uipc_socket.c revision 1.259.2.2 1 1.259.2.2 pgoyette /* $NetBSD: uipc_socket.c,v 1.259.2.2 2018/05/02 07:20:22 pgoyette Exp $ */
2 1.64 thorpej
3 1.64 thorpej /*-
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.222 rmind /*
66 1.222 rmind * Socket operation routines.
67 1.222 rmind *
68 1.222 rmind * These routines are called by the routines in sys_socket.c or from a
69 1.222 rmind * system process, and implement the semantics of socket operations by
70 1.222 rmind * switching out to the protocol specific routines.
71 1.222 rmind */
72 1.222 rmind
73 1.59 lukem #include <sys/cdefs.h>
74 1.259.2.2 pgoyette __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.259.2.2 2018/05/02 07:20:22 pgoyette Exp $");
75 1.64 thorpej
76 1.246 pooka #ifdef _KERNEL_OPT
77 1.179 christos #include "opt_compat_netbsd.h"
78 1.64 thorpej #include "opt_sock_counters.h"
79 1.64 thorpej #include "opt_sosend_loan.h"
80 1.81 martin #include "opt_mbuftrace.h"
81 1.84 ragge #include "opt_somaxkva.h"
82 1.167 ad #include "opt_multiprocessor.h" /* XXX */
83 1.247 rjs #include "opt_sctp.h"
84 1.246 pooka #endif
85 1.1 cgd
86 1.9 mycroft #include <sys/param.h>
87 1.9 mycroft #include <sys/systm.h>
88 1.9 mycroft #include <sys/proc.h>
89 1.9 mycroft #include <sys/file.h>
90 1.142 dyoung #include <sys/filedesc.h>
91 1.173 plunky #include <sys/kmem.h>
92 1.9 mycroft #include <sys/mbuf.h>
93 1.9 mycroft #include <sys/domain.h>
94 1.9 mycroft #include <sys/kernel.h>
95 1.9 mycroft #include <sys/protosw.h>
96 1.9 mycroft #include <sys/socket.h>
97 1.9 mycroft #include <sys/socketvar.h>
98 1.21 christos #include <sys/signalvar.h>
99 1.9 mycroft #include <sys/resourcevar.h>
100 1.174 pooka #include <sys/uidinfo.h>
101 1.72 jdolecek #include <sys/event.h>
102 1.89 christos #include <sys/poll.h>
103 1.118 elad #include <sys/kauth.h>
104 1.136 ad #include <sys/mutex.h>
105 1.136 ad #include <sys/condvar.h>
106 1.205 bouyer #include <sys/kthread.h>
107 1.37 thorpej
108 1.179 christos #ifdef COMPAT_50
109 1.179 christos #include <compat/sys/time.h>
110 1.184 christos #include <compat/sys/socket.h>
111 1.179 christos #endif
112 1.179 christos
113 1.202 uebayasi #include <uvm/uvm_extern.h>
114 1.202 uebayasi #include <uvm/uvm_loan.h>
115 1.202 uebayasi #include <uvm/uvm_page.h>
116 1.64 thorpej
117 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
118 1.37 thorpej
119 1.142 dyoung extern const struct fileops socketops;
120 1.142 dyoung
121 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
122 1.54 lukem int somaxconn = SOMAXCONN;
123 1.160 ad kmutex_t *softnet_lock;
124 1.49 jonathan
125 1.64 thorpej #ifdef SOSEND_COUNTERS
126 1.64 thorpej #include <sys/device.h>
127 1.64 thorpej
128 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
129 1.64 thorpej NULL, "sosend", "loan big");
130 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
131 1.64 thorpej NULL, "sosend", "copy big");
132 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 1.64 thorpej NULL, "sosend", "copy small");
134 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 1.64 thorpej NULL, "sosend", "kva limit");
136 1.64 thorpej
137 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
138 1.64 thorpej
139 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
140 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
141 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
142 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
143 1.64 thorpej #else
144 1.64 thorpej
145 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
146 1.64 thorpej
147 1.64 thorpej #endif /* SOSEND_COUNTERS */
148 1.64 thorpej
149 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
150 1.121 yamt int sock_loan_thresh = -1;
151 1.71 thorpej #else
152 1.121 yamt int sock_loan_thresh = 4096;
153 1.65 thorpej #endif
154 1.64 thorpej
155 1.136 ad static kmutex_t so_pendfree_lock;
156 1.205 bouyer static struct mbuf *so_pendfree = NULL;
157 1.64 thorpej
158 1.84 ragge #ifndef SOMAXKVA
159 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
160 1.84 ragge #endif
161 1.84 ragge int somaxkva = SOMAXKVA;
162 1.113 thorpej static int socurkva;
163 1.136 ad static kcondvar_t socurkva_cv;
164 1.64 thorpej
165 1.191 elad static kauth_listener_t socket_listener;
166 1.191 elad
167 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
168 1.64 thorpej
169 1.205 bouyer static void sopendfree_thread(void *);
170 1.205 bouyer static kcondvar_t pendfree_thread_cv;
171 1.205 bouyer static lwp_t *sopendfree_lwp;
172 1.93 yamt
173 1.212 pooka static void sysctl_kern_socket_setup(void);
174 1.178 pooka static struct sysctllog *socket_sysctllog;
175 1.178 pooka
176 1.113 thorpej static vsize_t
177 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
178 1.80 yamt {
179 1.98 christos int error;
180 1.80 yamt
181 1.136 ad mutex_enter(&so_pendfree_lock);
182 1.80 yamt while (socurkva + len > somaxkva) {
183 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
184 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
185 1.98 christos if (error) {
186 1.98 christos len = 0;
187 1.98 christos break;
188 1.98 christos }
189 1.80 yamt }
190 1.93 yamt socurkva += len;
191 1.136 ad mutex_exit(&so_pendfree_lock);
192 1.98 christos return len;
193 1.95 yamt }
194 1.95 yamt
195 1.113 thorpej static void
196 1.95 yamt sokvaunreserve(vsize_t len)
197 1.95 yamt {
198 1.95 yamt
199 1.136 ad mutex_enter(&so_pendfree_lock);
200 1.95 yamt socurkva -= len;
201 1.136 ad cv_broadcast(&socurkva_cv);
202 1.136 ad mutex_exit(&so_pendfree_lock);
203 1.95 yamt }
204 1.95 yamt
205 1.95 yamt /*
206 1.95 yamt * sokvaalloc: allocate kva for loan.
207 1.95 yamt */
208 1.95 yamt
209 1.95 yamt vaddr_t
210 1.209 matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
211 1.95 yamt {
212 1.95 yamt vaddr_t lva;
213 1.95 yamt
214 1.95 yamt /*
215 1.95 yamt * reserve kva.
216 1.95 yamt */
217 1.95 yamt
218 1.98 christos if (sokvareserve(so, len) == 0)
219 1.98 christos return 0;
220 1.93 yamt
221 1.93 yamt /*
222 1.93 yamt * allocate kva.
223 1.93 yamt */
224 1.80 yamt
225 1.209 matt lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
226 1.209 matt UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
227 1.95 yamt if (lva == 0) {
228 1.95 yamt sokvaunreserve(len);
229 1.80 yamt return (0);
230 1.95 yamt }
231 1.80 yamt
232 1.80 yamt return lva;
233 1.80 yamt }
234 1.80 yamt
235 1.93 yamt /*
236 1.93 yamt * sokvafree: free kva for loan.
237 1.93 yamt */
238 1.93 yamt
239 1.80 yamt void
240 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
241 1.80 yamt {
242 1.93 yamt
243 1.93 yamt /*
244 1.93 yamt * free kva.
245 1.93 yamt */
246 1.80 yamt
247 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
248 1.93 yamt
249 1.93 yamt /*
250 1.93 yamt * unreserve kva.
251 1.93 yamt */
252 1.93 yamt
253 1.95 yamt sokvaunreserve(len);
254 1.80 yamt }
255 1.80 yamt
256 1.64 thorpej static void
257 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
258 1.64 thorpej {
259 1.156 yamt vaddr_t sva, eva;
260 1.64 thorpej vsize_t len;
261 1.156 yamt int npgs;
262 1.156 yamt
263 1.156 yamt KASSERT(pgs != NULL);
264 1.64 thorpej
265 1.64 thorpej eva = round_page((vaddr_t) buf + size);
266 1.64 thorpej sva = trunc_page((vaddr_t) buf);
267 1.64 thorpej len = eva - sva;
268 1.64 thorpej npgs = len >> PAGE_SHIFT;
269 1.64 thorpej
270 1.64 thorpej pmap_kremove(sva, len);
271 1.64 thorpej pmap_update(pmap_kernel());
272 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
273 1.80 yamt sokvafree(sva, len);
274 1.64 thorpej }
275 1.64 thorpej
276 1.93 yamt /*
277 1.205 bouyer * sopendfree_thread: free mbufs on "pendfree" list.
278 1.136 ad * unlock and relock so_pendfree_lock when freeing mbufs.
279 1.93 yamt */
280 1.93 yamt
281 1.205 bouyer static void
282 1.205 bouyer sopendfree_thread(void *v)
283 1.93 yamt {
284 1.137 ad struct mbuf *m, *next;
285 1.205 bouyer size_t rv;
286 1.93 yamt
287 1.205 bouyer mutex_enter(&so_pendfree_lock);
288 1.64 thorpej
289 1.205 bouyer for (;;) {
290 1.205 bouyer rv = 0;
291 1.205 bouyer while (so_pendfree != NULL) {
292 1.205 bouyer m = so_pendfree;
293 1.205 bouyer so_pendfree = NULL;
294 1.205 bouyer mutex_exit(&so_pendfree_lock);
295 1.205 bouyer
296 1.205 bouyer for (; m != NULL; m = next) {
297 1.205 bouyer next = m->m_next;
298 1.253 ryo KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
299 1.253 ryo 0);
300 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
301 1.205 bouyer
302 1.205 bouyer rv += m->m_ext.ext_size;
303 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
304 1.205 bouyer m->m_ext.ext_size);
305 1.205 bouyer pool_cache_put(mb_cache, m);
306 1.205 bouyer }
307 1.93 yamt
308 1.205 bouyer mutex_enter(&so_pendfree_lock);
309 1.93 yamt }
310 1.205 bouyer if (rv)
311 1.205 bouyer cv_broadcast(&socurkva_cv);
312 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
313 1.64 thorpej }
314 1.205 bouyer panic("sopendfree_thread");
315 1.205 bouyer /* NOTREACHED */
316 1.64 thorpej }
317 1.64 thorpej
318 1.80 yamt void
319 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
320 1.64 thorpej {
321 1.64 thorpej
322 1.156 yamt KASSERT(m != NULL);
323 1.64 thorpej
324 1.93 yamt /*
325 1.93 yamt * postpone freeing mbuf.
326 1.93 yamt *
327 1.93 yamt * we can't do it in interrupt context
328 1.93 yamt * because we need to put kva back to kernel_map.
