Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.252.6.1
      1  1.252.6.1  pgoyette /*	$NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $	*/
      2       1.64   thorpej 
      3       1.64   thorpej /*-
      4      1.188        ad  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.64   thorpej  * All rights reserved.
      6       1.64   thorpej  *
      7       1.64   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.188        ad  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9       1.64   thorpej  *
     10       1.64   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.64   thorpej  * modification, are permitted provided that the following conditions
     12       1.64   thorpej  * are met:
     13       1.64   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.64   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.64   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.64   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.64   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.64   thorpej  *
     19       1.64   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.64   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.64   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.64   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.64   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.64   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.64   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.64   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.64   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.64   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.64   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.64   thorpej  */
     31       1.16       cgd 
     32        1.1       cgd /*
     33      1.159        ad  * Copyright (c) 2004 The FreeBSD Foundation
     34      1.159        ad  * Copyright (c) 2004 Robert Watson
     35       1.15   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36       1.15   mycroft  *	The Regents of the University of California.  All rights reserved.
     37        1.1       cgd  *
     38        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     39        1.1       cgd  * modification, are permitted provided that the following conditions
     40        1.1       cgd  * are met:
     41        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     43        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     44        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     45        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     46       1.85       agc  * 3. Neither the name of the University nor the names of its contributors
     47        1.1       cgd  *    may be used to endorse or promote products derived from this software
     48        1.1       cgd  *    without specific prior written permission.
     49        1.1       cgd  *
     50        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60        1.1       cgd  * SUCH DAMAGE.
     61        1.1       cgd  *
     62       1.32      fvdl  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63        1.1       cgd  */
     64       1.59     lukem 
     65      1.222     rmind /*
     66      1.222     rmind  * Socket operation routines.
     67      1.222     rmind  *
     68      1.222     rmind  * These routines are called by the routines in sys_socket.c or from a
     69      1.222     rmind  * system process, and implement the semantics of socket operations by
     70      1.222     rmind  * switching out to the protocol specific routines.
     71      1.222     rmind  */
     72      1.222     rmind 
     73       1.59     lukem #include <sys/cdefs.h>
     74  1.252.6.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.252.6.1 2017/05/02 03:19:22 pgoyette Exp $");
     75       1.64   thorpej 
     76      1.246     pooka #ifdef _KERNEL_OPT
     77      1.179  christos #include "opt_compat_netbsd.h"
     78       1.64   thorpej #include "opt_sock_counters.h"
     79       1.64   thorpej #include "opt_sosend_loan.h"
     80       1.81    martin #include "opt_mbuftrace.h"
     81       1.84     ragge #include "opt_somaxkva.h"
     82      1.167        ad #include "opt_multiprocessor.h"	/* XXX */
     83      1.247       rjs #include "opt_sctp.h"
     84      1.246     pooka #endif
     85        1.1       cgd 
     86        1.9   mycroft #include <sys/param.h>
     87        1.9   mycroft #include <sys/systm.h>
     88        1.9   mycroft #include <sys/proc.h>
     89        1.9   mycroft #include <sys/file.h>
     90      1.142    dyoung #include <sys/filedesc.h>
     91      1.173    plunky #include <sys/kmem.h>
     92        1.9   mycroft #include <sys/mbuf.h>
     93        1.9   mycroft #include <sys/domain.h>
     94        1.9   mycroft #include <sys/kernel.h>
     95        1.9   mycroft #include <sys/protosw.h>
     96        1.9   mycroft #include <sys/socket.h>
     97        1.9   mycroft #include <sys/socketvar.h>
     98       1.21  christos #include <sys/signalvar.h>
     99        1.9   mycroft #include <sys/resourcevar.h>
    100      1.174     pooka #include <sys/uidinfo.h>
    101       1.72  jdolecek #include <sys/event.h>
    102       1.89  christos #include <sys/poll.h>
    103      1.118      elad #include <sys/kauth.h>
    104      1.136        ad #include <sys/mutex.h>
    105      1.136        ad #include <sys/condvar.h>
    106      1.205    bouyer #include <sys/kthread.h>
    107       1.37   thorpej 
    108      1.179  christos #ifdef COMPAT_50
    109      1.179  christos #include <compat/sys/time.h>
    110      1.184  christos #include <compat/sys/socket.h>
    111      1.179  christos #endif
    112      1.179  christos 
    113      1.202  uebayasi #include <uvm/uvm_extern.h>
    114      1.202  uebayasi #include <uvm/uvm_loan.h>
    115      1.202  uebayasi #include <uvm/uvm_page.h>
    116       1.64   thorpej 
    117       1.77   thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    118       1.37   thorpej 
    119      1.142    dyoung extern const struct fileops socketops;
    120      1.142    dyoung 
    121       1.54     lukem extern int	somaxconn;			/* patchable (XXX sysctl) */
    122       1.54     lukem int		somaxconn = SOMAXCONN;
    123      1.160        ad kmutex_t	*softnet_lock;
    124       1.49  jonathan 
    125       1.64   thorpej #ifdef SOSEND_COUNTERS
    126       1.64   thorpej #include <sys/device.h>
    127       1.64   thorpej 
    128      1.113   thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    129       1.64   thorpej     NULL, "sosend", "loan big");
    130      1.113   thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    131       1.64   thorpej     NULL, "sosend", "copy big");
    132      1.113   thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    133       1.64   thorpej     NULL, "sosend", "copy small");
    134      1.113   thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    135       1.64   thorpej     NULL, "sosend", "kva limit");
    136       1.64   thorpej 
    137       1.64   thorpej #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    138       1.64   thorpej 
    139      1.101      matt EVCNT_ATTACH_STATIC(sosend_loan_big);
    140      1.101      matt EVCNT_ATTACH_STATIC(sosend_copy_big);
    141      1.101      matt EVCNT_ATTACH_STATIC(sosend_copy_small);
    142      1.101      matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
    143       1.64   thorpej #else
    144       1.64   thorpej 
    145       1.64   thorpej #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    146       1.64   thorpej 
    147       1.64   thorpej #endif /* SOSEND_COUNTERS */
    148       1.64   thorpej 
    149      1.167        ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    150      1.121      yamt int sock_loan_thresh = -1;
    151       1.71   thorpej #else
    152      1.121      yamt int sock_loan_thresh = 4096;
    153       1.65   thorpej #endif
    154       1.64   thorpej 
    155      1.136        ad static kmutex_t so_pendfree_lock;
    156      1.205    bouyer static struct mbuf *so_pendfree = NULL;
    157       1.64   thorpej 
    158       1.84     ragge #ifndef SOMAXKVA
    159       1.84     ragge #define	SOMAXKVA (16 * 1024 * 1024)
    160       1.84     ragge #endif
    161       1.84     ragge int somaxkva = SOMAXKVA;
    162      1.113   thorpej static int socurkva;
    163      1.136        ad static kcondvar_t socurkva_cv;
    164       1.64   thorpej 
    165      1.191      elad static kauth_listener_t socket_listener;
    166      1.191      elad 
    167       1.64   thorpej #define	SOCK_LOAN_CHUNK		65536
    168       1.64   thorpej 
    169      1.205    bouyer static void sopendfree_thread(void *);
    170      1.205    bouyer static kcondvar_t pendfree_thread_cv;
    171      1.205    bouyer static lwp_t *sopendfree_lwp;
    172       1.93      yamt 
    173      1.212     pooka static void sysctl_kern_socket_setup(void);
    174      1.178     pooka static struct sysctllog *socket_sysctllog;
    175      1.178     pooka 
    176      1.113   thorpej static vsize_t
    177      1.129      yamt sokvareserve(struct socket *so, vsize_t len)
    178       1.80      yamt {
    179       1.98  christos 	int error;
    180       1.80      yamt 
    181      1.136        ad 	mutex_enter(&so_pendfree_lock);
    182       1.80      yamt 	while (socurkva + len > somaxkva) {
    183       1.80      yamt 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    184      1.136        ad 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    185       1.98  christos 		if (error) {
    186       1.98  christos 			len = 0;
    187       1.98  christos 			break;
    188       1.98  christos 		}
    189       1.80      yamt 	}
    190       1.93      yamt 	socurkva += len;
    191      1.136        ad 	mutex_exit(&so_pendfree_lock);
    192       1.98  christos 	return len;
    193       1.95      yamt }
    194       1.95      yamt 
    195      1.113   thorpej static void
    196       1.95      yamt sokvaunreserve(vsize_t len)
    197       1.95      yamt {
    198       1.95      yamt 
    199      1.136        ad 	mutex_enter(&so_pendfree_lock);
    200       1.95      yamt 	socurkva -= len;
    201      1.136        ad 	cv_broadcast(&socurkva_cv);
    202      1.136        ad 	mutex_exit(&so_pendfree_lock);
    203       1.95      yamt }
    204       1.95      yamt 
    205       1.95      yamt /*
    206       1.95      yamt  * sokvaalloc: allocate kva for loan.
    207       1.95      yamt  */
    208       1.95      yamt 
    209       1.95      yamt vaddr_t
    210      1.209      matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    211       1.95      yamt {
    212       1.95      yamt 	vaddr_t lva;
    213       1.95      yamt 
    214       1.95      yamt 	/*
    215       1.95      yamt 	 * reserve kva.
    216       1.95      yamt 	 */
    217       1.95      yamt 
    218       1.98  christos 	if (sokvareserve(so, len) == 0)
    219       1.98  christos 		return 0;
    220       1.93      yamt 
    221       1.93      yamt 	/*
    222       1.93      yamt 	 * allocate kva.
    223       1.93      yamt 	 */
    224       1.80      yamt 
    225      1.209      matt 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    226      1.209      matt 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    227       1.95      yamt 	if (lva == 0) {
    228       1.95      yamt 		sokvaunreserve(len);
    229       1.80      yamt 		return (0);
    230       1.95      yamt 	}
    231       1.80      yamt 
    232       1.80      yamt 	return lva;
    233       1.80      yamt }
    234       1.80      yamt 
    235       1.93      yamt /*
    236       1.93      yamt  * sokvafree: free kva for loan.
    237       1.93      yamt  */
    238       1.93      yamt 
    239       1.80      yamt void
    240       1.80      yamt sokvafree(vaddr_t sva, vsize_t len)
    241       1.80      yamt {
    242       1.93      yamt 
    243       1.93      yamt 	/*
    244       1.93      yamt 	 * free kva.
    245       1.93      yamt 	 */
    246       1.80      yamt 
    247      1.109      yamt 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    248       1.93      yamt 
    249       1.93      yamt 	/*
    250       1.93      yamt 	 * unreserve kva.
    251       1.93      yamt 	 */
    252       1.93      yamt 
    253       1.95      yamt 	sokvaunreserve(len);
    254       1.80      yamt }
    255       1.80      yamt 
    256       1.64   thorpej static void
    257      1.134  christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    258       1.64   thorpej {
    259      1.156      yamt 	vaddr_t sva, eva;
    260       1.64   thorpej 	vsize_t len;
    261      1.156      yamt 	int npgs;
    262      1.156      yamt 
    263      1.156      yamt 	KASSERT(pgs != NULL);
    264       1.64   thorpej 
    265       1.64   thorpej 	eva = round_page((vaddr_t) buf + size);
    266       1.64   thorpej 	sva = trunc_page((vaddr_t) buf);
    267       1.64   thorpej 	len = eva - sva;
    268       1.64   thorpej 	npgs = len >> PAGE_SHIFT;
    269       1.64   thorpej 
    270       1.64   thorpej 	pmap_kremove(sva, len);
    271       1.64   thorpej 	pmap_update(pmap_kernel());
    272       1.64   thorpej 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    273       1.80      yamt 	sokvafree(sva, len);
    274       1.64   thorpej }
    275       1.64   thorpej 
    276       1.93      yamt /*
    277      1.205    bouyer  * sopendfree_thread: free mbufs on "pendfree" list.
    278      1.136        ad  * unlock and relock so_pendfree_lock when freeing mbufs.
    279       1.93      yamt  */
    280       1.93      yamt 
    281      1.205    bouyer static void
    282      1.205    bouyer sopendfree_thread(void *v)
    283       1.93      yamt {
    284      1.137        ad 	struct mbuf *m, *next;
    285      1.205    bouyer 	size_t rv;
    286       1.93      yamt 
    287      1.205    bouyer 	mutex_enter(&so_pendfree_lock);
    288       1.64   thorpej 
    289      1.205    bouyer 	for (;;) {
    290      1.205    bouyer 		rv = 0;
    291      1.205    bouyer 		while (so_pendfree != NULL) {
    292      1.205    bouyer 			m = so_pendfree;
    293      1.205    bouyer 			so_pendfree = NULL;
    294      1.205    bouyer 			mutex_exit(&so_pendfree_lock);
    295      1.205    bouyer 
    296      1.205    bouyer 			for (; m != NULL; m = next) {
    297      1.205    bouyer 				next = m->m_next;
    298  1.252.6.1  pgoyette 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
    299  1.252.6.1  pgoyette 				    0);
    300      1.205    bouyer 				KASSERT(m->m_ext.ext_refcnt == 0);
    301      1.205    bouyer 
    302      1.205    bouyer 				rv += m->m_ext.ext_size;
    303      1.205    bouyer 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    304      1.205    bouyer 				    m->m_ext.ext_size);
    305      1.205    bouyer 				pool_cache_put(mb_cache, m);
    306      1.205    bouyer 			}
    307       1.93      yamt 
    308      1.205    bouyer 			mutex_enter(&so_pendfree_lock);
    309       1.93      yamt 		}
    310      1.205    bouyer 		if (rv)
    311      1.205    bouyer 			cv_broadcast(&socurkva_cv);
    312      1.205    bouyer 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    313       1.64   thorpej 	}
    314      1.205    bouyer 	panic("sopendfree_thread");
    315      1.205    bouyer 	/* NOTREACHED */
    316       1.64   thorpej }
    317       1.64   thorpej 
    318       1.80      yamt void
    319      1.134  christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    320       1.64   thorpej {
    321       1.64   thorpej 
    322      1.156      yamt 	KASSERT(m != NULL);
    323       1.64   thorpej 
    324       1.93      yamt 	/*
    325       1.93      yamt 	 * postpone freeing mbuf.
    326       1.93      yamt 	 *
    327       1.93      yamt 	 * we can't do it in interrupt context
    328       1.93      yamt 	 * because we need to put kva back to kernel_map.
