uipc_socket.c revision 1.280 1 1.280 maxv /* $NetBSD: uipc_socket.c,v 1.280 2019/06/01 15:20:51 maxv Exp $ */
2 1.64 thorpej
3 1.270 maxv /*
4 1.188 ad * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.222 rmind /*
66 1.222 rmind * Socket operation routines.
67 1.222 rmind *
68 1.222 rmind * These routines are called by the routines in sys_socket.c or from a
69 1.222 rmind * system process, and implement the semantics of socket operations by
70 1.222 rmind * switching out to the protocol specific routines.
71 1.222 rmind */
72 1.222 rmind
73 1.59 lukem #include <sys/cdefs.h>
74 1.280 maxv __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.280 2019/06/01 15:20:51 maxv Exp $");
75 1.64 thorpej
76 1.246 pooka #ifdef _KERNEL_OPT
77 1.179 christos #include "opt_compat_netbsd.h"
78 1.64 thorpej #include "opt_sock_counters.h"
79 1.64 thorpej #include "opt_sosend_loan.h"
80 1.81 martin #include "opt_mbuftrace.h"
81 1.84 ragge #include "opt_somaxkva.h"
82 1.167 ad #include "opt_multiprocessor.h" /* XXX */
83 1.247 rjs #include "opt_sctp.h"
84 1.246 pooka #endif
85 1.1 cgd
86 1.9 mycroft #include <sys/param.h>
87 1.9 mycroft #include <sys/systm.h>
88 1.9 mycroft #include <sys/proc.h>
89 1.9 mycroft #include <sys/file.h>
90 1.142 dyoung #include <sys/filedesc.h>
91 1.173 plunky #include <sys/kmem.h>
92 1.9 mycroft #include <sys/mbuf.h>
93 1.9 mycroft #include <sys/domain.h>
94 1.9 mycroft #include <sys/kernel.h>
95 1.9 mycroft #include <sys/protosw.h>
96 1.9 mycroft #include <sys/socket.h>
97 1.9 mycroft #include <sys/socketvar.h>
98 1.21 christos #include <sys/signalvar.h>
99 1.9 mycroft #include <sys/resourcevar.h>
100 1.174 pooka #include <sys/uidinfo.h>
101 1.72 jdolecek #include <sys/event.h>
102 1.89 christos #include <sys/poll.h>
103 1.118 elad #include <sys/kauth.h>
104 1.136 ad #include <sys/mutex.h>
105 1.136 ad #include <sys/condvar.h>
106 1.205 bouyer #include <sys/kthread.h>
107 1.275 pgoyette #include <sys/compat_stub.h>
108 1.37 thorpej
109 1.179 christos #include <compat/sys/time.h>
110 1.184 christos #include <compat/sys/socket.h>
111 1.179 christos
112 1.202 uebayasi #include <uvm/uvm_extern.h>
113 1.202 uebayasi #include <uvm/uvm_loan.h>
114 1.202 uebayasi #include <uvm/uvm_page.h>
115 1.64 thorpej
116 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
117 1.37 thorpej
118 1.142 dyoung extern const struct fileops socketops;
119 1.142 dyoung
120 1.266 christos static int sooptions;
121 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
122 1.54 lukem int somaxconn = SOMAXCONN;
123 1.160 ad kmutex_t *softnet_lock;
124 1.49 jonathan
125 1.64 thorpej #ifdef SOSEND_COUNTERS
126 1.64 thorpej #include <sys/device.h>
127 1.64 thorpej
128 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
129 1.64 thorpej NULL, "sosend", "loan big");
130 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
131 1.64 thorpej NULL, "sosend", "copy big");
132 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
133 1.64 thorpej NULL, "sosend", "copy small");
134 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
135 1.64 thorpej NULL, "sosend", "kva limit");
136 1.64 thorpej
137 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
138 1.64 thorpej
139 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
140 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
141 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
142 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
143 1.64 thorpej #else
144 1.64 thorpej
145 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
146 1.64 thorpej
147 1.64 thorpej #endif /* SOSEND_COUNTERS */
148 1.64 thorpej
149 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
150 1.121 yamt int sock_loan_thresh = -1;
151 1.71 thorpej #else
152 1.121 yamt int sock_loan_thresh = 4096;
153 1.65 thorpej #endif
154 1.64 thorpej
155 1.136 ad static kmutex_t so_pendfree_lock;
156 1.205 bouyer static struct mbuf *so_pendfree = NULL;
157 1.64 thorpej
158 1.84 ragge #ifndef SOMAXKVA
159 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
160 1.84 ragge #endif
161 1.84 ragge int somaxkva = SOMAXKVA;
162 1.113 thorpej static int socurkva;
163 1.136 ad static kcondvar_t socurkva_cv;
164 1.64 thorpej
165 1.191 elad static kauth_listener_t socket_listener;
166 1.191 elad
167 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
168 1.64 thorpej
169 1.205 bouyer static void sopendfree_thread(void *);
170 1.205 bouyer static kcondvar_t pendfree_thread_cv;
171 1.205 bouyer static lwp_t *sopendfree_lwp;
172 1.93 yamt
173 1.212 pooka static void sysctl_kern_socket_setup(void);
174 1.178 pooka static struct sysctllog *socket_sysctllog;
175 1.178 pooka
176 1.113 thorpej static vsize_t
177 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
178 1.80 yamt {
179 1.98 christos int error;
180 1.80 yamt
181 1.136 ad mutex_enter(&so_pendfree_lock);
182 1.80 yamt while (socurkva + len > somaxkva) {
183 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
184 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
185 1.98 christos if (error) {
186 1.98 christos len = 0;
187 1.98 christos break;
188 1.98 christos }
189 1.80 yamt }
190 1.93 yamt socurkva += len;
191 1.136 ad mutex_exit(&so_pendfree_lock);
192 1.98 christos return len;
193 1.95 yamt }
194 1.95 yamt
195 1.113 thorpej static void
196 1.95 yamt sokvaunreserve(vsize_t len)
197 1.95 yamt {
198 1.95 yamt
199 1.136 ad mutex_enter(&so_pendfree_lock);
200 1.95 yamt socurkva -= len;
201 1.136 ad cv_broadcast(&socurkva_cv);
202 1.136 ad mutex_exit(&so_pendfree_lock);
203 1.95 yamt }
204 1.95 yamt
205 1.95 yamt /*
206 1.95 yamt * sokvaalloc: allocate kva for loan.
207 1.95 yamt */
208 1.95 yamt vaddr_t
209 1.209 matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
210 1.95 yamt {
211 1.95 yamt vaddr_t lva;
212 1.95 yamt
213 1.98 christos if (sokvareserve(so, len) == 0)
214 1.98 christos return 0;
215 1.93 yamt
216 1.209 matt lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
217 1.209 matt UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
218 1.95 yamt if (lva == 0) {
219 1.95 yamt sokvaunreserve(len);
220 1.270 maxv return 0;
221 1.95 yamt }
222 1.80 yamt
223 1.80 yamt return lva;
224 1.80 yamt }
225 1.80 yamt
226 1.93 yamt /*
227 1.93 yamt * sokvafree: free kva for loan.
228 1.93 yamt */
229 1.80 yamt void
230 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
231 1.80 yamt {
232 1.93 yamt
233 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
234 1.95 yamt sokvaunreserve(len);
235 1.80 yamt }
236 1.80 yamt
237 1.64 thorpej static void
238 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
239 1.64 thorpej {
240 1.156 yamt vaddr_t sva, eva;
241 1.64 thorpej vsize_t len;
242 1.156 yamt int npgs;
243 1.156 yamt
244 1.156 yamt KASSERT(pgs != NULL);
245 1.64 thorpej
246 1.64 thorpej eva = round_page((vaddr_t) buf + size);
247 1.64 thorpej sva = trunc_page((vaddr_t) buf);
248 1.64 thorpej len = eva - sva;
249 1.64 thorpej npgs = len >> PAGE_SHIFT;
250 1.64 thorpej
251 1.64 thorpej pmap_kremove(sva, len);
252 1.64 thorpej pmap_update(pmap_kernel());
253 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
254 1.80 yamt sokvafree(sva, len);
255 1.64 thorpej }
256 1.64 thorpej
257 1.93 yamt /*
258 1.270 maxv * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
259 1.270 maxv * so_pendfree_lock when freeing mbufs.
260 1.93 yamt */
261 1.205 bouyer static void
262 1.205 bouyer sopendfree_thread(void *v)
263 1.93 yamt {
264 1.137 ad struct mbuf *m, *next;
265 1.205 bouyer size_t rv;
266 1.93 yamt
267 1.205 bouyer mutex_enter(&so_pendfree_lock);
268 1.64 thorpej
269 1.205 bouyer for (;;) {
270 1.205 bouyer rv = 0;
271 1.205 bouyer while (so_pendfree != NULL) {
272 1.205 bouyer m = so_pendfree;
273 1.205 bouyer so_pendfree = NULL;
274 1.205 bouyer mutex_exit(&so_pendfree_lock);
275 1.205 bouyer
276 1.205 bouyer for (; m != NULL; m = next) {
277 1.205 bouyer next = m->m_next;
278 1.253 ryo KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
279 1.253 ryo 0);
280 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
281 1.205 bouyer
282 1.205 bouyer rv += m->m_ext.ext_size;
283 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
284 1.205 bouyer m->m_ext.ext_size);
285 1.205 bouyer pool_cache_put(mb_cache, m);
286 1.205 bouyer }
287 1.93 yamt
288 1.205 bouyer mutex_enter(&so_pendfree_lock);
289 1.93 yamt }
290 1.205 bouyer if (rv)
291 1.205 bouyer cv_broadcast(&socurkva_cv);
292 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
293 1.64 thorpej }
294 1.205 bouyer panic("sopendfree_thread");
295 1.205 bouyer /* NOTREACHED */
296 1.64 thorpej }
297 1.64 thorpej
298 1.80 yamt void
299 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
300 1.64 thorpej {
301 1.64 thorpej
302 1.156 yamt KASSERT(m != NULL);
303 1.64 thorpej
304 1.93 yamt /*
305 1.93 yamt * postpone freeing mbuf.
306 1.93 yamt *
307 1.93 yamt * we can't do it in interrupt context
308 1.93 yamt * because we need to put kva back to kernel_map.
