbwait(&so->so_rcv);
1552 1.144 dyoung if (error != 0) {
1553 1.1 cgd sbunlock(&so->so_rcv);
1554 1.160 ad sounlock(so);
1555 1.1 cgd splx(s);
1556 1.144 dyoung return 0;
1557 1.1 cgd }
1558 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1559 1.1 cgd nextrecord = m->m_nextpkt;
1560 1.196 dsl wakeup_state = so->so_state;
1561 1.1 cgd }
1562 1.1 cgd }
1563 1.3 andrew
1564 1.146 dyoung if (m && atomic) {
1565 1.3 andrew flags |= MSG_TRUNC;
1566 1.3 andrew if ((flags & MSG_PEEK) == 0)
1567 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1568 1.3 andrew }
1569 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1570 1.144 dyoung if (m == NULL) {
1571 1.69 thorpej /*
1572 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1573 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1574 1.69 thorpej * there is still data in the socket buffer.
1575 1.69 thorpej */
1576 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1577 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1578 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1579 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1580 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1581 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1582 1.69 thorpej }
1583 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1584 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1585 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1586 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1587 1.1 cgd }
1588 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1589 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1590 1.3 andrew sbunlock(&so->so_rcv);
1591 1.3 andrew goto restart;
1592 1.3 andrew }
1593 1.108 perry
1594 1.144 dyoung if (flagsp != NULL)
1595 1.1 cgd *flagsp |= flags;
1596 1.54 lukem release:
1597 1.1 cgd sbunlock(&so->so_rcv);
1598 1.160 ad sounlock(so);
1599 1.1 cgd splx(s);
1600 1.144 dyoung return error;
1601 1.1 cgd }
1602 1.1 cgd
1603 1.14 mycroft int
1604 1.54 lukem soshutdown(struct socket *so, int how)
1605 1.1 cgd {
1606 1.99 matt const struct protosw *pr;
1607 1.160 ad int error;
1608 1.160 ad
1609 1.160 ad KASSERT(solocked(so));
1610 1.34 kleink
1611 1.54 lukem pr = so->so_proto;
1612 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1613 1.34 kleink return (EINVAL);
1614 1.1 cgd
1615 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1616 1.1 cgd sorflush(so);
1617 1.160 ad error = 0;
1618 1.160 ad }
1619 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1620 1.229 rtr error = (*pr->pr_usrreqs->pr_shutdown)(so);
1621 1.160 ad
1622 1.160 ad return error;
1623 1.1 cgd }
1624 1.1 cgd
1625 1.195 dsl void
1626 1.196 dsl sorestart(struct socket *so)
1627 1.188 ad {
1628 1.196 dsl /*
1629 1.196 dsl * An application has called close() on an fd on which another
1630 1.196 dsl * of its threads has called a socket system call.
1631 1.196 dsl * Mark this and wake everyone up, and code that would block again
1632 1.196 dsl * instead returns ERESTART.
1633 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1634 1.196 dsl * Any other fd will block again on the 2nd syscall.
1635 1.196 dsl */
1636 1.188 ad solock(so);
1637 1.196 dsl so->so_state |= SS_RESTARTSYS;
1638 1.188 ad cv_broadcast(&so->so_cv);
1639 1.196 dsl cv_broadcast(&so->so_snd.sb_cv);
1640 1.196 dsl cv_broadcast(&so->so_rcv.sb_cv);
1641 1.188 ad sounlock(so);
1642 1.188 ad }
1643 1.188 ad
1644 1.14 mycroft void
1645 1.54 lukem sorflush(struct socket *so)
1646 1.1 cgd {
1647 1.54 lukem struct sockbuf *sb, asb;
1648 1.99 matt const struct protosw *pr;
1649 1.160 ad
1650 1.160 ad KASSERT(solocked(so));
1651 1.1 cgd
1652 1.54 lukem sb = &so->so_rcv;
1653 1.54 lukem pr = so->so_proto;
1654 1.160 ad socantrcvmore(so);
1655 1.1 cgd sb->sb_flags |= SB_NOINTR;
1656 1.160 ad (void )sblock(sb, M_WAITOK);
1657 1.1 cgd sbunlock(sb);
1658 1.1 cgd asb = *sb;
1659 1.86 wrstuden /*
1660 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1661 1.86 wrstuden * fields valid.