    329       1.93      yamt 	 */
    330       1.93      yamt 
    331      1.136        ad 	mutex_enter(&so_pendfree_lock);
    332       1.92      yamt 	m->m_next = so_pendfree;
    333       1.92      yamt 	so_pendfree = m;
    334      1.205    bouyer 	cv_signal(&pendfree_thread_cv);
    335      1.136        ad 	mutex_exit(&so_pendfree_lock);
    336       1.64   thorpej }
    337       1.64   thorpej 
    338       1.64   thorpej static long
    339       1.64   thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    340       1.64   thorpej {
    341       1.64   thorpej 	struct iovec *iov = uio->uio_iov;
    342       1.64   thorpej 	vaddr_t sva, eva;
    343       1.64   thorpej 	vsize_t len;
    344      1.156      yamt 	vaddr_t lva;
    345      1.156      yamt 	int npgs, error;
    346      1.156      yamt 	vaddr_t va;
    347      1.156      yamt 	int i;
    348       1.64   thorpej 
    349      1.116      yamt 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    350      1.252       uwe 		return (0);
    351       1.64   thorpej 
    352       1.64   thorpej 	if (iov->iov_len < (size_t) space)
    353       1.64   thorpej 		space = iov->iov_len;
    354       1.64   thorpej 	if (space > SOCK_LOAN_CHUNK)
    355       1.64   thorpej 		space = SOCK_LOAN_CHUNK;
    356       1.64   thorpej 
    357       1.64   thorpej 	eva = round_page((vaddr_t) iov->iov_base + space);
    358       1.64   thorpej 	sva = trunc_page((vaddr_t) iov->iov_base);
    359       1.64   thorpej 	len = eva - sva;
    360       1.64   thorpej 	npgs = len >> PAGE_SHIFT;
    361       1.64   thorpej 
    362       1.79   thorpej 	KASSERT(npgs <= M_EXT_MAXPAGES);
    363       1.79   thorpej 
    364      1.209      matt 	lva = sokvaalloc(sva, len, so);
    365       1.64   thorpej 	if (lva == 0)
    366      1.252       uwe 		return 0;
    367       1.64   thorpej 
    368      1.116      yamt 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    369       1.79   thorpej 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    370       1.64   thorpej 	if (error) {
    371       1.80      yamt 		sokvafree(lva, len);
    372      1.252       uwe 		return (0);
    373       1.64   thorpej 	}
    374       1.64   thorpej 
    375       1.64   thorpej 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    376       1.79   thorpej 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    377      1.194    cegger 		    VM_PROT_READ, 0);
    378       1.64   thorpej 	pmap_update(pmap_kernel());
    379       1.64   thorpej 
    380       1.64   thorpej 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    381       1.64   thorpej 
    382      1.134  christos 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    383       1.79   thorpej 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    384       1.64   thorpej 
    385       1.64   thorpej 	uio->uio_resid -= space;
    386       1.64   thorpej 	/* uio_offset not updated, not set/used for write(2) */
    387      1.134  christos 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    388       1.64   thorpej 	uio->uio_iov->iov_len -= space;
    389       1.64   thorpej 	if (uio->uio_iov->iov_len == 0) {
    390       1.64   thorpej 		uio->uio_iov++;
    391       1.64   thorpej 		uio->uio_iovcnt--;
    392       1.64   thorpej 	}
    393       1.64   thorpej 
    394       1.64   thorpej 	return (space);
    395       1.64   thorpej }
    396       1.64   thorpej 
    397      1.142    dyoung struct mbuf *
    398      1.147    dyoung getsombuf(struct socket *so, int type)
    399      1.142    dyoung {
    400      1.142    dyoung 	struct mbuf *m;
    401      1.142    dyoung 
    402      1.147    dyoung 	m = m_get(M_WAIT, type);
    403      1.142    dyoung 	MCLAIM(m, so->so_mowner);
    404      1.142    dyoung 	return m;
    405      1.142    dyoung }
    406      1.142    dyoung 
    407      1.191      elad static int
    408      1.191      elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    409      1.191      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    410      1.191      elad {
    411      1.191      elad 	int result;
    412      1.191      elad 	enum kauth_network_req req;
    413      1.191      elad 
    414      1.191      elad 	result = KAUTH_RESULT_DEFER;
    415      1.191      elad 	req = (enum kauth_network_req)arg0;
    416      1.191      elad 
    417      1.193      elad 	if ((action != KAUTH_NETWORK_SOCKET) &&
    418      1.193      elad 	    (action != KAUTH_NETWORK_BIND))
    419      1.191      elad 		return result;
    420      1.191      elad 
    421      1.191      elad 	switch (req) {
    422      1.193      elad 	case KAUTH_REQ_NETWORK_BIND_PORT:
    423      1.193      elad 		result = KAUTH_RESULT_ALLOW;
    424      1.193      elad 		break;
    425      1.193      elad 
    426      1.191      elad 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    427      1.191      elad 		/* Normal users can only drop their own connections. */
    428      1.191      elad 		struct socket *so = (struct socket *)arg1;
    429      1.191      elad 
    430      1.220  christos 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    431      1.191      elad 			result = KAUTH_RESULT_ALLOW;
    432      1.191      elad 
    433      1.191      elad 		break;
    434      1.191      elad 		}
    435      1.191      elad 
    436      1.191      elad 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    437      1.191      elad 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    438      1.203      matt 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    439      1.203      matt 		    || (u_long)arg1 == PF_BLUETOOTH) {
    440      1.191      elad 			result = KAUTH_RESULT_ALLOW;
    441      1.203      matt 		} else {
    442      1.191      elad 			/* Privileged, let secmodel handle this. */
    443      1.191      elad 			if ((u_long)arg2 == SOCK_RAW)
    444      1.191      elad 				break;
    445      1.191      elad 		}
    446      1.191      elad 
    447      1.191      elad 		result = KAUTH_RESULT_ALLOW;
    448      1.191      elad 
    449      1.191      elad 		break;
    450      1.191      elad 
    451      1.192      elad 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    452      1.192      elad 		result = KAUTH_RESULT_ALLOW;
    453      1.192      elad 
    454      1.192      elad 		break;
    455      1.192      elad 
    456      1.191      elad 	default:
    457      1.191      elad 		break;
    458      1.191      elad 	}
    459      1.191      elad 
    460      1.191      elad 	return result;
    461      1.191      elad }
    462      1.191      elad 
    463      1.119      yamt void
    464      1.119      yamt soinit(void)
    465      1.119      yamt {
    466      1.119      yamt 
    467      1.212     pooka 	sysctl_kern_socket_setup();
    468      1.178     pooka 
    469      1.148        ad 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    470      1.160        ad 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    471      1.136        ad 	cv_init(&socurkva_cv, "sokva");
    472      1.205    bouyer 	cv_init(&pendfree_thread_cv, "sopendfr");
    473      1.166        ad 	soinit2();
    474      1.136        ad 
    475      1.119      yamt 	/* Set the initial adjusted socket buffer size. */
    476      1.119      yamt 	if (sb_max_set(sb_max))
    477      1.119      yamt 		panic("bad initial sb_max value: %lu", sb_max);
    478      1.119      yamt 
    479      1.191      elad 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    480      1.191      elad 	    socket_listener_cb, NULL);
    481      1.119      yamt }
    482      1.119      yamt 
    483      1.205    bouyer void
    484      1.205    bouyer soinit1(void)
    485      1.205    bouyer {
    486      1.205    bouyer 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    487      1.205    bouyer 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    488      1.205    bouyer 	if (error)
    489      1.205    bouyer 		panic("soinit1 %d", error);
    490      1.205    bouyer }
    491      1.205    bouyer 
    492        1.1       cgd /*
    493      1.222     rmind  * socreate: create a new socket of the specified type and the protocol.
    494      1.222     rmind  *
    495      1.222     rmind  * => Caller may specify another socket for lock sharing (must not be held).
    496      1.222     rmind  * => Returns the new socket without lock held.
    497      1.224     rmind  */
    498        1.3    andrew int
    499      1.160        ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    500      1.160        ad 	 struct socket *lockso)
    501        1.1       cgd {
    502       1.99      matt 	const struct protosw	*prp;
    503       1.54     lukem 	struct socket	*so;
    504      1.115      yamt 	uid_t		uid;
    505      1.160        ad 	int		error;
    506      1.160        ad 	kmutex_t	*lock;
    507        1.1       cgd 
    508      1.132      elad 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    509      1.132      elad 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    510      1.132      elad 	    KAUTH_ARG(proto));
    511      1.140    dyoung 	if (error != 0)
    512      1.140    dyoung 		return error;
    513      1.127      elad 
    514        1.1       cgd 	if (proto)
    515        1.1       cgd 		prp = pffindproto(dom, proto, type);
    516        1.1       cgd 	else
    517        1.1       cgd 		prp = pffindtype(dom, type);
    518      1.140    dyoung 	if (prp == NULL) {
    519      1.120  ginsbach 		/* no support for domain */
    520      1.120  ginsbach 		if (pffinddomain(dom) == 0)
    521      1.140    dyoung 			return EAFNOSUPPORT;
    522      1.120  ginsbach 		/* no support for socket type */
    523      1.120  ginsbach 		if (proto == 0 && type != 0)
    524      1.140    dyoung 			return EPROTOTYPE;
    525      1.140    dyoung 		return EPROTONOSUPPORT;
    526      1.120  ginsbach 	}
    527      1.223     rmind 	if (prp->pr_usrreqs == NULL)
    528      1.140    dyoung 		return EPROTONOSUPPORT;
    529        1.1       cgd 	if (prp->pr_type != type)
    530      1.140    dyoung 		return EPROTOTYPE;
    531      1.160        ad 
    532      1.160        ad 	so = soget(true);
    533        1.1       cgd 	so->so_type = type;
    534        1.1       cgd 	so->so_proto = prp;
    535       1.33      matt 	so->so_send = sosend;
    536       1.33      matt 	so->so_receive = soreceive;
    537       1.78      matt #ifdef MBUFTRACE
    538       1.78      matt 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    539       1.78      matt 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    540       1.78      matt 	so->so_mowner = &prp->pr_domain->dom_mowner;
    541       1.78      matt #endif
    542      1.138     rmind 	uid = kauth_cred_geteuid(l->l_cred);
    543      1.115      yamt 	so->so_uidinfo = uid_find(uid);
    544      1.168      yamt 	so->so_cpid = l->l_proc->p_pid;
    545      1.224     rmind 
    546      1.224     rmind 	/*
    547      1.224     rmind 	 * Lock assigned and taken during PCB attach, unless we share
    548      1.224     rmind 	 * the lock with another socket, e.g. socketpair(2) case.
    549      1.224     rmind 	 */
    550      1.224     rmind 	if (lockso) {
    551      1.160        ad 		lock = lockso->so_lock;
    552      1.160        ad 		so->so_lock = lock;
    553      1.160        ad 		mutex_obj_hold(lock);
    554      1.160        ad 		mutex_enter(lock);
    555      1.160        ad 	}
    556      1.224     rmind 
    557      1.224     rmind 	/* Attach the PCB (returns with the socket lock held). */
    558      1.224     rmind 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    559      1.160        ad 	KASSERT(solocked(so));
    560      1.224     rmind 
    561      1.224     rmind 	if (error) {
    562      1.222     rmind 		KASSERT(so->so_pcb == NULL);
    563        1.1       cgd 		so->so_state |= SS_NOFDREF;
    564        1.1       cgd 		sofree(so);
    565      1.140    dyoung 		return error;
    566        1.1       cgd 	}
    567      1.198      elad 	so->so_cred = kauth_cred_dup(l->l_cred);
    568      1.160        ad 	sounlock(so);
    569      1.224     rmind 
    570        1.1       cgd 	*aso = so;
    571      1.140    dyoung 	return 0;
    572        1.1       cgd }
    573        1.1       cgd 
    574      1.222     rmind /*
    575      1.222     rmind  * fsocreate: create a socket and a file descriptor associated with it.
    576      1.222     rmind  *
    577      1.222     rmind  * => On success, write file descriptor to fdout and return zero.
    578      1.222     rmind  * => On failure, return non-zero; *fdout will be undefined.
    579      1.142    dyoung  */
    580      1.142    dyoung int
    581      1.222     rmind fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    582      1.142    dyoung {
    583      1.222     rmind 	lwp_t *l = curlwp;
    584      1.222     rmind 	int error, fd, flags;
    585      1.222     rmind 	struct socket *so;
    586      1.222     rmind 	struct file *fp;
    587      1.142    dyoung 
    588      1.222     rmind 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    589      1.204  christos 		return error;
    590      1.222     rmind 	}
    591      1.222     rmind 	flags = type & SOCK_FLAGS_MASK;
    592      1.204  christos 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    593      1.207  christos 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    594      1.207  christos 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    595      1.142    dyoung 	fp->f_type = DTYPE_SOCKET;
    596      1.142    dyoung 	fp->f_ops = &socketops;
    597      1.222     rmind 
    598      1.222     rmind 	type &= ~SOCK_FLAGS_MASK;
    599      1.222     rmind 	error = socreate(domain, &so, type, proto, l, NULL);
    600      1.222     rmind 	if (error) {
    601      1.155        ad 		fd_abort(curproc, fp, fd);
    602      1.222     rmind 		return error;
    603      1.222     rmind 	}
    604      1.222     rmind 	if (flags & SOCK_NONBLOCK) {
    605      1.222     rmind 		so->so_state |= SS_NBIO;
    606      1.222     rmind 	}
    607      1.235      matt 	fp->f_socket = so;
    608      1.222     rmind 	fd_affix(curproc, fp, fd);
    609      1.222     rmind 
    610      1.222     rmind 	if (sop != NULL) {
    611      1.222     rmind 		*sop = so;
    612      1.142    dyoung 	}
    613      1.222     rmind 	*fdout = fd;
    614      1.142    dyoung 	return error;
    615      1.142    dyoung }
    616      1.142    dyoung 
    617        1.3    andrew int
    618      1.190    dyoung sofamily(const struct socket *so)
    619      1.190    dyoung {
    620      1.190    dyoung 	const struct protosw *pr;
    621      1.190    dyoung 	const struct domain *dom;
    622      1.190    dyoung 
    623      1.190    dyoung 	if ((pr = so->so_proto) == NULL)
    624      1.190    dyoung 		return AF_UNSPEC;
    625      1.190    dyoung 	if ((dom = pr->pr_domain) == NULL)
    626      1.190    dyoung 		return AF_UNSPEC;
    627      1.190    dyoung 	return dom->dom_family;
    628      1.190    dyoung }
    629      1.190    dyoung 
    630      1.190    dyoung int
    631      1.236       rtr sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    632        1.1       cgd {
    633      1.160        ad 	int	error;
    634        1.1       cgd 
    635      1.160        ad 	solock(so);
    636      1.237       rtr 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    637      1.237       rtr 		sounlock(so);
    638      1.238       rtr 		return EAFNOSUPPORT;
    639      1.237       rtr 	}
    640      1.231       rtr 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    641      1.160        ad 	sounlock(so);
    642      1.140    dyoung 	return error;
    643        1.1       cgd }
    644        1.1       cgd 
    645        1.3    andrew int
    646      1.150      elad solisten(struct socket *so, int backlog, struct lwp *l)
    647        1.1       cgd {
    648      1.160        ad 	int	error;
    649      1.247       rjs 	short	oldopt, oldqlimit;
    650        1.1       cgd 
    651      1.160        ad 	solock(so);
    652  1.252.6.1  pgoyette 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    653      1.163        ad 	    SS_ISDISCONNECTING)) != 0) {
    654      1.222     rmind 		sounlock(so);
    655      1.222     rmind 		return EINVAL;
    656      1.163        ad 	}
    657      1.247       rjs 	oldopt = so->so_options;
    658      1.247       rjs 	oldqlimit = so->so_qlimit;
    659      1.247       rjs 	if (TAILQ_EMPTY(&so->so_q))
    660      1.247       rjs 		so->so_options |= SO_ACCEPTCONN;
    661      1.247       rjs 	if (backlog < 0)
    662      1.247       rjs 		backlog = 0;
    663      1.247       rjs 	so->so_qlimit = min(backlog, somaxconn);
    664      1.247       rjs 
    665      1.231       rtr 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    666      1.140    dyoung 	if (error != 0) {
    667      1.247       rjs 		so->so_options = oldopt;
    668      1.247       rjs 		so->so_qlimit = oldqlimit;
    669      1.160        ad 		sounlock(so);
    670      1.140    dyoung 		return error;
    671        1.1       cgd 	}
    672      1.160        ad 	sounlock(so);
    673      1.140    dyoung 	return 0;
    674        1.1       cgd }
    675        1.1       cgd 
    676       1.21  christos void
    677       1.54     lukem sofree(struct socket *so)
    678        1.1       cgd {
    679      1.161        ad 	u_int refs;
    680        1.1       cgd 
    681      1.160        ad 	KASSERT(solocked(so));
    682      1.160        ad 
    683      1.160        ad 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    684      1.160        ad 		sounlock(so);
    685        1.1       cgd 		return;
    686      1.160        ad 	}
    687       1.43   mycroft 	if (so->so_head) {
    688       1.43   mycroft 		/*
    689       1.43   mycroft 		 * We must not decommission a socket that's on the accept(2)
    690       1.43   mycroft 		 * queue.  If we do, then accept(2) may hang after select(2)
    691       1.43   mycroft 		 * indicated that the listening socket was ready.