329 1.93 yamt */
330 1.93 yamt
331 1.136 ad mutex_enter(&so_pendfree_lock);
332 1.92 yamt m->m_next = so_pendfree;
333 1.92 yamt so_pendfree = m;
334 1.205 bouyer cv_signal(&pendfree_thread_cv);
335 1.136 ad mutex_exit(&so_pendfree_lock);
336 1.64 thorpej }
337 1.64 thorpej
338 1.64 thorpej static long
339 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
340 1.64 thorpej {
341 1.64 thorpej struct iovec *iov = uio->uio_iov;
342 1.64 thorpej vaddr_t sva, eva;
343 1.64 thorpej vsize_t len;
344 1.156 yamt vaddr_t lva;
345 1.156 yamt int npgs, error;
346 1.156 yamt vaddr_t va;
347 1.156 yamt int i;
348 1.64 thorpej
349 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
350 1.252 uwe return (0);
351 1.64 thorpej
352 1.64 thorpej if (iov->iov_len < (size_t) space)
353 1.64 thorpej space = iov->iov_len;
354 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
355 1.64 thorpej space = SOCK_LOAN_CHUNK;
356 1.64 thorpej
357 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
358 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
359 1.64 thorpej len = eva - sva;
360 1.64 thorpej npgs = len >> PAGE_SHIFT;
361 1.64 thorpej
362 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
363 1.79 thorpej
364 1.209 matt lva = sokvaalloc(sva, len, so);
365 1.64 thorpej if (lva == 0)
366 1.252 uwe return 0;
367 1.64 thorpej
368 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
369 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
370 1.64 thorpej if (error) {
371 1.80 yamt sokvafree(lva, len);
372 1.252 uwe return (0);
373 1.64 thorpej }
374 1.64 thorpej
375 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
376 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
377 1.194 cegger VM_PROT_READ, 0);
378 1.64 thorpej pmap_update(pmap_kernel());
379 1.64 thorpej
380 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
381 1.64 thorpej
382 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
383 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
384 1.64 thorpej
385 1.64 thorpej uio->uio_resid -= space;
386 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
387 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
388 1.64 thorpej uio->uio_iov->iov_len -= space;
389 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
390 1.64 thorpej uio->uio_iov++;
391 1.64 thorpej uio->uio_iovcnt--;
392 1.64 thorpej }
393 1.64 thorpej
394 1.64 thorpej return (space);
395 1.64 thorpej }
396 1.64 thorpej
397 1.142 dyoung struct mbuf *
398 1.147 dyoung getsombuf(struct socket *so, int type)
399 1.142 dyoung {
400 1.142 dyoung struct mbuf *m;
401 1.142 dyoung
402 1.147 dyoung m = m_get(M_WAIT, type);
403 1.142 dyoung MCLAIM(m, so->so_mowner);
404 1.142 dyoung return m;
405 1.142 dyoung }
406 1.142 dyoung
407 1.191 elad static int
408 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
409 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
410 1.191 elad {
411 1.191 elad int result;
412 1.191 elad enum kauth_network_req req;
413 1.191 elad
414 1.191 elad result = KAUTH_RESULT_DEFER;
415 1.191 elad req = (enum kauth_network_req)arg0;
416 1.191 elad
417 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
418 1.193 elad (action != KAUTH_NETWORK_BIND))
419 1.191 elad return result;
420 1.191 elad
421 1.191 elad switch (req) {
422 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
423 1.193 elad result = KAUTH_RESULT_ALLOW;
424 1.193 elad break;
425 1.193 elad
426 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
427 1.191 elad /* Normal users can only drop their own connections. */
428 1.191 elad struct socket *so = (struct socket *)arg1;
429 1.191 elad
430 1.220 christos if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
431 1.191 elad result = KAUTH_RESULT_ALLOW;
432 1.191 elad
433 1.191 elad break;
434 1.191 elad }
435 1.191 elad
436 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
437 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
438 1.254 christos switch ((u_long)arg1) {
439 1.254 christos case PF_ROUTE:
440 1.254 christos case PF_OROUTE:
441 1.254 christos case PF_BLUETOOTH:
442 1.255 bouyer case PF_CAN:
443 1.191 elad result = KAUTH_RESULT_ALLOW;
444 1.254 christos break;
445 1.254 christos default:
446 1.191 elad /* Privileged, let secmodel handle this. */
447 1.191 elad if ((u_long)arg2 == SOCK_RAW)
448 1.191 elad break;
449 1.254 christos result = KAUTH_RESULT_ALLOW;
450 1.254 christos break;
451 1.191 elad }
452 1.191 elad break;
453 1.191 elad
454 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
455 1.192 elad result = KAUTH_RESULT_ALLOW;
456 1.192 elad
457 1.192 elad break;
458 1.192 elad
459 1.191 elad default:
460 1.191 elad break;
461 1.191 elad }
462 1.191 elad
463 1.191 elad return result;
464 1.191 elad }
465 1.191 elad
466 1.119 yamt void
467 1.119 yamt soinit(void)
468 1.119 yamt {
469 1.119 yamt
470 1.212 pooka sysctl_kern_socket_setup();
471 1.178 pooka
472 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
473 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
474 1.136 ad cv_init(&socurkva_cv, "sokva");
475 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
476 1.166 ad soinit2();
477 1.136 ad
478 1.119 yamt /* Set the initial adjusted socket buffer size. */
479 1.119 yamt if (sb_max_set(sb_max))
480 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
481 1.119 yamt
482 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
483 1.191 elad socket_listener_cb, NULL);
484 1.119 yamt }
485 1.119 yamt
486 1.205 bouyer void
487 1.205 bouyer soinit1(void)
488 1.205 bouyer {
489 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
490 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
491 1.205 bouyer if (error)
492 1.205 bouyer panic("soinit1 %d", error);
493 1.205 bouyer }
494 1.205 bouyer
495 1.1 cgd /*
496 1.222 rmind * socreate: create a new socket of the specified type and the protocol.
497 1.222 rmind *
498 1.222 rmind * => Caller may specify another socket for lock sharing (must not be held).
499 1.222 rmind * => Returns the new socket without lock held.
500 1.224 rmind */
501 1.3 andrew int
502 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
503 1.160 ad struct socket *lockso)
504 1.1 cgd {
505 1.99 matt const struct protosw *prp;
506 1.54 lukem struct socket *so;
507 1.115 yamt uid_t uid;
508 1.160 ad int error;
509 1.160 ad kmutex_t *lock;
510 1.1 cgd
511 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
512 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
513 1.132 elad KAUTH_ARG(proto));
514 1.140 dyoung if (error != 0)
515 1.140 dyoung return error;
516 1.127 elad
517 1.1 cgd if (proto)
518 1.1 cgd prp = pffindproto(dom, proto, type);
519 1.1 cgd else
520 1.1 cgd prp = pffindtype(dom, type);
521 1.140 dyoung if (prp == NULL) {
522 1.120 ginsbach /* no support for domain */
523 1.120 ginsbach if (pffinddomain(dom) == 0)
524 1.140 dyoung return EAFNOSUPPORT;
525 1.120 ginsbach /* no support for socket type */
526 1.120 ginsbach if (proto == 0 && type != 0)
527 1.140 dyoung return EPROTOTYPE;
528 1.140 dyoung return EPROTONOSUPPORT;
529 1.120 ginsbach }
530 1.223 rmind if (prp->pr_usrreqs == NULL)
531 1.140 dyoung return EPROTONOSUPPORT;
532 1.1 cgd if (prp->pr_type != type)
533 1.140 dyoung return EPROTOTYPE;
534 1.160 ad
535 1.160 ad so = soget(true);
536 1.1 cgd so->so_type = type;
537 1.1 cgd so->so_proto = prp;
538 1.33 matt so->so_send = sosend;
539 1.33 matt so->so_receive = soreceive;
540 1.78 matt #ifdef MBUFTRACE
541 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
542 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
543 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
544 1.78 matt #endif
545 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
546 1.115 yamt so->so_uidinfo = uid_find(uid);
547 1.168 yamt so->so_cpid = l->l_proc->p_pid;
548 1.224 rmind
549 1.224 rmind /*
550 1.224 rmind * Lock assigned and taken during PCB attach, unless we share
551 1.224 rmind * the lock with another socket, e.g. socketpair(2) case.
552 1.224 rmind */
553 1.224 rmind if (lockso) {
554 1.160 ad lock = lockso->so_lock;
555 1.160 ad so->so_lock = lock;
556 1.160 ad mutex_obj_hold(lock);
557 1.160 ad mutex_enter(lock);
558 1.160 ad }
559 1.224 rmind
560 1.224 rmind /* Attach the PCB (returns with the socket lock held). */
561 1.224 rmind error = (*prp->pr_usrreqs->pr_attach)(so, proto);
562 1.160 ad KASSERT(solocked(so));
563 1.224 rmind
564 1.224 rmind if (error) {
565 1.222 rmind KASSERT(so->so_pcb == NULL);
566 1.1 cgd so->so_state |= SS_NOFDREF;
567 1.1 cgd sofree(so);
568 1.140 dyoung return error;
569 1.1 cgd }
570 1.198 elad so->so_cred = kauth_cred_dup(l->l_cred);
571 1.160 ad sounlock(so);
572 1.224 rmind
573 1.1 cgd *aso = so;
574 1.140 dyoung return 0;
575 1.1 cgd }
576 1.1 cgd
577 1.222 rmind /*
578 1.222 rmind * fsocreate: create a socket and a file descriptor associated with it.
579 1.222 rmind *
580 1.222 rmind * => On success, write file descriptor to fdout and return zero.
581 1.222 rmind * => On failure, return non-zero; *fdout will be undefined.
582 1.142 dyoung */
583 1.142 dyoung int
584 1.222 rmind fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
585 1.142 dyoung {
586 1.222 rmind lwp_t *l = curlwp;
587 1.222 rmind int error, fd, flags;
588 1.222 rmind struct socket *so;
589 1.222 rmind struct file *fp;
590 1.142 dyoung
591 1.222 rmind if ((error = fd_allocfile(&fp, &fd)) != 0) {
592 1.204 christos return error;
593 1.222 rmind }
594 1.222 rmind flags = type & SOCK_FLAGS_MASK;
595 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
596 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
597 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
598 1.142 dyoung fp->f_type = DTYPE_SOCKET;
599 1.142 dyoung fp->f_ops = &socketops;
600 1.222 rmind
601 1.222 rmind type &= ~SOCK_FLAGS_MASK;
602 1.222 rmind error = socreate(domain, &so, type, proto, l, NULL);
603 1.222 rmind if (error) {
604 1.155 ad fd_abort(curproc, fp, fd);
605 1.222 rmind return error;
606 1.222 rmind }
607 1.222 rmind if (flags & SOCK_NONBLOCK) {
608 1.222 rmind so->so_state |= SS_NBIO;
609 1.222 rmind }
610 1.235 matt fp->f_socket = so;
611 1.222 rmind fd_affix(curproc, fp, fd);
612 1.222 rmind
613 1.222 rmind if (sop != NULL) {
614 1.222 rmind *sop = so;
615 1.142 dyoung }
616 1.222 rmind *fdout = fd;
617 1.142 dyoung return error;
618 1.142 dyoung }
619 1.142 dyoung
620 1.3 andrew int
621 1.190 dyoung sofamily(const struct socket *so)
622 1.190 dyoung {
623 1.190 dyoung const struct protosw *pr;
624 1.190 dyoung const struct domain *dom;
625 1.190 dyoung
626 1.190 dyoung if ((pr = so->so_proto) == NULL)
627 1.190 dyoung return AF_UNSPEC;
628 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
629 1.190 dyoung return AF_UNSPEC;
630 1.190 dyoung return dom->dom_family;
631 1.190 dyoung }
632 1.190 dyoung
633 1.190 dyoung int
634 1.236 rtr sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
635 1.1 cgd {
636 1.160 ad int error;
637 1.1 cgd
638 1.160 ad solock(so);
639 1.237 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
640 1.237 rtr sounlock(so);
641 1.238 rtr return EAFNOSUPPORT;
642 1.237 rtr }
643 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
644 1.160 ad sounlock(so);
645 1.140 dyoung return error;
646 1.1 cgd }
647 1.1 cgd
648 1.3 andrew int
649 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
650 1.1 cgd {
651 1.160 ad int error;
652 1.247 rjs short oldopt, oldqlimit;
653 1.1 cgd
654 1.160 ad solock(so);
655 1.253 ryo if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
656 1.163 ad SS_ISDISCONNECTING)) != 0) {
657 1.222 rmind sounlock(so);
658 1.222 rmind return EINVAL;
659 1.163 ad }
660 1.247 rjs oldopt = so->so_options;
661 1.247 rjs oldqlimit = so->so_qlimit;
662 1.247 rjs if (TAILQ_EMPTY(&so->so_q))
663 1.247 rjs so->so_options |= SO_ACCEPTCONN;
664 1.247 rjs if (backlog < 0)
665 1.247 rjs backlog = 0;
666 1.247 rjs so->so_qlimit = min(backlog, somaxconn);
667 1.247 rjs
668 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
669 1.140 dyoung if (error != 0) {
670 1.247 rjs so->so_options = oldopt;
671 1.247 rjs so->so_qlimit = oldqlimit;
672 1.160 ad sounlock(so);
673 1.140 dyoung return error;
674 1.1 cgd }
675 1.160 ad sounlock(so);
676 1.140 dyoung return 0;
677 1.1 cgd }
678 1.1 cgd
679 1.21 christos void
680 1.54 lukem sofree(struct socket *so)
681 1.1 cgd {
682 1.161 ad u_int refs;
683 1.1 cgd
684 1.160 ad KASSERT(solocked(so));
685 1.160 ad
686 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
687 1.160 ad sounlock(so);
688 1.1 cgd return;
689 1.160 ad }
690 1.43 mycroft if (so->so_head) {
691 1.43 mycroft /*
692 1.43 mycroft * We must not decommission a socket that's on the accept(2)
693 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
694 1.43 mycroft * indicated that the listening socket was ready.