1662 1.86 wrstuden */
1663 1.86 wrstuden memset(&sb->sb_startzero, 0,
1664 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1665 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1666 1.160 ad sounlock(so);
1667 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1668 1.160 ad solock(so);
1669 1.160 ad }
1670 1.98 christos sbrelease(&asb, so);
1671 1.1 cgd }
1672 1.1 cgd
1673 1.171 plunky /*
1674 1.171 plunky * internal set SOL_SOCKET options
1675 1.171 plunky */
1676 1.142 dyoung static int
1677 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1678 1.1 cgd {
1679 1.219 christos int error = EINVAL, opt;
1680 1.219 christos int optval = 0; /* XXX: gcc */
1681 1.171 plunky struct linger l;
1682 1.171 plunky struct timeval tv;
1683 1.142 dyoung
1684 1.179 christos switch ((opt = sopt->sopt_name)) {
1685 1.142 dyoung
1686 1.170 tls case SO_ACCEPTFILTER:
1687 1.177 ad error = accept_filt_setopt(so, sopt);
1688 1.177 ad KASSERT(solocked(so));
1689 1.170 tls break;
1690 1.170 tls
1691 1.171 plunky case SO_LINGER:
1692 1.171 plunky error = sockopt_get(sopt, &l, sizeof(l));
1693 1.177 ad solock(so);
1694 1.171 plunky if (error)
1695 1.177 ad break;
1696 1.171 plunky if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1697 1.177 ad l.l_linger > (INT_MAX / hz)) {
1698 1.177 ad error = EDOM;
1699 1.177 ad break;
1700 1.177 ad }
1701 1.171 plunky so->so_linger = l.l_linger;
1702 1.171 plunky if (l.l_onoff)
1703 1.171 plunky so->so_options |= SO_LINGER;
1704 1.171 plunky else
1705 1.171 plunky so->so_options &= ~SO_LINGER;
1706 1.177 ad break;
1707 1.1 cgd
1708 1.142 dyoung case SO_DEBUG:
1709 1.142 dyoung case SO_KEEPALIVE:
1710 1.142 dyoung case SO_DONTROUTE:
1711 1.142 dyoung case SO_USELOOPBACK:
1712 1.142 dyoung case SO_BROADCAST:
1713 1.142 dyoung case SO_REUSEADDR:
1714 1.142 dyoung case SO_REUSEPORT:
1715 1.142 dyoung case SO_OOBINLINE:
1716 1.142 dyoung case SO_TIMESTAMP:
1717 1.207 christos case SO_NOSIGPIPE:
1718 1.184 christos #ifdef SO_OTIMESTAMP
1719 1.184 christos case SO_OTIMESTAMP:
1720 1.184 christos #endif
1721 1.171 plunky error = sockopt_getint(sopt, &optval);
1722 1.177 ad solock(so);
1723 1.171 plunky if (error)
1724 1.177 ad break;
1725 1.171 plunky if (optval)
1726 1.179 christos so->so_options |= opt;
1727 1.142 dyoung else
1728 1.179 christos so->so_options &= ~opt;
1729 1.142 dyoung break;
1730 1.142 dyoung
1731 1.142 dyoung case SO_SNDBUF:
1732 1.142 dyoung case SO_RCVBUF:
1733 1.142 dyoung case SO_SNDLOWAT:
1734 1.142 dyoung case SO_RCVLOWAT:
1735 1.171 plunky error = sockopt_getint(sopt, &optval);
1736 1.177 ad solock(so);
1737 1.171 plunky if (error)
1738 1.177 ad break;
1739 1.1 cgd
1740 1.142 dyoung /*
1741 1.142 dyoung * Values < 1 make no sense for any of these
1742 1.142 dyoung * options, so disallow them.
1743 1.142 dyoung */
1744 1.177 ad if (optval < 1) {
1745 1.177 ad error = EINVAL;
1746 1.177 ad break;
1747 1.177 ad }
1748 1.1 cgd
1749 1.179 christos switch (opt) {
1750 1.171 plunky case SO_SNDBUF:
1751 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1752 1.177 ad error = ENOBUFS;
1753 1.177 ad break;
1754 1.177 ad }
1755 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1756 1.171 plunky break;
1757 1.1 cgd
1758 1.1 cgd case SO_RCVBUF:
1759 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1760 1.177 ad error = ENOBUFS;
1761 1.177 ad break;
1762 1.177 ad }
1763 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1764 1.142 dyoung break;
1765 1.142 dyoung
1766 1.142 dyoung /*
1767 1.142 dyoung * Make sure the low-water is never greater than
1768 1.142 dyoung * the high-water.