    692       1.43   mycroft 		 */
    693      1.160        ad 		if (!soqremque(so, 0)) {
    694      1.160        ad 			sounlock(so);
    695       1.43   mycroft 			return;
    696      1.160        ad 		}
    697       1.43   mycroft 	}
    698       1.98  christos 	if (so->so_rcv.sb_hiwat)
    699      1.110  christos 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    700       1.98  christos 		    RLIM_INFINITY);
    701       1.98  christos 	if (so->so_snd.sb_hiwat)
    702      1.110  christos 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    703       1.98  christos 		    RLIM_INFINITY);
    704       1.98  christos 	sbrelease(&so->so_snd, so);
    705      1.160        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    706      1.160        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    707      1.160        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    708        1.1       cgd 	sorflush(so);
    709      1.161        ad 	refs = so->so_aborting;	/* XXX */
    710      1.177        ad 	/* Remove acccept filter if one is present. */
    711      1.170       tls 	if (so->so_accf != NULL)
    712      1.177        ad 		(void)accept_filt_clear(so);
    713      1.160        ad 	sounlock(so);
    714      1.161        ad 	if (refs == 0)		/* XXX */
    715      1.161        ad 		soput(so);
    716        1.1       cgd }
    717        1.1       cgd 
    718        1.1       cgd /*
    719      1.222     rmind  * soclose: close a socket on last file table reference removal.
    720      1.222     rmind  * Initiate disconnect if connected.  Free socket when disconnect complete.
    721        1.1       cgd  */
    722        1.3    andrew int
    723       1.54     lukem soclose(struct socket *so)
    724        1.1       cgd {
    725      1.222     rmind 	struct socket *so2;
    726      1.222     rmind 	int error = 0;
    727        1.1       cgd 
    728      1.160        ad 	solock(so);
    729        1.1       cgd 	if (so->so_options & SO_ACCEPTCONN) {
    730      1.172        ad 		for (;;) {
    731      1.172        ad 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    732      1.160        ad 				KASSERT(solocked2(so, so2));
    733      1.160        ad 				(void) soqremque(so2, 0);
    734      1.160        ad 				/* soabort drops the lock. */
    735      1.160        ad 				(void) soabort(so2);
    736      1.160        ad 				solock(so);
    737      1.172        ad 				continue;
    738      1.160        ad 			}
    739      1.172        ad 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    740      1.160        ad 				KASSERT(solocked2(so, so2));
    741      1.160        ad 				(void) soqremque(so2, 1);
    742      1.160        ad 				/* soabort drops the lock. */
    743      1.160        ad 				(void) soabort(so2);
    744      1.160        ad 				solock(so);
    745      1.172        ad 				continue;
    746      1.160        ad 			}
    747      1.172        ad 			break;
    748      1.172        ad 		}
    749        1.1       cgd 	}
    750      1.222     rmind 	if (so->so_pcb == NULL)
    751        1.1       cgd 		goto discard;
    752        1.1       cgd 	if (so->so_state & SS_ISCONNECTED) {
    753        1.1       cgd 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    754        1.1       cgd 			error = sodisconnect(so);
    755        1.1       cgd 			if (error)
    756        1.1       cgd 				goto drop;
    757        1.1       cgd 		}
    758        1.1       cgd 		if (so->so_options & SO_LINGER) {
    759      1.206  christos 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    760      1.206  christos 			    (SS_ISDISCONNECTING|SS_NBIO))
    761        1.1       cgd 				goto drop;
    762       1.21  christos 			while (so->so_state & SS_ISCONNECTED) {
    763      1.185      yamt 				error = sowait(so, true, so->so_linger * hz);
    764       1.21  christos 				if (error)
    765        1.1       cgd 					break;
    766       1.21  christos 			}
    767        1.1       cgd 		}
    768        1.1       cgd 	}
    769       1.54     lukem  drop:
    770        1.1       cgd 	if (so->so_pcb) {
    771      1.224     rmind 		KASSERT(solocked(so));
    772      1.224     rmind 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    773        1.1       cgd 	}
    774       1.54     lukem  discard:
    775      1.222     rmind 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    776      1.198      elad 	kauth_cred_free(so->so_cred);
    777        1.1       cgd 	so->so_state |= SS_NOFDREF;
    778        1.1       cgd 	sofree(so);
    779      1.222     rmind 	return error;
    780        1.1       cgd }
    781        1.1       cgd 
    782        1.1       cgd /*
    783      1.160        ad  * Must be called with the socket locked..  Will return with it unlocked.
    784        1.1       cgd  */
    785        1.3    andrew int
    786       1.54     lukem soabort(struct socket *so)
    787        1.1       cgd {
    788      1.161        ad 	u_int refs;
    789      1.139      yamt 	int error;
    790  1.252.6.1  pgoyette 
    791      1.160        ad 	KASSERT(solocked(so));
    792      1.160        ad 	KASSERT(so->so_head == NULL);
    793        1.1       cgd 
    794      1.161        ad 	so->so_aborting++;		/* XXX */
    795      1.230       mrg 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    796      1.161        ad 	refs = --so->so_aborting;	/* XXX */
    797      1.164  drochner 	if (error || (refs == 0)) {
    798      1.139      yamt 		sofree(so);
    799      1.160        ad 	} else {
    800      1.160        ad 		sounlock(so);
    801      1.139      yamt 	}
    802      1.139      yamt 	return error;
    803        1.1       cgd }
    804        1.1       cgd 
    805        1.3    andrew int
    806      1.239       rtr soaccept(struct socket *so, struct sockaddr *nam)
    807        1.1       cgd {
    808      1.222     rmind 	int error;
    809      1.160        ad 
    810      1.160        ad 	KASSERT(solocked(so));
    811      1.222     rmind 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    812        1.1       cgd 
    813        1.1       cgd 	so->so_state &= ~SS_NOFDREF;
    814       1.55   thorpej 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    815       1.55   thorpej 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    816      1.225       rtr 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    817       1.41   mycroft 	else
    818       1.53    itojun 		error = ECONNABORTED;
    819       1.52    itojun 
    820      1.222     rmind 	return error;
    821        1.1       cgd }
    822        1.1       cgd 
    823        1.3    andrew int
    824      1.240       rtr soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    825        1.1       cgd {
    826      1.222     rmind 	int error;
    827      1.160        ad 
    828      1.160        ad 	KASSERT(solocked(so));
    829        1.1       cgd 
    830        1.1       cgd 	if (so->so_options & SO_ACCEPTCONN)
    831      1.222     rmind 		return EOPNOTSUPP;
    832        1.1       cgd 	/*
    833        1.1       cgd 	 * If protocol is connection-based, can only connect once.
    834        1.1       cgd 	 * Otherwise, if connected, try to disconnect first.
    835        1.1       cgd 	 * This allows user to disconnect by connecting to, e.g.,
    836        1.1       cgd 	 * a null address.
    837        1.1       cgd 	 */
    838        1.1       cgd 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    839        1.1       cgd 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    840      1.241       rtr 	    (error = sodisconnect(so)))) {
    841        1.1       cgd 		error = EISCONN;
    842      1.241       rtr 	} else {
    843      1.242       rtr 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    844      1.241       rtr 			return EAFNOSUPPORT;
    845      1.241       rtr 		}
    846      1.231       rtr 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    847      1.241       rtr 	}
    848      1.222     rmind 
    849      1.222     rmind 	return error;
    850        1.1       cgd }
    851        1.1       cgd 
    852        1.3    andrew int
    853       1.54     lukem soconnect2(struct socket *so1, struct socket *so2)
    854        1.1       cgd {
    855      1.160        ad 	KASSERT(solocked2(so1, so2));
    856        1.1       cgd 
    857      1.234       rtr 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    858        1.1       cgd }
    859        1.1       cgd 
    860        1.3    andrew int
    861       1.54     lukem sodisconnect(struct socket *so)
    862        1.1       cgd {
    863      1.160        ad 	int	error;
    864      1.160        ad 
    865      1.160        ad 	KASSERT(solocked(so));
    866        1.1       cgd 
    867        1.1       cgd 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    868        1.1       cgd 		error = ENOTCONN;
    869      1.160        ad 	} else if (so->so_state & SS_ISDISCONNECTING) {
    870        1.1       cgd 		error = EALREADY;
    871      1.160        ad 	} else {
    872      1.229       rtr 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    873        1.1       cgd 	}
    874        1.1       cgd 	return (error);
    875        1.1       cgd }
    876        1.1       cgd 
    877       1.15   mycroft #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    878        1.1       cgd /*
    879        1.1       cgd  * Send on a socket.
    880        1.1       cgd  * If send must go all at once and message is larger than
    881        1.1       cgd  * send buffering, then hard error.
    882        1.1       cgd  * Lock against other senders.
    883        1.1       cgd  * If must go all at once and not enough room now, then
    884        1.1       cgd  * inform user that this would block and do nothing.
    885        1.1       cgd  * Otherwise, if nonblocking, send as much as possible.
    886        1.1       cgd  * The data to be sent is described by "uio" if nonzero,
    887        1.1       cgd  * otherwise by the mbuf chain "top" (which must be null
    888        1.1       cgd  * if uio is not).  Data provided in mbuf chain must be small
    889        1.1       cgd  * enough to send all at once.
    890        1.1       cgd  *
    891        1.1       cgd  * Returns nonzero on error, timeout or signal; callers
    892        1.1       cgd  * must check for short counts if EINTR/ERESTART are returned.
    893        1.1       cgd  * Data and control buffers are freed on return.
    894        1.1       cgd  */
    895        1.3    andrew int
    896      1.245       rtr sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    897      1.245       rtr 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    898        1.1       cgd {
    899       1.54     lukem 	struct mbuf	**mp, *m;
    900       1.58  jdolecek 	long		space, len, resid, clen, mlen;
    901       1.58  jdolecek 	int		error, s, dontroute, atomic;
    902      1.196       dsl 	short		wakeup_state = 0;
    903       1.54     lukem 
    904      1.160        ad 	clen = 0;
    905       1.64   thorpej 
    906      1.160        ad 	/*
    907      1.160        ad 	 * solock() provides atomicity of access.  splsoftnet() prevents
    908      1.160        ad 	 * protocol processing soft interrupts from interrupting us and
    909      1.160        ad 	 * blocking (expensive).
    910      1.160        ad 	 */
    911      1.160        ad 	s = splsoftnet();
    912      1.160        ad 	solock(so);
    913       1.54     lukem 	atomic = sosendallatonce(so) || top;
    914        1.1       cgd 	if (uio)
    915        1.1       cgd 		resid = uio->uio_resid;
    916        1.1       cgd 	else
    917        1.1       cgd 		resid = top->m_pkthdr.len;
    918        1.7       cgd 	/*
    919        1.7       cgd 	 * In theory resid should be unsigned.
    920        1.7       cgd 	 * However, space must be signed, as it might be less than 0
    921        1.7       cgd 	 * if we over-committed, and we must use a signed comparison
    922        1.7       cgd 	 * of space and resid.  On the other hand, a negative resid
    923        1.7       cgd 	 * causes us to loop sending 0-length segments to the protocol.
    924        1.7       cgd 	 */
    925       1.29   mycroft 	if (resid < 0) {
    926       1.29   mycroft 		error = EINVAL;
    927       1.29   mycroft 		goto out;
    928       1.29   mycroft 	}
    929        1.1       cgd 	dontroute =
    930        1.1       cgd 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    931        1.1       cgd 	    (so->so_proto->pr_flags & PR_ATOMIC);
    932      1.165  christos 	l->l_ru.ru_msgsnd++;
    933        1.1       cgd 	if (control)
    934        1.1       cgd 		clen = control->m_len;
    935       1.54     lukem  restart:
    936       1.21  christos 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    937        1.1       cgd 		goto out;
    938        1.1       cgd 	do {
    939      1.160        ad 		if (so->so_state & SS_CANTSENDMORE) {
    940      1.160        ad 			error = EPIPE;
    941      1.160        ad 			goto release;
    942      1.160        ad 		}
    943       1.48   thorpej 		if (so->so_error) {
    944       1.48   thorpej 			error = so->so_error;
    945       1.48   thorpej 			so->so_error = 0;
    946       1.48   thorpej 			goto release;
    947       1.48   thorpej 		}
    948        1.1       cgd 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    949        1.1       cgd 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    950      1.217     rmind 				if (resid || clen == 0) {
    951      1.160        ad 					error = ENOTCONN;
    952      1.160        ad 					goto release;
    953      1.160        ad 				}
    954      1.244       rtr 			} else if (addr == NULL) {
    955      1.160        ad 				error = EDESTADDRREQ;
    956      1.160        ad 				goto release;
    957      1.160        ad 			}
    958        1.1       cgd 		}
    959        1.1       cgd 		space = sbspace(&so->so_snd);
    960        1.1       cgd 		if (flags & MSG_OOB)
    961        1.1       cgd 			space += 1024;
    962       1.21  christos 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    963      1.160        ad 		    clen > so->so_snd.sb_hiwat) {
    964      1.160        ad 			error = EMSGSIZE;
    965      1.160        ad 			goto release;
    966      1.160        ad 		}
    967       1.96   mycroft 		if (space < resid + clen &&
    968        1.1       cgd 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    969      1.206  christos 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    970      1.160        ad 				error = EWOULDBLOCK;
    971      1.160        ad 				goto release;
    972      1.160        ad 			}
    973        1.1       cgd 			sbunlock(&so->so_snd);
    974      1.196       dsl 			if (wakeup_state & SS_RESTARTSYS) {
    975      1.196       dsl 				error = ERESTART;
    976      1.196       dsl 				goto out;
    977      1.196       dsl 			}
    978        1.1       cgd 			error = sbwait(&so->so_snd);
    979        1.1       cgd 			if (error)
    980        1.1       cgd 				goto out;
    981      1.196       dsl 			wakeup_state = so->so_state;
    982        1.1       cgd 			goto restart;
    983        1.1       cgd 		}
    984      1.196       dsl 		wakeup_state = 0;
    985        1.1       cgd 		mp = &top;
    986        1.1       cgd 		space -= clen;
    987        1.1       cgd 		do {
    988       1.45        tv 			if (uio == NULL) {
    989       1.45        tv 				/*
    990       1.45        tv 				 * Data is prepackaged in "top".