695 1.43 mycroft */
696 1.160 ad if (!soqremque(so, 0)) {
697 1.160 ad sounlock(so);
698 1.43 mycroft return;
699 1.160 ad }
700 1.43 mycroft }
701 1.98 christos if (so->so_rcv.sb_hiwat)
702 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
703 1.98 christos RLIM_INFINITY);
704 1.98 christos if (so->so_snd.sb_hiwat)
705 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
706 1.98 christos RLIM_INFINITY);
707 1.98 christos sbrelease(&so->so_snd, so);
708 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
709 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
710 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
711 1.1 cgd sorflush(so);
712 1.161 ad refs = so->so_aborting; /* XXX */
713 1.177 ad /* Remove acccept filter if one is present. */
714 1.170 tls if (so->so_accf != NULL)
715 1.177 ad (void)accept_filt_clear(so);
716 1.160 ad sounlock(so);
717 1.161 ad if (refs == 0) /* XXX */
718 1.161 ad soput(so);
719 1.1 cgd }
720 1.1 cgd
721 1.1 cgd /*
722 1.222 rmind * soclose: close a socket on last file table reference removal.
723 1.222 rmind * Initiate disconnect if connected. Free socket when disconnect complete.
724 1.1 cgd */
725 1.3 andrew int
726 1.54 lukem soclose(struct socket *so)
727 1.1 cgd {
728 1.222 rmind struct socket *so2;
729 1.222 rmind int error = 0;
730 1.1 cgd
731 1.160 ad solock(so);
732 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
733 1.172 ad for (;;) {
734 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
735 1.160 ad KASSERT(solocked2(so, so2));
736 1.160 ad (void) soqremque(so2, 0);
737 1.160 ad /* soabort drops the lock. */
738 1.160 ad (void) soabort(so2);
739 1.160 ad solock(so);
740 1.172 ad continue;
741 1.160 ad }
742 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
743 1.160 ad KASSERT(solocked2(so, so2));
744 1.160 ad (void) soqremque(so2, 1);
745 1.160 ad /* soabort drops the lock. */
746 1.160 ad (void) soabort(so2);
747 1.160 ad solock(so);
748 1.172 ad continue;
749 1.160 ad }
750 1.172 ad break;
751 1.172 ad }
752 1.1 cgd }
753 1.222 rmind if (so->so_pcb == NULL)
754 1.1 cgd goto discard;
755 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
756 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
757 1.1 cgd error = sodisconnect(so);
758 1.1 cgd if (error)
759 1.1 cgd goto drop;
760 1.1 cgd }
761 1.1 cgd if (so->so_options & SO_LINGER) {
762 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
763 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
764 1.1 cgd goto drop;
765 1.21 christos while (so->so_state & SS_ISCONNECTED) {
766 1.185 yamt error = sowait(so, true, so->so_linger * hz);
767 1.21 christos if (error)
768 1.1 cgd break;
769 1.21 christos }
770 1.1 cgd }
771 1.1 cgd }
772 1.54 lukem drop:
773 1.1 cgd if (so->so_pcb) {
774 1.224 rmind KASSERT(solocked(so));
775 1.224 rmind (*so->so_proto->pr_usrreqs->pr_detach)(so);
776 1.1 cgd }
777 1.54 lukem discard:
778 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) == 0);
779 1.198 elad kauth_cred_free(so->so_cred);
780 1.1 cgd so->so_state |= SS_NOFDREF;
781 1.1 cgd sofree(so);
782 1.222 rmind return error;
783 1.1 cgd }
784 1.1 cgd
785 1.1 cgd /*
786 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
787 1.1 cgd */
788 1.3 andrew int
789 1.54 lukem soabort(struct socket *so)
790 1.1 cgd {
791 1.161 ad u_int refs;
792 1.139 yamt int error;
793 1.253 ryo
794 1.160 ad KASSERT(solocked(so));
795 1.160 ad KASSERT(so->so_head == NULL);
796 1.1 cgd
797 1.161 ad so->so_aborting++; /* XXX */
798 1.230 mrg error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
799 1.161 ad refs = --so->so_aborting; /* XXX */
800 1.164 drochner if (error || (refs == 0)) {
801 1.139 yamt sofree(so);
802 1.160 ad } else {
803 1.160 ad sounlock(so);
804 1.139 yamt }
805 1.139 yamt return error;
806 1.1 cgd }
807 1.1 cgd
808 1.3 andrew int
809 1.239 rtr soaccept(struct socket *so, struct sockaddr *nam)
810 1.1 cgd {
811 1.222 rmind int error;
812 1.160 ad
813 1.160 ad KASSERT(solocked(so));
814 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) != 0);
815 1.1 cgd
816 1.1 cgd so->so_state &= ~SS_NOFDREF;
817 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
818 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
819 1.225 rtr error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
820 1.41 mycroft else
821 1.53 itojun error = ECONNABORTED;
822 1.52 itojun
823 1.222 rmind return error;
824 1.1 cgd }
825 1.1 cgd
826 1.3 andrew int
827 1.240 rtr soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
828 1.1 cgd {
829 1.222 rmind int error;
830 1.160 ad
831 1.160 ad KASSERT(solocked(so));
832 1.1 cgd
833 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
834 1.222 rmind return EOPNOTSUPP;
835 1.1 cgd /*
836 1.1 cgd * If protocol is connection-based, can only connect once.
837 1.1 cgd * Otherwise, if connected, try to disconnect first.
838 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
839 1.1 cgd * a null address.
840 1.1 cgd */
841 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
842 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
843 1.241 rtr (error = sodisconnect(so)))) {
844 1.1 cgd error = EISCONN;
845 1.241 rtr } else {
846 1.242 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
847 1.241 rtr return EAFNOSUPPORT;
848 1.241 rtr }
849 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
850 1.241 rtr }
851 1.222 rmind
852 1.222 rmind return error;
853 1.1 cgd }
854 1.1 cgd
855 1.3 andrew int
856 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
857 1.1 cgd {
858 1.160 ad KASSERT(solocked2(so1, so2));
859 1.1 cgd
860 1.234 rtr return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
861 1.1 cgd }
862 1.1 cgd
863 1.3 andrew int
864 1.54 lukem sodisconnect(struct socket *so)
865 1.1 cgd {
866 1.160 ad int error;
867 1.160 ad
868 1.160 ad KASSERT(solocked(so));
869 1.1 cgd
870 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
871 1.1 cgd error = ENOTCONN;
872 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
873 1.1 cgd error = EALREADY;
874 1.160 ad } else {
875 1.229 rtr error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
876 1.1 cgd }
877 1.1 cgd return (error);
878 1.1 cgd }
879 1.1 cgd
880 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
881 1.1 cgd /*
882 1.1 cgd * Send on a socket.
883 1.1 cgd * If send must go all at once and message is larger than
884 1.1 cgd * send buffering, then hard error.
885 1.1 cgd * Lock against other senders.
886 1.1 cgd * If must go all at once and not enough room now, then
887 1.1 cgd * inform user that this would block and do nothing.
888 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
889 1.1 cgd * The data to be sent is described by "uio" if nonzero,
890 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
891 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
892 1.1 cgd * enough to send all at once.
893 1.1 cgd *
894 1.1 cgd * Returns nonzero on error, timeout or signal; callers
895 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
896 1.1 cgd * Data and control buffers are freed on return.
897 1.1 cgd */
898 1.3 andrew int
899 1.245 rtr sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
900 1.245 rtr struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
901 1.1 cgd {
902 1.54 lukem struct mbuf **mp, *m;
903 1.58 jdolecek long space, len, resid, clen, mlen;
904 1.58 jdolecek int error, s, dontroute, atomic;
905 1.196 dsl short wakeup_state = 0;
906 1.54 lukem
907 1.160 ad clen = 0;
908 1.64 thorpej
909 1.160 ad /*
910 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
911 1.160 ad * protocol processing soft interrupts from interrupting us and
912 1.160 ad * blocking (expensive).
913 1.160 ad */
914 1.160 ad s = splsoftnet();
915 1.160 ad solock(so);
916 1.54 lukem atomic = sosendallatonce(so) || top;
917 1.1 cgd if (uio)
918 1.1 cgd resid = uio->uio_resid;
919 1.1 cgd else
920 1.1 cgd resid = top->m_pkthdr.len;
921 1.7 cgd /*
922 1.7 cgd * In theory resid should be unsigned.
923 1.7 cgd * However, space must be signed, as it might be less than 0
924 1.7 cgd * if we over-committed, and we must use a signed comparison
925 1.7 cgd * of space and resid. On the other hand, a negative resid
926 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
927 1.7 cgd */
928 1.29 mycroft if (resid < 0) {
929 1.29 mycroft error = EINVAL;
930 1.29 mycroft goto out;
931 1.29 mycroft }
932 1.1 cgd dontroute =
933 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
934 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
935 1.165 christos l->l_ru.ru_msgsnd++;
936 1.1 cgd if (control)
937 1.1 cgd clen = control->m_len;
938 1.54 lukem restart:
939 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
940 1.1 cgd goto out;
941 1.1 cgd do {
942 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
943 1.160 ad error = EPIPE;
944 1.160 ad goto release;
945 1.160 ad }
946 1.48 thorpej if (so->so_error) {
947 1.48 thorpej error = so->so_error;
948 1.48 thorpej so->so_error = 0;
949 1.48 thorpej goto release;
950 1.48 thorpej }
951 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
952 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
953 1.217 rmind if (resid || clen == 0) {
954 1.160 ad error = ENOTCONN;
955 1.160 ad goto release;
956 1.160 ad }
957 1.244 rtr } else if (addr == NULL) {
958 1.160 ad error = EDESTADDRREQ;
959 1.160 ad goto release;
960 1.160 ad }
961 1.1 cgd }
962 1.1 cgd space = sbspace(&so->so_snd);
963 1.1 cgd if (flags & MSG_OOB)
964 1.1 cgd space += 1024;
965 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
966 1.160 ad clen > so->so_snd.sb_hiwat) {
967 1.160 ad error = EMSGSIZE;
968 1.160 ad goto release;
969 1.160 ad }
970 1.96 mycroft if (space < resid + clen &&
971 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
972 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
973 1.160 ad error = EWOULDBLOCK;
974 1.160 ad goto release;
975 1.160 ad }
976 1.1 cgd sbunlock(&so->so_snd);
977 1.196 dsl if (wakeup_state & SS_RESTARTSYS) {
978 1.196 dsl error = ERESTART;
979 1.196 dsl goto out;
980 1.196 dsl }
981 1.1 cgd error = sbwait(&so->so_snd);
982 1.1 cgd if (error)
983 1.1 cgd goto out;
984 1.196 dsl wakeup_state = so->so_state;
985 1.1 cgd goto restart;
986 1.1 cgd }
987 1.196 dsl wakeup_state = 0;
988 1.1 cgd mp = ⊤
989 1.1 cgd space -= clen;
990 1.1 cgd do {
991 1.45 tv if (uio == NULL) {
992 1.45 tv /*
993 1.45 tv * Data is prepackaged in "top".