309 1.93 yamt */
310 1.93 yamt
311 1.136 ad mutex_enter(&so_pendfree_lock);
312 1.92 yamt m->m_next = so_pendfree;
313 1.92 yamt so_pendfree = m;
314 1.205 bouyer cv_signal(&pendfree_thread_cv);
315 1.136 ad mutex_exit(&so_pendfree_lock);
316 1.64 thorpej }
317 1.64 thorpej
318 1.64 thorpej static long
319 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
320 1.64 thorpej {
321 1.64 thorpej struct iovec *iov = uio->uio_iov;
322 1.64 thorpej vaddr_t sva, eva;
323 1.64 thorpej vsize_t len;
324 1.156 yamt vaddr_t lva;
325 1.156 yamt int npgs, error;
326 1.156 yamt vaddr_t va;
327 1.156 yamt int i;
328 1.64 thorpej
329 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
330 1.270 maxv return 0;
331 1.64 thorpej
332 1.64 thorpej if (iov->iov_len < (size_t) space)
333 1.64 thorpej space = iov->iov_len;
334 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
335 1.64 thorpej space = SOCK_LOAN_CHUNK;
336 1.64 thorpej
337 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
338 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
339 1.64 thorpej len = eva - sva;
340 1.64 thorpej npgs = len >> PAGE_SHIFT;
341 1.64 thorpej
342 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
343 1.79 thorpej
344 1.209 matt lva = sokvaalloc(sva, len, so);
345 1.64 thorpej if (lva == 0)
346 1.252 uwe return 0;
347 1.64 thorpej
348 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
349 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
350 1.64 thorpej if (error) {
351 1.80 yamt sokvafree(lva, len);
352 1.270 maxv return 0;
353 1.64 thorpej }
354 1.64 thorpej
355 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
356 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
357 1.194 cegger VM_PROT_READ, 0);
358 1.64 thorpej pmap_update(pmap_kernel());
359 1.64 thorpej
360 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
361 1.64 thorpej
362 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
363 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
364 1.64 thorpej
365 1.64 thorpej uio->uio_resid -= space;
366 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
367 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
368 1.64 thorpej uio->uio_iov->iov_len -= space;
369 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
370 1.64 thorpej uio->uio_iov++;
371 1.64 thorpej uio->uio_iovcnt--;
372 1.64 thorpej }
373 1.64 thorpej
374 1.270 maxv return space;
375 1.64 thorpej }
376 1.64 thorpej
377 1.191 elad static int
378 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
379 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
380 1.191 elad {
381 1.191 elad int result;
382 1.191 elad enum kauth_network_req req;
383 1.191 elad
384 1.191 elad result = KAUTH_RESULT_DEFER;
385 1.191 elad req = (enum kauth_network_req)arg0;
386 1.191 elad
387 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
388 1.193 elad (action != KAUTH_NETWORK_BIND))
389 1.191 elad return result;
390 1.191 elad
391 1.191 elad switch (req) {
392 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
393 1.193 elad result = KAUTH_RESULT_ALLOW;
394 1.193 elad break;
395 1.193 elad
396 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
397 1.191 elad /* Normal users can only drop their own connections. */
398 1.191 elad struct socket *so = (struct socket *)arg1;
399 1.191 elad
400 1.220 christos if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
401 1.191 elad result = KAUTH_RESULT_ALLOW;
402 1.191 elad
403 1.191 elad break;
404 1.191 elad }
405 1.191 elad
406 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
407 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
408 1.254 christos switch ((u_long)arg1) {
409 1.254 christos case PF_ROUTE:
410 1.254 christos case PF_OROUTE:
411 1.254 christos case PF_BLUETOOTH:
412 1.255 bouyer case PF_CAN:
413 1.191 elad result = KAUTH_RESULT_ALLOW;
414 1.254 christos break;
415 1.254 christos default:
416 1.191 elad /* Privileged, let secmodel handle this. */
417 1.191 elad if ((u_long)arg2 == SOCK_RAW)
418 1.191 elad break;
419 1.254 christos result = KAUTH_RESULT_ALLOW;
420 1.254 christos break;
421 1.191 elad }
422 1.191 elad break;
423 1.191 elad
424 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
425 1.192 elad result = KAUTH_RESULT_ALLOW;
426 1.192 elad
427 1.192 elad break;
428 1.192 elad
429 1.191 elad default:
430 1.191 elad break;
431 1.191 elad }
432 1.191 elad
433 1.191 elad return result;
434 1.191 elad }
435 1.191 elad
436 1.119 yamt void
437 1.119 yamt soinit(void)
438 1.119 yamt {
439 1.119 yamt
440 1.212 pooka sysctl_kern_socket_setup();
441 1.178 pooka
442 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
443 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
444 1.136 ad cv_init(&socurkva_cv, "sokva");
445 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
446 1.166 ad soinit2();
447 1.136 ad
448 1.119 yamt /* Set the initial adjusted socket buffer size. */
449 1.119 yamt if (sb_max_set(sb_max))
450 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
451 1.119 yamt
452 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
453 1.191 elad socket_listener_cb, NULL);
454 1.119 yamt }
455 1.119 yamt
456 1.205 bouyer void
457 1.205 bouyer soinit1(void)
458 1.205 bouyer {
459 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
460 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
461 1.205 bouyer if (error)
462 1.205 bouyer panic("soinit1 %d", error);
463 1.205 bouyer }
464 1.205 bouyer
465 1.1 cgd /*
466 1.222 rmind * socreate: create a new socket of the specified type and the protocol.
467 1.222 rmind *
468 1.222 rmind * => Caller may specify another socket for lock sharing (must not be held).
469 1.222 rmind * => Returns the new socket without lock held.
470 1.224 rmind */
471 1.3 andrew int
472 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
473 1.270 maxv struct socket *lockso)
474 1.1 cgd {
475 1.270 maxv const struct protosw *prp;
476 1.270 maxv struct socket *so;
477 1.270 maxv uid_t uid;
478 1.270 maxv int error;
479 1.270 maxv kmutex_t *lock;
480 1.1 cgd
481 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
482 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
483 1.132 elad KAUTH_ARG(proto));
484 1.140 dyoung if (error != 0)
485 1.140 dyoung return error;
486 1.127 elad
487 1.1 cgd if (proto)
488 1.1 cgd prp = pffindproto(dom, proto, type);
489 1.1 cgd else
490 1.1 cgd prp = pffindtype(dom, type);
491 1.140 dyoung if (prp == NULL) {
492 1.120 ginsbach /* no support for domain */
493 1.120 ginsbach if (pffinddomain(dom) == 0)
494 1.140 dyoung return EAFNOSUPPORT;
495 1.120 ginsbach /* no support for socket type */
496 1.120 ginsbach if (proto == 0 && type != 0)
497 1.140 dyoung return EPROTOTYPE;
498 1.140 dyoung return EPROTONOSUPPORT;
499 1.120 ginsbach }
500 1.223 rmind if (prp->pr_usrreqs == NULL)
501 1.140 dyoung return EPROTONOSUPPORT;
502 1.1 cgd if (prp->pr_type != type)
503 1.140 dyoung return EPROTOTYPE;
504 1.160 ad
505 1.160 ad so = soget(true);
506 1.1 cgd so->so_type = type;
507 1.1 cgd so->so_proto = prp;
508 1.33 matt so->so_send = sosend;
509 1.33 matt so->so_receive = soreceive;
510 1.266 christos so->so_options = sooptions;
511 1.78 matt #ifdef MBUFTRACE
512 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
513 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
514 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
515 1.78 matt #endif
516 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
517 1.115 yamt so->so_uidinfo = uid_find(uid);
518 1.168 yamt so->so_cpid = l->l_proc->p_pid;
519 1.224 rmind
520 1.224 rmind /*
521 1.224 rmind * Lock assigned and taken during PCB attach, unless we share
522 1.224 rmind * the lock with another socket, e.g. socketpair(2) case.
523 1.224 rmind */
524 1.224 rmind if (lockso) {
525 1.160 ad lock = lockso->so_lock;
526 1.160 ad so->so_lock = lock;
527 1.160 ad mutex_obj_hold(lock);
528 1.160 ad mutex_enter(lock);
529 1.160 ad }
530 1.224 rmind
531 1.224 rmind /* Attach the PCB (returns with the socket lock held). */
532 1.224 rmind error = (*prp->pr_usrreqs->pr_attach)(so, proto);
533 1.160 ad KASSERT(solocked(so));
534 1.224 rmind
535 1.224 rmind if (error) {
536 1.222 rmind KASSERT(so->so_pcb == NULL);
537 1.1 cgd so->so_state |= SS_NOFDREF;
538 1.1 cgd sofree(so);
539 1.140 dyoung return error;
540 1.1 cgd }
541 1.198 elad so->so_cred = kauth_cred_dup(l->l_cred);
542 1.160 ad sounlock(so);
543 1.224 rmind
544 1.1 cgd *aso = so;
545 1.140 dyoung return 0;
546 1.1 cgd }
547 1.1 cgd
548 1.222 rmind /*
549 1.222 rmind * fsocreate: create a socket and a file descriptor associated with it.
550 1.222 rmind *
551 1.222 rmind * => On success, write file descriptor to fdout and return zero.
552 1.222 rmind * => On failure, return non-zero; *fdout will be undefined.
553 1.142 dyoung */
554 1.142 dyoung int
555 1.222 rmind fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
556 1.142 dyoung {
557 1.222 rmind lwp_t *l = curlwp;
558 1.222 rmind int error, fd, flags;
559 1.222 rmind struct socket *so;
560 1.222 rmind struct file *fp;
561 1.142 dyoung
562 1.222 rmind if ((error = fd_allocfile(&fp, &fd)) != 0) {
563 1.204 christos return error;
564 1.222 rmind }
565 1.222 rmind flags = type & SOCK_FLAGS_MASK;
566 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
567 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
568 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
569 1.142 dyoung fp->f_type = DTYPE_SOCKET;
570 1.142 dyoung fp->f_ops = &socketops;
571 1.222 rmind
572 1.222 rmind type &= ~SOCK_FLAGS_MASK;
573 1.222 rmind error = socreate(domain, &so, type, proto, l, NULL);
574 1.222 rmind if (error) {
575 1.155 ad fd_abort(curproc, fp, fd);
576 1.222 rmind return error;
577 1.222 rmind }
578 1.222 rmind if (flags & SOCK_NONBLOCK) {
579 1.222 rmind so->so_state |= SS_NBIO;
580 1.222 rmind }
581 1.235 matt fp->f_socket = so;
582 1.222 rmind fd_affix(curproc, fp, fd);
583 1.222 rmind
584 1.222 rmind if (sop != NULL) {
585 1.222 rmind *sop = so;
586 1.142 dyoung }
587 1.222 rmind *fdout = fd;
588 1.142 dyoung return error;
589 1.142 dyoung }
590 1.142 dyoung
591 1.3 andrew int
592 1.190 dyoung sofamily(const struct socket *so)
593 1.190 dyoung {
594 1.190 dyoung const struct protosw *pr;
595 1.190 dyoung const struct domain *dom;
596 1.190 dyoung
597 1.190 dyoung if ((pr = so->so_proto) == NULL)
598 1.190 dyoung return AF_UNSPEC;
599 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
600 1.190 dyoung return AF_UNSPEC;
601 1.190 dyoung return dom->dom_family;
602 1.190 dyoung }
603 1.190 dyoung
604 1.190 dyoung int
605 1.236 rtr sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
606 1.1 cgd {
607 1.270 maxv int error;
608 1.1 cgd
609 1.160 ad solock(so);
610 1.237 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
611 1.237 rtr sounlock(so);
612 1.238 rtr return EAFNOSUPPORT;
613 1.237 rtr }
614 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
615 1.160 ad sounlock(so);
616 1.140 dyoung return error;
617 1.1 cgd }
618 1.1 cgd
619 1.3 andrew int
620 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
621 1.1 cgd {
622 1.270 maxv int error;
623 1.270 maxv short oldopt, oldqlimit;
624 1.1 cgd
625 1.160 ad solock(so);
626 1.253 ryo if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
627 1.163 ad SS_ISDISCONNECTING)) != 0) {
628 1.222 rmind sounlock(so);
629 1.222 rmind return EINVAL;
630 1.163 ad }
631 1.247 rjs oldopt = so->so_options;
632 1.247 rjs oldqlimit = so->so_qlimit;
633 1.247 rjs if (TAILQ_EMPTY(&so->so_q))
634 1.247 rjs so->so_options |= SO_ACCEPTCONN;
635 1.247 rjs if (backlog < 0)
636 1.247 rjs backlog = 0;
637 1.265 riastrad so->so_qlimit = uimin(backlog, somaxconn);
638 1.247 rjs
639 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
640 1.140 dyoung if (error != 0) {
641 1.247 rjs so->so_options = oldopt;
642 1.247 rjs so->so_qlimit = oldqlimit;
643 1.160 ad sounlock(so);
644 1.140 dyoung return error;
645 1.1 cgd }
646 1.160 ad sounlock(so);
647 1.140 dyoung return 0;
648 1.1 cgd }
649 1.1 cgd
650 1.21 christos void
651 1.54 lukem sofree(struct socket *so)
652 1.1 cgd {
653 1.161 ad u_int refs;
654 1.1 cgd
655 1.160 ad KASSERT(solocked(so));
656 1.160 ad
657 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
658 1.160 ad sounlock(so);
659 1.1 cgd return;
660 1.160 ad }
661 1.43 mycroft if (so->so_head) {
662 1.43 mycroft /*
663 1.43 mycroft * We must not decommission a socket that's on the accept(2)
664 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
665 1.43 mycroft * indicated that the listening socket was ready.