    991       1.45        tv 				 */
    992       1.45        tv 				resid = 0;
    993       1.45        tv 				if (flags & MSG_EOR)
    994       1.45        tv 					top->m_flags |= M_EOR;
    995       1.45        tv 			} else do {
    996      1.160        ad 				sounlock(so);
    997      1.160        ad 				splx(s);
    998      1.144    dyoung 				if (top == NULL) {
    999       1.78      matt 					m = m_gethdr(M_WAIT, MT_DATA);
   1000       1.45        tv 					mlen = MHLEN;
   1001       1.45        tv 					m->m_pkthdr.len = 0;
   1002      1.248     ozaki 					m_reset_rcvif(m);
   1003       1.45        tv 				} else {
   1004       1.78      matt 					m = m_get(M_WAIT, MT_DATA);
   1005       1.45        tv 					mlen = MLEN;
   1006       1.45        tv 				}
   1007       1.78      matt 				MCLAIM(m, so->so_snd.sb_mowner);
   1008      1.121      yamt 				if (sock_loan_thresh >= 0 &&
   1009      1.121      yamt 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1010      1.121      yamt 				    space >= sock_loan_thresh &&
   1011       1.64   thorpej 				    (len = sosend_loan(so, uio, m,
   1012      1.252       uwe 						       space)) != 0) {
   1013       1.64   thorpej 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1014       1.64   thorpej 					space -= len;
   1015       1.64   thorpej 					goto have_data;
   1016       1.64   thorpej 				}
   1017       1.45        tv 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1018       1.64   thorpej 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1019      1.201       oki 					m_clget(m, M_DONTWAIT);
   1020       1.45        tv 					if ((m->m_flags & M_EXT) == 0)
   1021       1.45        tv 						goto nopages;
   1022       1.45        tv 					mlen = MCLBYTES;
   1023       1.45        tv 					if (atomic && top == 0) {
   1024       1.58  jdolecek 						len = lmin(MCLBYTES - max_hdr,
   1025       1.54     lukem 						    resid);
   1026       1.45        tv 						m->m_data += max_hdr;
   1027       1.45        tv 					} else
   1028       1.58  jdolecek 						len = lmin(MCLBYTES, resid);
   1029       1.45        tv 					space -= len;
   1030       1.45        tv 				} else {
   1031       1.64   thorpej  nopages:
   1032       1.64   thorpej 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1033       1.58  jdolecek 					len = lmin(lmin(mlen, resid), space);
   1034       1.45        tv 					space -= len;
   1035       1.45        tv 					/*
   1036       1.45        tv 					 * For datagram protocols, leave room
   1037       1.45        tv 					 * for protocol headers in first mbuf.
   1038       1.45        tv 					 */
   1039       1.45        tv 					if (atomic && top == 0 && len < mlen)
   1040       1.45        tv 						MH_ALIGN(m, len);
   1041       1.45        tv 				}
   1042      1.144    dyoung 				error = uiomove(mtod(m, void *), (int)len, uio);
   1043       1.64   thorpej  have_data:
   1044       1.45        tv 				resid = uio->uio_resid;
   1045       1.45        tv 				m->m_len = len;
   1046       1.45        tv 				*mp = m;
   1047       1.45        tv 				top->m_pkthdr.len += len;
   1048      1.160        ad 				s = splsoftnet();
   1049      1.160        ad 				solock(so);
   1050      1.144    dyoung 				if (error != 0)
   1051       1.45        tv 					goto release;
   1052       1.45        tv 				mp = &m->m_next;
   1053       1.45        tv 				if (resid <= 0) {
   1054       1.45        tv 					if (flags & MSG_EOR)
   1055       1.45        tv 						top->m_flags |= M_EOR;
   1056       1.45        tv 					break;
   1057       1.45        tv 				}
   1058       1.45        tv 			} while (space > 0 && atomic);
   1059      1.108     perry 
   1060      1.160        ad 			if (so->so_state & SS_CANTSENDMORE) {
   1061      1.160        ad 				error = EPIPE;
   1062      1.160        ad 				goto release;
   1063      1.160        ad 			}
   1064       1.45        tv 			if (dontroute)
   1065       1.45        tv 				so->so_options |= SO_DONTROUTE;
   1066       1.45        tv 			if (resid > 0)
   1067       1.45        tv 				so->so_state |= SS_MORETOCOME;
   1068      1.240       rtr 			if (flags & MSG_OOB) {
   1069  1.252.6.1  pgoyette 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
   1070  1.252.6.1  pgoyette 				    so, top, control);
   1071      1.240       rtr 			} else {
   1072      1.232       rtr 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1073      1.245       rtr 				    top, addr, control, l);
   1074      1.240       rtr 			}
   1075       1.45        tv 			if (dontroute)
   1076       1.45        tv 				so->so_options &= ~SO_DONTROUTE;
   1077       1.45        tv 			if (resid > 0)
   1078       1.45        tv 				so->so_state &= ~SS_MORETOCOME;
   1079       1.45        tv 			clen = 0;
   1080      1.144    dyoung 			control = NULL;
   1081      1.144    dyoung 			top = NULL;
   1082       1.45        tv 			mp = &top;
   1083      1.144    dyoung 			if (error != 0)
   1084        1.1       cgd 				goto release;
   1085        1.1       cgd 		} while (resid && space > 0);
   1086        1.1       cgd 	} while (resid);
   1087        1.1       cgd 
   1088       1.54     lukem  release:
   1089        1.1       cgd 	sbunlock(&so->so_snd);
   1090       1.54     lukem  out:
   1091      1.160        ad 	sounlock(so);
   1092      1.160        ad 	splx(s);
   1093        1.1       cgd 	if (top)
   1094        1.1       cgd 		m_freem(top);
   1095        1.1       cgd 	if (control)
   1096        1.1       cgd 		m_freem(control);
   1097        1.1       cgd 	return (error);
   1098        1.1       cgd }
   1099        1.1       cgd 
   1100        1.1       cgd /*
   1101      1.159        ad  * Following replacement or removal of the first mbuf on the first
   1102      1.159        ad  * mbuf chain of a socket buffer, push necessary state changes back
   1103      1.159        ad  * into the socket buffer so that other consumers see the values
   1104      1.159        ad  * consistently.  'nextrecord' is the callers locally stored value of
   1105      1.159        ad  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1106      1.159        ad  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1107      1.159        ad  */
   1108      1.159        ad static void
   1109      1.159        ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1110      1.159        ad {
   1111      1.159        ad 
   1112      1.160        ad 	KASSERT(solocked(sb->sb_so));
   1113      1.160        ad 
   1114      1.159        ad 	/*
   1115      1.159        ad 	 * First, update for the new value of nextrecord.  If necessary,
   1116      1.159        ad 	 * make it the first record.
   1117      1.159        ad 	 */
   1118      1.159        ad 	if (sb->sb_mb != NULL)
   1119      1.159        ad 		sb->sb_mb->m_nextpkt = nextrecord;
   1120      1.159        ad 	else
   1121      1.159        ad 		sb->sb_mb = nextrecord;
   1122      1.159        ad 
   1123      1.159        ad         /*
   1124      1.159        ad          * Now update any dependent socket buffer fields to reflect
   1125      1.159        ad          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1126      1.159        ad          * the addition of a second clause that takes care of the
   1127      1.159        ad          * case where sb_mb has been updated, but remains the last
   1128      1.159        ad          * record.
   1129      1.159        ad          */
   1130      1.159        ad         if (sb->sb_mb == NULL) {
   1131      1.159        ad                 sb->sb_mbtail = NULL;
   1132      1.159        ad                 sb->sb_lastrecord = NULL;
   1133      1.159        ad         } else if (sb->sb_mb->m_nextpkt == NULL)
   1134      1.159        ad                 sb->sb_lastrecord = sb->sb_mb;
   1135      1.159        ad }
   1136      1.159        ad 
   1137      1.159        ad /*
   1138        1.1       cgd  * Implement receive operations on a socket.
   1139        1.1       cgd  * We depend on the way that records are added to the sockbuf
   1140        1.1       cgd  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1141        1.1       cgd  * must begin with an address if the protocol so specifies,
   1142        1.1       cgd  * followed by an optional mbuf or mbufs containing ancillary data,
   1143        1.1       cgd  * and then zero or more mbufs of data.
   1144        1.1       cgd  * In order to avoid blocking network interrupts for the entire time here,
   1145        1.1       cgd  * we splx() while doing the actual copy to user space.
   1146        1.1       cgd  * Although the sockbuf is locked, new data may still be appended,
   1147        1.1       cgd  * and thus we must maintain consistency of the sockbuf during that time.
   1148        1.1       cgd  *
   1149        1.1       cgd  * The caller may receive the data as a single mbuf chain by supplying
   1150        1.1       cgd  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1151        1.1       cgd  * only for the count in uio_resid.
   1152        1.1       cgd  */
   1153        1.3    andrew int
   1154       1.54     lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1155       1.54     lukem 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1156        1.1       cgd {
   1157      1.116      yamt 	struct lwp *l = curlwp;
   1158      1.160        ad 	struct mbuf	*m, **mp, *mt;
   1159      1.211       chs 	size_t len, offset, moff, orig_resid;
   1160      1.211       chs 	int atomic, flags, error, s, type;
   1161       1.99      matt 	const struct protosw	*pr;
   1162       1.54     lukem 	struct mbuf	*nextrecord;
   1163       1.67        he 	int		mbuf_removed = 0;
   1164      1.146    dyoung 	const struct domain *dom;
   1165      1.196       dsl 	short		wakeup_state = 0;
   1166       1.64   thorpej 
   1167       1.54     lukem 	pr = so->so_proto;
   1168      1.146    dyoung 	atomic = pr->pr_flags & PR_ATOMIC;
   1169      1.146    dyoung 	dom = pr->pr_domain;
   1170        1.1       cgd 	mp = mp0;
   1171       1.54     lukem 	type = 0;
   1172       1.54     lukem 	orig_resid = uio->uio_resid;
   1173      1.102  jonathan 
   1174      1.144    dyoung 	if (paddr != NULL)
   1175      1.144    dyoung 		*paddr = NULL;
   1176      1.144    dyoung 	if (controlp != NULL)
   1177      1.144    dyoung 		*controlp = NULL;
   1178      1.144    dyoung 	if (flagsp != NULL)
   1179      1.252       uwe 		flags = *flagsp &~ MSG_EOR;
   1180        1.1       cgd 	else
   1181        1.1       cgd 		flags = 0;
   1182       1.66     enami 
   1183        1.1       cgd 	if (flags & MSG_OOB) {
   1184        1.1       cgd 		m = m_get(M_WAIT, MT_DATA);
   1185      1.160        ad 		solock(so);
   1186      1.226       rtr 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1187      1.160        ad 		sounlock(so);
   1188        1.1       cgd 		if (error)
   1189        1.1       cgd 			goto bad;
   1190        1.1       cgd 		do {
   1191      1.134  christos 			error = uiomove(mtod(m, void *),
   1192      1.211       chs 			    MIN(uio->uio_resid, m->m_len), uio);
   1193        1.1       cgd 			m = m_free(m);
   1194      1.144    dyoung 		} while (uio->uio_resid > 0 && error == 0 && m);
   1195       1.54     lukem  bad:
   1196      1.144    dyoung 		if (m != NULL)
   1197        1.1       cgd 			m_freem(m);
   1198      1.144    dyoung 		return error;
   1199        1.1       cgd 	}
   1200      1.144    dyoung 	if (mp != NULL)
   1201      1.140    dyoung 		*mp = NULL;
   1202      1.160        ad 
   1203      1.160        ad 	/*
   1204      1.160        ad 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1205      1.160        ad 	 * protocol processing soft interrupts from interrupting us and
   1206      1.160        ad 	 * blocking (expensive).
   1207      1.160        ad 	 */
   1208      1.160        ad 	s = splsoftnet();
   1209      1.160        ad 	solock(so);
   1210       1.54     lukem  restart:
   1211      1.160        ad 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1212      1.160        ad 		sounlock(so);
   1213      1.160        ad 		splx(s);
   1214      1.144    dyoung 		return error;
   1215      1.160        ad 	}
   1216        1.1       cgd 
   1217        1.1       cgd 	m = so->so_rcv.sb_mb;
   1218        1.1       cgd 	/*
   1219        1.1       cgd 	 * If we have less data than requested, block awaiting more
   1220        1.1       cgd 	 * (subject to any timeout) if:
   1221       1.15   mycroft 	 *   1. the current count is less than the low water mark,
   1222        1.1       cgd 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1223       1.15   mycroft 	 *	receive operation at once if we block (resid <= hiwat), or
   1224       1.15   mycroft 	 *   3. MSG_DONTWAIT is not set.
   1225        1.1       cgd 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1226        1.1       cgd 	 * we have to do the receive in sections, and thus risk returning
   1227        1.1       cgd 	 * a short count if a timeout or signal occurs after we start.
   1228        1.1       cgd 	 */
   1229      1.144    dyoung 	if (m == NULL ||
   1230      1.144    dyoung 	    ((flags & MSG_DONTWAIT) == 0 &&
   1231      1.144    dyoung 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1232      1.144    dyoung 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1233      1.144    dyoung 	      ((flags & MSG_WAITALL) &&
   1234      1.144    dyoung 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1235      1.146    dyoung 	     m->m_nextpkt == NULL && !atomic)) {
   1236        1.1       cgd #ifdef DIAGNOSTIC
   1237      1.144    dyoung 		if (m == NULL && so->so_rcv.sb_cc)
   1238        1.1       cgd 			panic("receive 1");
   1239        1.1       cgd #endif
   1240        1.1       cgd 		if (so->so_error) {
   1241      1.144    dyoung 			if (m != NULL)
   1242       1.15   mycroft 				goto dontblock;
   1243        1.1       cgd 			error = so->so_error;
   1244        1.1       cgd 			if ((flags & MSG_PEEK) == 0)
   1245        1.1       cgd 				so->so_error = 0;
   1246        1.1       cgd 			goto release;
   1247        1.1       cgd 		}
   1248        1.1       cgd 		if (so->so_state & SS_CANTRCVMORE) {
   1249      1.144    dyoung 			if (m != NULL)
   1250       1.15   mycroft 				goto dontblock;
   1251        1.1       cgd 			else
   1252        1.1       cgd 				goto release;
   1253        1.1       cgd 		}
   1254      1.144    dyoung 		for (; m != NULL; m = m->m_next)
   1255        1.1       cgd 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1256        1.1       cgd 				m = so->so_rcv.sb_mb;
   1257        1.1       cgd 				goto dontblock;
   1258        1.1       cgd 			}
   1259        1.1       cgd 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1260        1.1       cgd 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1261        1.1       cgd 			error = ENOTCONN;
   1262        1.1       cgd 			goto release;
   1263        1.1       cgd 		}
   1264        1.1       cgd 		if (uio->uio_resid == 0)
   1265        1.1       cgd 			goto release;
   1266      1.206  christos 		if ((so->so_state & SS_NBIO) ||
   1267      1.206  christos 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1268        1.1       cgd 			error = EWOULDBLOCK;
   1269        1.1       cgd 			goto release;
   1270        1.1       cgd 		}
   1271       1.69   thorpej 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1272       1.69   thorpej 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1273        1.1       cgd 		sbunlock(&so->so_rcv);
   1274      1.196       dsl 		if (wakeup_state & SS_RESTARTSYS)
   1275      1.196       dsl 			error = ERESTART;
   1276      1.196       dsl 		else
   1277      1.196       dsl 			error = sbwait(&so->so_rcv);
   1278      1.160        ad 		if (error != 0) {
   1279      1.160        ad 			sounlock(so);
   1280      1.160        ad 			splx(s);
   1281      1.144    dyoung 			return error;
   1282      1.160        ad 		}
   1283      1.196       dsl 		wakeup_state = so->so_state;
   1284        1.1       cgd 		goto restart;
   1285        1.1       cgd 	}
   1286       1.54     lukem  dontblock:
   1287       1.69   thorpej 	/*
   1288       1.69   thorpej 	 * On entry here, m points to the first record of the socket buffer.