994 1.45 tv */
995 1.45 tv resid = 0;
996 1.45 tv if (flags & MSG_EOR)
997 1.45 tv top->m_flags |= M_EOR;
998 1.45 tv } else do {
999 1.160 ad sounlock(so);
1000 1.160 ad splx(s);
1001 1.144 dyoung if (top == NULL) {
1002 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
1003 1.45 tv mlen = MHLEN;
1004 1.45 tv m->m_pkthdr.len = 0;
1005 1.248 ozaki m_reset_rcvif(m);
1006 1.45 tv } else {
1007 1.78 matt m = m_get(M_WAIT, MT_DATA);
1008 1.45 tv mlen = MLEN;
1009 1.45 tv }
1010 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
1011 1.121 yamt if (sock_loan_thresh >= 0 &&
1012 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
1013 1.121 yamt space >= sock_loan_thresh &&
1014 1.64 thorpej (len = sosend_loan(so, uio, m,
1015 1.252 uwe space)) != 0) {
1016 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
1017 1.64 thorpej space -= len;
1018 1.64 thorpej goto have_data;
1019 1.64 thorpej }
1020 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
1021 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
1022 1.201 oki m_clget(m, M_DONTWAIT);
1023 1.45 tv if ((m->m_flags & M_EXT) == 0)
1024 1.45 tv goto nopages;
1025 1.45 tv mlen = MCLBYTES;
1026 1.45 tv if (atomic && top == 0) {
1027 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1028 1.54 lukem resid);
1029 1.45 tv m->m_data += max_hdr;
1030 1.45 tv } else
1031 1.58 jdolecek len = lmin(MCLBYTES, resid);
1032 1.45 tv space -= len;
1033 1.45 tv } else {
1034 1.64 thorpej nopages:
1035 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1036 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1037 1.45 tv space -= len;
1038 1.45 tv /*
1039 1.45 tv * For datagram protocols, leave room
1040 1.45 tv * for protocol headers in first mbuf.
1041 1.45 tv */
1042 1.45 tv if (atomic && top == 0 && len < mlen)
1043 1.45 tv MH_ALIGN(m, len);
1044 1.45 tv }
1045 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1046 1.64 thorpej have_data:
1047 1.45 tv resid = uio->uio_resid;
1048 1.45 tv m->m_len = len;
1049 1.45 tv *mp = m;
1050 1.45 tv top->m_pkthdr.len += len;
1051 1.160 ad s = splsoftnet();
1052 1.160 ad solock(so);
1053 1.144 dyoung if (error != 0)
1054 1.45 tv goto release;
1055 1.45 tv mp = &m->m_next;
1056 1.45 tv if (resid <= 0) {
1057 1.45 tv if (flags & MSG_EOR)
1058 1.45 tv top->m_flags |= M_EOR;
1059 1.45 tv break;
1060 1.45 tv }
1061 1.45 tv } while (space > 0 && atomic);
1062 1.108 perry
1063 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1064 1.160 ad error = EPIPE;
1065 1.160 ad goto release;
1066 1.160 ad }
1067 1.45 tv if (dontroute)
1068 1.45 tv so->so_options |= SO_DONTROUTE;
1069 1.45 tv if (resid > 0)
1070 1.45 tv so->so_state |= SS_MORETOCOME;
1071 1.240 rtr if (flags & MSG_OOB) {
1072 1.253 ryo error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1073 1.253 ryo so, top, control);
1074 1.240 rtr } else {
1075 1.232 rtr error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1076 1.245 rtr top, addr, control, l);
1077 1.240 rtr }
1078 1.45 tv if (dontroute)
1079 1.45 tv so->so_options &= ~SO_DONTROUTE;
1080 1.45 tv if (resid > 0)
1081 1.45 tv so->so_state &= ~SS_MORETOCOME;
1082 1.45 tv clen = 0;
1083 1.144 dyoung control = NULL;
1084 1.144 dyoung top = NULL;
1085 1.45 tv mp = ⊤
1086 1.144 dyoung if (error != 0)
1087 1.1 cgd goto release;
1088 1.1 cgd } while (resid && space > 0);
1089 1.1 cgd } while (resid);
1090 1.1 cgd
1091 1.54 lukem release:
1092 1.1 cgd sbunlock(&so->so_snd);
1093 1.54 lukem out:
1094 1.160 ad sounlock(so);
1095 1.160 ad splx(s);
1096 1.1 cgd if (top)
1097 1.1 cgd m_freem(top);
1098 1.1 cgd if (control)
1099 1.1 cgd m_freem(control);
1100 1.1 cgd return (error);
1101 1.1 cgd }
1102 1.1 cgd
1103 1.1 cgd /*
1104 1.159 ad * Following replacement or removal of the first mbuf on the first
1105 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1106 1.159 ad * into the socket buffer so that other consumers see the values
1107 1.159 ad * consistently. 'nextrecord' is the callers locally stored value of
1108 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1109 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1110 1.159 ad */
1111 1.159 ad static void
1112 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1113 1.159 ad {
1114 1.159 ad
1115 1.160 ad KASSERT(solocked(sb->sb_so));
1116 1.160 ad
1117 1.159 ad /*
1118 1.159 ad * First, update for the new value of nextrecord. If necessary,
1119 1.159 ad * make it the first record.
1120 1.159 ad */
1121 1.159 ad if (sb->sb_mb != NULL)
1122 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1123 1.159 ad else
1124 1.159 ad sb->sb_mb = nextrecord;
1125 1.159 ad
1126 1.159 ad /*
1127 1.159 ad * Now update any dependent socket buffer fields to reflect
1128 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1129 1.159 ad * the addition of a second clause that takes care of the
1130 1.159 ad * case where sb_mb has been updated, but remains the last
1131 1.159 ad * record.
1132 1.159 ad */
1133 1.159 ad if (sb->sb_mb == NULL) {
1134 1.159 ad sb->sb_mbtail = NULL;
1135 1.159 ad sb->sb_lastrecord = NULL;
1136 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1137 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1138 1.159 ad }
1139 1.159 ad
1140 1.159 ad /*
1141 1.1 cgd * Implement receive operations on a socket.
1142 1.1 cgd * We depend on the way that records are added to the sockbuf
1143 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
1144 1.1 cgd * must begin with an address if the protocol so specifies,
1145 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
1146 1.1 cgd * and then zero or more mbufs of data.
1147 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
1148 1.1 cgd * we splx() while doing the actual copy to user space.
1149 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
1150 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
1151 1.1 cgd *
1152 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
1153 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
1154 1.1 cgd * only for the count in uio_resid.
1155 1.1 cgd */
1156 1.3 andrew int
1157 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1158 1.54 lukem struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1159 1.1 cgd {
1160 1.116 yamt struct lwp *l = curlwp;
1161 1.160 ad struct mbuf *m, **mp, *mt;
1162 1.211 chs size_t len, offset, moff, orig_resid;
1163 1.211 chs int atomic, flags, error, s, type;
1164 1.99 matt const struct protosw *pr;
1165 1.54 lukem struct mbuf *nextrecord;
1166 1.67 he int mbuf_removed = 0;
1167 1.146 dyoung const struct domain *dom;
1168 1.196 dsl short wakeup_state = 0;
1169 1.64 thorpej
1170 1.54 lukem pr = so->so_proto;
1171 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1172 1.146 dyoung dom = pr->pr_domain;
1173 1.1 cgd mp = mp0;
1174 1.54 lukem type = 0;
1175 1.54 lukem orig_resid = uio->uio_resid;
1176 1.102 jonathan
1177 1.144 dyoung if (paddr != NULL)
1178 1.144 dyoung *paddr = NULL;
1179 1.144 dyoung if (controlp != NULL)
1180 1.144 dyoung *controlp = NULL;
1181 1.144 dyoung if (flagsp != NULL)
1182 1.252 uwe flags = *flagsp &~ MSG_EOR;
1183 1.1 cgd else
1184 1.1 cgd flags = 0;
1185 1.66 enami
1186 1.1 cgd if (flags & MSG_OOB) {
1187 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1188 1.160 ad solock(so);
1189 1.226 rtr error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1190 1.160 ad sounlock(so);
1191 1.1 cgd if (error)
1192 1.1 cgd goto bad;
1193 1.1 cgd do {
1194 1.134 christos error = uiomove(mtod(m, void *),
1195 1.211 chs MIN(uio->uio_resid, m->m_len), uio);
1196 1.1 cgd m = m_free(m);
1197 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1198 1.54 lukem bad:
1199 1.144 dyoung if (m != NULL)
1200 1.1 cgd m_freem(m);
1201 1.144 dyoung return error;
1202 1.1 cgd }
1203 1.144 dyoung if (mp != NULL)
1204 1.140 dyoung *mp = NULL;
1205 1.160 ad
1206 1.160 ad /*
1207 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1208 1.160 ad * protocol processing soft interrupts from interrupting us and
1209 1.160 ad * blocking (expensive).
1210 1.160 ad */
1211 1.160 ad s = splsoftnet();
1212 1.160 ad solock(so);
1213 1.54 lukem restart:
1214 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1215 1.160 ad sounlock(so);
1216 1.160 ad splx(s);
1217 1.144 dyoung return error;
1218 1.160 ad }
1219 1.1 cgd
1220 1.1 cgd m = so->so_rcv.sb_mb;
1221 1.1 cgd /*
1222 1.1 cgd * If we have less data than requested, block awaiting more
1223 1.1 cgd * (subject to any timeout) if:
1224 1.15 mycroft * 1. the current count is less than the low water mark,
1225 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1226 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1227 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1228 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1229 1.1 cgd * we have to do the receive in sections, and thus risk returning
1230 1.1 cgd * a short count if a timeout or signal occurs after we start.
1231 1.1 cgd */
1232 1.144 dyoung if (m == NULL ||
1233 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1234 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1235 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1236 1.144 dyoung ((flags & MSG_WAITALL) &&
1237 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1238 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1239 1.1 cgd #ifdef DIAGNOSTIC
1240 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1241 1.1 cgd panic("receive 1");
1242 1.1 cgd #endif
1243 1.1 cgd if (so->so_error) {
1244 1.144 dyoung if (m != NULL)
1245 1.15 mycroft goto dontblock;
1246 1.1 cgd error = so->so_error;
1247 1.259.2.1 pgoyette so->so_error = 0;
1248 1.1 cgd goto release;
1249 1.1 cgd }
1250 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1251 1.144 dyoung if (m != NULL)
1252 1.15 mycroft goto dontblock;
1253 1.1 cgd else
1254 1.1 cgd goto release;
1255 1.1 cgd }
1256 1.144 dyoung for (; m != NULL; m = m->m_next)
1257 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1258 1.1 cgd m = so->so_rcv.sb_mb;
1259 1.1 cgd goto dontblock;
1260 1.1 cgd }
1261 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1262 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1263 1.1 cgd error = ENOTCONN;
1264 1.1 cgd goto release;
1265 1.1 cgd }
1266 1.1 cgd if (uio->uio_resid == 0)
1267 1.1 cgd goto release;
1268 1.206 christos if ((so->so_state & SS_NBIO) ||
1269 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1270 1.1 cgd error = EWOULDBLOCK;
1271 1.1 cgd goto release;
1272 1.1 cgd }
1273 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1274 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1275 1.1 cgd sbunlock(&so->so_rcv);
1276 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1277 1.196 dsl error = ERESTART;
1278 1.196 dsl else
1279 1.196 dsl error = sbwait(&so->so_rcv);
1280 1.160 ad if (error != 0) {
1281 1.160 ad sounlock(so);
1282 1.160 ad splx(s);
1283 1.144 dyoung return error;
1284 1.160 ad }
1285 1.196 dsl wakeup_state = so->so_state;
1286 1.1 cgd goto restart;
1287 1.1 cgd }
1288 1.54 lukem dontblock:
1289 1.69 thorpej /*
1290 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1291 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1292 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1293 1.159 ad * various socket buffer pointers and local stack versions of the
1294 1.159 ad * pointers in sync, pushing out modifications before dropping the
1295 1.160 ad * socket lock, and re-reading them when picking it up.
1296 1.159 ad *
1297 1.159 ad * Otherwise, we will race with the network stack appending new data
1298 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1299 1.159 ad * versions of the field, possibly resulting in socket buffer
1300 1.159 ad * corruption.