666 1.43 mycroft */
667 1.160 ad if (!soqremque(so, 0)) {
668 1.160 ad sounlock(so);
669 1.43 mycroft return;
670 1.160 ad }
671 1.43 mycroft }
672 1.98 christos if (so->so_rcv.sb_hiwat)
673 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
674 1.98 christos RLIM_INFINITY);
675 1.98 christos if (so->so_snd.sb_hiwat)
676 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
677 1.98 christos RLIM_INFINITY);
678 1.98 christos sbrelease(&so->so_snd, so);
679 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
680 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
681 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
682 1.1 cgd sorflush(so);
683 1.161 ad refs = so->so_aborting; /* XXX */
684 1.177 ad /* Remove acccept filter if one is present. */
685 1.170 tls if (so->so_accf != NULL)
686 1.177 ad (void)accept_filt_clear(so);
687 1.160 ad sounlock(so);
688 1.161 ad if (refs == 0) /* XXX */
689 1.161 ad soput(so);
690 1.1 cgd }
691 1.1 cgd
692 1.1 cgd /*
693 1.222 rmind * soclose: close a socket on last file table reference removal.
694 1.222 rmind * Initiate disconnect if connected. Free socket when disconnect complete.
695 1.1 cgd */
696 1.3 andrew int
697 1.54 lukem soclose(struct socket *so)
698 1.1 cgd {
699 1.222 rmind struct socket *so2;
700 1.222 rmind int error = 0;
701 1.1 cgd
702 1.160 ad solock(so);
703 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
704 1.172 ad for (;;) {
705 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
706 1.160 ad KASSERT(solocked2(so, so2));
707 1.160 ad (void) soqremque(so2, 0);
708 1.160 ad /* soabort drops the lock. */
709 1.160 ad (void) soabort(so2);
710 1.160 ad solock(so);
711 1.172 ad continue;
712 1.160 ad }
713 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
714 1.160 ad KASSERT(solocked2(so, so2));
715 1.160 ad (void) soqremque(so2, 1);
716 1.160 ad /* soabort drops the lock. */
717 1.160 ad (void) soabort(so2);
718 1.160 ad solock(so);
719 1.172 ad continue;
720 1.160 ad }
721 1.172 ad break;
722 1.172 ad }
723 1.1 cgd }
724 1.222 rmind if (so->so_pcb == NULL)
725 1.1 cgd goto discard;
726 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
727 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
728 1.1 cgd error = sodisconnect(so);
729 1.1 cgd if (error)
730 1.1 cgd goto drop;
731 1.1 cgd }
732 1.1 cgd if (so->so_options & SO_LINGER) {
733 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
734 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
735 1.1 cgd goto drop;
736 1.21 christos while (so->so_state & SS_ISCONNECTED) {
737 1.185 yamt error = sowait(so, true, so->so_linger * hz);
738 1.21 christos if (error)
739 1.1 cgd break;
740 1.21 christos }
741 1.1 cgd }
742 1.1 cgd }
743 1.54 lukem drop:
744 1.1 cgd if (so->so_pcb) {
745 1.224 rmind KASSERT(solocked(so));
746 1.224 rmind (*so->so_proto->pr_usrreqs->pr_detach)(so);
747 1.1 cgd }
748 1.54 lukem discard:
749 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) == 0);
750 1.198 elad kauth_cred_free(so->so_cred);
751 1.273 maxv so->so_cred = NULL;
752 1.1 cgd so->so_state |= SS_NOFDREF;
753 1.1 cgd sofree(so);
754 1.222 rmind return error;
755 1.1 cgd }
756 1.1 cgd
757 1.1 cgd /*
758 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
759 1.1 cgd */
760 1.3 andrew int
761 1.54 lukem soabort(struct socket *so)
762 1.1 cgd {
763 1.161 ad u_int refs;
764 1.139 yamt int error;
765 1.253 ryo
766 1.160 ad KASSERT(solocked(so));
767 1.160 ad KASSERT(so->so_head == NULL);
768 1.1 cgd
769 1.161 ad so->so_aborting++; /* XXX */
770 1.230 mrg error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
771 1.161 ad refs = --so->so_aborting; /* XXX */
772 1.164 drochner if (error || (refs == 0)) {
773 1.139 yamt sofree(so);
774 1.160 ad } else {
775 1.160 ad sounlock(so);
776 1.139 yamt }
777 1.139 yamt return error;
778 1.1 cgd }
779 1.1 cgd
780 1.3 andrew int
781 1.239 rtr soaccept(struct socket *so, struct sockaddr *nam)
782 1.1 cgd {
783 1.222 rmind int error;
784 1.160 ad
785 1.160 ad KASSERT(solocked(so));
786 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) != 0);
787 1.1 cgd
788 1.1 cgd so->so_state &= ~SS_NOFDREF;
789 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
790 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
791 1.225 rtr error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
792 1.41 mycroft else
793 1.53 itojun error = ECONNABORTED;
794 1.52 itojun
795 1.222 rmind return error;
796 1.1 cgd }
797 1.1 cgd
798 1.3 andrew int
799 1.240 rtr soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
800 1.1 cgd {
801 1.222 rmind int error;
802 1.160 ad
803 1.160 ad KASSERT(solocked(so));
804 1.1 cgd
805 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
806 1.222 rmind return EOPNOTSUPP;
807 1.1 cgd /*
808 1.1 cgd * If protocol is connection-based, can only connect once.
809 1.1 cgd * Otherwise, if connected, try to disconnect first.
810 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
811 1.1 cgd * a null address.
812 1.1 cgd */
813 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
814 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
815 1.241 rtr (error = sodisconnect(so)))) {
816 1.1 cgd error = EISCONN;
817 1.241 rtr } else {
818 1.242 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
819 1.241 rtr return EAFNOSUPPORT;
820 1.241 rtr }
821 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
822 1.241 rtr }
823 1.222 rmind
824 1.222 rmind return error;
825 1.1 cgd }
826 1.1 cgd
827 1.3 andrew int
828 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
829 1.1 cgd {
830 1.160 ad KASSERT(solocked2(so1, so2));
831 1.1 cgd
832 1.234 rtr return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
833 1.1 cgd }
834 1.1 cgd
835 1.3 andrew int
836 1.54 lukem sodisconnect(struct socket *so)
837 1.1 cgd {
838 1.270 maxv int error;
839 1.160 ad
840 1.160 ad KASSERT(solocked(so));
841 1.1 cgd
842 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
843 1.1 cgd error = ENOTCONN;
844 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
845 1.1 cgd error = EALREADY;
846 1.160 ad } else {
847 1.229 rtr error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
848 1.1 cgd }
849 1.270 maxv return error;
850 1.1 cgd }
851 1.1 cgd
852 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
853 1.1 cgd /*
854 1.1 cgd * Send on a socket.
855 1.1 cgd * If send must go all at once and message is larger than
856 1.1 cgd * send buffering, then hard error.
857 1.1 cgd * Lock against other senders.
858 1.1 cgd * If must go all at once and not enough room now, then
859 1.1 cgd * inform user that this would block and do nothing.
860 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
861 1.1 cgd * The data to be sent is described by "uio" if nonzero,
862 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
863 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
864 1.1 cgd * enough to send all at once.
865 1.1 cgd *
866 1.1 cgd * Returns nonzero on error, timeout or signal; callers
867 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
868 1.1 cgd * Data and control buffers are freed on return.
869 1.1 cgd */
870 1.3 andrew int
871 1.245 rtr sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
872 1.245 rtr struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
873 1.1 cgd {
874 1.270 maxv struct mbuf **mp, *m;
875 1.270 maxv long space, len, resid, clen, mlen;
876 1.270 maxv int error, s, dontroute, atomic;
877 1.270 maxv short wakeup_state = 0;
878 1.54 lukem
879 1.160 ad clen = 0;
880 1.64 thorpej
881 1.160 ad /*
882 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
883 1.160 ad * protocol processing soft interrupts from interrupting us and
884 1.160 ad * blocking (expensive).
885 1.160 ad */
886 1.160 ad s = splsoftnet();
887 1.160 ad solock(so);
888 1.54 lukem atomic = sosendallatonce(so) || top;
889 1.1 cgd if (uio)
890 1.1 cgd resid = uio->uio_resid;
891 1.1 cgd else
892 1.1 cgd resid = top->m_pkthdr.len;
893 1.7 cgd /*
894 1.7 cgd * In theory resid should be unsigned.
895 1.7 cgd * However, space must be signed, as it might be less than 0
896 1.7 cgd * if we over-committed, and we must use a signed comparison
897 1.7 cgd * of space and resid. On the other hand, a negative resid
898 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
899 1.7 cgd */
900 1.29 mycroft if (resid < 0) {
901 1.29 mycroft error = EINVAL;
902 1.29 mycroft goto out;
903 1.29 mycroft }
904 1.1 cgd dontroute =
905 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
906 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
907 1.165 christos l->l_ru.ru_msgsnd++;
908 1.1 cgd if (control)
909 1.1 cgd clen = control->m_len;
910 1.54 lukem restart:
911 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
912 1.1 cgd goto out;
913 1.1 cgd do {
914 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
915 1.160 ad error = EPIPE;
916 1.160 ad goto release;
917 1.160 ad }
918 1.48 thorpej if (so->so_error) {
919 1.48 thorpej error = so->so_error;
920 1.48 thorpej so->so_error = 0;
921 1.48 thorpej goto release;
922 1.48 thorpej }
923 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
924 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
925 1.217 rmind if (resid || clen == 0) {
926 1.160 ad error = ENOTCONN;
927 1.160 ad goto release;
928 1.160 ad }
929 1.244 rtr } else if (addr == NULL) {
930 1.160 ad error = EDESTADDRREQ;
931 1.160 ad goto release;
932 1.160 ad }
933 1.1 cgd }
934 1.1 cgd space = sbspace(&so->so_snd);
935 1.1 cgd if (flags & MSG_OOB)
936 1.1 cgd space += 1024;
937 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
938 1.160 ad clen > so->so_snd.sb_hiwat) {
939 1.160 ad error = EMSGSIZE;
940 1.160 ad goto release;
941 1.160 ad }
942 1.96 mycroft if (space < resid + clen &&
943 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
944 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
945 1.160 ad error = EWOULDBLOCK;
946 1.160 ad goto release;
947 1.160 ad }
948 1.1 cgd sbunlock(&so->so_snd);
949 1.196 dsl if (wakeup_state & SS_RESTARTSYS) {
950 1.196 dsl error = ERESTART;
951 1.196 dsl goto out;
952 1.196 dsl }
953 1.1 cgd error = sbwait(&so->so_snd);
954 1.1 cgd if (error)
955 1.1 cgd goto out;
956 1.196 dsl wakeup_state = so->so_state;
957 1.1 cgd goto restart;
958 1.1 cgd }
959 1.196 dsl wakeup_state = 0;
960 1.1 cgd mp = ⊤
961 1.1 cgd space -= clen;
962 1.1 cgd do {
963 1.45 tv if (uio == NULL) {
964 1.45 tv /*
965 1.45 tv * Data is prepackaged in "top".
966 1.45 tv */
967 1.45 tv resid = 0;
968 1.45 tv if (flags & MSG_EOR)
969 1.45 tv top->m_flags |= M_EOR;
970 1.45 tv } else do {
971 1.160 ad sounlock(so);
972 1.160 ad splx(s);
973 1.144 dyoung if (top == NULL) {
974 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
975 1.45 tv mlen = MHLEN;
976 1.45 tv m->m_pkthdr.len = 0;
977 1.248 ozaki m_reset_rcvif(m);
978 1.45 tv } else {
979 1.78 matt m = m_get(M_WAIT, MT_DATA);
980 1.45 tv mlen = MLEN;
981 1.45 tv }
982 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
983 1.121 yamt if (sock_loan_thresh >= 0 &&
984 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
985 1.121 yamt space >= sock_loan_thresh &&
986 1.64 thorpej (len = sosend_loan(so, uio, m,
987 1.252 uwe space)) != 0) {
988 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
989 1.64 thorpej space -= len;
990 1.64 thorpej goto have_data;
991 1.64 thorpej }
992 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
993 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
994 1.201 oki m_clget(m, M_DONTWAIT);
995 1.45 tv if ((m->m_flags & M_EXT) == 0)
996 1.45 tv goto nopages;
997 1.45 tv mlen = MCLBYTES;
998 1.45 tv if (atomic && top == 0) {
999 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1000 1.54 lukem resid);
1001 1.45 tv m->m_data += max_hdr;
1002 1.45 tv } else
1003 1.58 jdolecek len = lmin(MCLBYTES, resid);
1004 1.45 tv space -= len;
1005 1.45 tv } else {
1006 1.64 thorpej nopages:
1007 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1008 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1009 1.45 tv space -= len;
1010 1.45 tv /*
1011 1.45 tv * For datagram protocols, leave room
1012 1.45 tv * for protocol headers in first mbuf.