   1289      1.159        ad 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1290      1.159        ad 	 * pointer to the next record in the socket buffer.  We must keep the
   1291      1.159        ad 	 * various socket buffer pointers and local stack versions of the
   1292      1.159        ad 	 * pointers in sync, pushing out modifications before dropping the
   1293      1.160        ad 	 * socket lock, and re-reading them when picking it up.
   1294      1.159        ad 	 *
   1295      1.159        ad 	 * Otherwise, we will race with the network stack appending new data
   1296      1.159        ad 	 * or records onto the socket buffer by using inconsistent/stale
   1297      1.159        ad 	 * versions of the field, possibly resulting in socket buffer
   1298      1.159        ad 	 * corruption.
   1299      1.159        ad 	 *
   1300      1.159        ad 	 * By holding the high-level sblock(), we prevent simultaneous
   1301      1.159        ad 	 * readers from pulling off the front of the socket buffer.
   1302       1.69   thorpej 	 */
   1303      1.144    dyoung 	if (l != NULL)
   1304      1.157        ad 		l->l_ru.ru_msgrcv++;
   1305       1.69   thorpej 	KASSERT(m == so->so_rcv.sb_mb);
   1306       1.69   thorpej 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1307       1.69   thorpej 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1308        1.1       cgd 	nextrecord = m->m_nextpkt;
   1309        1.1       cgd 	if (pr->pr_flags & PR_ADDR) {
   1310        1.1       cgd #ifdef DIAGNOSTIC
   1311        1.1       cgd 		if (m->m_type != MT_SONAME)
   1312        1.1       cgd 			panic("receive 1a");
   1313        1.1       cgd #endif
   1314        1.3    andrew 		orig_resid = 0;
   1315        1.1       cgd 		if (flags & MSG_PEEK) {
   1316        1.1       cgd 			if (paddr)
   1317        1.1       cgd 				*paddr = m_copy(m, 0, m->m_len);
   1318        1.1       cgd 			m = m->m_next;
   1319        1.1       cgd 		} else {
   1320        1.1       cgd 			sbfree(&so->so_rcv, m);
   1321       1.67        he 			mbuf_removed = 1;
   1322      1.144    dyoung 			if (paddr != NULL) {
   1323        1.1       cgd 				*paddr = m;
   1324        1.1       cgd 				so->so_rcv.sb_mb = m->m_next;
   1325      1.144    dyoung 				m->m_next = NULL;
   1326        1.1       cgd 				m = so->so_rcv.sb_mb;
   1327        1.1       cgd 			} else {
   1328      1.249  christos 				m = so->so_rcv.sb_mb = m_free(m);
   1329        1.1       cgd 			}
   1330      1.159        ad 			sbsync(&so->so_rcv, nextrecord);
   1331        1.1       cgd 		}
   1332        1.1       cgd 	}
   1333      1.247       rjs 	if (pr->pr_flags & PR_ADDR_OPT) {
   1334      1.247       rjs 		/*
   1335      1.247       rjs 		 * For SCTP we may be getting a
   1336      1.247       rjs 		 * whole message OR a partial delivery.
   1337      1.247       rjs 		 */
   1338      1.247       rjs 		if (m->m_type == MT_SONAME) {
   1339      1.247       rjs 			orig_resid = 0;
   1340      1.247       rjs 			if (flags & MSG_PEEK) {
   1341      1.247       rjs 				if (paddr)
   1342      1.247       rjs 					*paddr = m_copy(m, 0, m->m_len);
   1343      1.247       rjs 				m = m->m_next;
   1344      1.247       rjs 			} else {
   1345      1.247       rjs 				sbfree(&so->so_rcv, m);
   1346      1.247       rjs 				if (paddr) {
   1347      1.247       rjs 					*paddr = m;
   1348      1.247       rjs 					so->so_rcv.sb_mb = m->m_next;
   1349      1.247       rjs 					m->m_next = 0;
   1350      1.247       rjs 					m = so->so_rcv.sb_mb;
   1351      1.247       rjs 				} else {
   1352      1.249  christos 					m = so->so_rcv.sb_mb = m_free(m);
   1353      1.247       rjs 				}
   1354      1.247       rjs 			}
   1355      1.247       rjs 		}
   1356      1.247       rjs 	}
   1357      1.159        ad 
   1358      1.159        ad 	/*
   1359      1.159        ad 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1360      1.159        ad 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1361      1.159        ad 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1362      1.159        ad 	 * perform externalization (or freeing if controlp == NULL).
   1363      1.159        ad 	 */
   1364      1.159        ad 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1365      1.159        ad 		struct mbuf *cm = NULL, *cmn;
   1366      1.159        ad 		struct mbuf **cme = &cm;
   1367      1.159        ad 
   1368      1.159        ad 		do {
   1369      1.159        ad 			if (flags & MSG_PEEK) {
   1370      1.159        ad 				if (controlp != NULL) {
   1371      1.159        ad 					*controlp = m_copy(m, 0, m->m_len);
   1372      1.159        ad 					controlp = &(*controlp)->m_next;
   1373      1.159        ad 				}
   1374      1.159        ad 				m = m->m_next;
   1375      1.159        ad 			} else {
   1376      1.159        ad 				sbfree(&so->so_rcv, m);
   1377        1.1       cgd 				so->so_rcv.sb_mb = m->m_next;
   1378      1.144    dyoung 				m->m_next = NULL;
   1379      1.159        ad 				*cme = m;
   1380      1.159        ad 				cme = &(*cme)->m_next;
   1381        1.1       cgd 				m = so->so_rcv.sb_mb;
   1382      1.159        ad 			}
   1383      1.159        ad 		} while (m != NULL && m->m_type == MT_CONTROL);
   1384      1.159        ad 		if ((flags & MSG_PEEK) == 0)
   1385      1.159        ad 			sbsync(&so->so_rcv, nextrecord);
   1386      1.159        ad 		for (; cm != NULL; cm = cmn) {
   1387      1.159        ad 			cmn = cm->m_next;
   1388      1.159        ad 			cm->m_next = NULL;
   1389      1.159        ad 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1390      1.159        ad 			if (controlp != NULL) {
   1391      1.159        ad 				if (dom->dom_externalize != NULL &&
   1392      1.159        ad 				    type == SCM_RIGHTS) {
   1393      1.160        ad 					sounlock(so);
   1394      1.159        ad 					splx(s);
   1395      1.204  christos 					error = (*dom->dom_externalize)(cm, l,
   1396      1.204  christos 					    (flags & MSG_CMSG_CLOEXEC) ?
   1397      1.204  christos 					    O_CLOEXEC : 0);
   1398      1.159        ad 					s = splsoftnet();
   1399      1.160        ad 					solock(so);
   1400      1.159        ad 				}
   1401      1.159        ad 				*controlp = cm;
   1402      1.159        ad 				while (*controlp != NULL)
   1403      1.159        ad 					controlp = &(*controlp)->m_next;
   1404        1.1       cgd 			} else {
   1405      1.106    itojun 				/*
   1406      1.106    itojun 				 * Dispose of any SCM_RIGHTS message that went
   1407      1.106    itojun 				 * through the read path rather than recv.
   1408      1.106    itojun 				 */
   1409      1.159        ad 				if (dom->dom_dispose != NULL &&
   1410      1.159        ad 				    type == SCM_RIGHTS) {
   1411  1.252.6.1  pgoyette 					sounlock(so);
   1412      1.159        ad 					(*dom->dom_dispose)(cm);
   1413      1.160        ad 					solock(so);
   1414      1.159        ad 				}
   1415      1.159        ad 				m_freem(cm);
   1416        1.1       cgd 			}
   1417        1.1       cgd 		}
   1418      1.159        ad 		if (m != NULL)
   1419      1.159        ad 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1420      1.159        ad 		else
   1421      1.159        ad 			nextrecord = so->so_rcv.sb_mb;
   1422      1.159        ad 		orig_resid = 0;
   1423        1.1       cgd 	}
   1424       1.69   thorpej 
   1425      1.159        ad 	/* If m is non-NULL, we have some data to read. */
   1426      1.159        ad 	if (__predict_true(m != NULL)) {
   1427        1.1       cgd 		type = m->m_type;
   1428        1.1       cgd 		if (type == MT_OOBDATA)
   1429        1.1       cgd 			flags |= MSG_OOB;
   1430        1.1       cgd 	}
   1431       1.69   thorpej 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1432       1.69   thorpej 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1433       1.69   thorpej 
   1434        1.1       cgd 	moff = 0;
   1435        1.1       cgd 	offset = 0;
   1436      1.144    dyoung 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1437        1.1       cgd 		if (m->m_type == MT_OOBDATA) {
   1438        1.1       cgd 			if (type != MT_OOBDATA)
   1439        1.1       cgd 				break;
   1440        1.1       cgd 		} else if (type == MT_OOBDATA)
   1441        1.1       cgd 			break;
   1442        1.1       cgd #ifdef DIAGNOSTIC
   1443        1.1       cgd 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1444        1.1       cgd 			panic("receive 3");
   1445        1.1       cgd #endif
   1446        1.1       cgd 		so->so_state &= ~SS_RCVATMARK;
   1447      1.196       dsl 		wakeup_state = 0;
   1448        1.1       cgd 		len = uio->uio_resid;
   1449        1.1       cgd 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1450        1.1       cgd 			len = so->so_oobmark - offset;
   1451        1.1       cgd 		if (len > m->m_len - moff)
   1452        1.1       cgd 			len = m->m_len - moff;
   1453        1.1       cgd 		/*
   1454        1.1       cgd 		 * If mp is set, just pass back the mbufs.
   1455        1.1       cgd 		 * Otherwise copy them out via the uio, then free.
   1456        1.1       cgd 		 * Sockbuf must be consistent here (points to current mbuf,
   1457        1.1       cgd 		 * it points to next record) when we drop priority;
   1458        1.1       cgd 		 * we must note any additions to the sockbuf when we
   1459        1.1       cgd 		 * block interrupts again.
   1460        1.1       cgd 		 */
   1461      1.144    dyoung 		if (mp == NULL) {
   1462       1.69   thorpej 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1463       1.69   thorpej 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1464      1.160        ad 			sounlock(so);
   1465        1.1       cgd 			splx(s);
   1466      1.211       chs 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1467       1.20   mycroft 			s = splsoftnet();
   1468      1.160        ad 			solock(so);
   1469      1.144    dyoung 			if (error != 0) {
   1470       1.67        he 				/*
   1471       1.67        he 				 * If any part of the record has been removed
   1472       1.67        he 				 * (such as the MT_SONAME mbuf, which will
   1473       1.67        he 				 * happen when PR_ADDR, and thus also
   1474       1.67        he 				 * PR_ATOMIC, is set), then drop the entire
   1475       1.67        he 				 * record to maintain the atomicity of the
   1476       1.67        he 				 * receive operation.
   1477       1.67        he 				 *
   1478       1.67        he 				 * This avoids a later panic("receive 1a")
   1479       1.67        he 				 * when compiled with DIAGNOSTIC.
   1480       1.67        he 				 */
   1481      1.146    dyoung 				if (m && mbuf_removed && atomic)
   1482       1.67        he 					(void) sbdroprecord(&so->so_rcv);
   1483       1.67        he 
   1484       1.57  jdolecek 				goto release;
   1485       1.67        he 			}
   1486        1.1       cgd 		} else
   1487        1.1       cgd 			uio->uio_resid -= len;
   1488        1.1       cgd 		if (len == m->m_len - moff) {
   1489        1.1       cgd 			if (m->m_flags & M_EOR)
   1490        1.1       cgd 				flags |= MSG_EOR;
   1491      1.247       rjs #ifdef SCTP
   1492      1.247       rjs 			if (m->m_flags & M_NOTIFICATION)
   1493      1.247       rjs 				flags |= MSG_NOTIFICATION;
   1494      1.247       rjs #endif /* SCTP */
   1495        1.1       cgd 			if (flags & MSG_PEEK) {
   1496        1.1       cgd 				m = m->m_next;
   1497        1.1       cgd 				moff = 0;
   1498        1.1       cgd 			} else {
   1499        1.1       cgd 				nextrecord = m->m_nextpkt;
   1500        1.1       cgd 				sbfree(&so->so_rcv, m);
   1501        1.1       cgd 				if (mp) {
   1502        1.1       cgd 					*mp = m;
   1503        1.1       cgd 					mp = &m->m_next;
   1504        1.1       cgd 					so->so_rcv.sb_mb = m = m->m_next;
   1505      1.140    dyoung 					*mp = NULL;
   1506        1.1       cgd 				} else {
   1507      1.249  christos 					m = so->so_rcv.sb_mb = m_free(m);
   1508        1.1       cgd 				}
   1509       1.69   thorpej 				/*
   1510       1.69   thorpej 				 * If m != NULL, we also know that
   1511       1.69   thorpej 				 * so->so_rcv.sb_mb != NULL.
   1512       1.69   thorpej 				 */
   1513       1.69   thorpej 				KASSERT(so->so_rcv.sb_mb == m);
   1514       1.69   thorpej 				if (m) {
   1515        1.1       cgd 					m->m_nextpkt = nextrecord;
   1516       1.69   thorpej 					if (nextrecord == NULL)
   1517       1.69   thorpej 						so->so_rcv.sb_lastrecord = m;
   1518       1.69   thorpej 				} else {
   1519       1.69   thorpej 					so->so_rcv.sb_mb = nextrecord;
   1520       1.70   thorpej 					SB_EMPTY_FIXUP(&so->so_rcv);
   1521       1.69   thorpej 				}
   1522       1.69   thorpej 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1523       1.69   thorpej 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1524        1.1       cgd 			}
   1525      1.144    dyoung 		} else if (flags & MSG_PEEK)
   1526      1.144    dyoung 			moff += len;
   1527      1.144    dyoung 		else {
   1528      1.160        ad 			if (mp != NULL) {
   1529      1.160        ad 				mt = m_copym(m, 0, len, M_NOWAIT);
   1530      1.160        ad 				if (__predict_false(mt == NULL)) {
   1531      1.160        ad 					sounlock(so);
   1532      1.160        ad 					mt = m_copym(m, 0, len, M_WAIT);
   1533      1.160        ad 					solock(so);
   1534      1.160        ad 				}
   1535      1.160        ad 				*mp = mt;
   1536      1.160        ad 			}
   1537      1.144    dyoung 			m->m_data += len;
   1538      1.144    dyoung 			m->m_len -= len;
   1539      1.144    dyoung 			so->so_rcv.sb_cc -= len;
   1540        1.1       cgd 		}
   1541        1.1       cgd 		if (so->so_oobmark) {
   1542        1.1       cgd 			if ((flags & MSG_PEEK) == 0) {
   1543        1.1       cgd 				so->so_oobmark -= len;
   1544        1.1       cgd 				if (so->so_oobmark == 0) {
   1545        1.1       cgd 					so->so_state |= SS_RCVATMARK;
   1546        1.1       cgd 					break;
   1547        1.1       cgd 				}
   1548        1.7       cgd 			} else {
   1549        1.1       cgd 				offset += len;
   1550        1.7       cgd 				if (offset == so->so_oobmark)
   1551        1.7       cgd 					break;
   1552        1.7       cgd 			}
   1553        1.1       cgd 		}
   1554        1.1       cgd 		if (flags & MSG_EOR)
   1555        1.1       cgd 			break;
   1556        1.1       cgd 		/*
   1557        1.1       cgd 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1558        1.1       cgd 		 * we must not quit until "uio->uio_resid == 0" or an error
   1559        1.1       cgd 		 * termination.  If a signal/timeout occurs, return
   1560        1.1       cgd 		 * with a short count but without error.