1301 1.159 ad *
1302 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1303 1.159 ad * readers from pulling off the front of the socket buffer.
1304 1.69 thorpej */
1305 1.144 dyoung if (l != NULL)
1306 1.157 ad l->l_ru.ru_msgrcv++;
1307 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1308 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1309 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1310 1.1 cgd nextrecord = m->m_nextpkt;
1311 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1312 1.1 cgd #ifdef DIAGNOSTIC
1313 1.1 cgd if (m->m_type != MT_SONAME)
1314 1.1 cgd panic("receive 1a");
1315 1.1 cgd #endif
1316 1.3 andrew orig_resid = 0;
1317 1.1 cgd if (flags & MSG_PEEK) {
1318 1.1 cgd if (paddr)
1319 1.259.2.2 pgoyette *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1320 1.1 cgd m = m->m_next;
1321 1.1 cgd } else {
1322 1.1 cgd sbfree(&so->so_rcv, m);
1323 1.67 he mbuf_removed = 1;
1324 1.144 dyoung if (paddr != NULL) {
1325 1.1 cgd *paddr = m;
1326 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1327 1.144 dyoung m->m_next = NULL;
1328 1.1 cgd m = so->so_rcv.sb_mb;
1329 1.1 cgd } else {
1330 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1331 1.1 cgd }
1332 1.159 ad sbsync(&so->so_rcv, nextrecord);
1333 1.1 cgd }
1334 1.1 cgd }
1335 1.247 rjs if (pr->pr_flags & PR_ADDR_OPT) {
1336 1.247 rjs /*
1337 1.247 rjs * For SCTP we may be getting a
1338 1.247 rjs * whole message OR a partial delivery.
1339 1.247 rjs */
1340 1.247 rjs if (m->m_type == MT_SONAME) {
1341 1.247 rjs orig_resid = 0;
1342 1.247 rjs if (flags & MSG_PEEK) {
1343 1.247 rjs if (paddr)
1344 1.259.2.2 pgoyette *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1345 1.247 rjs m = m->m_next;
1346 1.247 rjs } else {
1347 1.247 rjs sbfree(&so->so_rcv, m);
1348 1.247 rjs if (paddr) {
1349 1.247 rjs *paddr = m;
1350 1.247 rjs so->so_rcv.sb_mb = m->m_next;
1351 1.247 rjs m->m_next = 0;
1352 1.247 rjs m = so->so_rcv.sb_mb;
1353 1.247 rjs } else {
1354 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1355 1.247 rjs }
1356 1.247 rjs }
1357 1.247 rjs }
1358 1.247 rjs }
1359 1.159 ad
1360 1.159 ad /*
1361 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1362 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1363 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1364 1.159 ad * perform externalization (or freeing if controlp == NULL).
1365 1.159 ad */
1366 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1367 1.159 ad struct mbuf *cm = NULL, *cmn;
1368 1.159 ad struct mbuf **cme = &cm;
1369 1.159 ad
1370 1.159 ad do {
1371 1.159 ad if (flags & MSG_PEEK) {
1372 1.159 ad if (controlp != NULL) {
1373 1.259.2.2 pgoyette *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1374 1.159 ad controlp = &(*controlp)->m_next;
1375 1.159 ad }
1376 1.159 ad m = m->m_next;
1377 1.159 ad } else {
1378 1.159 ad sbfree(&so->so_rcv, m);
1379 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1380 1.144 dyoung m->m_next = NULL;
1381 1.159 ad *cme = m;
1382 1.159 ad cme = &(*cme)->m_next;
1383 1.1 cgd m = so->so_rcv.sb_mb;
1384 1.159 ad }
1385 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1386 1.159 ad if ((flags & MSG_PEEK) == 0)
1387 1.159 ad sbsync(&so->so_rcv, nextrecord);
1388 1.159 ad for (; cm != NULL; cm = cmn) {
1389 1.159 ad cmn = cm->m_next;
1390 1.159 ad cm->m_next = NULL;
1391 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1392 1.159 ad if (controlp != NULL) {
1393 1.159 ad if (dom->dom_externalize != NULL &&
1394 1.159 ad type == SCM_RIGHTS) {
1395 1.160 ad sounlock(so);
1396 1.159 ad splx(s);
1397 1.204 christos error = (*dom->dom_externalize)(cm, l,
1398 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1399 1.204 christos O_CLOEXEC : 0);
1400 1.159 ad s = splsoftnet();
1401 1.160 ad solock(so);
1402 1.159 ad }
1403 1.159 ad *controlp = cm;
1404 1.159 ad while (*controlp != NULL)
1405 1.159 ad controlp = &(*controlp)->m_next;
1406 1.1 cgd } else {
1407 1.106 itojun /*
1408 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1409 1.106 itojun * through the read path rather than recv.
1410 1.106 itojun */
1411 1.159 ad if (dom->dom_dispose != NULL &&
1412 1.159 ad type == SCM_RIGHTS) {
1413 1.253 ryo sounlock(so);
1414 1.159 ad (*dom->dom_dispose)(cm);
1415 1.160 ad solock(so);
1416 1.159 ad }
1417 1.159 ad m_freem(cm);
1418 1.1 cgd }
1419 1.1 cgd }
1420 1.159 ad if (m != NULL)
1421 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1422 1.159 ad else
1423 1.159 ad nextrecord = so->so_rcv.sb_mb;
1424 1.159 ad orig_resid = 0;
1425 1.1 cgd }
1426 1.69 thorpej
1427 1.159 ad /* If m is non-NULL, we have some data to read. */
1428 1.159 ad if (__predict_true(m != NULL)) {
1429 1.1 cgd type = m->m_type;
1430 1.1 cgd if (type == MT_OOBDATA)
1431 1.1 cgd flags |= MSG_OOB;
1432 1.1 cgd }
1433 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1434 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1435 1.69 thorpej
1436 1.1 cgd moff = 0;
1437 1.1 cgd offset = 0;
1438 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1439 1.1 cgd if (m->m_type == MT_OOBDATA) {
1440 1.1 cgd if (type != MT_OOBDATA)
1441 1.1 cgd break;
1442 1.1 cgd } else if (type == MT_OOBDATA)
1443 1.1 cgd break;
1444 1.1 cgd #ifdef DIAGNOSTIC
1445 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1446 1.1 cgd panic("receive 3");
1447 1.1 cgd #endif
1448 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1449 1.196 dsl wakeup_state = 0;
1450 1.1 cgd len = uio->uio_resid;
1451 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1452 1.1 cgd len = so->so_oobmark - offset;
1453 1.1 cgd if (len > m->m_len - moff)
1454 1.1 cgd len = m->m_len - moff;
1455 1.1 cgd /*
1456 1.1 cgd * If mp is set, just pass back the mbufs.
1457 1.1 cgd * Otherwise copy them out via the uio, then free.
1458 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1459 1.1 cgd * it points to next record) when we drop priority;
1460 1.1 cgd * we must note any additions to the sockbuf when we
1461 1.1 cgd * block interrupts again.
1462 1.1 cgd */
1463 1.144 dyoung if (mp == NULL) {
1464 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1465 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1466 1.160 ad sounlock(so);
1467 1.1 cgd splx(s);
1468 1.211 chs error = uiomove(mtod(m, char *) + moff, len, uio);
1469 1.20 mycroft s = splsoftnet();
1470 1.160 ad solock(so);
1471 1.144 dyoung if (error != 0) {
1472 1.67 he /*
1473 1.67 he * If any part of the record has been removed
1474 1.67 he * (such as the MT_SONAME mbuf, which will
1475 1.67 he * happen when PR_ADDR, and thus also
1476 1.67 he * PR_ATOMIC, is set), then drop the entire
1477 1.67 he * record to maintain the atomicity of the
1478 1.67 he * receive operation.
1479 1.67 he *
1480 1.67 he * This avoids a later panic("receive 1a")
1481 1.67 he * when compiled with DIAGNOSTIC.
1482 1.67 he */
1483 1.146 dyoung if (m && mbuf_removed && atomic)
1484 1.67 he (void) sbdroprecord(&so->so_rcv);
1485 1.67 he
1486 1.57 jdolecek goto release;
1487 1.67 he }
1488 1.1 cgd } else
1489 1.1 cgd uio->uio_resid -= len;
1490 1.1 cgd if (len == m->m_len - moff) {
1491 1.1 cgd if (m->m_flags & M_EOR)
1492 1.1 cgd flags |= MSG_EOR;
1493 1.247 rjs #ifdef SCTP
1494 1.247 rjs if (m->m_flags & M_NOTIFICATION)
1495 1.247 rjs flags |= MSG_NOTIFICATION;
1496 1.247 rjs #endif /* SCTP */
1497 1.1 cgd if (flags & MSG_PEEK) {
1498 1.1 cgd m = m->m_next;
1499 1.1 cgd moff = 0;
1500 1.1 cgd } else {
1501 1.1 cgd nextrecord = m->m_nextpkt;
1502 1.1 cgd sbfree(&so->so_rcv, m);
1503 1.1 cgd if (mp) {
1504 1.1 cgd *mp = m;
1505 1.1 cgd mp = &m->m_next;
1506 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1507 1.140 dyoung *mp = NULL;
1508 1.1 cgd } else {
1509 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1510 1.1 cgd }
1511 1.69 thorpej /*
1512 1.69 thorpej * If m != NULL, we also know that
1513 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1514 1.69 thorpej */
1515 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1516 1.69 thorpej if (m) {
1517 1.1 cgd m->m_nextpkt = nextrecord;
1518 1.69 thorpej if (nextrecord == NULL)
1519 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1520 1.69 thorpej } else {
1521 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1522 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1523 1.69 thorpej }
1524 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1525 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1526 1.1 cgd }
1527 1.144 dyoung } else if (flags & MSG_PEEK)
1528 1.144 dyoung moff += len;
1529 1.144 dyoung else {
1530 1.160 ad if (mp != NULL) {
1531 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1532 1.160 ad if (__predict_false(mt == NULL)) {
1533 1.160 ad sounlock(so);
1534 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1535 1.160 ad solock(so);
1536 1.160 ad }
1537 1.160 ad *mp = mt;
1538 1.160 ad }
1539 1.144 dyoung m->m_data += len;
1540 1.144 dyoung m->m_len -= len;
1541 1.144 dyoung so->so_rcv.sb_cc -= len;
1542 1.1 cgd }
1543 1.1 cgd if (so->so_oobmark) {
1544 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1545 1.1 cgd so->so_oobmark -= len;
1546 1.1 cgd if (so->so_oobmark == 0) {
1547 1.1 cgd so->so_state |= SS_RCVATMARK;
1548 1.1 cgd break;
1549 1.1 cgd }
1550 1.7 cgd } else {
1551 1.1 cgd offset += len;
1552 1.7 cgd if (offset == so->so_oobmark)
1553 1.7 cgd break;
1554 1.7 cgd }
1555 1.1 cgd }
1556 1.1 cgd if (flags & MSG_EOR)
1557 1.1 cgd break;
1558 1.1 cgd /*
1559 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1560 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1561 1.1 cgd * termination. If a signal/timeout occurs, return
1562 1.1 cgd * with a short count but without error.
1563 1.1 cgd * Keep sockbuf locked against other readers.
1564 1.1 cgd */
1565 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1566 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1567 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
1568 1.1 cgd break;
1569 1.68 matt /*
1570 1.68 matt * If we are peeking and the socket receive buffer is
1571 1.68 matt * full, stop since we can't get more data to peek at.
1572 1.68 matt */
1573 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1574 1.68 matt break;
1575 1.68 matt /*
1576 1.68 matt * If we've drained the socket buffer, tell the
1577 1.68 matt * protocol in case it needs to do something to
1578 1.68 matt * get it filled again.