1013 1.45 tv */
1014 1.45 tv if (atomic && top == 0 && len < mlen)
1015 1.268 maxv m_align(m, len);
1016 1.45 tv }
1017 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1018 1.64 thorpej have_data:
1019 1.45 tv resid = uio->uio_resid;
1020 1.45 tv m->m_len = len;
1021 1.45 tv *mp = m;
1022 1.45 tv top->m_pkthdr.len += len;
1023 1.160 ad s = splsoftnet();
1024 1.160 ad solock(so);
1025 1.144 dyoung if (error != 0)
1026 1.45 tv goto release;
1027 1.45 tv mp = &m->m_next;
1028 1.45 tv if (resid <= 0) {
1029 1.45 tv if (flags & MSG_EOR)
1030 1.45 tv top->m_flags |= M_EOR;
1031 1.45 tv break;
1032 1.45 tv }
1033 1.45 tv } while (space > 0 && atomic);
1034 1.108 perry
1035 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1036 1.160 ad error = EPIPE;
1037 1.160 ad goto release;
1038 1.160 ad }
1039 1.45 tv if (dontroute)
1040 1.45 tv so->so_options |= SO_DONTROUTE;
1041 1.45 tv if (resid > 0)
1042 1.45 tv so->so_state |= SS_MORETOCOME;
1043 1.240 rtr if (flags & MSG_OOB) {
1044 1.253 ryo error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1045 1.253 ryo so, top, control);
1046 1.240 rtr } else {
1047 1.232 rtr error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1048 1.245 rtr top, addr, control, l);
1049 1.240 rtr }
1050 1.45 tv if (dontroute)
1051 1.45 tv so->so_options &= ~SO_DONTROUTE;
1052 1.45 tv if (resid > 0)
1053 1.45 tv so->so_state &= ~SS_MORETOCOME;
1054 1.45 tv clen = 0;
1055 1.144 dyoung control = NULL;
1056 1.144 dyoung top = NULL;
1057 1.45 tv mp = ⊤
1058 1.144 dyoung if (error != 0)
1059 1.1 cgd goto release;
1060 1.1 cgd } while (resid && space > 0);
1061 1.1 cgd } while (resid);
1062 1.1 cgd
1063 1.54 lukem release:
1064 1.1 cgd sbunlock(&so->so_snd);
1065 1.54 lukem out:
1066 1.160 ad sounlock(so);
1067 1.160 ad splx(s);
1068 1.1 cgd if (top)
1069 1.1 cgd m_freem(top);
1070 1.1 cgd if (control)
1071 1.1 cgd m_freem(control);
1072 1.270 maxv return error;
1073 1.1 cgd }
1074 1.1 cgd
1075 1.1 cgd /*
1076 1.159 ad * Following replacement or removal of the first mbuf on the first
1077 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1078 1.159 ad * into the socket buffer so that other consumers see the values
1079 1.270 maxv * consistently. 'nextrecord' is the caller's locally stored value of
1080 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1081 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1082 1.159 ad */
1083 1.159 ad static void
1084 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1085 1.159 ad {
1086 1.159 ad
1087 1.160 ad KASSERT(solocked(sb->sb_so));
1088 1.160 ad
1089 1.159 ad /*
1090 1.159 ad * First, update for the new value of nextrecord. If necessary,
1091 1.159 ad * make it the first record.
1092 1.159 ad */
1093 1.159 ad if (sb->sb_mb != NULL)
1094 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1095 1.159 ad else
1096 1.159 ad sb->sb_mb = nextrecord;
1097 1.159 ad
1098 1.159 ad /*
1099 1.159 ad * Now update any dependent socket buffer fields to reflect
1100 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1101 1.159 ad * the addition of a second clause that takes care of the
1102 1.159 ad * case where sb_mb has been updated, but remains the last
1103 1.159 ad * record.
1104 1.159 ad */
1105 1.159 ad if (sb->sb_mb == NULL) {
1106 1.159 ad sb->sb_mbtail = NULL;
1107 1.159 ad sb->sb_lastrecord = NULL;
1108 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1109 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1110 1.159 ad }
1111 1.159 ad
1112 1.159 ad /*
1113 1.1 cgd * Implement receive operations on a socket.
1114 1.1 cgd *
1115 1.270 maxv * We depend on the way that records are added to the sockbuf by sbappend*. In
1116 1.270 maxv * particular, each record (mbufs linked through m_next) must begin with an
1117 1.270 maxv * address if the protocol so specifies, followed by an optional mbuf or mbufs
1118 1.270 maxv * containing ancillary data, and then zero or more mbufs of data.
1119 1.270 maxv *
1120 1.270 maxv * In order to avoid blocking network interrupts for the entire time here, we
1121 1.270 maxv * splx() while doing the actual copy to user space. Although the sockbuf is
1122 1.270 maxv * locked, new data may still be appended, and thus we must maintain
1123 1.270 maxv * consistency of the sockbuf during that time.
1124 1.270 maxv *
1125 1.270 maxv * The caller may receive the data as a single mbuf chain by supplying an mbuf
1126 1.270 maxv * **mp0 for use in returning the chain. The uio is then used only for the
1127 1.270 maxv * count in uio_resid.
1128 1.1 cgd */
1129 1.3 andrew int
1130 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1131 1.270 maxv struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1132 1.1 cgd {
1133 1.116 yamt struct lwp *l = curlwp;
1134 1.270 maxv struct mbuf *m, **mp, *mt;
1135 1.211 chs size_t len, offset, moff, orig_resid;
1136 1.211 chs int atomic, flags, error, s, type;
1137 1.270 maxv const struct protosw *pr;
1138 1.270 maxv struct mbuf *nextrecord;
1139 1.270 maxv int mbuf_removed = 0;
1140 1.146 dyoung const struct domain *dom;
1141 1.270 maxv short wakeup_state = 0;
1142 1.64 thorpej
1143 1.54 lukem pr = so->so_proto;
1144 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1145 1.146 dyoung dom = pr->pr_domain;
1146 1.1 cgd mp = mp0;
1147 1.54 lukem type = 0;
1148 1.54 lukem orig_resid = uio->uio_resid;
1149 1.102 jonathan
1150 1.144 dyoung if (paddr != NULL)
1151 1.144 dyoung *paddr = NULL;
1152 1.144 dyoung if (controlp != NULL)
1153 1.144 dyoung *controlp = NULL;
1154 1.144 dyoung if (flagsp != NULL)
1155 1.252 uwe flags = *flagsp &~ MSG_EOR;
1156 1.1 cgd else
1157 1.1 cgd flags = 0;
1158 1.66 enami
1159 1.1 cgd if (flags & MSG_OOB) {
1160 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1161 1.160 ad solock(so);
1162 1.226 rtr error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1163 1.160 ad sounlock(so);
1164 1.1 cgd if (error)
1165 1.1 cgd goto bad;
1166 1.1 cgd do {
1167 1.134 christos error = uiomove(mtod(m, void *),
1168 1.211 chs MIN(uio->uio_resid, m->m_len), uio);
1169 1.1 cgd m = m_free(m);
1170 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1171 1.270 maxv bad:
1172 1.144 dyoung if (m != NULL)
1173 1.1 cgd m_freem(m);
1174 1.144 dyoung return error;
1175 1.1 cgd }
1176 1.144 dyoung if (mp != NULL)
1177 1.140 dyoung *mp = NULL;
1178 1.160 ad
1179 1.160 ad /*
1180 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1181 1.160 ad * protocol processing soft interrupts from interrupting us and
1182 1.160 ad * blocking (expensive).
1183 1.160 ad */
1184 1.160 ad s = splsoftnet();
1185 1.160 ad solock(so);
1186 1.270 maxv restart:
1187 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1188 1.160 ad sounlock(so);
1189 1.160 ad splx(s);
1190 1.144 dyoung return error;
1191 1.160 ad }
1192 1.270 maxv m = so->so_rcv.sb_mb;
1193 1.1 cgd
1194 1.1 cgd /*
1195 1.1 cgd * If we have less data than requested, block awaiting more
1196 1.1 cgd * (subject to any timeout) if:
1197 1.15 mycroft * 1. the current count is less than the low water mark,
1198 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1199 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1200 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1201 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1202 1.1 cgd * we have to do the receive in sections, and thus risk returning
1203 1.1 cgd * a short count if a timeout or signal occurs after we start.
1204 1.1 cgd */
1205 1.144 dyoung if (m == NULL ||
1206 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1207 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1208 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1209 1.144 dyoung ((flags & MSG_WAITALL) &&
1210 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1211 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1212 1.1 cgd #ifdef DIAGNOSTIC
1213 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1214 1.1 cgd panic("receive 1");
1215 1.1 cgd #endif
1216 1.264 roy if (so->so_error || so->so_rerror) {
1217 1.144 dyoung if (m != NULL)
1218 1.15 mycroft goto dontblock;
1219 1.264 roy if (so->so_error) {
1220 1.264 roy error = so->so_error;
1221 1.264 roy so->so_error = 0;
1222 1.264 roy } else {
1223 1.264 roy error = so->so_rerror;
1224 1.264 roy so->so_rerror = 0;
1225 1.264 roy }
1226 1.1 cgd goto release;
1227 1.1 cgd }
1228 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1229 1.144 dyoung if (m != NULL)
1230 1.15 mycroft goto dontblock;
1231 1.1 cgd else
1232 1.1 cgd goto release;
1233 1.1 cgd }
1234 1.144 dyoung for (; m != NULL; m = m->m_next)
1235 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1236 1.1 cgd m = so->so_rcv.sb_mb;
1237 1.1 cgd goto dontblock;
1238 1.1 cgd }
1239 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1240 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1241 1.1 cgd error = ENOTCONN;
1242 1.1 cgd goto release;
1243 1.1 cgd }
1244 1.1 cgd if (uio->uio_resid == 0)
1245 1.1 cgd goto release;
1246 1.206 christos if ((so->so_state & SS_NBIO) ||
1247 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1248 1.1 cgd error = EWOULDBLOCK;
1249 1.1 cgd goto release;
1250 1.1 cgd }
1251 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1252 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1253 1.1 cgd sbunlock(&so->so_rcv);
1254 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1255 1.196 dsl error = ERESTART;
1256 1.196 dsl else
1257 1.196 dsl error = sbwait(&so->so_rcv);
1258 1.160 ad if (error != 0) {
1259 1.160 ad sounlock(so);
1260 1.160 ad splx(s);
1261 1.144 dyoung return error;
1262 1.160 ad }
1263 1.196 dsl wakeup_state = so->so_state;
1264 1.1 cgd goto restart;
1265 1.1 cgd }
1266 1.270 maxv
1267 1.270 maxv dontblock:
1268 1.69 thorpej /*
1269 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1270 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1271 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1272 1.159 ad * various socket buffer pointers and local stack versions of the
1273 1.159 ad * pointers in sync, pushing out modifications before dropping the
1274 1.160 ad * socket lock, and re-reading them when picking it up.
1275 1.159 ad *
1276 1.159 ad * Otherwise, we will race with the network stack appending new data
1277 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1278 1.159 ad * versions of the field, possibly resulting in socket buffer
1279 1.159 ad * corruption.
1280 1.159 ad *
1281 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1282 1.159 ad * readers from pulling off the front of the socket buffer.