   1561        1.1       cgd 		 * Keep sockbuf locked against other readers.
   1562        1.1       cgd 		 */
   1563      1.144    dyoung 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1564        1.3    andrew 		    !sosendallatonce(so) && !nextrecord) {
   1565        1.1       cgd 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1566        1.1       cgd 				break;
   1567       1.68      matt 			/*
   1568       1.68      matt 			 * If we are peeking and the socket receive buffer is
   1569       1.68      matt 			 * full, stop since we can't get more data to peek at.
   1570       1.68      matt 			 */
   1571       1.68      matt 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1572       1.68      matt 				break;
   1573       1.68      matt 			/*
   1574       1.68      matt 			 * If we've drained the socket buffer, tell the
   1575       1.68      matt 			 * protocol in case it needs to do something to
   1576       1.68      matt 			 * get it filled again.
   1577       1.68      matt 			 */
   1578       1.68      matt 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1579      1.233       rtr 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1580       1.69   thorpej 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1581       1.69   thorpej 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1582      1.196       dsl 			if (wakeup_state & SS_RESTARTSYS)
   1583      1.196       dsl 				error = ERESTART;
   1584      1.196       dsl 			else
   1585      1.196       dsl 				error = sbwait(&so->so_rcv);
   1586      1.144    dyoung 			if (error != 0) {
   1587        1.1       cgd 				sbunlock(&so->so_rcv);
   1588      1.160        ad 				sounlock(so);
   1589        1.1       cgd 				splx(s);
   1590      1.144    dyoung 				return 0;
   1591        1.1       cgd 			}
   1592       1.21  christos 			if ((m = so->so_rcv.sb_mb) != NULL)
   1593        1.1       cgd 				nextrecord = m->m_nextpkt;
   1594      1.196       dsl 			wakeup_state = so->so_state;
   1595        1.1       cgd 		}
   1596        1.1       cgd 	}
   1597        1.3    andrew 
   1598      1.146    dyoung 	if (m && atomic) {
   1599        1.3    andrew 		flags |= MSG_TRUNC;
   1600        1.3    andrew 		if ((flags & MSG_PEEK) == 0)
   1601        1.3    andrew 			(void) sbdroprecord(&so->so_rcv);
   1602        1.3    andrew 	}
   1603        1.1       cgd 	if ((flags & MSG_PEEK) == 0) {
   1604      1.144    dyoung 		if (m == NULL) {
   1605       1.69   thorpej 			/*
   1606       1.70   thorpej 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1607       1.69   thorpej 			 * part makes sure sb_lastrecord is up-to-date if
   1608       1.69   thorpej 			 * there is still data in the socket buffer.
   1609       1.69   thorpej 			 */
   1610        1.1       cgd 			so->so_rcv.sb_mb = nextrecord;
   1611       1.69   thorpej 			if (so->so_rcv.sb_mb == NULL) {
   1612       1.69   thorpej 				so->so_rcv.sb_mbtail = NULL;
   1613       1.69   thorpej 				so->so_rcv.sb_lastrecord = NULL;
   1614       1.69   thorpej 			} else if (nextrecord->m_nextpkt == NULL)
   1615       1.69   thorpej 				so->so_rcv.sb_lastrecord = nextrecord;
   1616       1.69   thorpej 		}
   1617       1.69   thorpej 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1618       1.69   thorpej 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1619        1.1       cgd 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1620      1.233       rtr 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1621        1.1       cgd 	}
   1622        1.3    andrew 	if (orig_resid == uio->uio_resid && orig_resid &&
   1623        1.3    andrew 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1624        1.3    andrew 		sbunlock(&so->so_rcv);
   1625        1.3    andrew 		goto restart;
   1626        1.3    andrew 	}
   1627      1.108     perry 
   1628      1.144    dyoung 	if (flagsp != NULL)
   1629        1.1       cgd 		*flagsp |= flags;
   1630       1.54     lukem  release:
   1631        1.1       cgd 	sbunlock(&so->so_rcv);
   1632      1.160        ad 	sounlock(so);
   1633        1.1       cgd 	splx(s);
   1634      1.144    dyoung 	return error;
   1635        1.1       cgd }
   1636        1.1       cgd 
   1637       1.14   mycroft int
   1638       1.54     lukem soshutdown(struct socket *so, int how)
   1639        1.1       cgd {
   1640       1.99      matt 	const struct protosw	*pr;
   1641      1.160        ad 	int	error;
   1642      1.160        ad 
   1643      1.160        ad 	KASSERT(solocked(so));
   1644       1.34    kleink 
   1645       1.54     lukem 	pr = so->so_proto;
   1646       1.34    kleink 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1647       1.34    kleink 		return (EINVAL);
   1648        1.1       cgd 
   1649      1.160        ad 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1650        1.1       cgd 		sorflush(so);
   1651      1.160        ad 		error = 0;
   1652      1.160        ad 	}
   1653       1.34    kleink 	if (how == SHUT_WR || how == SHUT_RDWR)
   1654      1.229       rtr 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1655      1.160        ad 
   1656      1.160        ad 	return error;
   1657        1.1       cgd }
   1658        1.1       cgd 
   1659      1.195       dsl void
   1660      1.196       dsl sorestart(struct socket *so)
   1661      1.188        ad {
   1662      1.196       dsl 	/*
   1663      1.196       dsl 	 * An application has called close() on an fd on which another
   1664      1.196       dsl 	 * of its threads has called a socket system call.
   1665      1.196       dsl 	 * Mark this and wake everyone up, and code that would block again
   1666      1.196       dsl 	 * instead returns ERESTART.
   1667      1.196       dsl 	 * On system call re-entry the fd is validated and EBADF returned.
   1668      1.196       dsl 	 * Any other fd will block again on the 2nd syscall.
   1669      1.196       dsl 	 */
   1670      1.188        ad 	solock(so);
   1671      1.196       dsl 	so->so_state |= SS_RESTARTSYS;
   1672      1.188        ad 	cv_broadcast(&so->so_cv);
   1673      1.196       dsl 	cv_broadcast(&so->so_snd.sb_cv);
   1674      1.196       dsl 	cv_broadcast(&so->so_rcv.sb_cv);
   1675      1.188        ad 	sounlock(so);
   1676      1.188        ad }
   1677      1.188        ad 
   1678       1.14   mycroft void
   1679       1.54     lukem sorflush(struct socket *so)
   1680        1.1       cgd {
   1681       1.54     lukem 	struct sockbuf	*sb, asb;
   1682       1.99      matt 	const struct protosw	*pr;
   1683      1.160        ad 
   1684      1.160        ad 	KASSERT(solocked(so));
   1685        1.1       cgd 
   1686       1.54     lukem 	sb = &so->so_rcv;
   1687       1.54     lukem 	pr = so->so_proto;
   1688      1.160        ad 	socantrcvmore(so);
   1689        1.1       cgd 	sb->sb_flags |= SB_NOINTR;
   1690      1.160        ad 	(void )sblock(sb, M_WAITOK);
   1691        1.1       cgd 	sbunlock(sb);
   1692        1.1       cgd 	asb = *sb;
   1693       1.86  wrstuden 	/*
   1694       1.86  wrstuden 	 * Clear most of the sockbuf structure, but leave some of the
   1695       1.86  wrstuden 	 * fields valid.
   1696       1.86  wrstuden 	 */
   1697       1.86  wrstuden 	memset(&sb->sb_startzero, 0,
   1698       1.86  wrstuden 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1699      1.160        ad 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1700      1.160        ad 		sounlock(so);
   1701        1.1       cgd 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1702      1.160        ad 		solock(so);
   1703      1.160        ad 	}
   1704       1.98  christos 	sbrelease(&asb, so);
   1705        1.1       cgd }
   1706        1.1       cgd 
   1707      1.171    plunky /*
   1708      1.171    plunky  * internal set SOL_SOCKET options
   1709      1.171    plunky  */
   1710      1.142    dyoung static int
   1711      1.171    plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
   1712        1.1       cgd {
   1713      1.219  christos 	int error = EINVAL, opt;
   1714      1.219  christos 	int optval = 0; /* XXX: gcc */
   1715      1.171    plunky 	struct linger l;
   1716      1.171    plunky 	struct timeval tv;
   1717      1.142    dyoung 
   1718      1.179  christos 	switch ((opt = sopt->sopt_name)) {
   1719      1.142    dyoung 
   1720      1.170       tls 	case SO_ACCEPTFILTER:
   1721      1.177        ad 		error = accept_filt_setopt(so, sopt);
   1722      1.177        ad 		KASSERT(solocked(so));
   1723      1.170       tls 		break;
   1724      1.170       tls 
   1725  1.252.6.1  pgoyette 	case SO_LINGER:
   1726  1.252.6.1  pgoyette 		error = sockopt_get(sopt, &l, sizeof(l));
   1727      1.177        ad 		solock(so);
   1728  1.252.6.1  pgoyette 		if (error)
   1729  1.252.6.1  pgoyette 			break;
   1730  1.252.6.1  pgoyette 		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1731  1.252.6.1  pgoyette 		    l.l_linger > (INT_MAX / hz)) {
   1732      1.177        ad 			error = EDOM;
   1733      1.177        ad 			break;
   1734      1.177        ad 		}
   1735  1.252.6.1  pgoyette 		so->so_linger = l.l_linger;
   1736  1.252.6.1  pgoyette 		if (l.l_onoff)
   1737  1.252.6.1  pgoyette 			so->so_options |= SO_LINGER;
   1738  1.252.6.1  pgoyette 		else
   1739  1.252.6.1  pgoyette 			so->so_options &= ~SO_LINGER;
   1740  1.252.6.1  pgoyette 		break;
   1741        1.1       cgd 
   1742      1.142    dyoung 	case SO_DEBUG:
   1743      1.142    dyoung 	case SO_KEEPALIVE:
   1744      1.142    dyoung 	case SO_DONTROUTE:
   1745      1.142    dyoung 	case SO_USELOOPBACK:
   1746      1.142    dyoung 	case SO_BROADCAST:
   1747      1.142    dyoung 	case SO_REUSEADDR:
   1748      1.142    dyoung 	case SO_REUSEPORT:
   1749      1.142    dyoung 	case SO_OOBINLINE:
   1750      1.142    dyoung 	case SO_TIMESTAMP:
   1751      1.207  christos 	case SO_NOSIGPIPE:
   1752      1.184  christos #ifdef SO_OTIMESTAMP
   1753      1.184  christos 	case SO_OTIMESTAMP:
   1754      1.184  christos #endif
   1755      1.171    plunky 		error = sockopt_getint(sopt, &optval);
   1756      1.177        ad 		solock(so);
   1757      1.171    plunky 		if (error)
   1758      1.177        ad 			break;
   1759      1.171    plunky 		if (optval)
   1760      1.179  christos 			so->so_options |= opt;
   1761      1.142    dyoung 		else
   1762      1.179  christos 			so->so_options &= ~opt;
   1763      1.142    dyoung 		break;
   1764      1.142    dyoung 
   1765      1.142    dyoung 	case SO_SNDBUF:
   1766      1.142    dyoung 	case SO_RCVBUF:
   1767      1.142    dyoung 	case SO_SNDLOWAT:
   1768      1.142    dyoung 	case SO_RCVLOWAT:
   1769      1.171    plunky 		error = sockopt_getint(sopt, &optval);
   1770      1.177        ad 		solock(so);
   1771      1.171    plunky 		if (error)
   1772      1.177        ad 			break;
   1773        1.1       cgd 
   1774      1.142    dyoung 		/*
   1775      1.142    dyoung 		 * Values < 1 make no sense for any of these
   1776      1.142    dyoung 		 * options, so disallow them.
   1777      1.142    dyoung 		 */
   1778      1.177        ad 		if (optval < 1) {
   1779      1.177        ad 			error = EINVAL;
   1780      1.177        ad 			break;
   1781      1.177        ad 		}
   1782        1.1       cgd 
   1783      1.179  christos 		switch (opt) {
   1784      1.171    plunky 		case SO_SNDBUF:
   1785      1.177        ad 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1786      1.177        ad 				error = ENOBUFS;
   1787      1.177        ad 				break;
   1788      1.177        ad 			}
   1789      1.171    plunky 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1790      1.171    plunky 			break;
   1791        1.1       cgd 
   1792        1.1       cgd 		case SO_RCVBUF:
   1793      1.177        ad 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1794      1.177        ad 				error = ENOBUFS;
   1795      1.177        ad 				break;
   1796      1.177        ad 			}
   1797      1.171    plunky 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1798      1.142    dyoung 			break;
   1799      1.142    dyoung 
   1800      1.142    dyoung 		/*
   1801      1.142    dyoung 		 * Make sure the low-water is never greater than
   1802      1.142    dyoung 		 * the high-water.