1769 1.142 dyoung */
1770 1.1 cgd case SO_SNDLOWAT:
1771 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1772 1.171 plunky optval = so->so_snd.sb_hiwat;
1773 1.171 plunky
1774 1.171 plunky so->so_snd.sb_lowat = optval;
1775 1.142 dyoung break;
1776 1.171 plunky
1777 1.1 cgd case SO_RCVLOWAT:
1778 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1779 1.171 plunky optval = so->so_rcv.sb_hiwat;
1780 1.171 plunky
1781 1.171 plunky so->so_rcv.sb_lowat = optval;
1782 1.142 dyoung break;
1783 1.142 dyoung }
1784 1.142 dyoung break;
1785 1.28 thorpej
1786 1.179 christos #ifdef COMPAT_50
1787 1.179 christos case SO_OSNDTIMEO:
1788 1.179 christos case SO_ORCVTIMEO: {
1789 1.179 christos struct timeval50 otv;
1790 1.179 christos error = sockopt_get(sopt, &otv, sizeof(otv));
1791 1.186 pooka if (error) {
1792 1.186 pooka solock(so);
1793 1.183 christos break;
1794 1.186 pooka }
1795 1.179 christos timeval50_to_timeval(&otv, &tv);
1796 1.179 christos opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1797 1.182 christos error = 0;
1798 1.179 christos /*FALLTHROUGH*/
1799 1.179 christos }
1800 1.179 christos #endif /* COMPAT_50 */
1801 1.179 christos
1802 1.142 dyoung case SO_SNDTIMEO:
1803 1.142 dyoung case SO_RCVTIMEO:
1804 1.182 christos if (error)
1805 1.179 christos error = sockopt_get(sopt, &tv, sizeof(tv));
1806 1.177 ad solock(so);
1807 1.171 plunky if (error)
1808 1.177 ad break;
1809 1.171 plunky
1810 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1811 1.177 ad error = EDOM;
1812 1.177 ad break;
1813 1.177 ad }
1814 1.28 thorpej
1815 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1816 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1817 1.171 plunky optval = 1;
1818 1.28 thorpej
1819 1.179 christos switch (opt) {
1820 1.142 dyoung case SO_SNDTIMEO:
1821 1.171 plunky so->so_snd.sb_timeo = optval;
1822 1.1 cgd break;
1823 1.1 cgd case SO_RCVTIMEO:
1824 1.171 plunky so->so_rcv.sb_timeo = optval;
1825 1.142 dyoung break;
1826 1.142 dyoung }
1827 1.142 dyoung break;
1828 1.1 cgd
1829 1.142 dyoung default:
1830 1.177 ad solock(so);
1831 1.177 ad error = ENOPROTOOPT;
1832 1.177 ad break;
1833 1.142 dyoung }
1834 1.177 ad KASSERT(solocked(so));
1835 1.177 ad return error;
1836 1.142 dyoung }
1837 1.1 cgd
1838 1.142 dyoung int
1839 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1840 1.142 dyoung {
1841 1.142 dyoung int error, prerr;
1842 1.1 cgd
1843 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1844 1.171 plunky error = sosetopt1(so, sopt);
1845 1.177 ad KASSERT(solocked(so));
1846 1.177 ad } else {
1847 1.142 dyoung error = ENOPROTOOPT;
1848 1.177 ad solock(so);
1849 1.177 ad }
1850 1.1 cgd
1851 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1852 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1853 1.142 dyoung /* give the protocol stack a shot */
1854 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1855 1.142 dyoung if (prerr == 0)
1856 1.142 dyoung error = 0;
1857 1.142 dyoung else if (prerr != ENOPROTOOPT)
1858 1.142 dyoung error = prerr;
1859 1.171 plunky }
1860 1.160 ad sounlock(so);
1861 1.142 dyoung return error;
1862 1.1 cgd }
1863 1.1 cgd
1864 1.171 plunky /*
1865 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1866 1.171 plunky */
1867 1.171 plunky int
1868 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1869 1.171 plunky const void *val, size_t valsize)
1870 1.171 plunky {
1871 1.171 plunky struct sockopt sopt;