1283 1.69 thorpej */
1284 1.144 dyoung if (l != NULL)
1285 1.157 ad l->l_ru.ru_msgrcv++;
1286 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1287 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1288 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1289 1.1 cgd nextrecord = m->m_nextpkt;
1290 1.270 maxv
1291 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1292 1.270 maxv KASSERT(m->m_type == MT_SONAME);
1293 1.3 andrew orig_resid = 0;
1294 1.1 cgd if (flags & MSG_PEEK) {
1295 1.1 cgd if (paddr)
1296 1.263 maxv *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1297 1.1 cgd m = m->m_next;
1298 1.1 cgd } else {
1299 1.1 cgd sbfree(&so->so_rcv, m);
1300 1.67 he mbuf_removed = 1;
1301 1.144 dyoung if (paddr != NULL) {
1302 1.1 cgd *paddr = m;
1303 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1304 1.144 dyoung m->m_next = NULL;
1305 1.1 cgd m = so->so_rcv.sb_mb;
1306 1.1 cgd } else {
1307 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1308 1.1 cgd }
1309 1.159 ad sbsync(&so->so_rcv, nextrecord);
1310 1.1 cgd }
1311 1.1 cgd }
1312 1.270 maxv
1313 1.247 rjs if (pr->pr_flags & PR_ADDR_OPT) {
1314 1.247 rjs /*
1315 1.270 maxv * For SCTP we may be getting a whole message OR a partial
1316 1.270 maxv * delivery.
1317 1.247 rjs */
1318 1.247 rjs if (m->m_type == MT_SONAME) {
1319 1.247 rjs orig_resid = 0;
1320 1.247 rjs if (flags & MSG_PEEK) {
1321 1.247 rjs if (paddr)
1322 1.263 maxv *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1323 1.247 rjs m = m->m_next;
1324 1.247 rjs } else {
1325 1.247 rjs sbfree(&so->so_rcv, m);
1326 1.280 maxv /* XXX XXX XXX: should set mbuf_removed? */
1327 1.247 rjs if (paddr) {
1328 1.247 rjs *paddr = m;
1329 1.247 rjs so->so_rcv.sb_mb = m->m_next;
1330 1.247 rjs m->m_next = 0;
1331 1.247 rjs m = so->so_rcv.sb_mb;
1332 1.247 rjs } else {
1333 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1334 1.247 rjs }
1335 1.280 maxv /* XXX XXX XXX: isn't there an sbsync()
1336 1.280 maxv * missing here? */
1337 1.247 rjs }
1338 1.247 rjs }
1339 1.247 rjs }
1340 1.159 ad
1341 1.159 ad /*
1342 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1343 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1344 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1345 1.159 ad * perform externalization (or freeing if controlp == NULL).
1346 1.159 ad */
1347 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1348 1.159 ad struct mbuf *cm = NULL, *cmn;
1349 1.159 ad struct mbuf **cme = &cm;
1350 1.159 ad
1351 1.159 ad do {
1352 1.159 ad if (flags & MSG_PEEK) {
1353 1.159 ad if (controlp != NULL) {
1354 1.263 maxv *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1355 1.159 ad controlp = &(*controlp)->m_next;
1356 1.159 ad }
1357 1.159 ad m = m->m_next;
1358 1.159 ad } else {
1359 1.159 ad sbfree(&so->so_rcv, m);
1360 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1361 1.144 dyoung m->m_next = NULL;
1362 1.159 ad *cme = m;
1363 1.159 ad cme = &(*cme)->m_next;
1364 1.1 cgd m = so->so_rcv.sb_mb;
1365 1.159 ad }
1366 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1367 1.159 ad if ((flags & MSG_PEEK) == 0)
1368 1.159 ad sbsync(&so->so_rcv, nextrecord);
1369 1.270 maxv
1370 1.159 ad for (; cm != NULL; cm = cmn) {
1371 1.159 ad cmn = cm->m_next;
1372 1.159 ad cm->m_next = NULL;
1373 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1374 1.159 ad if (controlp != NULL) {
1375 1.159 ad if (dom->dom_externalize != NULL &&
1376 1.159 ad type == SCM_RIGHTS) {
1377 1.160 ad sounlock(so);
1378 1.159 ad splx(s);
1379 1.204 christos error = (*dom->dom_externalize)(cm, l,
1380 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1381 1.204 christos O_CLOEXEC : 0);
1382 1.159 ad s = splsoftnet();
1383 1.160 ad solock(so);
1384 1.159 ad }
1385 1.159 ad *controlp = cm;
1386 1.159 ad while (*controlp != NULL)
1387 1.159 ad controlp = &(*controlp)->m_next;
1388 1.1 cgd } else {
1389 1.106 itojun /*
1390 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1391 1.106 itojun * through the read path rather than recv.
1392 1.106 itojun */
1393 1.159 ad if (dom->dom_dispose != NULL &&
1394 1.159 ad type == SCM_RIGHTS) {
1395 1.253 ryo sounlock(so);
1396 1.159 ad (*dom->dom_dispose)(cm);
1397 1.160 ad solock(so);
1398 1.159 ad }
1399 1.159 ad m_freem(cm);
1400 1.1 cgd }
1401 1.1 cgd }
1402 1.159 ad if (m != NULL)
1403 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1404 1.159 ad else
1405 1.159 ad nextrecord = so->so_rcv.sb_mb;
1406 1.159 ad orig_resid = 0;
1407 1.1 cgd }
1408 1.69 thorpej
1409 1.159 ad /* If m is non-NULL, we have some data to read. */
1410 1.159 ad if (__predict_true(m != NULL)) {
1411 1.1 cgd type = m->m_type;
1412 1.1 cgd if (type == MT_OOBDATA)
1413 1.1 cgd flags |= MSG_OOB;
1414 1.1 cgd }
1415 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1416 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1417 1.69 thorpej
1418 1.1 cgd moff = 0;
1419 1.1 cgd offset = 0;
1420 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1421 1.272 maxv /*
1422 1.272 maxv * If the type of mbuf has changed, end the receive
1423 1.272 maxv * operation and do a short read.
1424 1.272 maxv */
1425 1.1 cgd if (m->m_type == MT_OOBDATA) {
1426 1.1 cgd if (type != MT_OOBDATA)
1427 1.1 cgd break;
1428 1.270 maxv } else if (type == MT_OOBDATA) {
1429 1.1 cgd break;
1430 1.272 maxv } else if (m->m_type == MT_CONTROL) {
1431 1.272 maxv break;
1432 1.270 maxv }
1433 1.1 cgd #ifdef DIAGNOSTIC
1434 1.270 maxv else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1435 1.272 maxv panic("%s: m_type=%d", __func__, m->m_type);
1436 1.270 maxv }
1437 1.1 cgd #endif
1438 1.270 maxv
1439 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1440 1.196 dsl wakeup_state = 0;
1441 1.1 cgd len = uio->uio_resid;
1442 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1443 1.1 cgd len = so->so_oobmark - offset;
1444 1.1 cgd if (len > m->m_len - moff)
1445 1.1 cgd len = m->m_len - moff;
1446 1.270 maxv
1447 1.1 cgd /*
1448 1.1 cgd * If mp is set, just pass back the mbufs.
1449 1.1 cgd * Otherwise copy them out via the uio, then free.
1450 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1451 1.1 cgd * it points to next record) when we drop priority;
1452 1.1 cgd * we must note any additions to the sockbuf when we
1453 1.1 cgd * block interrupts again.
1454 1.1 cgd */
1455 1.144 dyoung if (mp == NULL) {
1456 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1457 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1458 1.160 ad sounlock(so);
1459 1.1 cgd splx(s);
1460 1.211 chs error = uiomove(mtod(m, char *) + moff, len, uio);
1461 1.20 mycroft s = splsoftnet();
1462 1.160 ad solock(so);
1463 1.144 dyoung if (error != 0) {
1464 1.67 he /*
1465 1.67 he * If any part of the record has been removed
1466 1.67 he * (such as the MT_SONAME mbuf, which will
1467 1.67 he * happen when PR_ADDR, and thus also
1468 1.67 he * PR_ATOMIC, is set), then drop the entire
1469 1.67 he * record to maintain the atomicity of the
1470 1.67 he * receive operation.
1471 1.67 he *
1472 1.67 he * This avoids a later panic("receive 1a")
1473 1.67 he * when compiled with DIAGNOSTIC.
1474 1.67 he */
1475 1.146 dyoung if (m && mbuf_removed && atomic)
1476 1.67 he (void) sbdroprecord(&so->so_rcv);
1477 1.67 he
1478 1.57 jdolecek goto release;
1479 1.67 he }
1480 1.270 maxv } else {
1481 1.1 cgd uio->uio_resid -= len;
1482 1.270 maxv }
1483 1.270 maxv
1484 1.1 cgd if (len == m->m_len - moff) {
1485 1.1 cgd if (m->m_flags & M_EOR)
1486 1.1 cgd flags |= MSG_EOR;
1487 1.247 rjs #ifdef SCTP
1488 1.247 rjs if (m->m_flags & M_NOTIFICATION)
1489 1.247 rjs flags |= MSG_NOTIFICATION;
1490 1.270 maxv #endif
1491 1.1 cgd if (flags & MSG_PEEK) {
1492 1.1 cgd m = m->m_next;
1493 1.1 cgd moff = 0;
1494 1.1 cgd } else {
1495 1.1 cgd nextrecord = m->m_nextpkt;
1496 1.1 cgd sbfree(&so->so_rcv, m);
1497 1.1 cgd if (mp) {
1498 1.1 cgd *mp = m;
1499 1.1 cgd mp = &m->m_next;
1500 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1501 1.140 dyoung *mp = NULL;
1502 1.1 cgd } else {
1503 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1504 1.1 cgd }
1505 1.69 thorpej /*
1506 1.69 thorpej * If m != NULL, we also know that
1507 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1508 1.69 thorpej */
1509 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1510 1.69 thorpej if (m) {
1511 1.1 cgd m->m_nextpkt = nextrecord;
1512 1.69 thorpej if (nextrecord == NULL)
1513 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1514 1.69 thorpej } else {
1515 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1516 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1517 1.69 thorpej }
1518 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1519 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1520 1.1 cgd }
1521 1.270 maxv } else if (flags & MSG_PEEK) {
1522 1.144 dyoung moff += len;
1523 1.270 maxv } else {
1524 1.160 ad if (mp != NULL) {
1525 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1526 1.160 ad if (__predict_false(mt == NULL)) {
1527 1.160 ad sounlock(so);
1528 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1529 1.160 ad solock(so);
1530 1.160 ad }
1531 1.160 ad *mp = mt;
1532 1.160 ad }
1533 1.144 dyoung m->m_data += len;
1534 1.144 dyoung m->m_len -= len;
1535 1.144 dyoung so->so_rcv.sb_cc -= len;
1536 1.1 cgd }
1537 1.270 maxv
1538 1.1 cgd if (so->so_oobmark) {
1539 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1540 1.1 cgd so->so_oobmark -= len;
1541 1.1 cgd if (so->so_oobmark == 0) {
1542 1.1 cgd so->so_state |= SS_RCVATMARK;
1543 1.1 cgd break;
1544 1.1 cgd }
1545 1.7 cgd } else {
1546 1.1 cgd offset += len;
1547 1.7 cgd if (offset == so->so_oobmark)
1548 1.7 cgd break;
1549 1.7 cgd }
1550 1.1 cgd }
1551 1.1 cgd if (flags & MSG_EOR)
1552 1.1 cgd break;
1553 1.270 maxv
1554 1.1 cgd /*
1555 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1556 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1557 1.1 cgd * termination. If a signal/timeout occurs, return
1558 1.1 cgd * with a short count but without error.
1559 1.1 cgd * Keep sockbuf locked against other readers.
1560 1.1 cgd */
1561 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1562 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1563 1.264 roy if (so->so_error || so->so_rerror ||
1564 1.264 roy so->so_state & SS_CANTRCVMORE)
1565 1.1 cgd break;
1566 1.68 matt /*
1567 1.68 matt * If we are peeking and the socket receive buffer is
1568 1.68 matt * full, stop since we can't get more data to peek at.
1569 1.68 matt */
1570 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1571 1.68 matt break;
1572 1.68 matt /*
1573 1.68 matt * If we've drained the socket buffer, tell the
1574 1.68 matt * protocol in case it needs to do something to
1575 1.68 matt * get it filled again.