   1803      1.142    dyoung 		 */
   1804        1.1       cgd 		case SO_SNDLOWAT:
   1805      1.171    plunky 			if (optval > so->so_snd.sb_hiwat)
   1806      1.171    plunky 				optval = so->so_snd.sb_hiwat;
   1807      1.171    plunky 
   1808      1.171    plunky 			so->so_snd.sb_lowat = optval;
   1809      1.142    dyoung 			break;
   1810      1.171    plunky 
   1811        1.1       cgd 		case SO_RCVLOWAT:
   1812      1.171    plunky 			if (optval > so->so_rcv.sb_hiwat)
   1813      1.171    plunky 				optval = so->so_rcv.sb_hiwat;
   1814      1.171    plunky 
   1815      1.171    plunky 			so->so_rcv.sb_lowat = optval;
   1816      1.142    dyoung 			break;
   1817      1.142    dyoung 		}
   1818      1.142    dyoung 		break;
   1819       1.28   thorpej 
   1820      1.179  christos #ifdef COMPAT_50
   1821      1.179  christos 	case SO_OSNDTIMEO:
   1822      1.179  christos 	case SO_ORCVTIMEO: {
   1823      1.179  christos 		struct timeval50 otv;
   1824      1.179  christos 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1825      1.186     pooka 		if (error) {
   1826      1.186     pooka 			solock(so);
   1827      1.183  christos 			break;
   1828      1.186     pooka 		}
   1829      1.179  christos 		timeval50_to_timeval(&otv, &tv);
   1830      1.179  christos 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1831      1.182  christos 		error = 0;
   1832      1.179  christos 		/*FALLTHROUGH*/
   1833      1.179  christos 	}
   1834      1.179  christos #endif /* COMPAT_50 */
   1835      1.179  christos 
   1836      1.142    dyoung 	case SO_SNDTIMEO:
   1837      1.142    dyoung 	case SO_RCVTIMEO:
   1838      1.182  christos 		if (error)
   1839      1.179  christos 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1840      1.177        ad 		solock(so);
   1841      1.171    plunky 		if (error)
   1842      1.177        ad 			break;
   1843      1.171    plunky 
   1844      1.177        ad 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1845      1.177        ad 			error = EDOM;
   1846      1.177        ad 			break;
   1847      1.177        ad 		}
   1848       1.28   thorpej 
   1849      1.171    plunky 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1850      1.171    plunky 		if (optval == 0 && tv.tv_usec != 0)
   1851      1.171    plunky 			optval = 1;
   1852       1.28   thorpej 
   1853      1.179  christos 		switch (opt) {
   1854      1.142    dyoung 		case SO_SNDTIMEO:
   1855      1.171    plunky 			so->so_snd.sb_timeo = optval;
   1856        1.1       cgd 			break;
   1857        1.1       cgd 		case SO_RCVTIMEO:
   1858      1.171    plunky 			so->so_rcv.sb_timeo = optval;
   1859      1.142    dyoung 			break;
   1860      1.142    dyoung 		}
   1861      1.142    dyoung 		break;
   1862        1.1       cgd 
   1863      1.142    dyoung 	default:
   1864      1.177        ad 		solock(so);
   1865      1.177        ad 		error = ENOPROTOOPT;
   1866      1.177        ad 		break;
   1867      1.142    dyoung 	}
   1868      1.177        ad 	KASSERT(solocked(so));
   1869      1.177        ad 	return error;
   1870      1.142    dyoung }
   1871        1.1       cgd 
   1872      1.142    dyoung int
   1873      1.171    plunky sosetopt(struct socket *so, struct sockopt *sopt)
   1874      1.142    dyoung {
   1875      1.142    dyoung 	int error, prerr;
   1876        1.1       cgd 
   1877      1.177        ad 	if (sopt->sopt_level == SOL_SOCKET) {
   1878      1.171    plunky 		error = sosetopt1(so, sopt);
   1879      1.177        ad 		KASSERT(solocked(so));
   1880      1.177        ad 	} else {
   1881      1.142    dyoung 		error = ENOPROTOOPT;
   1882      1.177        ad 		solock(so);
   1883      1.177        ad 	}
   1884        1.1       cgd 
   1885      1.142    dyoung 	if ((error == 0 || error == ENOPROTOOPT) &&
   1886      1.142    dyoung 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1887      1.142    dyoung 		/* give the protocol stack a shot */
   1888      1.171    plunky 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1889      1.142    dyoung 		if (prerr == 0)
   1890      1.142    dyoung 			error = 0;
   1891      1.142    dyoung 		else if (prerr != ENOPROTOOPT)
   1892      1.142    dyoung 			error = prerr;
   1893      1.171    plunky 	}
   1894      1.160        ad 	sounlock(so);
   1895      1.142    dyoung 	return error;
   1896        1.1       cgd }
   1897        1.1       cgd 
   1898      1.171    plunky /*
   1899      1.171    plunky  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1900      1.171    plunky  */
   1901      1.171    plunky int
   1902      1.171    plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1903      1.171    plunky     const void *val, size_t valsize)
   1904      1.171    plunky {
   1905      1.171    plunky 	struct sockopt sopt;
   1906      1.171    plunky 	int error;
   1907      1.171    plunky 
   1908      1.171    plunky 	KASSERT(valsize == 0 || val != NULL);
   1909      1.171    plunky 
   1910      1.171    plunky 	sockopt_init(&sopt, level, name, valsize);
   1911      1.171    plunky 	sockopt_set(&sopt, val, valsize);
   1912      1.171    plunky 
   1913      1.171    plunky 	error = sosetopt(so, &sopt);
   1914      1.171    plunky 
   1915      1.171    plunky 	sockopt_destroy(&sopt);
   1916      1.171    plunky 
   1917      1.171    plunky 	return error;
   1918      1.171    plunky }
   1919  1.252.6.1  pgoyette 
   1920      1.171    plunky /*
   1921      1.171    plunky  * internal get SOL_SOCKET options
   1922      1.171    plunky  */
   1923      1.171    plunky static int
   1924      1.171    plunky sogetopt1(struct socket *so, struct sockopt *sopt)
   1925      1.171    plunky {
   1926      1.179  christos 	int error, optval, opt;
   1927      1.171    plunky 	struct linger l;
   1928      1.171    plunky 	struct timeval tv;
   1929      1.171    plunky 
   1930      1.179  christos 	switch ((opt = sopt->sopt_name)) {
   1931      1.171    plunky 
   1932      1.171    plunky 	case SO_ACCEPTFILTER:
   1933      1.177        ad 		error = accept_filt_getopt(so, sopt);
   1934      1.171    plunky 		break;
   1935      1.171    plunky 
   1936      1.171    plunky 	case SO_LINGER:
   1937      1.171    plunky 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1938      1.171    plunky 		l.l_linger = so->so_linger;
   1939      1.171    plunky 
   1940      1.171    plunky 		error = sockopt_set(sopt, &l, sizeof(l));
   1941      1.171    plunky 		break;
   1942      1.171    plunky 
   1943      1.171    plunky 	case SO_USELOOPBACK:
   1944      1.171    plunky 	case SO_DONTROUTE:
   1945      1.171    plunky 	case SO_DEBUG:
   1946      1.171    plunky 	case SO_KEEPALIVE:
   1947      1.171    plunky 	case SO_REUSEADDR:
   1948      1.171    plunky 	case SO_REUSEPORT:
   1949      1.171    plunky 	case SO_BROADCAST:
   1950      1.171    plunky 	case SO_OOBINLINE:
   1951      1.171    plunky 	case SO_TIMESTAMP:
   1952      1.207  christos 	case SO_NOSIGPIPE:
   1953      1.184  christos #ifdef SO_OTIMESTAMP
   1954      1.184  christos 	case SO_OTIMESTAMP:
   1955      1.184  christos #endif
   1956      1.218     seanb 	case SO_ACCEPTCONN:
   1957      1.179  christos 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1958      1.171    plunky 		break;
   1959      1.171    plunky 
   1960      1.171    plunky 	case SO_TYPE:
   1961      1.171    plunky 		error = sockopt_setint(sopt, so->so_type);
   1962      1.171    plunky 		break;
   1963      1.171    plunky 
   1964      1.171    plunky 	case SO_ERROR:
   1965      1.171    plunky 		error = sockopt_setint(sopt, so->so_error);
   1966      1.171    plunky 		so->so_error = 0;
   1967      1.171    plunky 		break;
   1968      1.171    plunky 
   1969      1.171    plunky 	case SO_SNDBUF:
   1970      1.171    plunky 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1971      1.171    plunky 		break;
   1972      1.171    plunky 
   1973      1.171    plunky 	case SO_RCVBUF:
   1974      1.171    plunky 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1975      1.171    plunky 		break;
   1976      1.171    plunky 
   1977      1.171    plunky 	case SO_SNDLOWAT:
   1978      1.171    plunky 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1979      1.171    plunky 		break;
   1980      1.171    plunky 
   1981      1.171    plunky 	case SO_RCVLOWAT:
   1982      1.171    plunky 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1983      1.171    plunky 		break;
   1984      1.171    plunky 
   1985      1.179  christos #ifdef COMPAT_50
   1986      1.179  christos 	case SO_OSNDTIMEO:
   1987      1.179  christos 	case SO_ORCVTIMEO: {
   1988      1.179  christos 		struct timeval50 otv;
   1989      1.179  christos 
   1990      1.179  christos 		optval = (opt == SO_OSNDTIMEO ?
   1991      1.179  christos 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1992      1.179  christos 
   1993      1.179  christos 		otv.tv_sec = optval / hz;
   1994      1.179  christos 		otv.tv_usec = (optval % hz) * tick;
   1995      1.179  christos 
   1996      1.179  christos 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1997      1.179  christos 		break;
   1998      1.179  christos 	}
   1999      1.179  christos #endif /* COMPAT_50 */
   2000      1.179  christos 
   2001      1.171    plunky 	case SO_SNDTIMEO:
   2002      1.171    plunky 	case SO_RCVTIMEO:
   2003      1.179  christos 		optval = (opt == SO_SNDTIMEO ?
   2004      1.171    plunky 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   2005      1.171    plunky 
   2006      1.171    plunky 		tv.tv_sec = optval / hz;
   2007      1.171    plunky 		tv.tv_usec = (optval % hz) * tick;
   2008      1.171    plunky 
   2009      1.171    plunky 		error = sockopt_set(sopt, &tv, sizeof(tv));
   2010      1.171    plunky 		break;
   2011      1.171    plunky 
   2012      1.171    plunky 	case SO_OVERFLOWED:
   2013      1.171    plunky 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2014      1.171    plunky 		break;
   2015      1.171    plunky 
   2016      1.171    plunky 	default:
   2017      1.171    plunky 		error = ENOPROTOOPT;
   2018      1.171    plunky 		break;
   2019      1.171    plunky 	}
   2020      1.171    plunky 
   2021      1.171    plunky 	return (error);
   2022      1.171    plunky }
   2023      1.171    plunky 
   2024       1.14   mycroft int
   2025      1.171    plunky sogetopt(struct socket *so, struct sockopt *sopt)
   2026        1.1       cgd {
   2027      1.160        ad 	int		error;
   2028        1.1       cgd 
   2029      1.160        ad 	solock(so);
   2030      1.171    plunky 	if (sopt->sopt_level != SOL_SOCKET) {
   2031        1.1       cgd 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2032      1.160        ad 			error = ((*so->so_proto->pr_ctloutput)
   2033      1.171    plunky 			    (PRCO_GETOPT, so, sopt));
   2034        1.1       cgd 		} else
   2035      1.160        ad 			error = (ENOPROTOOPT);
   2036        1.1       cgd 	} else {
   2037      1.171    plunky 		error = sogetopt1(so, sopt);
   2038      1.171    plunky 	}
   2039      1.171    plunky 	sounlock(so);
   2040      1.171    plunky 	return (error);
   2041      1.171    plunky }
   2042      1.171    plunky 
   2043      1.171    plunky /*
   2044      1.171    plunky  * alloc sockopt data buffer buffer
   2045      1.171    plunky  *	- will be released at destroy
   2046      1.171    plunky  */
   2047      1.176    plunky static int
   2048      1.176    plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2049      1.171    plunky {
   2050      1.171    plunky 
   2051      1.171    plunky 	KASSERT(sopt->sopt_size == 0);
   2052      1.171    plunky 
   2053      1.176    plunky 	if (len > sizeof(sopt->sopt_buf)) {
   2054      1.176    plunky 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2055      1.176    plunky 		if (sopt->sopt_data == NULL)
   2056      1.176    plunky 			return ENOMEM;
   2057      1.176    plunky 	} else
   2058      1.171    plunky 		sopt->sopt_data = sopt->sopt_buf;
   2059      1.171    plunky 
   2060      1.171    plunky 	sopt->sopt_size = len;
   2061      1.176    plunky 	return 0;
   2062      1.171    plunky }
   2063      1.171    plunky 
   2064      1.171    plunky /*
   2065      1.171    plunky  * initialise sockopt storage
   2066      1.176    plunky  *	- MAY sleep during allocation
   2067      1.171    plunky  */
   2068      1.171    plunky void
   2069      1.171    plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2070      1.171    plunky {
   2071        1.1       cgd 
   2072      1.171    plunky 	memset(sopt, 0, sizeof(*sopt));
   2073        1.1       cgd 
   2074      1.171    plunky 	sopt->sopt_level = level;
   2075      1.171    plunky 	sopt->sopt_name = name;
   2076      1.176    plunky 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2077      1.171    plunky }
   2078      1.171    plunky 
   2079      1.171    plunky /*
   2080      1.171    plunky  * destroy sockopt storage
   2081      1.171    plunky  *	- will release any held memory references
   2082      1.171    plunky  */
   2083      1.171    plunky void
   2084      1.171    plunky sockopt_destroy(struct sockopt *sopt)
   2085      1.171    plunky {
   2086      1.171    plunky 
   2087      1.171    plunky 	if (sopt->sopt_data != sopt->sopt_buf)
   2088      1.173    plunky 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2089      1.171    plunky 
   2090      1.171    plunky 	memset(sopt, 0, sizeof(*sopt));
   2091      1.171    plunky }
   2092      1.171    plunky 
   2093      1.171    plunky /*
   2094      1.171    plunky  * set sockopt value
   2095      1.171    plunky  *	- value is copied into sockopt
   2096  1.252.6.1  pgoyette  *	- memory is allocated when necessary, will not sleep
   2097      1.171    plunky  */
   2098      1.171    plunky int
   2099      1.171    plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2100      1.171    plunky {
   2101      1.176    plunky 	int error;
   2102      1.171    plunky 
   2103      1.176    plunky 	if (sopt->sopt_size == 0) {
   2104      1.176    plunky 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2105      1.176    plunky 		if (error)
   2106      1.176    plunky 			return error;
   2107      1.176    plunky 	}
   2108      1.171    plunky 
   2109      1.171    plunky 	KASSERT(sopt->sopt_size == len);
   2110      1.171    plunky 	memcpy(sopt->sopt_data, buf, len);
   2111      1.171    plunky 	return 0;
   2112      1.171    plunky }
   2113      1.171    plunky 
   2114      1.171    plunky /*
   2115      1.171    plunky  * common case of set sockopt integer value
   2116      1.171    plunky  */
   2117      1.171    plunky int
   2118      1.171    plunky sockopt_setint(struct sockopt *sopt, int val)
   2119      1.171    plunky {
   2120      1.171    plunky 
   2121      1.171    plunky 	return sockopt_set(sopt, &val, sizeof(int));
   2122      1.171    plunky }
   2123      1.171    plunky 
   2124      1.171    plunky /*
   2125      1.171    plunky  * get sockopt value
   2126      1.171    plunky  *	- correct size must be given
   2127      1.171    plunky  */
   2128      1.171    plunky int
   2129      1.171    plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2130      1.171    plunky {
   2131      1.170       tls 
   2132      1.171    plunky 	if (sopt->sopt_size != len)
   2133      1.171    plunky 		return EINVAL;
   2134        1.1       cgd 
   2135      1.171    plunky 	memcpy(buf, sopt->sopt_data, len);
   2136      1.171    plunky 	return 0;
   2137      1.171    plunky }
   2138        1.1       cgd 
   2139      1.171    plunky /*
   2140      1.171    plunky  * common case of get sockopt integer value
   2141      1.171    plunky  */
   2142      1.171    plunky int
   2143      1.171    plunky sockopt_getint(const struct sockopt *sopt, int *valp)
   2144      1.171    plunky {
   2145        1.1       cgd 
   2146      1.171    plunky 	return sockopt_get(sopt, valp, sizeof(int));
   2147      1.171    plunky }
   2148        1.1       cgd 
   2149      1.171    plunky /*
   2150      1.171    plunky  * set sockopt value from mbuf
   2151      1.171    plunky  *	- ONLY for legacy code
   2152      1.171    plunky  *	- mbuf is released by sockopt
   2153      1.176    plunky  *	- will not sleep
   2154      1.171    plunky  */
   2155      1.171    plunky int
   2156      1.171    plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2157      1.171    plunky {
   2158      1.171    plunky 	size_t len;