1872 1.171 plunky int error;
1873 1.171 plunky
1874 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1875 1.171 plunky
1876 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1877 1.171 plunky sockopt_set(&sopt, val, valsize);
1878 1.171 plunky
1879 1.171 plunky error = sosetopt(so, &sopt);
1880 1.171 plunky
1881 1.171 plunky sockopt_destroy(&sopt);
1882 1.171 plunky
1883 1.171 plunky return error;
1884 1.171 plunky }
1885 1.235.2.2 skrll
1886 1.171 plunky /*
1887 1.171 plunky * internal get SOL_SOCKET options
1888 1.171 plunky */
1889 1.171 plunky static int
1890 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1891 1.171 plunky {
1892 1.179 christos int error, optval, opt;
1893 1.171 plunky struct linger l;
1894 1.171 plunky struct timeval tv;
1895 1.171 plunky
1896 1.179 christos switch ((opt = sopt->sopt_name)) {
1897 1.171 plunky
1898 1.171 plunky case SO_ACCEPTFILTER:
1899 1.177 ad error = accept_filt_getopt(so, sopt);
1900 1.171 plunky break;
1901 1.171 plunky
1902 1.171 plunky case SO_LINGER:
1903 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1904 1.171 plunky l.l_linger = so->so_linger;
1905 1.171 plunky
1906 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1907 1.171 plunky break;
1908 1.171 plunky
1909 1.171 plunky case SO_USELOOPBACK:
1910 1.171 plunky case SO_DONTROUTE:
1911 1.171 plunky case SO_DEBUG:
1912 1.171 plunky case SO_KEEPALIVE:
1913 1.171 plunky case SO_REUSEADDR:
1914 1.171 plunky case SO_REUSEPORT:
1915 1.171 plunky case SO_BROADCAST:
1916 1.171 plunky case SO_OOBINLINE:
1917 1.171 plunky case SO_TIMESTAMP:
1918 1.207 christos case SO_NOSIGPIPE:
1919 1.184 christos #ifdef SO_OTIMESTAMP
1920 1.184 christos case SO_OTIMESTAMP:
1921 1.184 christos #endif
1922 1.218 seanb case SO_ACCEPTCONN:
1923 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1924 1.171 plunky break;
1925 1.171 plunky
1926 1.171 plunky case SO_TYPE:
1927 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1928 1.171 plunky break;
1929 1.171 plunky
1930 1.171 plunky case SO_ERROR:
1931 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1932 1.171 plunky so->so_error = 0;
1933 1.171 plunky break;
1934 1.171 plunky
1935 1.171 plunky case SO_SNDBUF:
1936 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1937 1.171 plunky break;
1938 1.171 plunky
1939 1.171 plunky case SO_RCVBUF:
1940 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1941 1.171 plunky break;
1942 1.171 plunky
1943 1.171 plunky case SO_SNDLOWAT:
1944 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1945 1.171 plunky break;
1946 1.171 plunky
1947 1.171 plunky case SO_RCVLOWAT:
1948 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1949 1.171 plunky break;
1950 1.171 plunky
1951 1.179 christos #ifdef COMPAT_50
1952 1.179 christos case SO_OSNDTIMEO:
1953 1.179 christos case SO_ORCVTIMEO: {
1954 1.179 christos struct timeval50 otv;
1955 1.179 christos
1956 1.179 christos optval = (opt == SO_OSNDTIMEO ?
1957 1.179 christos so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1958 1.179 christos
1959 1.179 christos otv.tv_sec = optval / hz;
1960 1.179 christos otv.tv_usec = (optval % hz) * tick;
1961 1.179 christos
1962 1.179 christos error = sockopt_set(sopt, &otv, sizeof(otv));
1963 1.179 christos break;
1964 1.179 christos }
1965 1.179 christos #endif /* COMPAT_50 */
1966 1.179 christos
1967 1.171 plunky case SO_SNDTIMEO:
1968 1.171 plunky case SO_RCVTIMEO:
1969 1.179 christos optval = (opt == SO_SNDTIMEO ?