1576 1.68 matt */
1577 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1578 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1579 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1580 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1581 1.196 dsl if (wakeup_state & SS_RESTARTSYS)
1582 1.196 dsl error = ERESTART;
1583 1.196 dsl else
1584 1.196 dsl error = sbwait(&so->so_rcv);
1585 1.144 dyoung if (error != 0) {
1586 1.1 cgd sbunlock(&so->so_rcv);
1587 1.160 ad sounlock(so);
1588 1.1 cgd splx(s);
1589 1.144 dyoung return 0;
1590 1.1 cgd }
1591 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1592 1.1 cgd nextrecord = m->m_nextpkt;
1593 1.196 dsl wakeup_state = so->so_state;
1594 1.1 cgd }
1595 1.1 cgd }
1596 1.3 andrew
1597 1.146 dyoung if (m && atomic) {
1598 1.3 andrew flags |= MSG_TRUNC;
1599 1.3 andrew if ((flags & MSG_PEEK) == 0)
1600 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1601 1.3 andrew }
1602 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1603 1.144 dyoung if (m == NULL) {
1604 1.69 thorpej /*
1605 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1606 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1607 1.69 thorpej * there is still data in the socket buffer.
1608 1.69 thorpej */
1609 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1610 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1611 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1612 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1613 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1614 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1615 1.69 thorpej }
1616 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1617 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1618 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1619 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1620 1.1 cgd }
1621 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1622 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1623 1.3 andrew sbunlock(&so->so_rcv);
1624 1.3 andrew goto restart;
1625 1.3 andrew }
1626 1.108 perry
1627 1.144 dyoung if (flagsp != NULL)
1628 1.1 cgd *flagsp |= flags;
1629 1.270 maxv release:
1630 1.1 cgd sbunlock(&so->so_rcv);
1631 1.160 ad sounlock(so);
1632 1.1 cgd splx(s);
1633 1.144 dyoung return error;
1634 1.1 cgd }
1635 1.1 cgd
1636 1.14 mycroft int
1637 1.54 lukem soshutdown(struct socket *so, int how)
1638 1.1 cgd {
1639 1.270 maxv const struct protosw *pr;
1640 1.270 maxv int error;
1641 1.160 ad
1642 1.160 ad KASSERT(solocked(so));
1643 1.34 kleink
1644 1.54 lukem pr = so->so_proto;
1645 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1646 1.270 maxv return EINVAL;
1647 1.1 cgd
1648 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1649 1.1 cgd sorflush(so);
1650 1.160 ad error = 0;
1651 1.160 ad }
1652 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1653 1.229 rtr error = (*pr->pr_usrreqs->pr_shutdown)(so);
1654 1.160 ad
1655 1.160 ad return error;
1656 1.1 cgd }
1657 1.1 cgd
1658 1.195 dsl void
1659 1.196 dsl sorestart(struct socket *so)
1660 1.188 ad {
1661 1.196 dsl /*
1662 1.196 dsl * An application has called close() on an fd on which another
1663 1.196 dsl * of its threads has called a socket system call.
1664 1.196 dsl * Mark this and wake everyone up, and code that would block again
1665 1.196 dsl * instead returns ERESTART.
1666 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1667 1.196 dsl * Any other fd will block again on the 2nd syscall.
1668 1.196 dsl */
1669 1.188 ad solock(so);
1670 1.196 dsl so->so_state |= SS_RESTARTSYS;
1671 1.188 ad cv_broadcast(&so->so_cv);
1672 1.196 dsl cv_broadcast(&so->so_snd.sb_cv);
1673 1.196 dsl cv_broadcast(&so->so_rcv.sb_cv);
1674 1.188 ad sounlock(so);
1675 1.188 ad }
1676 1.188 ad
1677 1.14 mycroft void
1678 1.54 lukem sorflush(struct socket *so)
1679 1.1 cgd {
1680 1.270 maxv struct sockbuf *sb, asb;
1681 1.270 maxv const struct protosw *pr;
1682 1.160 ad
1683 1.160 ad KASSERT(solocked(so));
1684 1.1 cgd
1685 1.54 lukem sb = &so->so_rcv;
1686 1.54 lukem pr = so->so_proto;
1687 1.160 ad socantrcvmore(so);
1688 1.1 cgd sb->sb_flags |= SB_NOINTR;
1689 1.160 ad (void )sblock(sb, M_WAITOK);
1690 1.1 cgd sbunlock(sb);
1691 1.1 cgd asb = *sb;
1692 1.86 wrstuden /*
1693 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1694 1.86 wrstuden * fields valid.
1695 1.86 wrstuden */
1696 1.86 wrstuden memset(&sb->sb_startzero, 0,
1697 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1698 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1699 1.160 ad sounlock(so);
1700 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1701 1.160 ad solock(so);
1702 1.160 ad }
1703 1.98 christos sbrelease(&asb, so);
1704 1.1 cgd }
1705 1.1 cgd
1706 1.171 plunky /*
1707 1.171 plunky * internal set SOL_SOCKET options
1708 1.171 plunky */
1709 1.142 dyoung static int
1710 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1711 1.1 cgd {
1712 1.275 pgoyette int error, opt;
1713 1.219 christos int optval = 0; /* XXX: gcc */
1714 1.171 plunky struct linger l;
1715 1.171 plunky struct timeval tv;
1716 1.142 dyoung
1717 1.275 pgoyette opt = sopt->sopt_name;
1718 1.275 pgoyette
1719 1.275 pgoyette switch (opt) {
1720 1.142 dyoung
1721 1.170 tls case SO_ACCEPTFILTER:
1722 1.177 ad error = accept_filt_setopt(so, sopt);
1723 1.177 ad KASSERT(solocked(so));
1724 1.170 tls break;
1725 1.170 tls
1726 1.253 ryo case SO_LINGER:
1727 1.253 ryo error = sockopt_get(sopt, &l, sizeof(l));
1728 1.177 ad solock(so);
1729 1.253 ryo if (error)
1730 1.253 ryo break;
1731 1.253 ryo if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1732 1.253 ryo l.l_linger > (INT_MAX / hz)) {
1733 1.177 ad error = EDOM;
1734 1.177 ad break;
1735 1.177 ad }
1736 1.253 ryo so->so_linger = l.l_linger;
1737 1.253 ryo if (l.l_onoff)
1738 1.253 ryo so->so_options |= SO_LINGER;
1739 1.253 ryo else
1740 1.253 ryo so->so_options &= ~SO_LINGER;
1741 1.253 ryo break;
1742 1.1 cgd
1743 1.142 dyoung case SO_DEBUG:
1744 1.142 dyoung case SO_KEEPALIVE:
1745 1.142 dyoung case SO_DONTROUTE:
1746 1.142 dyoung case SO_USELOOPBACK:
1747 1.142 dyoung case SO_BROADCAST:
1748 1.142 dyoung case SO_REUSEADDR:
1749 1.142 dyoung case SO_REUSEPORT:
1750 1.142 dyoung case SO_OOBINLINE:
1751 1.142 dyoung case SO_TIMESTAMP:
1752 1.207 christos case SO_NOSIGPIPE:
1753 1.266 christos case SO_RERROR:
1754 1.171 plunky error = sockopt_getint(sopt, &optval);
1755 1.177 ad solock(so);
1756 1.171 plunky if (error)
1757 1.177 ad break;
1758 1.171 plunky if (optval)
1759 1.179 christos so->so_options |= opt;
1760 1.142 dyoung else
1761 1.179 christos so->so_options &= ~opt;
1762 1.142 dyoung break;
1763 1.142 dyoung
1764 1.142 dyoung case SO_SNDBUF:
1765 1.142 dyoung case SO_RCVBUF:
1766 1.142 dyoung case SO_SNDLOWAT:
1767 1.142 dyoung case SO_RCVLOWAT:
1768 1.171 plunky error = sockopt_getint(sopt, &optval);
1769 1.177 ad solock(so);
1770 1.171 plunky if (error)
1771 1.177 ad break;
1772 1.1 cgd
1773 1.142 dyoung /*
1774 1.142 dyoung * Values < 1 make no sense for any of these
1775 1.142 dyoung * options, so disallow them.
1776 1.142 dyoung */
1777 1.177 ad if (optval < 1) {
1778 1.177 ad error = EINVAL;
1779 1.177 ad break;
1780 1.177 ad }
1781 1.1 cgd
1782 1.179 christos switch (opt) {
1783 1.171 plunky case SO_SNDBUF:
1784 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1785 1.177 ad error = ENOBUFS;
1786 1.177 ad break;
1787 1.177 ad }
1788 1.171 plunky so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1789 1.171 plunky break;
1790 1.1 cgd
1791 1.1 cgd case SO_RCVBUF:
1792 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1793 1.177 ad error = ENOBUFS;
1794 1.177 ad break;
1795 1.177 ad }
1796 1.171 plunky so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1797 1.142 dyoung break;
1798 1.142 dyoung
1799 1.142 dyoung /*
1800 1.142 dyoung * Make sure the low-water is never greater than
1801 1.142 dyoung * the high-water.