1579 1.68 matt */
1580 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1581 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1582 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1583 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1584 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1585 1.196 dsl error = ERESTART;
1586 1.196 dsl else
1587 1.196 dsl error = sbwait(&so->so_rcv);
1588 1.144 dyoung if (error != 0) {
1589 1.1 cgd sbunlock(&so->so_rcv);
1590 1.160 ad sounlock(so);
1591 1.1 cgd splx(s);
1592 1.144 dyoung return 0;
1593 1.1 cgd }
1594 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1595 1.1 cgd nextrecord = m->m_nextpkt;
1596 1.196 dsl wakeup_state = so->so_state;
1597 1.1 cgd }
1598 1.1 cgd }
1599 1.3 andrew
1600 1.146 dyoung if (m && atomic) {
1601 1.3 andrew flags |= MSG_TRUNC;
1602 1.3 andrew if ((flags & MSG_PEEK) == 0)
1603 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1604 1.3 andrew }
1605 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1606 1.144 dyoung if (m == NULL) {
1607 1.69 thorpej /*
1608 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1609 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1610 1.69 thorpej * there is still data in the socket buffer.
1611 1.69 thorpej */
1612 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1613 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1614 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1615 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1616 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1617 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1618 1.69 thorpej }
1619 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1620 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1621 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1622 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1623 1.1 cgd }
1624 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1625 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1626 1.3 andrew sbunlock(&so->so_rcv);
1627 1.3 andrew goto restart;
1628 1.3 andrew }
1629 1.108 perry
1630 1.144 dyoung if (flagsp != NULL)
1631 1.1 cgd *flagsp |= flags;
1632 1.54 lukem release:
1633 1.1 cgd sbunlock(&so->so_rcv);
1634 1.160 ad sounlock(so);
1635 1.1 cgd splx(s);
1636 1.144 dyoung return error;
1637 1.1 cgd }
1638 1.1 cgd
1639 1.14 mycroft int
1640 1.54 lukem soshutdown(struct socket *so, int how)
1641 1.1 cgd {
1642 1.99 matt const struct protosw *pr;
1643 1.160 ad int error;
1644 1.160 ad
1645 1.160 ad KASSERT(solocked(so));
1646 1.34 kleink
1647 1.54 lukem pr = so->so_proto;
1648 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1649 1.34 kleink return (EINVAL);
1650 1.1 cgd
1651 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1652 1.1 cgd sorflush(so);
1653 1.160 ad error = 0;
1654 1.160 ad }
1655 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1656 1.229 rtr error = (*pr->pr_usrreqs->pr_shutdown)(so);
1657 1.160 ad
1658 1.160 ad return error;
1659 1.1 cgd }
1660 1.1 cgd
1661 1.195 dsl void
1662 1.196 dsl sorestart(struct socket *so)
1663 1.188 ad {
1664 1.196 dsl /*
1665 1.196 dsl * An application has called close() on an fd on which another
1666 1.196 dsl * of its threads has called a socket system call.
1667 1.196 dsl * Mark this and wake everyone up, and code that would block again
1668 1.196 dsl * instead returns ERESTART.
1669 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1670 1.196 dsl * Any other fd will block again on the 2nd syscall.
1671 1.196 dsl */
1672 1.188 ad solock(so);
1673 1.196 dsl so->so_state |= SS_RESTARTSYS;
1674 1.188 ad cv_broadcast(&so->so_cv);
1675 1.196 dsl cv_broadcast(&so->so_snd.sb_cv);
1676 1.196 dsl cv_broadcast(&so->so_rcv.sb_cv);
1677 1.188 ad sounlock(so);
1678 1.188 ad }
1679 1.188 ad
1680 1.14 mycroft void
1681 1.54 lukem sorflush(struct socket *so)
1682 1.1 cgd {
1683 1.54 lukem struct sockbuf *sb, asb;
1684 1.99 matt const struct protosw *pr;
1685 1.160 ad
1686 1.160 ad KASSERT(solocked(so));
1687 1.1 cgd
1688 1.54 lukem sb = &so->so_rcv;
1689 1.54 lukem pr = so->so_proto;
1690 1.160 ad socantrcvmore(so);
1691 1.1 cgd sb->sb_flags |= SB_NOINTR;
1692 1.160 ad (void )sblock(sb, M_WAITOK);
1693 1.1 cgd sbunlock(sb);
1694 1.1 cgd asb = *sb;
1695 1.86 wrstuden /*
1696 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1697 1.86 wrstuden * fields valid.
1698 1.86 wrstuden */
1699 1.86 wrstuden memset(&sb->sb_startzero, 0,
1700 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1701 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1702 1.160 ad sounlock(so);
1703 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1704 1.160 ad solock(so);
1705 1.160 ad }
1706 1.98 christos sbrelease(&asb, so);
1707 1.1 cgd }
1708 1.1 cgd
1709 1.171 plunky /*
1710 1.171 plunky * internal set SOL_SOCKET options
1711 1.171 plunky */
1712 1.142 dyoung static int
1713 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1714 1.1 cgd {
1715 1.219 christos int error = EINVAL, opt;
1716 1.219 christos int optval = 0; /* XXX: gcc */
1717 1.171 plunky struct linger l;
1718 1.171 plunky struct timeval tv;
1719 1.142 dyoung
1720 1.179 christos switch ((opt = sopt->sopt_name)) {
1721 1.142 dyoung
1722 1.170 tls case SO_ACCEPTFILTER:
1723 1.177 ad error = accept_filt_setopt(so, sopt);
1724 1.177 ad KASSERT(solocked(so));
1725 1.170 tls break;
1726 1.170 tls
1727 1.253 ryo case SO_LINGER:
1728 1.253 ryo error = sockopt_get(sopt, &l, sizeof(l));
1729 1.177 ad solock(so);
1730 1.253 ryo if (error)
1731 1.253 ryo break;
1732 1.253 ryo if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1733 1.253 ryo l.l_linger > (INT_MAX / hz)) {
1734 1.177 ad error = EDOM;
1735 1.177 ad break;
1736 1.177 ad }
1737 1.253 ryo so->so_linger = l.l_linger;
1738 1.253 ryo if (l.l_onoff)
1739 1.253 ryo so->so_options |= SO_LINGER;
1740 1.253 ryo else
1741 1.253 ryo so->so_options &= ~SO_LINGER;
1742 1.253 ryo break;
1743 1.1 cgd
1744 1.142 dyoung case SO_DEBUG:
1745 1.142 dyoung case SO_KEEPALIVE:
1746 1.142 dyoung case SO_DONTROUTE:
1747 1.142 dyoung case SO_USELOOPBACK:
1748 1.142 dyoung case SO_BROADCAST:
1749 1.142 dyoung case SO_REUSEADDR:
1750 1.142 dyoung case SO_REUSEPORT:
1751 1.142 dyoung case SO_OOBINLINE:
1752 1.142 dyoung case SO_TIMESTAMP:
1753 1.207 christos case SO_NOSIGPIPE:
1754 1.184 christos #ifdef SO_OTIMESTAMP
1755 1.184 christos case SO_OTIMESTAMP:
1756 1.184 christos #endif
1757 1.171 plunky error = sockopt_getint(sopt, &optval);
1758 1.177 ad solock(so);
1759 1.171 plunky if (error)
1760 1.177 ad break;
1761 1.171 plunky if (optval)
1762 1.179 christos so->so_options |= opt;
1763 1.142 dyoung else
1764 1.179 christos so->so_options &= ~opt;
1765 1.142 dyoung break;
1766 1.142 dyoung
1767 1.142 dyoung case SO_SNDBUF:
1768 1.142 dyoung case SO_RCVBUF:
1769 1.142 dyoung case SO_SNDLOWAT:
1770 1.142 dyoung case SO_RCVLOWAT:
1771 1.171 plunky error = sockopt_getint(sopt, &optval);
1772 1.177 ad solock(so);
1773 1.171 plunky if (error)
1774 1.177 ad break;
1775 1.1 cgd
1776 1.142 dyoung /*
1777 1.142 dyoung * Values < 1 make no sense for any of these
1778 1.142 dyoung * options, so disallow them.
1779 1.142 dyoung */
1780 1.177 ad if (optval < 1) {
1781 1.177 ad error = EINVAL;
1782 1.177 ad break;
1783 1.177 ad }
1784 1.1 cgd
1785 1.179 christos switch (opt) {
1786 1.171 plunky case SO_SNDBUF:
1787 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1788 1.177 ad error = ENOBUFS;
1789 1.177 ad break;
1790 1.177 ad }
1791 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1792 1.171 plunky break;
1793 1.1 cgd
1794 1.1 cgd case SO_RCVBUF:
1795 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1796 1.177 ad error = ENOBUFS;
1797 1.177 ad break;
1798 1.177 ad }
1799 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1800 1.142 dyoung break;
1801 1.142 dyoung
1802 1.142 dyoung /*
1803 1.142 dyoung * Make sure the low-water is never greater than
1804 1.142 dyoung * the high-water.