1970 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1971 1.171 plunky
1972 1.171 plunky tv.tv_sec = optval / hz;
1973 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1974 1.171 plunky
1975 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1976 1.171 plunky break;
1977 1.171 plunky
1978 1.171 plunky case SO_OVERFLOWED:
1979 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1980 1.171 plunky break;
1981 1.171 plunky
1982 1.171 plunky default:
1983 1.171 plunky error = ENOPROTOOPT;
1984 1.171 plunky break;
1985 1.171 plunky }
1986 1.171 plunky
1987 1.171 plunky return (error);
1988 1.171 plunky }
1989 1.171 plunky
1990 1.14 mycroft int
1991 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
1992 1.1 cgd {
1993 1.160 ad int error;
1994 1.1 cgd
1995 1.160 ad solock(so);
1996 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
1997 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
1998 1.160 ad error = ((*so->so_proto->pr_ctloutput)
1999 1.171 plunky (PRCO_GETOPT, so, sopt));
2000 1.1 cgd } else
2001 1.160 ad error = (ENOPROTOOPT);
2002 1.1 cgd } else {
2003 1.171 plunky error = sogetopt1(so, sopt);
2004 1.171 plunky }
2005 1.171 plunky sounlock(so);
2006 1.171 plunky return (error);
2007 1.171 plunky }
2008 1.171 plunky
2009 1.171 plunky /*
2010 1.171 plunky * alloc sockopt data buffer buffer
2011 1.171 plunky * - will be released at destroy
2012 1.171 plunky */
2013 1.176 plunky static int
2014 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2015 1.171 plunky {
2016 1.171 plunky
2017 1.171 plunky KASSERT(sopt->sopt_size == 0);
2018 1.171 plunky
2019 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2020 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
2021 1.176 plunky if (sopt->sopt_data == NULL)
2022 1.176 plunky return ENOMEM;
2023 1.176 plunky } else
2024 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2025 1.171 plunky
2026 1.171 plunky sopt->sopt_size = len;
2027 1.176 plunky return 0;
2028 1.171 plunky }
2029 1.171 plunky
2030 1.171 plunky /*
2031 1.171 plunky * initialise sockopt storage
2032 1.176 plunky * - MAY sleep during allocation
2033 1.171 plunky */
2034 1.171 plunky void
2035 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2036 1.171 plunky {
2037 1.1 cgd
2038 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2039 1.1 cgd
2040 1.171 plunky sopt->sopt_level = level;
2041 1.171 plunky sopt->sopt_name = name;
2042 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2043 1.171 plunky }
2044 1.171 plunky
2045 1.171 plunky /*
2046 1.171 plunky * destroy sockopt storage
2047 1.171 plunky * - will release any held memory references
2048 1.171 plunky */
2049 1.171 plunky void
2050 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2051 1.171 plunky {
2052 1.171 plunky
2053 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2054 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2055 1.171 plunky
2056 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2057 1.171 plunky }
2058 1.171 plunky
2059 1.171 plunky /*
2060 1.171 plunky * set sockopt value
2061 1.171 plunky * - value is copied into sockopt
2062 1.176 plunky * - memory is allocated when necessary, will not sleep
2063 1.171 plunky */
2064 1.171 plunky int
2065 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2066 1.171 plunky {
2067 1.176 plunky int error;
2068 1.171 plunky
2069 1.176 plunky if (sopt->sopt_size == 0) {
2070 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2071 1.176 plunky if (error)
2072 1.176 plunky return error;
2073 1.176 plunky }
2074 1.171 plunky
2075 1.171 plunky KASSERT(sopt->sopt_size == len);
2076 1.171 plunky memcpy(sopt->sopt_data, buf, len);
2077 1.171 plunky return 0;
2078 1.171 plunky }
2079 1.171 plunky
2080 1.171 plunky /*
2081 1.171 plunky * common case of set sockopt integer value
2082 1.171 plunky */
2083 1.171 plunky int
2084 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2085 1.171 plunky {
2086 1.171 plunky
2087 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2088 1.171 plunky }
2089 1.171 plunky
2090 1.171 plunky /*
2091 1.171 plunky * get sockopt value
2092 1.171 plunky * - correct size must be given
2093 1.171 plunky */
2094 1.171 plunky int
2095 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2096 1.171 plunky {
2097 1.170 tls
2098 1.171 plunky if (sopt->sopt_size != len)
2099 1.171 plunky return EINVAL;
2100 1.1 cgd
2101 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2102 1.171 plunky return 0;
2103 1.171 plunky }