1802 1.142 dyoung */
1803 1.1 cgd case SO_SNDLOWAT:
1804 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1805 1.171 plunky optval = so->so_snd.sb_hiwat;
1806 1.171 plunky
1807 1.171 plunky so->so_snd.sb_lowat = optval;
1808 1.142 dyoung break;
1809 1.171 plunky
1810 1.1 cgd case SO_RCVLOWAT:
1811 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1812 1.171 plunky optval = so->so_rcv.sb_hiwat;
1813 1.171 plunky
1814 1.171 plunky so->so_rcv.sb_lowat = optval;
1815 1.142 dyoung break;
1816 1.142 dyoung }
1817 1.142 dyoung break;
1818 1.28 thorpej
1819 1.142 dyoung case SO_SNDTIMEO:
1820 1.142 dyoung case SO_RCVTIMEO:
1821 1.177 ad solock(so);
1822 1.278 pgoyette error = sockopt_get(sopt, &tv, sizeof(tv));
1823 1.171 plunky if (error)
1824 1.177 ad break;
1825 1.171 plunky
1826 1.274 maxv if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1827 1.274 maxv error = EDOM;
1828 1.274 maxv break;
1829 1.274 maxv }
1830 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1831 1.177 ad error = EDOM;
1832 1.177 ad break;
1833 1.177 ad }
1834 1.28 thorpej
1835 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1836 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1837 1.171 plunky optval = 1;
1838 1.28 thorpej
1839 1.179 christos switch (opt) {
1840 1.142 dyoung case SO_SNDTIMEO:
1841 1.171 plunky so->so_snd.sb_timeo = optval;
1842 1.1 cgd break;
1843 1.1 cgd case SO_RCVTIMEO:
1844 1.171 plunky so->so_rcv.sb_timeo = optval;
1845 1.142 dyoung break;
1846 1.142 dyoung }
1847 1.142 dyoung break;
1848 1.1 cgd
1849 1.142 dyoung default:
1850 1.278 pgoyette MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1851 1.278 pgoyette (opt, so, sopt), enosys(), error);
1852 1.278 pgoyette if (error == ENOSYS || error == EPASSTHROUGH) {
1853 1.278 pgoyette solock(so);
1854 1.278 pgoyette error = ENOPROTOOPT;
1855 1.278 pgoyette }
1856 1.177 ad break;
1857 1.142 dyoung }
1858 1.177 ad KASSERT(solocked(so));
1859 1.177 ad return error;
1860 1.142 dyoung }
1861 1.1 cgd
1862 1.142 dyoung int
1863 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1864 1.142 dyoung {
1865 1.142 dyoung int error, prerr;
1866 1.1 cgd
1867 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1868 1.171 plunky error = sosetopt1(so, sopt);
1869 1.177 ad KASSERT(solocked(so));
1870 1.177 ad } else {
1871 1.142 dyoung error = ENOPROTOOPT;
1872 1.177 ad solock(so);
1873 1.177 ad }
1874 1.1 cgd
1875 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1876 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1877 1.142 dyoung /* give the protocol stack a shot */
1878 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1879 1.142 dyoung if (prerr == 0)
1880 1.142 dyoung error = 0;
1881 1.142 dyoung else if (prerr != ENOPROTOOPT)
1882 1.142 dyoung error = prerr;
1883 1.171 plunky }
1884 1.160 ad sounlock(so);
1885 1.142 dyoung return error;
1886 1.1 cgd }
1887 1.1 cgd
1888 1.171 plunky /*
1889 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1890 1.171 plunky */
1891 1.171 plunky int
1892 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1893 1.171 plunky const void *val, size_t valsize)
1894 1.171 plunky {
1895 1.171 plunky struct sockopt sopt;
1896 1.171 plunky int error;
1897 1.171 plunky
1898 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1899 1.171 plunky
1900 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1901 1.171 plunky sockopt_set(&sopt, val, valsize);
1902 1.171 plunky
1903 1.171 plunky error = sosetopt(so, &sopt);
1904 1.171 plunky
1905 1.171 plunky sockopt_destroy(&sopt);
1906 1.171 plunky
1907 1.171 plunky return error;
1908 1.171 plunky }
1909 1.253 ryo
1910 1.171 plunky /*
1911 1.171 plunky * internal get SOL_SOCKET options
1912 1.171 plunky */
1913 1.171 plunky static int
1914 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1915 1.171 plunky {
1916 1.179 christos int error, optval, opt;
1917 1.171 plunky struct linger l;
1918 1.171 plunky struct timeval tv;
1919 1.171 plunky
1920 1.179 christos switch ((opt = sopt->sopt_name)) {
1921 1.171 plunky
1922 1.171 plunky case SO_ACCEPTFILTER:
1923 1.177 ad error = accept_filt_getopt(so, sopt);
1924 1.171 plunky break;
1925 1.171 plunky
1926 1.171 plunky case SO_LINGER:
1927 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1928 1.171 plunky l.l_linger = so->so_linger;
1929 1.171 plunky
1930 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1931 1.171 plunky break;
1932 1.171 plunky
1933 1.171 plunky case SO_USELOOPBACK:
1934 1.171 plunky case SO_DONTROUTE:
1935 1.171 plunky case SO_DEBUG:
1936 1.171 plunky case SO_KEEPALIVE:
1937 1.171 plunky case SO_REUSEADDR:
1938 1.171 plunky case SO_REUSEPORT:
1939 1.171 plunky case SO_BROADCAST:
1940 1.171 plunky case SO_OOBINLINE:
1941 1.171 plunky case SO_TIMESTAMP:
1942 1.207 christos case SO_NOSIGPIPE:
1943 1.266 christos case SO_RERROR:
1944 1.218 seanb case SO_ACCEPTCONN:
1945 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1946 1.171 plunky break;
1947 1.171 plunky
1948 1.171 plunky case SO_TYPE:
1949 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1950 1.171 plunky break;
1951 1.171 plunky
1952 1.171 plunky case SO_ERROR:
1953 1.267 hannken if (so->so_error == 0) {
1954 1.267 hannken so->so_error = so->so_rerror;
1955 1.267 hannken so->so_rerror = 0;
1956 1.267 hannken }
1957 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1958 1.171 plunky so->so_error = 0;
1959 1.171 plunky break;
1960 1.171 plunky
1961 1.171 plunky case SO_SNDBUF:
1962 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1963 1.171 plunky break;
1964 1.171 plunky
1965 1.171 plunky case SO_RCVBUF:
1966 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1967 1.171 plunky break;
1968 1.171 plunky
1969 1.171 plunky case SO_SNDLOWAT:
1970 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1971 1.171 plunky break;
1972 1.171 plunky
1973 1.171 plunky case SO_RCVLOWAT:
1974 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1975 1.171 plunky break;
1976 1.171 plunky
1977 1.171 plunky case SO_SNDTIMEO:
1978 1.171 plunky case SO_RCVTIMEO:
1979 1.179 christos optval = (opt == SO_SNDTIMEO ?
1980 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1981 1.171 plunky
1982 1.171 plunky tv.tv_sec = optval / hz;
1983 1.171 plunky tv.tv_usec = (optval % hz) * tick;
1984 1.171 plunky
1985 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
1986 1.171 plunky break;
1987 1.171 plunky
1988 1.171 plunky case SO_OVERFLOWED:
1989 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1990 1.171 plunky break;
1991 1.171 plunky
1992 1.171 plunky default:
1993 1.275 pgoyette MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
1994 1.278 pgoyette (opt, so, sopt), enosys(), error);
1995 1.275 pgoyette if (error)
1996 1.275 pgoyette error = ENOPROTOOPT;
1997 1.171 plunky break;
1998 1.171 plunky }
1999 1.171 plunky
2000 1.270 maxv return error;
2001 1.171 plunky }
2002 1.171 plunky
2003 1.14 mycroft int
2004 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
2005 1.1 cgd {
2006 1.270 maxv int error;
2007 1.1 cgd
2008 1.160 ad solock(so);
2009 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
2010 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
2011 1.160 ad error = ((*so->so_proto->pr_ctloutput)
2012 1.171 plunky (PRCO_GETOPT, so, sopt));
2013 1.1 cgd } else
2014 1.160 ad error = (ENOPROTOOPT);
2015 1.1 cgd } else {
2016 1.171 plunky error = sogetopt1(so, sopt);
2017 1.171 plunky }
2018 1.171 plunky sounlock(so);
2019 1.270 maxv return error;
2020 1.171 plunky }
2021 1.171 plunky
2022 1.171 plunky /*
2023 1.171 plunky * alloc sockopt data buffer buffer
2024 1.171 plunky * - will be released at destroy
2025 1.171 plunky */
2026 1.176 plunky static int
2027 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2028 1.171 plunky {
2029 1.171 plunky
2030 1.171 plunky KASSERT(sopt->sopt_size == 0);
2031 1.171 plunky
2032 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2033 1.176 plunky sopt->sopt_data = kmem_zalloc(len, kmflag);
2034 1.176 plunky if (sopt->sopt_data == NULL)
2035 1.176 plunky return ENOMEM;
2036 1.176 plunky } else
2037 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2038 1.171 plunky
2039 1.171 plunky sopt->sopt_size = len;
2040 1.176 plunky return 0;
2041 1.171 plunky }
2042 1.171 plunky
2043 1.171 plunky /*
2044 1.171 plunky * initialise sockopt storage
2045 1.176 plunky * - MAY sleep during allocation
2046 1.171 plunky */
2047 1.171 plunky void
2048 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2049 1.171 plunky {
2050 1.1 cgd
2051 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2052 1.1 cgd
2053 1.171 plunky sopt->sopt_level = level;
2054 1.171 plunky sopt->sopt_name = name;
2055 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2056 1.171 plunky }
2057 1.171 plunky
2058 1.171 plunky /*
2059 1.171 plunky * destroy sockopt storage
2060 1.171 plunky * - will release any held memory references
2061 1.171 plunky */
2062 1.171 plunky void
2063 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2064 1.171 plunky {
2065 1.171 plunky
2066 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2067 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2068 1.171 plunky
2069 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2070 1.171 plunky }
2071 1.171 plunky
2072 1.171 plunky /*
2073 1.171 plunky * set sockopt value
2074 1.171 plunky * - value is copied into sockopt
2075 1.253 ryo * - memory is allocated when necessary, will not sleep
2076 1.171 plunky */
2077 1.171 plunky int
2078 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2079 1.171 plunky {
2080 1.176 plunky int error;
2081 1.171 plunky
2082 1.176 plunky if (sopt->sopt_size == 0) {
2083 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2084 1.176 plunky if (error)
2085 1.176 plunky return error;
2086 1.176 plunky }
2087 1.171 plunky
2088 1.279 christos sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2089 1.279 christos memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2090 1.259 christos
2091 1.171 plunky return 0;
2092 1.171 plunky }
2093 1.171 plunky
2094 1.171 plunky /*
2095 1.171 plunky * common case of set sockopt integer value
2096 1.171 plunky */
2097 1.171 plunky int
2098 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2099 1.171 plunky {
2100 1.171 plunky
2101 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2102 1.171 plunky }
2103 1.171 plunky
2104 1.171 plunky /*
2105 1.171 plunky * get sockopt value
2106 1.171 plunky * - correct size must be given
2107 1.171 plunky */
2108 1.171 plunky int
2109 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2110 1.171 plunky {
2111 1.170 tls
2112 1.171 plunky if (sopt->sopt_size != len)
2113 1.171 plunky return EINVAL;
2114 1.1 cgd
2115 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2116 1.171 plunky return 0;
2117 1.171 plunky }
2118 1.1 cgd
2119 1.171 plunky /*
2120 1.171 plunky * common case of get sockopt integer value
2121 1.171 plunky */
2122 1.171 plunky int
2123 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2124 1.171 plunky {
2125 1.1 cgd
2126 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2127 1.171 plunky }
2128 1.1 cgd
2129 1.171 plunky /*
2130 1.171 plunky * set sockopt value from mbuf
2131 1.171 plunky * - ONLY for legacy code
2132 1.171 plunky * - mbuf is released by sockopt
2133 1.176 plunky * - will not sleep
2134 1.171 plunky */
2135 1.171 plunky int
2136 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2137 1.171 plunky {
2138 1.171 plunky size_t len;
2139 1.176 plunky int error;
2140 1.1 cgd
2141 1.171 plunky len = m_length(m);
2142 1.1 cgd
2143 1.176 plunky if (sopt->sopt_size == 0) {
2144 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2145 1.176 plunky if (error)
2146 1.176 plunky return error;
2147 1.176 plunky }
2148 1.1 cgd
2149 1.279 christos sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2150 1.279 christos m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2151 1.171 plunky m_freem(m);
2152 1.1 cgd
2153 1.171 plunky return 0;
2154 1.171 plunky }
2155 1.1 cgd
2156 1.171 plunky /*
2157 1.171 plunky * get sockopt value into mbuf
2158 1.171 plunky * - ONLY for legacy code
2159 1.171 plunky * - mbuf to be released by the caller
2160 1.176 plunky * - will not sleep
2161 1.171 plunky */
2162 1.171 plunky struct mbuf *
2163 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2164 1.171 plunky {
2165 1.171 plunky struct mbuf *m;
2166 1.107 darrenr
2167 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2168 1.176 plunky return NULL;
2169 1.176 plunky
2170 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2171 1.171 plunky if (m == NULL)
2172 1.171 plunky return NULL;
2173 1.171 plunky
2174 1.176 plunky if (sopt->sopt_size > MLEN) {
2175 1.176 plunky MCLGET(m, M_DONTWAIT);
2176 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2177 1.176 plunky m_free(m);
2178 1.176 plunky return NULL;
2179 1.176 plunky }
2180 1.1 cgd }
2181 1.176 plunky
2182 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2183 1.176 plunky m->m_len = sopt->sopt_size;
2184 1.160 ad
2185 1.171 plunky return m;
2186 1.1 cgd }
2187 1.1 cgd
2188 1.14 mycroft void
2189 1.54 lukem sohasoutofband(struct socket *so)
2190 1.1 cgd {
2191 1.153 rmind
2192 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2193 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2194 1.1 cgd }
2195 1.72 jdolecek
2196 1.72 jdolecek static void
2197 1.72 jdolecek filt_sordetach(struct knote *kn)
2198 1.72 jdolecek {
2199 1.270 maxv struct socket *so;
2200 1.72 jdolecek
2201 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2202 1.160 ad solock(so);
2203 1.73 christos SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2204 1.73 christos if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2205 1.72 jdolecek so->so_rcv.sb_flags &= ~SB_KNOTE;
2206 1.160 ad sounlock(so);
2207 1.72 jdolecek }
2208 1.72 jdolecek
2209 1.72 jdolecek /*ARGSUSED*/
2210 1.72 jdolecek static int
2211 1.129 yamt filt_soread(struct knote *kn, long hint)
2212 1.72 jdolecek {
2213 1.270 maxv struct socket *so;
2214 1.160 ad int rv;
2215 1.72 jdolecek
2216 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2217 1.160 ad if (hint != NOTE_SUBMIT)
2218 1.160 ad solock(so);
2219 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2220 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2221 1.108 perry kn->kn_flags |= EV_EOF;
2222 1.72 jdolecek kn->kn_fflags = so->so_error;
2223 1.160 ad rv = 1;
2224 1.264 roy } else if (so->so_error || so->so_rerror)
2225 1.160 ad rv = 1;
2226 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2227 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2228 1.253 ryo else
2229 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2230 1.160 ad if (hint != NOTE_SUBMIT)
2231 1.160 ad sounlock(so);
2232 1.160 ad return rv;
2233 1.72 jdolecek }
2234 1.72 jdolecek
2235 1.72 jdolecek static void
2236 1.72 jdolecek filt_sowdetach(struct knote *kn)
2237 1.72 jdolecek {
2238 1.270 maxv struct socket *so;
2239 1.72 jdolecek
2240 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2241 1.160 ad solock(so);
2242 1.73 christos SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2243 1.73 christos if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2244 1.72 jdolecek so->so_snd.sb_flags &= ~SB_KNOTE;
2245 1.160 ad sounlock(so);
2246 1.72 jdolecek }
2247 1.72 jdolecek
2248 1.72 jdolecek /*ARGSUSED*/
2249 1.72 jdolecek static int
2250 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2251 1.72 jdolecek {
2252 1.270 maxv struct socket *so;
2253 1.160 ad int rv;
2254 1.72 jdolecek
2255 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2256 1.160 ad if (hint != NOTE_SUBMIT)
2257 1.160 ad solock(so);
2258 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2259 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2260 1.108 perry kn->kn_flags |= EV_EOF;
2261 1.72 jdolecek kn->kn_fflags = so->so_error;
2262 1.160 ad rv = 1;
2263 1.261 roy } else if (so->so_error)
2264 1.160 ad rv = 1;
2265 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2266 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2267 1.160 ad rv = 0;
2268 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2269 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2270 1.160 ad else
2271 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2272 1.160 ad if (hint != NOTE_SUBMIT)
2273 1.160 ad sounlock(so);
2274 1.160 ad return rv;
2275 1.72 jdolecek }
2276 1.72 jdolecek
2277 1.72 jdolecek /*ARGSUSED*/
2278 1.72 jdolecek static int
2279 1.129 yamt filt_solisten(struct knote *kn, long hint)
2280 1.72 jdolecek {
2281 1.270 maxv struct socket *so;
2282 1.160 ad int rv;
2283 1.72 jdolecek
2284 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2285 1.72 jdolecek
2286 1.72 jdolecek /*
2287 1.72 jdolecek * Set kn_data to number of incoming connections, not
2288 1.72 jdolecek * counting partial (incomplete) connections.