1805 1.142 dyoung */
1806 1.1 cgd case SO_SNDLOWAT:
1807 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1808 1.171 plunky optval = so->so_snd.sb_hiwat;
1809 1.171 plunky
1810 1.171 plunky so->so_snd.sb_lowat = optval;
1811 1.142 dyoung break;
1812 1.171 plunky
1813 1.1 cgd case SO_RCVLOWAT:
1814 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1815 1.171 plunky optval = so->so_rcv.sb_hiwat;
1816 1.171 plunky
1817 1.171 plunky so->so_rcv.sb_lowat = optval;
1818 1.142 dyoung break;
1819 1.142 dyoung }
1820 1.142 dyoung break;
1821 1.28 thorpej
1822 1.179 christos #ifdef COMPAT_50
1823 1.179 christos case SO_OSNDTIMEO:
1824 1.179 christos case SO_ORCVTIMEO: {
1825 1.179 christos struct timeval50 otv;
1826 1.179 christos error = sockopt_get(sopt, &otv, sizeof(otv));
1827 1.186 pooka if (error) {
1828 1.186 pooka solock(so);
1829 1.183 christos break;
1830 1.186 pooka }
1831 1.179 christos timeval50_to_timeval(&otv, &tv);
1832 1.179 christos opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1833 1.182 christos error = 0;
1834 1.179 christos /*FALLTHROUGH*/
1835 1.179 christos }
1836 1.179 christos #endif /* COMPAT_50 */
1837 1.179 christos
1838 1.142 dyoung case SO_SNDTIMEO:
1839 1.142 dyoung case SO_RCVTIMEO:
1840 1.182 christos if (error)
1841 1.179 christos error = sockopt_get(sopt, &tv, sizeof(tv));
1842 1.177 ad solock(so);
1843 1.171 plunky if (error)
1844 1.177 ad break;
1845 1.171 plunky
1846 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1847 1.177 ad error = EDOM;
1848 1.177 ad break;
1849 1.177 ad }
1850 1.28 thorpej
1851 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1852 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1853 1.171 plunky optval = 1;
1854 1.28 thorpej
1855 1.179 christos switch (opt) {
1856 1.142 dyoung case SO_SNDTIMEO:
1857 1.171 plunky so->so_snd.sb_timeo = optval;
1858 1.1 cgd break;
1859 1.1 cgd case SO_RCVTIMEO:
1860 1.171 plunky so->so_rcv.sb_timeo = optval;
1861 1.142 dyoung break;
1862 1.142 dyoung }
1863 1.142 dyoung break;
1864 1.1 cgd
1865 1.142 dyoung default:
1866 1.177 ad solock(so);
1867 1.177 ad error = ENOPROTOOPT;
1868 1.177 ad break;
1869 1.142 dyoung }
1870 1.177 ad KASSERT(solocked(so));
1871 1.177 ad return error;
1872 1.142 dyoung }
1873 1.1 cgd
1874 1.142 dyoung int
1875 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1876 1.142 dyoung {
1877 1.142 dyoung int error, prerr;
1878 1.1 cgd
1879 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1880 1.171 plunky error = sosetopt1(so, sopt);
1881 1.177 ad KASSERT(solocked(so));
1882 1.177 ad } else {
1883 1.142 dyoung error = ENOPROTOOPT;
1884 1.177 ad solock(so);
1885 1.177 ad }
1886 1.1 cgd
1887 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1888 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1889 1.142 dyoung /* give the protocol stack a shot */
1890 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1891 1.142 dyoung if (prerr == 0)
1892 1.142 dyoung error = 0;
1893 1.142 dyoung else if (prerr != ENOPROTOOPT)
1894 1.142 dyoung error = prerr;
1895 1.171 plunky }
1896 1.160 ad sounlock(so);
1897 1.142 dyoung return error;
1898 1.1 cgd }
1899 1.1 cgd
1900 1.171 plunky /*
1901 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1902 1.171 plunky */
1903 1.171 plunky int
1904 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1905 1.171 plunky const void *val, size_t valsize)
1906 1.171 plunky {
1907 1.171 plunky struct sockopt sopt;
1908 1.171 plunky int error;
1909 1.171 plunky
1910 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1911 1.171 plunky
1912 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1913 1.171 plunky sockopt_set(&sopt, val, valsize);
1914 1.171 plunky
1915 1.171 plunky error = sosetopt(so, &sopt);
1916 1.171 plunky
1917 1.171 plunky sockopt_destroy(&sopt);
1918 1.171 plunky
1919 1.171 plunky return error;
1920 1.171 plunky }
1921 1.253 ryo
1922 1.171 plunky /*
1923 1.171 plunky * internal get SOL_SOCKET options
1924 1.171 plunky */
1925 1.171 plunky static int
1926 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1927 1.171 plunky {
1928 1.179 christos int error, optval, opt;
1929 1.171 plunky struct linger l;
1930 1.171 plunky struct timeval tv;
1931 1.171 plunky
1932 1.179 christos switch ((opt = sopt->sopt_name)) {
1933 1.171 plunky
1934 1.171 plunky case SO_ACCEPTFILTER:
1935 1.177 ad error = accept_filt_getopt(so, sopt);
1936 1.171 plunky break;
1937 1.171 plunky
1938 1.171 plunky case SO_LINGER:
1939 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1940 1.171 plunky l.l_linger = so->so_linger;
1941 1.171 plunky
1942 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1943 1.171 plunky break;
1944 1.171 plunky
1945 1.171 plunky case SO_USELOOPBACK:
1946 1.171 plunky case SO_DONTROUTE:
1947 1.171 plunky case SO_DEBUG:
1948 1.171 plunky case SO_KEEPALIVE:
1949 1.171 plunky case SO_REUSEADDR:
1950 1.171 plunky case SO_REUSEPORT:
1951 1.171 plunky case SO_BROADCAST:
1952 1.171 plunky case SO_OOBINLINE:
1953 1.171 plunky case SO_TIMESTAMP:
1954 1.207 christos case SO_NOSIGPIPE:
1955 1.184 christos #ifdef SO_OTIMESTAMP
1956 1.184 christos case SO_OTIMESTAMP:
1957 1.184 christos #endif
1958 1.218 seanb case SO_ACCEPTCONN:
1959 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1960 1.171 plunky break;
1961 1.171 plunky
1962 1.171 plunky case SO_TYPE:
1963 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1964 1.171 plunky break;
1965 1.171 plunky
1966 1.171 plunky case SO_ERROR:
1967 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1968 1.171 plunky so->so_error = 0;
1969 1.171 plunky break;
1970 1.171 plunky
1971 1.171 plunky case SO_SNDBUF:
1972 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1973 1.171 plunky break;
1974 1.171 plunky
1975 1.171 plunky case SO_RCVBUF:
1976 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1977 1.171 plunky break;
1978 1.171 plunky
1979 1.171 plunky case SO_SNDLOWAT:
1980 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1981 1.171 plunky break;
1982 1.171 plunky
1983 1.171 plunky case SO_RCVLOWAT:
1984 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1985 1.171 plunky break;
1986 1.171 plunky
1987 1.179 christos #ifdef COMPAT_50
1988 1.179 christos case SO_OSNDTIMEO:
1989 1.179 christos case SO_ORCVTIMEO: {
1990 1.179 christos struct timeval50 otv;
1991 1.179 christos
1992 1.179 christos optval = (opt == SO_OSNDTIMEO ?
1993 1.179 christos so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1994 1.179 christos
1995 1.179 christos otv.tv_sec = optval / hz;
1996 1.179 christos otv.tv_usec = (optval % hz) * tick;
1997 1.179 christos
1998 1.179 christos error = sockopt_set(sopt, &otv, sizeof(otv));
1999 1.179 christos break;
2000 1.179 christos }
2001 1.179 christos #endif /* COMPAT_50 */
2002 1.179 christos
2003 1.171 plunky case SO_SNDTIMEO:
2004 1.171 plunky case SO_RCVTIMEO:
2005 1.179 christos optval = (opt == SO_SNDTIMEO ?
2006 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2007 1.171 plunky
2008 1.171 plunky tv.tv_sec = optval / hz;
2009 1.171 plunky tv.tv_usec = (optval % hz) * tick;
2010 1.171 plunky
2011 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
2012 1.171 plunky break;
2013 1.171 plunky
2014 1.171 plunky case SO_OVERFLOWED:
2015 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2016 1.171 plunky break;
2017 1.171 plunky
2018 1.171 plunky default:
2019 1.171 plunky error = ENOPROTOOPT;
2020 1.171 plunky break;
2021 1.171 plunky }
2022 1.171 plunky
2023 1.171 plunky return (error);
2024 1.171 plunky }
2025 1.171 plunky
2026 1.14 mycroft int
2027 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
2028 1.1 cgd {
2029 1.160 ad int error;
2030 1.1 cgd
2031 1.160 ad solock(so);
2032 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
2033 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
2034 1.160 ad error = ((*so->so_proto->pr_ctloutput)
2035 1.171 plunky (PRCO_GETOPT, so, sopt));
2036 1.1 cgd } else
2037 1.160 ad error = (ENOPROTOOPT);
2038 1.1 cgd } else {
2039 1.171 plunky error = sogetopt1(so, sopt);
2040 1.171 plunky }
2041 1.171 plunky sounlock(so);
2042 1.171 plunky return (error);
2043 1.171 plunky }
2044 1.171 plunky
2045 1.171 plunky /*
2046 1.171 plunky * alloc sockopt data buffer buffer
2047 1.171 plunky * - will be released at destroy
2048 1.171 plunky */
2049 1.176 plunky static int
2050 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2051 1.171 plunky {
2052 1.171 plunky
2053 1.171 plunky KASSERT(sopt->sopt_size == 0);
2054 1.171 plunky
2055 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2056 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
2057 1.176 plunky if (sopt->sopt_data == NULL)
2058 1.176 plunky return ENOMEM;
2059 1.176 plunky } else
2060 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2061 1.171 plunky
2062 1.171 plunky sopt->sopt_size = len;
2063 1.176 plunky return 0;
2064 1.171 plunky }
2065 1.171 plunky
2066 1.171 plunky /*
2067 1.171 plunky * initialise sockopt storage
2068 1.176 plunky * - MAY sleep during allocation
2069 1.171 plunky */
2070 1.171 plunky void
2071 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2072 1.171 plunky {
2073 1.1 cgd
2074 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2075 1.1 cgd
2076 1.171 plunky sopt->sopt_level = level;
2077 1.171 plunky sopt->sopt_name = name;
2078 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2079 1.171 plunky }
2080 1.171 plunky
2081 1.171 plunky /*
2082 1.171 plunky * destroy sockopt storage
2083 1.171 plunky * - will release any held memory references
2084 1.171 plunky */
2085 1.171 plunky void
2086 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2087 1.171 plunky {
2088 1.171 plunky
2089 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2090 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2091 1.171 plunky
2092 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2093 1.171 plunky }
2094 1.171 plunky
2095 1.171 plunky /*
2096 1.171 plunky * set sockopt value
2097 1.171 plunky * - value is copied into sockopt
2098 1.253 ryo * - memory is allocated when necessary, will not sleep
2099 1.171 plunky */
2100 1.171 plunky int
2101 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2102 1.171 plunky {
2103 1.176 plunky int error;
2104 1.171 plunky
2105 1.176 plunky if (sopt->sopt_size == 0) {
2106 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2107 1.176 plunky if (error)
2108 1.176 plunky return error;
2109 1.176 plunky }
2110 1.171 plunky
2111 1.258 christos if (sopt->sopt_size < len)
2112 1.258 christos return EINVAL;
2113 1.258 christos
2114 1.171 plunky memcpy(sopt->sopt_data, buf, len);
2115 1.259 christos sopt->sopt_retsize = len;
2116 1.259 christos
2117 1.171 plunky return 0;
2118 1.171 plunky }
2119 1.171 plunky
2120 1.171 plunky /*
2121 1.171 plunky * common case of set sockopt integer value
2122 1.171 plunky */
2123 1.171 plunky int
2124 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2125 1.171 plunky {
2126 1.171 plunky
2127 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2128 1.171 plunky }
2129 1.171 plunky
2130 1.171 plunky /*
2131 1.171 plunky * get sockopt value
2132 1.171 plunky * - correct size must be given
2133 1.171 plunky */
2134 1.171 plunky int
2135 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2136 1.171 plunky {
2137 1.170 tls
2138 1.171 plunky if (sopt->sopt_size != len)
2139 1.171 plunky return EINVAL;
2140 1.1 cgd
2141 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2142 1.171 plunky return 0;
2143 1.171 plunky }
2144 1.1 cgd
2145 1.171 plunky /*
2146 1.171 plunky * common case of get sockopt integer value
2147 1.171 plunky */
2148 1.171 plunky int
2149 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2150 1.171 plunky {
2151 1.1 cgd
2152 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2153 1.171 plunky }
2154 1.1 cgd
2155 1.171 plunky /*
2156 1.171 plunky * set sockopt value from mbuf
2157 1.171 plunky * - ONLY for legacy code
2158 1.171 plunky * - mbuf is released by sockopt
2159 1.176 plunky * - will not sleep
2160 1.171 plunky */
2161 1.171 plunky int
2162 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2163 1.171 plunky {
2164 1.171 plunky size_t len;
2165 1.176 plunky int error;
2166 1.1 cgd
2167 1.171 plunky len = m_length(m);
2168 1.1 cgd
2169 1.176 plunky if (sopt->sopt_size == 0) {
2170 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2171 1.176 plunky if (error)
2172 1.176 plunky return error;
2173 1.176 plunky }
2174 1.1 cgd
2175 1.258 christos if (sopt->sopt_size < len)
2176 1.258 christos return EINVAL;
2177 1.258 christos
2178 1.171 plunky m_copydata(m, 0, len, sopt->sopt_data);
2179 1.171 plunky m_freem(m);
2180 1.259 christos sopt->sopt_retsize = len;
2181 1.1 cgd
2182 1.171 plunky return 0;
2183 1.171 plunky }
2184 1.1 cgd
2185 1.171 plunky /*
2186 1.171 plunky * get sockopt value into mbuf
2187 1.171 plunky * - ONLY for legacy code
2188 1.171 plunky * - mbuf to be released by the caller
2189 1.176 plunky * - will not sleep
2190 1.171 plunky */
2191 1.171 plunky struct mbuf *
2192 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2193 1.171 plunky {
2194 1.171 plunky struct mbuf *m;
2195 1.107 darrenr
2196 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2197 1.176 plunky return NULL;
2198 1.176 plunky
2199 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2200 1.171 plunky if (m == NULL)
2201 1.171 plunky return NULL;
2202 1.171 plunky
2203 1.176 plunky if (sopt->sopt_size > MLEN) {
2204 1.176 plunky MCLGET(m, M_DONTWAIT);
2205 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2206 1.176 plunky m_free(m);
2207 1.176 plunky return NULL;
2208 1.176 plunky }
2209 1.1 cgd }
2210 1.176 plunky
2211 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2212 1.176 plunky m->m_len = sopt->sopt_size;
2213 1.160 ad
2214 1.171 plunky return m;
2215 1.1 cgd }
2216 1.1 cgd
2217 1.14 mycroft void
2218 1.54 lukem sohasoutofband(struct socket *so)
2219 1.1 cgd {
2220 1.153 rmind
2221 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2222 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2223 1.1 cgd }
2224 1.72 jdolecek
2225 1.72 jdolecek static void
2226 1.72 jdolecek filt_sordetach(struct knote *kn)
2227 1.72 jdolecek {
2228 1.72 jdolecek struct socket *so;
2229 1.72 jdolecek
2230 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2231 1.160 ad solock(so);
2232 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2233 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2234 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2235 1.160 ad sounlock(so);
2236 1.72 jdolecek }
2237 1.72 jdolecek
2238 1.72 jdolecek /*ARGSUSED*/
2239 1.72 jdolecek static int
2240 1.129 yamt filt_soread(struct knote *kn, long hint)
2241 1.72 jdolecek {
2242 1.72 jdolecek struct socket *so;
2243 1.160 ad int rv;
2244 1.72 jdolecek
2245 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2246 1.160 ad if (hint != NOTE_SUBMIT)
2247 1.160 ad solock(so);
2248 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2249 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2250 1.108 perry kn->kn_flags |= EV_EOF;
2251 1.72 jdolecek kn->kn_fflags = so->so_error;
2252 1.160 ad rv = 1;
2253 1.259.2.1 pgoyette } else if (so->so_error)
2254 1.160 ad rv = 1;
2255 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2256 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2257 1.253 ryo else
2258 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2259 1.160 ad if (hint != NOTE_SUBMIT)
2260 1.160 ad sounlock(so);
2261 1.160 ad return rv;
2262 1.72 jdolecek }
2263 1.72 jdolecek
2264 1.72 jdolecek static void
2265 1.72 jdolecek filt_sowdetach(struct knote *kn)
2266 1.72 jdolecek {
2267 1.72 jdolecek struct socket *so;
2268 1.72 jdolecek
2269 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2270 1.160 ad solock(so);
2271 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2272 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2273 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2274 1.160 ad sounlock(so);
2275 1.72 jdolecek }
2276 1.72 jdolecek
2277 1.72 jdolecek /*ARGSUSED*/
2278 1.72 jdolecek static int
2279 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2280 1.72 jdolecek {
2281 1.72 jdolecek struct socket *so;
2282 1.160 ad int rv;
2283 1.72 jdolecek
2284 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2285 1.160 ad if (hint != NOTE_SUBMIT)
2286 1.160 ad solock(so);
2287 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2288 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2289 1.108 perry kn->kn_flags |= EV_EOF;
2290 1.72 jdolecek kn->kn_fflags = so->so_error;
2291 1.160 ad rv = 1;
2292 1.259.2.1 pgoyette } else if (so->so_error)
2293 1.160 ad rv = 1;
2294 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2295 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2296 1.160 ad rv = 0;
2297 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2298 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2299 1.160 ad else
2300 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2301 1.160 ad if (hint != NOTE_SUBMIT)
2302 1.160 ad sounlock(so);
2303 1.160 ad return rv;
2304 1.72 jdolecek }
2305 1.72 jdolecek
2306 1.72 jdolecek /*ARGSUSED*/
2307 1.72 jdolecek static int
2308 1.129 yamt filt_solisten(struct knote *kn, long hint)
2309 1.72 jdolecek {
2310 1.72 jdolecek struct socket *so;
2311 1.160 ad int rv;
2312 1.72 jdolecek
2313 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2314 1.72 jdolecek
2315 1.72 jdolecek /*
2316 1.72 jdolecek * Set kn_data to number of incoming connections, not
2317 1.72 jdolecek * counting partial (incomplete) connections.