2104 1.1 cgd
2105 1.171 plunky /*
2106 1.171 plunky * common case of get sockopt integer value
2107 1.171 plunky */
2108 1.171 plunky int
2109 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2110 1.171 plunky {
2111 1.1 cgd
2112 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2113 1.171 plunky }
2114 1.1 cgd
2115 1.171 plunky /*
2116 1.171 plunky * set sockopt value from mbuf
2117 1.171 plunky * - ONLY for legacy code
2118 1.171 plunky * - mbuf is released by sockopt
2119 1.176 plunky * - will not sleep
2120 1.171 plunky */
2121 1.171 plunky int
2122 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2123 1.171 plunky {
2124 1.171 plunky size_t len;
2125 1.176 plunky int error;
2126 1.1 cgd
2127 1.171 plunky len = m_length(m);
2128 1.1 cgd
2129 1.176 plunky if (sopt->sopt_size == 0) {
2130 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2131 1.176 plunky if (error)
2132 1.176 plunky return error;
2133 1.176 plunky }
2134 1.1 cgd
2135 1.171 plunky KASSERT(sopt->sopt_size == len);
2136 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
2137 1.171 plunky m_freem(m);
2138 1.1 cgd
2139 1.171 plunky return 0;
2140 1.171 plunky }
2141 1.1 cgd
2142 1.171 plunky /*
2143 1.171 plunky * get sockopt value into mbuf
2144 1.171 plunky * - ONLY for legacy code
2145 1.171 plunky * - mbuf to be released by the caller
2146 1.176 plunky * - will not sleep
2147 1.171 plunky */
2148 1.171 plunky struct mbuf *
2149 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2150 1.171 plunky {
2151 1.171 plunky struct mbuf *m;
2152 1.107 darrenr
2153 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2154 1.176 plunky return NULL;
2155 1.176 plunky
2156 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2157 1.171 plunky if (m == NULL)
2158 1.171 plunky return NULL;
2159 1.171 plunky
2160 1.176 plunky if (sopt->sopt_size > MLEN) {
2161 1.176 plunky MCLGET(m, M_DONTWAIT);
2162 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2163 1.176 plunky m_free(m);
2164 1.176 plunky return NULL;
2165 1.176 plunky }
2166 1.1 cgd }
2167 1.176 plunky
2168 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2169 1.176 plunky m->m_len = sopt->sopt_size;
2170 1.160 ad
2171 1.171 plunky return m;
2172 1.1 cgd }
2173 1.1 cgd
2174 1.14 mycroft void
2175 1.54 lukem sohasoutofband(struct socket *so)
2176 1.1 cgd {
2177 1.153 rmind
2178 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2179 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2180 1.1 cgd }
2181 1.72 jdolecek
2182 1.72 jdolecek static void
2183 1.72 jdolecek filt_sordetach(struct knote *kn)
2184 1.72 jdolecek {
2185 1.72 jdolecek struct socket *so;
2186 1.72 jdolecek
2187 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2188 1.160 ad solock(so);
2189 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2190 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2191 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2192 1.160 ad sounlock(so);
2193 1.72 jdolecek }
2194 1.72 jdolecek
2195 1.72 jdolecek /*ARGSUSED*/
2196 1.72 jdolecek static int
2197 1.129 yamt filt_soread(struct knote *kn, long hint)
2198 1.72 jdolecek {
2199 1.72 jdolecek struct socket *so;
2200 1.160 ad int rv;
2201 1.72 jdolecek
2202 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2203 1.160 ad if (hint != NOTE_SUBMIT)
2204 1.160 ad solock(so);
2205 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2206 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2207 1.108 perry kn->kn_flags |= EV_EOF;
2208 1.72 jdolecek kn->kn_fflags = so->so_error;
2209 1.160 ad rv = 1;
2210 1.160 ad } else if (so->so_error) /* temporary udp error */
2211 1.160 ad rv = 1;
2212 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2213 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2214 1.235.2.2 skrll else
2215 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2216 1.160 ad if (hint != NOTE_SUBMIT)
2217 1.160 ad sounlock(so);
2218 1.160 ad return rv;
2219 1.72 jdolecek }
2220 1.72 jdolecek
2221 1.72 jdolecek static void
2222 1.72 jdolecek filt_sowdetach(struct knote *kn)
2223 1.72 jdolecek {
2224 1.72 jdolecek struct socket *so;
2225 1.72 jdolecek
2226 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2227 1.160 ad solock(so);
2228 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2229 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2230 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2231 1.160 ad sounlock(so);
2232 1.72 jdolecek }
2233 1.72 jdolecek