   2159      1.176    plunky 	int error;
   2160        1.1       cgd 
   2161      1.171    plunky 	len = m_length(m);
   2162        1.1       cgd 
   2163      1.176    plunky 	if (sopt->sopt_size == 0) {
   2164      1.176    plunky 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2165      1.176    plunky 		if (error)
   2166      1.176    plunky 			return error;
   2167      1.176    plunky 	}
   2168        1.1       cgd 
   2169      1.171    plunky 	KASSERT(sopt->sopt_size == len);
   2170      1.171    plunky 	m_copydata(m, 0, len, sopt->sopt_data);
   2171      1.171    plunky 	m_freem(m);
   2172        1.1       cgd 
   2173      1.171    plunky 	return 0;
   2174      1.171    plunky }
   2175        1.1       cgd 
   2176      1.171    plunky /*
   2177      1.171    plunky  * get sockopt value into mbuf
   2178      1.171    plunky  *	- ONLY for legacy code
   2179      1.171    plunky  *	- mbuf to be released by the caller
   2180      1.176    plunky  *	- will not sleep
   2181      1.171    plunky  */
   2182      1.171    plunky struct mbuf *
   2183      1.171    plunky sockopt_getmbuf(const struct sockopt *sopt)
   2184      1.171    plunky {
   2185      1.171    plunky 	struct mbuf *m;
   2186      1.107   darrenr 
   2187      1.176    plunky 	if (sopt->sopt_size > MCLBYTES)
   2188      1.176    plunky 		return NULL;
   2189      1.176    plunky 
   2190      1.176    plunky 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2191      1.171    plunky 	if (m == NULL)
   2192      1.171    plunky 		return NULL;
   2193      1.171    plunky 
   2194      1.176    plunky 	if (sopt->sopt_size > MLEN) {
   2195      1.176    plunky 		MCLGET(m, M_DONTWAIT);
   2196      1.176    plunky 		if ((m->m_flags & M_EXT) == 0) {
   2197      1.176    plunky 			m_free(m);
   2198      1.176    plunky 			return NULL;
   2199      1.176    plunky 		}
   2200        1.1       cgd 	}
   2201      1.176    plunky 
   2202      1.176    plunky 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2203      1.176    plunky 	m->m_len = sopt->sopt_size;
   2204      1.160        ad 
   2205      1.171    plunky 	return m;
   2206        1.1       cgd }
   2207        1.1       cgd 
   2208       1.14   mycroft void
   2209       1.54     lukem sohasoutofband(struct socket *so)
   2210        1.1       cgd {
   2211      1.153     rmind 
   2212       1.90  christos 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2213      1.189        ad 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2214        1.1       cgd }
   2215       1.72  jdolecek 
   2216       1.72  jdolecek static void
   2217       1.72  jdolecek filt_sordetach(struct knote *kn)
   2218       1.72  jdolecek {
   2219       1.72  jdolecek 	struct socket	*so;
   2220       1.72  jdolecek 
   2221      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2222      1.160        ad 	solock(so);
   2223       1.73  christos 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2224       1.73  christos 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2225       1.72  jdolecek 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2226      1.160        ad 	sounlock(so);
   2227       1.72  jdolecek }
   2228       1.72  jdolecek 
   2229       1.72  jdolecek /*ARGSUSED*/
   2230       1.72  jdolecek static int
   2231      1.129      yamt filt_soread(struct knote *kn, long hint)
   2232       1.72  jdolecek {
   2233       1.72  jdolecek 	struct socket	*so;
   2234      1.160        ad 	int rv;
   2235       1.72  jdolecek 
   2236      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2237      1.160        ad 	if (hint != NOTE_SUBMIT)
   2238      1.160        ad 		solock(so);
   2239       1.72  jdolecek 	kn->kn_data = so->so_rcv.sb_cc;
   2240       1.72  jdolecek 	if (so->so_state & SS_CANTRCVMORE) {
   2241      1.108     perry 		kn->kn_flags |= EV_EOF;
   2242       1.72  jdolecek 		kn->kn_fflags = so->so_error;
   2243      1.160        ad 		rv = 1;
   2244      1.160        ad 	} else if (so->so_error)	/* temporary udp error */
   2245      1.160        ad 		rv = 1;
   2246      1.160        ad 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2247      1.160        ad 		rv = (kn->kn_data >= kn->kn_sdata);
   2248  1.252.6.1  pgoyette 	else
   2249      1.160        ad 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2250      1.160        ad 	if (hint != NOTE_SUBMIT)
   2251      1.160        ad 		sounlock(so);
   2252      1.160        ad 	return rv;
   2253       1.72  jdolecek }
   2254       1.72  jdolecek 
   2255       1.72  jdolecek static void
   2256       1.72  jdolecek filt_sowdetach(struct knote *kn)
   2257       1.72  jdolecek {
   2258       1.72  jdolecek 	struct socket	*so;
   2259       1.72  jdolecek 
   2260      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2261      1.160        ad 	solock(so);
   2262       1.73  christos 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2263       1.73  christos 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2264       1.72  jdolecek 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2265      1.160        ad 	sounlock(so);
   2266       1.72  jdolecek }
   2267       1.72  jdolecek 
   2268       1.72  jdolecek /*ARGSUSED*/
   2269       1.72  jdolecek static int
   2270      1.129      yamt filt_sowrite(struct knote *kn, long hint)
   2271       1.72  jdolecek {
   2272       1.72  jdolecek 	struct socket	*so;
   2273      1.160        ad 	int rv;
   2274       1.72  jdolecek 
   2275      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2276      1.160        ad 	if (hint != NOTE_SUBMIT)
   2277      1.160        ad 		solock(so);
   2278       1.72  jdolecek 	kn->kn_data = sbspace(&so->so_snd);
   2279       1.72  jdolecek 	if (so->so_state & SS_CANTSENDMORE) {
   2280      1.108     perry 		kn->kn_flags |= EV_EOF;
   2281       1.72  jdolecek 		kn->kn_fflags = so->so_error;
   2282      1.160        ad 		rv = 1;
   2283      1.160        ad 	} else if (so->so_error)	/* temporary udp error */
   2284      1.160        ad 		rv = 1;
   2285      1.160        ad 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2286       1.72  jdolecek 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2287      1.160        ad 		rv = 0;
   2288      1.160        ad 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2289      1.160        ad 		rv = (kn->kn_data >= kn->kn_sdata);
   2290      1.160        ad 	else
   2291      1.160        ad 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2292      1.160        ad 	if (hint != NOTE_SUBMIT)
   2293      1.160        ad 		sounlock(so);
   2294      1.160        ad 	return rv;
   2295       1.72  jdolecek }
   2296       1.72  jdolecek 
   2297       1.72  jdolecek /*ARGSUSED*/
   2298       1.72  jdolecek static int
   2299      1.129      yamt filt_solisten(struct knote *kn, long hint)
   2300       1.72  jdolecek {
   2301       1.72  jdolecek 	struct socket	*so;
   2302      1.160        ad 	int rv;
   2303       1.72  jdolecek 
   2304      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2305       1.72  jdolecek 
   2306       1.72  jdolecek 	/*
   2307       1.72  jdolecek 	 * Set kn_data to number of incoming connections, not
   2308       1.72  jdolecek 	 * counting partial (incomplete) connections.
   2309      1.108     perry 	 */
   2310      1.160        ad 	if (hint != NOTE_SUBMIT)
   2311      1.160        ad 		solock(so);
   2312       1.72  jdolecek 	kn->kn_data = so->so_qlen;
   2313      1.160        ad 	rv = (kn->kn_data > 0);
   2314      1.160        ad 	if (hint != NOTE_SUBMIT)
   2315      1.160        ad 		sounlock(so);
   2316      1.160        ad 	return rv;
   2317       1.72  jdolecek }
   2318       1.72  jdolecek 
   2319       1.72  jdolecek static const struct filterops solisten_filtops =
   2320       1.72  jdolecek 	{ 1, NULL, filt_sordetach, filt_solisten };
   2321       1.72  jdolecek static const struct filterops soread_filtops =
   2322       1.72  jdolecek 	{ 1, NULL, filt_sordetach, filt_soread };
   2323       1.72  jdolecek static const struct filterops sowrite_filtops =
   2324       1.72  jdolecek 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2325       1.72  jdolecek 
   2326       1.72  jdolecek int
   2327      1.129      yamt soo_kqfilter(struct file *fp, struct knote *kn)
   2328       1.72  jdolecek {
   2329       1.72  jdolecek 	struct socket	*so;
   2330       1.72  jdolecek 	struct sockbuf	*sb;
   2331       1.72  jdolecek 
   2332      1.235      matt 	so = ((file_t *)kn->kn_obj)->f_socket;
   2333      1.160        ad 	solock(so);
   2334       1.72  jdolecek 	switch (kn->kn_filter) {
   2335       1.72  jdolecek 	case EVFILT_READ:
   2336       1.72  jdolecek 		if (so->so_options & SO_ACCEPTCONN)
   2337       1.72  jdolecek 			kn->kn_fop = &solisten_filtops;
   2338       1.72  jdolecek 		else
   2339       1.72  jdolecek 			kn->kn_fop = &soread_filtops;
   2340       1.72  jdolecek 		sb = &so->so_rcv;
   2341       1.72  jdolecek 		break;
   2342       1.72  jdolecek 	case EVFILT_WRITE:
   2343       1.72  jdolecek 		kn->kn_fop = &sowrite_filtops;
   2344       1.72  jdolecek 		sb = &so->so_snd;
   2345       1.72  jdolecek 		break;
   2346       1.72  jdolecek 	default:
   2347      1.160        ad 		sounlock(so);
   2348      1.149     pooka 		return (EINVAL);
   2349       1.72  jdolecek 	}
   2350       1.73  christos 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2351       1.72  jdolecek 	sb->sb_flags |= SB_KNOTE;
   2352      1.160        ad 	sounlock(so);
   2353       1.72  jdolecek 	return (0);
   2354       1.72  jdolecek }
   2355       1.72  jdolecek 
   2356      1.154        ad static int
   2357      1.154        ad sodopoll(struct socket *so, int events)
   2358      1.154        ad {
   2359      1.154        ad 	int revents;
   2360      1.154        ad 
   2361      1.154        ad 	revents = 0;
   2362      1.154        ad 
   2363      1.154        ad 	if (events & (POLLIN | POLLRDNORM))
   2364      1.154        ad 		if (soreadable(so))
   2365      1.154        ad 			revents |= events & (POLLIN | POLLRDNORM);
   2366      1.154        ad 
   2367      1.154        ad 	if (events & (POLLOUT | POLLWRNORM))
   2368      1.154        ad 		if (sowritable(so))
   2369      1.154        ad 			revents |= events & (POLLOUT | POLLWRNORM);
   2370      1.154        ad 
   2371      1.154        ad 	if (events & (POLLPRI | POLLRDBAND))
   2372      1.154        ad 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2373      1.154        ad 			revents |= events & (POLLPRI | POLLRDBAND);
   2374      1.154        ad 
   2375      1.154        ad 	return revents;
   2376      1.154        ad }
   2377      1.154        ad 
   2378      1.154        ad int
   2379      1.154        ad sopoll(struct socket *so, int events)
   2380      1.154        ad {
   2381      1.154        ad 	int revents = 0;
   2382      1.154        ad 
   2383      1.160        ad #ifndef DIAGNOSTIC
   2384      1.160        ad 	/*
   2385      1.160        ad 	 * Do a quick, unlocked check in expectation that the socket
   2386      1.160        ad 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2387      1.160        ad 	 * as the solocked() assertions will fail.
   2388      1.160        ad 	 */
   2389      1.154        ad 	if ((revents = sodopoll(so, events)) != 0)
   2390      1.154        ad 		return revents;
   2391      1.160        ad #endif
   2392      1.154        ad 
   2393      1.160        ad 	solock(so);
   2394      1.154        ad 	if ((revents = sodopoll(so, events)) == 0) {
   2395      1.154        ad 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2396      1.154        ad 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2397      1.160        ad 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2398      1.154        ad 		}
   2399      1.154        ad 
   2400      1.154        ad 		if (events & (POLLOUT | POLLWRNORM)) {
   2401      1.154        ad 			selrecord(curlwp, &so->so_snd.sb_sel);
   2402      1.160        ad 			so->so_snd.sb_flags |= SB_NOTIFY;
   2403      1.154        ad 		}
   2404      1.154        ad 	}
   2405      1.160        ad 	sounlock(so);
   2406      1.154        ad 
   2407      1.154        ad 	return revents;
   2408      1.154        ad }
   2409      1.154        ad 
   2410      1.154        ad 
   2411       1.94      yamt #include <sys/sysctl.h>
   2412       1.94      yamt 
   2413       1.94      yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2414      1.212     pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2415       1.94      yamt 
   2416       1.94      yamt /*
   2417       1.94      yamt  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2418       1.94      yamt  * value is not too small.
   2419       1.94      yamt  * (XXX should we maybe make sure it's not too large as well?)
   2420       1.94      yamt  */
   2421       1.94      yamt static int
   2422       1.94      yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2423       1.94      yamt {
   2424       1.94      yamt 	int error, new_somaxkva;
   2425       1.94      yamt 	struct sysctlnode node;
   2426       1.94      yamt 
   2427       1.94      yamt 	new_somaxkva = somaxkva;
   2428       1.94      yamt 	node = *rnode;
   2429       1.94      yamt 	node.sysctl_data = &new_somaxkva;
   2430       1.94      yamt 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2431       1.94      yamt 	if (error || newp == NULL)
   2432       1.94      yamt 		return (error);
   2433       1.94      yamt 
   2434       1.94      yamt 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2435       1.94      yamt 		return (EINVAL);
   2436       1.94      yamt 
   2437      1.136        ad 	mutex_enter(&so_pendfree_lock);
   2438       1.94      yamt 	somaxkva = new_somaxkva;
   2439      1.136        ad 	cv_broadcast(&socurkva_cv);
   2440      1.136        ad 	mutex_exit(&so_pendfree_lock);
   2441       1.94      yamt 
   2442       1.94      yamt 	return (error);
   2443       1.94      yamt }
   2444       1.94      yamt 
   2445      1.212     pooka /*
   2446      1.212     pooka  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2447      1.212     pooka  * any new value is not too small.
   2448      1.212     pooka  */
   2449      1.212     pooka static int
   2450      1.212     pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2451      1.212     pooka {
   2452      1.212     pooka 	int error, new_sbmax;
   2453      1.212     pooka 	struct sysctlnode node;
   2454      1.212     pooka 
   2455      1.212     pooka 	new_sbmax = sb_max;
   2456      1.212     pooka 	node = *rnode;
   2457      1.212     pooka 	node.sysctl_data = &new_sbmax;
   2458      1.212     pooka 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2459      1.212     pooka 	if (error || newp == NULL)
   2460      1.212     pooka 		return (error);
   2461      1.212     pooka 
   2462      1.212     pooka 	KERNEL_LOCK(1, NULL);
   2463      1.212     pooka 	error = sb_max_set(new_sbmax);
   2464      1.212     pooka 	KERNEL_UNLOCK_ONE(NULL);
   2465      1.212     pooka 
   2466      1.212     pooka 	return (error);
   2467      1.212     pooka }
   2468      1.212     pooka 
   2469      1.178     pooka static void
   2470      1.212     pooka sysctl_kern_socket_setup(void)
   2471       1.94      yamt {
   2472       1.94      yamt 
   2473      1.178     pooka 	KASSERT(socket_sysctllog == NULL);
   2474       1.97    atatat 
   2475      1.178     pooka 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2476       1.97    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2477      1.103    atatat 		       CTLTYPE_INT, "somaxkva",
   2478      1.103    atatat 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2479      1.103    atatat 				    "used for socket buffers"),
   2480       1.94      yamt 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2481       1.94      yamt 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2482      1.212     pooka 
   2483      1.212     pooka 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2484      1.212     pooka 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2485      1.212     pooka 		       CTLTYPE_INT, "sbmax",
   2486      1.212     pooka 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2487      1.212     pooka 		       sysctl_kern_sbmax, 0, NULL, 0,
   2488      1.212     pooka 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2489       1.94      yamt }
   2490