2289 1.108 perry */
2290 1.160 ad if (hint != NOTE_SUBMIT)
2291 1.160 ad solock(so);
2292 1.72 jdolecek kn->kn_data = so->so_qlen;
2293 1.160 ad rv = (kn->kn_data > 0);
2294 1.160 ad if (hint != NOTE_SUBMIT)
2295 1.160 ad sounlock(so);
2296 1.160 ad return rv;
2297 1.72 jdolecek }
2298 1.72 jdolecek
2299 1.257 maya static const struct filterops solisten_filtops = {
2300 1.257 maya .f_isfd = 1,
2301 1.257 maya .f_attach = NULL,
2302 1.257 maya .f_detach = filt_sordetach,
2303 1.257 maya .f_event = filt_solisten,
2304 1.257 maya };
2305 1.257 maya
2306 1.257 maya static const struct filterops soread_filtops = {
2307 1.257 maya .f_isfd = 1,
2308 1.257 maya .f_attach = NULL,
2309 1.257 maya .f_detach = filt_sordetach,
2310 1.257 maya .f_event = filt_soread,
2311 1.257 maya };
2312 1.257 maya
2313 1.257 maya static const struct filterops sowrite_filtops = {
2314 1.257 maya .f_isfd = 1,
2315 1.257 maya .f_attach = NULL,
2316 1.257 maya .f_detach = filt_sowdetach,
2317 1.257 maya .f_event = filt_sowrite,
2318 1.257 maya };
2319 1.72 jdolecek
2320 1.72 jdolecek int
2321 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2322 1.72 jdolecek {
2323 1.270 maxv struct socket *so;
2324 1.270 maxv struct sockbuf *sb;
2325 1.72 jdolecek
2326 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2327 1.160 ad solock(so);
2328 1.72 jdolecek switch (kn->kn_filter) {
2329 1.72 jdolecek case EVFILT_READ:
2330 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2331 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2332 1.72 jdolecek else
2333 1.72 jdolecek kn->kn_fop = &soread_filtops;
2334 1.72 jdolecek sb = &so->so_rcv;
2335 1.72 jdolecek break;
2336 1.72 jdolecek case EVFILT_WRITE:
2337 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2338 1.72 jdolecek sb = &so->so_snd;
2339 1.72 jdolecek break;
2340 1.72 jdolecek default:
2341 1.160 ad sounlock(so);
2342 1.270 maxv return EINVAL;
2343 1.72 jdolecek }
2344 1.73 christos SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2345 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2346 1.160 ad sounlock(so);
2347 1.270 maxv return 0;
2348 1.72 jdolecek }
2349 1.72 jdolecek
2350 1.154 ad static int
2351 1.154 ad sodopoll(struct socket *so, int events)
2352 1.154 ad {
2353 1.154 ad int revents;
2354 1.154 ad
2355 1.154 ad revents = 0;
2356 1.154 ad
2357 1.154 ad if (events & (POLLIN | POLLRDNORM))
2358 1.154 ad if (soreadable(so))
2359 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2360 1.154 ad
2361 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2362 1.154 ad if (sowritable(so))
2363 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2364 1.154 ad
2365 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2366 1.154 ad if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2367 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2368 1.154 ad
2369 1.154 ad return revents;
2370 1.154 ad }
2371 1.154 ad
2372 1.154 ad int
2373 1.154 ad sopoll(struct socket *so, int events)
2374 1.154 ad {
2375 1.154 ad int revents = 0;
2376 1.154 ad
2377 1.160 ad #ifndef DIAGNOSTIC
2378 1.160 ad /*
2379 1.160 ad * Do a quick, unlocked check in expectation that the socket
2380 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2381 1.160 ad * as the solocked() assertions will fail.
2382 1.160 ad */
2383 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2384 1.154 ad return revents;
2385 1.160 ad #endif
2386 1.154 ad
2387 1.160 ad solock(so);
2388 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2389 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2390 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2391 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2392 1.154 ad }
2393 1.154 ad
2394 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2395 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2396 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2397 1.154 ad }
2398 1.154 ad }
2399 1.160 ad sounlock(so);
2400 1.154 ad
2401 1.154 ad return revents;
2402 1.154 ad }
2403 1.154 ad
2404 1.256 christos struct mbuf **
2405 1.262 maxv sbsavetimestamp(int opt, struct mbuf **mp)
2406 1.256 christos {
2407 1.256 christos struct timeval tv;
2408 1.275 pgoyette int error;
2409 1.275 pgoyette
2410 1.256 christos microtime(&tv);
2411 1.256 christos
2412 1.275 pgoyette MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error);
2413 1.275 pgoyette if (error == 0)
2414 1.275 pgoyette return mp;
2415 1.256 christos
2416 1.256 christos if (opt & SO_TIMESTAMP) {
2417 1.256 christos *mp = sbcreatecontrol(&tv, sizeof(tv),
2418 1.256 christos SCM_TIMESTAMP, SOL_SOCKET);
2419 1.256 christos if (*mp)
2420 1.256 christos mp = &(*mp)->m_next;
2421 1.256 christos }
2422 1.256 christos return mp;
2423 1.256 christos }
2424 1.256 christos
2425 1.154 ad
2426 1.94 yamt #include <sys/sysctl.h>
2427 1.94 yamt
2428 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2429 1.212 pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2430 1.94 yamt
2431 1.94 yamt /*
2432 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2433 1.94 yamt * value is not too small.
2434 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2435 1.94 yamt */
2436 1.94 yamt static int
2437 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2438 1.94 yamt {
2439 1.94 yamt int error, new_somaxkva;
2440 1.94 yamt struct sysctlnode node;
2441 1.94 yamt
2442 1.94 yamt new_somaxkva = somaxkva;
2443 1.94 yamt node = *rnode;
2444 1.94 yamt node.sysctl_data = &new_somaxkva;
2445 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2446 1.94 yamt if (error || newp == NULL)
2447 1.270 maxv return error;
2448 1.94 yamt
2449 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2450 1.270 maxv return EINVAL;
2451 1.94 yamt
2452 1.136 ad mutex_enter(&so_pendfree_lock);
2453 1.94 yamt somaxkva = new_somaxkva;
2454 1.136 ad cv_broadcast(&socurkva_cv);
2455 1.136 ad mutex_exit(&so_pendfree_lock);
2456 1.94 yamt
2457 1.270 maxv return error;
2458 1.94 yamt }
2459 1.94 yamt
2460 1.212 pooka /*
2461 1.212 pooka * sysctl helper routine for kern.sbmax. Basically just ensures that
2462 1.212 pooka * any new value is not too small.
2463 1.212 pooka */
2464 1.212 pooka static int
2465 1.212 pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
2466 1.212 pooka {
2467 1.212 pooka int error, new_sbmax;
2468 1.212 pooka struct sysctlnode node;
2469 1.212 pooka
2470 1.212 pooka new_sbmax = sb_max;
2471 1.212 pooka node = *rnode;
2472 1.212 pooka node.sysctl_data = &new_sbmax;
2473 1.212 pooka error = sysctl_lookup(SYSCTLFN_CALL(&node));
2474 1.212 pooka if (error || newp == NULL)
2475 1.270 maxv return error;
2476 1.212 pooka
2477 1.212 pooka KERNEL_LOCK(1, NULL);
2478 1.212 pooka error = sb_max_set(new_sbmax);
2479 1.212 pooka KERNEL_UNLOCK_ONE(NULL);
2480 1.212 pooka
2481 1.270 maxv return error;
2482 1.212 pooka }
2483 1.212 pooka
2484 1.266 christos /*
2485 1.266 christos * sysctl helper routine for kern.sooptions. Ensures that only allowed
2486 1.266 christos * options can be set.
2487 1.266 christos */
2488 1.266 christos static int
2489 1.266 christos sysctl_kern_sooptions(SYSCTLFN_ARGS)
2490 1.266 christos {
2491 1.266 christos int error, new_options;
2492 1.266 christos struct sysctlnode node;
2493 1.266 christos
2494 1.266 christos new_options = sooptions;
2495 1.266 christos node = *rnode;
2496 1.266 christos node.sysctl_data = &new_options;
2497 1.266 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
2498 1.266 christos if (error || newp == NULL)
2499 1.266 christos return error;
2500 1.266 christos
2501 1.266 christos if (new_options & ~SO_DEFOPTS)
2502 1.266 christos return EINVAL;
2503 1.266 christos
2504 1.266 christos sooptions = new_options;
2505 1.266 christos
2506 1.266 christos return 0;
2507 1.266 christos }
2508 1.266 christos
2509 1.178 pooka static void
2510 1.212 pooka sysctl_kern_socket_setup(void)
2511 1.94 yamt {
2512 1.94 yamt
2513 1.178 pooka KASSERT(socket_sysctllog == NULL);
2514 1.97 atatat
2515 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2516 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2517 1.103 atatat CTLTYPE_INT, "somaxkva",
2518 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2519 1.270 maxv "used for socket buffers"),
2520 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2521 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2522 1.212 pooka
2523 1.212 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2524 1.212 pooka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2525 1.212 pooka CTLTYPE_INT, "sbmax",
2526 1.212 pooka SYSCTL_DESCR("Maximum socket buffer size"),
2527 1.212 pooka sysctl_kern_sbmax, 0, NULL, 0,
2528 1.212 pooka CTL_KERN, KERN_SBMAX, CTL_EOL);
2529 1.266 christos
2530 1.266 christos sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2531 1.266 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2532 1.266 christos CTLTYPE_INT, "sooptions",
2533 1.266 christos SYSCTL_DESCR("Default socket options"),
2534 1.266 christos sysctl_kern_sooptions, 0, NULL, 0,
2535 1.266 christos CTL_KERN, CTL_CREATE, CTL_EOL);
2536 1.94 yamt }
2537