2234 1.72 jdolecek /*ARGSUSED*/
2235 1.72 jdolecek static int
2236 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2237 1.72 jdolecek {
2238 1.72 jdolecek struct socket *so;
2239 1.160 ad int rv;
2240 1.72 jdolecek
2241 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2242 1.160 ad if (hint != NOTE_SUBMIT)
2243 1.160 ad solock(so);
2244 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2245 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2246 1.108 perry kn->kn_flags |= EV_EOF;
2247 1.72 jdolecek kn->kn_fflags = so->so_error;
2248 1.160 ad rv = 1;
2249 1.160 ad } else if (so->so_error) /* temporary udp error */
2250 1.160 ad rv = 1;
2251 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2252 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2253 1.160 ad rv = 0;
2254 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2255 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2256 1.160 ad else
2257 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2258 1.160 ad if (hint != NOTE_SUBMIT)
2259 1.160 ad sounlock(so);
2260 1.160 ad return rv;
2261 1.72 jdolecek }
2262 1.72 jdolecek
2263 1.72 jdolecek /*ARGSUSED*/
2264 1.72 jdolecek static int
2265 1.129 yamt filt_solisten(struct knote *kn, long hint)
2266 1.72 jdolecek {
2267 1.72 jdolecek struct socket *so;
2268 1.160 ad int rv;
2269 1.72 jdolecek
2270 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2271 1.72 jdolecek
2272 1.72 jdolecek /*
2273 1.72 jdolecek * Set kn_data to number of incoming connections, not
2274 1.72 jdolecek * counting partial (incomplete) connections.
2275 1.108 perry */
2276 1.160 ad if (hint != NOTE_SUBMIT)
2277 1.160 ad solock(so);
2278 1.72 jdolecek kn->kn_data = so->so_qlen;
2279 1.160 ad rv = (kn->kn_data > 0);
2280 1.160 ad if (hint != NOTE_SUBMIT)
2281 1.160 ad sounlock(so);
2282 1.160 ad return rv;
2283 1.72 jdolecek }
2284 1.72 jdolecek
2285 1.72 jdolecek static const struct filterops solisten_filtops =
2286 1.72 jdolecek { 1, NULL, filt_sordetach, filt_solisten };
2287 1.72 jdolecek static const struct filterops soread_filtops =
2288 1.72 jdolecek { 1, NULL, filt_sordetach, filt_soread };
2289 1.72 jdolecek static const struct filterops sowrite_filtops =
2290 1.72 jdolecek { 1, NULL, filt_sowdetach, filt_sowrite };
2291 1.72 jdolecek
2292 1.72 jdolecek int
2293 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2294 1.72 jdolecek {
2295 1.72 jdolecek struct socket *so;
2296 1.72 jdolecek struct sockbuf *sb;
2297 1.72 jdolecek
2298 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2299 1.160 ad solock(so);
2300 1.72 jdolecek switch (kn->kn_filter) {
2301 1.72 jdolecek case EVFILT_READ:
2302 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2303 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2304 1.72 jdolecek else
2305 1.72 jdolecek kn->kn_fop = &soread_filtops;
2306 1.72 jdolecek sb = &so->so_rcv;
2307 1.72 jdolecek break;
2308 1.72 jdolecek case EVFILT_WRITE:
2309 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2310 1.72 jdolecek sb = &so->so_snd;
2311 1.72 jdolecek break;
2312 1.72 jdolecek default:
2313 1.160 ad sounlock(so);
2314 1.149 pooka return (EINVAL);
2315 1.72 jdolecek }
2316 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2317 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2318 1.160 ad sounlock(so);
2319 1.72 jdolecek return (0);
2320 1.72 jdolecek }
2321 1.72 jdolecek
2322 1.154 ad static int
2323 1.154 ad sodopoll(struct socket *so, int events)
2324 1.154 ad {
2325 1.154 ad int revents;
2326 1.154 ad
2327 1.154 ad revents = 0;
2328 1.154 ad
2329 1.154 ad if (events & (POLLIN | POLLRDNORM))
2330 1.154 ad if (soreadable(so))
2331 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2332 1.154 ad
2333 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2334 1.154 ad if (sowritable(so))
2335 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2336 1.154 ad
2337 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2338 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2339 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2340 1.154 ad
2341 1.154 ad return revents;
2342 1.154 ad }
2343 1.154 ad
2344 1.154 ad int
2345 1.154 ad sopoll(struct socket *so, int events)
2346 1.154 ad {
2347 1.154 ad int revents = 0;
2348 1.154 ad
2349 1.160 ad #ifndef DIAGNOSTIC
2350 1.160 ad /*
2351 1.160 ad * Do a quick, unlocked check in expectation that the socket
2352 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2353 1.160 ad * as the solocked() assertions will fail.