2318 1.108 perry */
2319 1.160 ad if (hint != NOTE_SUBMIT)
2320 1.160 ad solock(so);
2321 1.72 jdolecek kn->kn_data = so->so_qlen;
2322 1.160 ad rv = (kn->kn_data > 0);
2323 1.160 ad if (hint != NOTE_SUBMIT)
2324 1.160 ad sounlock(so);
2325 1.160 ad return rv;
2326 1.72 jdolecek }
2327 1.72 jdolecek
2328 1.257 maya static const struct filterops solisten_filtops = {
2329 1.257 maya .f_isfd = 1,
2330 1.257 maya .f_attach = NULL,
2331 1.257 maya .f_detach = filt_sordetach,
2332 1.257 maya .f_event = filt_solisten,
2333 1.257 maya };
2334 1.257 maya
2335 1.257 maya static const struct filterops soread_filtops = {
2336 1.257 maya .f_isfd = 1,
2337 1.257 maya .f_attach = NULL,
2338 1.257 maya .f_detach = filt_sordetach,
2339 1.257 maya .f_event = filt_soread,
2340 1.257 maya };
2341 1.257 maya
2342 1.257 maya static const struct filterops sowrite_filtops = {
2343 1.257 maya .f_isfd = 1,
2344 1.257 maya .f_attach = NULL,
2345 1.257 maya .f_detach = filt_sowdetach,
2346 1.257 maya .f_event = filt_sowrite,
2347 1.257 maya };
2348 1.72 jdolecek
2349 1.72 jdolecek int
2350 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2351 1.72 jdolecek {
2352 1.72 jdolecek struct socket *so;
2353 1.72 jdolecek struct sockbuf *sb;
2354 1.72 jdolecek
2355 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2356 1.160 ad solock(so);
2357 1.72 jdolecek switch (kn->kn_filter) {
2358 1.72 jdolecek case EVFILT_READ:
2359 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2360 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2361 1.72 jdolecek else
2362 1.72 jdolecek kn->kn_fop = &soread_filtops;
2363 1.72 jdolecek sb = &so->so_rcv;
2364 1.72 jdolecek break;
2365 1.72 jdolecek case EVFILT_WRITE:
2366 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2367 1.72 jdolecek sb = &so->so_snd;
2368 1.72 jdolecek break;
2369 1.72 jdolecek default:
2370 1.160 ad sounlock(so);
2371 1.149 pooka return (EINVAL);
2372 1.72 jdolecek }
2373 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2374 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2375 1.160 ad sounlock(so);
2376 1.72 jdolecek return (0);
2377 1.72 jdolecek }
2378 1.72 jdolecek
2379 1.154 ad static int
2380 1.154 ad sodopoll(struct socket *so, int events)
2381 1.154 ad {
2382 1.154 ad int revents;
2383 1.154 ad
2384 1.154 ad revents = 0;
2385 1.154 ad
2386 1.154 ad if (events & (POLLIN | POLLRDNORM))
2387 1.154 ad if (soreadable(so))
2388 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2389 1.154 ad
2390 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2391 1.154 ad if (sowritable(so))
2392 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2393 1.154 ad
2394 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2395 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2396 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2397 1.154 ad
2398 1.154 ad return revents;
2399 1.154 ad }
2400 1.154 ad
2401 1.154 ad int
2402 1.154 ad sopoll(struct socket *so, int events)
2403 1.154 ad {
2404 1.154 ad int revents = 0;
2405 1.154 ad
2406 1.160 ad #ifndef DIAGNOSTIC
2407 1.160 ad /*
2408 1.160 ad * Do a quick, unlocked check in expectation that the socket
2409 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2410 1.160 ad * as the solocked() assertions will fail.
2411 1.160 ad */
2412 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2413 1.154 ad return revents;
2414 1.160 ad #endif
2415 1.154 ad
2416 1.160 ad solock(so);
2417 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2418 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2419 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2420 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2421 1.154 ad }
2422 1.154 ad
2423 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2424 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2425 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2426 1.154 ad }
2427 1.154 ad }
2428 1.160 ad sounlock(so);
2429 1.154 ad
2430 1.154 ad return revents;
2431 1.154 ad }
2432 1.154 ad
2433 1.256 christos struct mbuf **
2434 1.259.2.2 pgoyette sbsavetimestamp(int opt, struct mbuf **mp)
2435 1.256 christos {
2436 1.256 christos struct timeval tv;
2437 1.256 christos microtime(&tv);
2438 1.256 christos
2439 1.256 christos #ifdef SO_OTIMESTAMP
2440 1.256 christos if (opt & SO_OTIMESTAMP) {
2441 1.256 christos struct timeval50 tv50;
2442 1.256 christos
2443 1.256 christos timeval_to_timeval50(&tv, &tv50);
2444 1.256 christos *mp = sbcreatecontrol(&tv50, sizeof(tv50),
2445 1.256 christos SCM_OTIMESTAMP, SOL_SOCKET);
2446 1.256 christos if (*mp)
2447 1.256 christos mp = &(*mp)->m_next;
2448 1.256 christos } else
2449 1.256 christos #endif
2450 1.256 christos
2451 1.256 christos if (opt & SO_TIMESTAMP) {
2452 1.256 christos *mp = sbcreatecontrol(&tv, sizeof(tv),
2453 1.256 christos SCM_TIMESTAMP, SOL_SOCKET);
2454 1.256 christos if (*mp)
2455 1.256 christos mp = &(*mp)->m_next;
2456 1.256 christos }
2457 1.256 christos return mp;
2458 1.256 christos }
2459 1.256 christos
2460 1.154 ad
2461 1.94 yamt #include <sys/sysctl.h>
2462 1.94 yamt
2463 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2464 1.212 pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2465 1.94 yamt
2466 1.94 yamt /*
2467 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2468 1.94 yamt * value is not too small.
2469 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2470 1.94 yamt */
2471 1.94 yamt static int
2472 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2473 1.94 yamt {
2474 1.94 yamt int error, new_somaxkva;
2475 1.94 yamt struct sysctlnode node;
2476 1.94 yamt
2477 1.94 yamt new_somaxkva = somaxkva;
2478 1.94 yamt node = *rnode;
2479 1.94 yamt node.sysctl_data = &new_somaxkva;
2480 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2481 1.94 yamt if (error || newp == NULL)
2482 1.94 yamt return (error);
2483 1.94 yamt
2484 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2485 1.94 yamt return (EINVAL);
2486 1.94 yamt
2487 1.136 ad mutex_enter(&so_pendfree_lock);
2488 1.94 yamt somaxkva = new_somaxkva;
2489 1.136 ad cv_broadcast(&socurkva_cv);
2490 1.136 ad mutex_exit(&so_pendfree_lock);
2491 1.94 yamt
2492 1.94 yamt return (error);
2493 1.94 yamt }
2494 1.94 yamt
2495 1.212 pooka /*
2496 1.212 pooka * sysctl helper routine for kern.sbmax. Basically just ensures that
2497 1.212 pooka * any new value is not too small.
2498 1.212 pooka */
2499 1.212 pooka static int
2500 1.212 pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
2501 1.212 pooka {
2502 1.212 pooka int error, new_sbmax;
2503 1.212 pooka struct sysctlnode node;
2504 1.212 pooka
2505 1.212 pooka new_sbmax = sb_max;
2506 1.212 pooka node = *rnode;
2507 1.212 pooka node.sysctl_data = &new_sbmax;
2508 1.212 pooka error = sysctl_lookup(SYSCTLFN_CALL(&node));
2509 1.212 pooka if (error || newp == NULL)
2510 1.212 pooka return (error);
2511 1.212 pooka
2512 1.212 pooka KERNEL_LOCK(1, NULL);
2513 1.212 pooka error = sb_max_set(new_sbmax);
2514 1.212 pooka KERNEL_UNLOCK_ONE(NULL);
2515 1.212 pooka
2516 1.212 pooka return (error);
2517 1.212 pooka }
2518 1.212 pooka
2519 1.178 pooka static void
2520 1.212 pooka sysctl_kern_socket_setup(void)
2521 1.94 yamt {
2522 1.94 yamt
2523 1.178 pooka KASSERT(socket_sysctllog == NULL);
2524 1.97 atatat
2525 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2526 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2527 1.103 atatat CTLTYPE_INT, "somaxkva",
2528 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2529 1.103 atatat "used for socket buffers"),
2530 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2531 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2532 1.212 pooka
2533 1.212 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2534 1.212 pooka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2535 1.212 pooka CTLTYPE_INT, "sbmax",
2536 1.212 pooka SYSCTL_DESCR("Maximum socket buffer size"),
2537 1.212 pooka sysctl_kern_sbmax, 0, NULL, 0,
2538 1.212 pooka CTL_KERN, KERN_SBMAX, CTL_EOL);
2539 1.94 yamt }
2540