2354 1.160 ad */
2355 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2356 1.154 ad return revents;
2357 1.160 ad #endif
2358 1.154 ad
2359 1.160 ad solock(so);
2360 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2361 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2362 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2363 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2364 1.154 ad }
2365 1.154 ad
2366 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2367 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2368 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2369 1.154 ad }
2370 1.154 ad }
2371 1.160 ad sounlock(so);
2372 1.154 ad
2373 1.154 ad return revents;
2374 1.154 ad }
2375 1.154 ad
2376 1.154 ad
2377 1.94 yamt #include <sys/sysctl.h>
2378 1.94 yamt
2379 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2380 1.212 pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2381 1.94 yamt
2382 1.94 yamt /*
2383 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2384 1.94 yamt * value is not too small.
2385 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2386 1.94 yamt */
2387 1.94 yamt static int
2388 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2389 1.94 yamt {
2390 1.94 yamt int error, new_somaxkva;
2391 1.94 yamt struct sysctlnode node;
2392 1.94 yamt
2393 1.94 yamt new_somaxkva = somaxkva;
2394 1.94 yamt node = *rnode;
2395 1.94 yamt node.sysctl_data = &new_somaxkva;
2396 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2397 1.94 yamt if (error || newp == NULL)
2398 1.94 yamt return (error);
2399 1.94 yamt
2400 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2401 1.94 yamt return (EINVAL);
2402 1.94 yamt
2403 1.136 ad mutex_enter(&so_pendfree_lock);
2404 1.94 yamt somaxkva = new_somaxkva;
2405 1.136 ad cv_broadcast(&socurkva_cv);
2406 1.136 ad mutex_exit(&so_pendfree_lock);
2407 1.94 yamt
2408 1.94 yamt return (error);
2409 1.94 yamt }
2410 1.94 yamt
2411 1.212 pooka /*
2412 1.212 pooka * sysctl helper routine for kern.sbmax. Basically just ensures that
2413 1.212 pooka * any new value is not too small.
2414 1.212 pooka */
2415 1.212 pooka static int
2416 1.212 pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
2417 1.212 pooka {
2418 1.212 pooka int error, new_sbmax;
2419 1.212 pooka struct sysctlnode node;
2420 1.212 pooka
2421 1.212 pooka new_sbmax = sb_max;
2422 1.212 pooka node = *rnode;
2423 1.212 pooka node.sysctl_data = &new_sbmax;
2424 1.212 pooka error = sysctl_lookup(SYSCTLFN_CALL(&node));
2425 1.212 pooka if (error || newp == NULL)
2426 1.212 pooka return (error);
2427 1.212 pooka
2428 1.212 pooka KERNEL_LOCK(1, NULL);
2429 1.212 pooka error = sb_max_set(new_sbmax);
2430 1.212 pooka KERNEL_UNLOCK_ONE(NULL);
2431 1.212 pooka
2432 1.212 pooka return (error);
2433 1.212 pooka }
2434 1.212 pooka
2435 1.178 pooka static void
2436 1.212 pooka sysctl_kern_socket_setup(void)
2437 1.94 yamt {
2438 1.94 yamt
2439 1.178 pooka KASSERT(socket_sysctllog == NULL);
2440 1.97 atatat
2441 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2442 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 1.103 atatat CTLTYPE_INT, "somaxkva",
2444 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2445 1.103 atatat "used for socket buffers"),
2446 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2447 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2448 1.212 pooka
2449 1.212 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2450 1.212 pooka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2451 1.212 pooka CTLTYPE_INT, "sbmax",
2452 1.212 pooka SYSCTL_DESCR("Maximum socket buffer size"),
2453 1.212 pooka sysctl_kern_sbmax, 0, NULL, 0,
2454 1.212 pooka CTL_KERN, KERN_SBMAX, CTL_EOL);
2455 1.94 yamt }
2456