uipc_socket.c revision 1.309 1 1.309 jdolecek /* $NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $ */
2 1.64 thorpej
3 1.270 maxv /*
4 1.304 ad * Copyright (c) 2002, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 1.64 thorpej * All rights reserved.
6 1.64 thorpej *
7 1.64 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.188 ad * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 1.64 thorpej *
10 1.64 thorpej * Redistribution and use in source and binary forms, with or without
11 1.64 thorpej * modification, are permitted provided that the following conditions
12 1.64 thorpej * are met:
13 1.64 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.64 thorpej * notice, this list of conditions and the following disclaimer.
15 1.64 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.64 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.64 thorpej * documentation and/or other materials provided with the distribution.
18 1.64 thorpej *
19 1.64 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.64 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.64 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.64 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.64 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.64 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.64 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.64 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.64 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.64 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.64 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.64 thorpej */
31 1.16 cgd
32 1.1 cgd /*
33 1.159 ad * Copyright (c) 2004 The FreeBSD Foundation
34 1.159 ad * Copyright (c) 2004 Robert Watson
35 1.15 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 1.15 mycroft * The Regents of the University of California. All rights reserved.
37 1.1 cgd *
38 1.1 cgd * Redistribution and use in source and binary forms, with or without
39 1.1 cgd * modification, are permitted provided that the following conditions
40 1.1 cgd * are met:
41 1.1 cgd * 1. Redistributions of source code must retain the above copyright
42 1.1 cgd * notice, this list of conditions and the following disclaimer.
43 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer in the
45 1.1 cgd * documentation and/or other materials provided with the distribution.
46 1.85 agc * 3. Neither the name of the University nor the names of its contributors
47 1.1 cgd * may be used to endorse or promote products derived from this software
48 1.1 cgd * without specific prior written permission.
49 1.1 cgd *
50 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 1.1 cgd * SUCH DAMAGE.
61 1.1 cgd *
62 1.32 fvdl * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 1.1 cgd */
64 1.59 lukem
65 1.222 rmind /*
66 1.222 rmind * Socket operation routines.
67 1.222 rmind *
68 1.222 rmind * These routines are called by the routines in sys_socket.c or from a
69 1.222 rmind * system process, and implement the semantics of socket operations by
70 1.222 rmind * switching out to the protocol specific routines.
71 1.222 rmind */
72 1.222 rmind
73 1.59 lukem #include <sys/cdefs.h>
74 1.309 jdolecek __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.309 2024/02/11 13:01:29 jdolecek Exp $");
75 1.64 thorpej
76 1.246 pooka #ifdef _KERNEL_OPT
77 1.179 christos #include "opt_compat_netbsd.h"
78 1.64 thorpej #include "opt_sock_counters.h"
79 1.64 thorpej #include "opt_sosend_loan.h"
80 1.81 martin #include "opt_mbuftrace.h"
81 1.84 ragge #include "opt_somaxkva.h"
82 1.167 ad #include "opt_multiprocessor.h" /* XXX */
83 1.247 rjs #include "opt_sctp.h"
84 1.309 jdolecek #include "opt_pipe.h"
85 1.246 pooka #endif
86 1.1 cgd
87 1.9 mycroft #include <sys/param.h>
88 1.9 mycroft #include <sys/systm.h>
89 1.9 mycroft #include <sys/proc.h>
90 1.9 mycroft #include <sys/file.h>
91 1.142 dyoung #include <sys/filedesc.h>
92 1.173 plunky #include <sys/kmem.h>
93 1.9 mycroft #include <sys/mbuf.h>
94 1.9 mycroft #include <sys/domain.h>
95 1.9 mycroft #include <sys/kernel.h>
96 1.9 mycroft #include <sys/protosw.h>
97 1.9 mycroft #include <sys/socket.h>
98 1.9 mycroft #include <sys/socketvar.h>
99 1.21 christos #include <sys/signalvar.h>
100 1.9 mycroft #include <sys/resourcevar.h>
101 1.174 pooka #include <sys/uidinfo.h>
102 1.72 jdolecek #include <sys/event.h>
103 1.89 christos #include <sys/poll.h>
104 1.118 elad #include <sys/kauth.h>
105 1.136 ad #include <sys/mutex.h>
106 1.136 ad #include <sys/condvar.h>
107 1.205 bouyer #include <sys/kthread.h>
108 1.275 pgoyette #include <sys/compat_stub.h>
109 1.37 thorpej
110 1.179 christos #include <compat/sys/time.h>
111 1.184 christos #include <compat/sys/socket.h>
112 1.179 christos
113 1.202 uebayasi #include <uvm/uvm_extern.h>
114 1.202 uebayasi #include <uvm/uvm_loan.h>
115 1.202 uebayasi #include <uvm/uvm_page.h>
116 1.64 thorpej
117 1.281 pgoyette #ifdef SCTP
118 1.281 pgoyette #include <netinet/sctp_route.h>
119 1.281 pgoyette #endif
120 1.281 pgoyette
121 1.77 thorpej MALLOC_DEFINE(M_SONAME, "soname", "socket name");
122 1.37 thorpej
123 1.142 dyoung extern const struct fileops socketops;
124 1.142 dyoung
125 1.266 christos static int sooptions;
126 1.54 lukem extern int somaxconn; /* patchable (XXX sysctl) */
127 1.54 lukem int somaxconn = SOMAXCONN;
128 1.160 ad kmutex_t *softnet_lock;
129 1.49 jonathan
130 1.64 thorpej #ifdef SOSEND_COUNTERS
131 1.64 thorpej #include <sys/device.h>
132 1.64 thorpej
133 1.113 thorpej static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 1.64 thorpej NULL, "sosend", "loan big");
135 1.113 thorpej static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
136 1.64 thorpej NULL, "sosend", "copy big");
137 1.113 thorpej static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
138 1.64 thorpej NULL, "sosend", "copy small");
139 1.113 thorpej static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
140 1.64 thorpej NULL, "sosend", "kva limit");
141 1.64 thorpej
142 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
143 1.64 thorpej
144 1.101 matt EVCNT_ATTACH_STATIC(sosend_loan_big);
145 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_big);
146 1.101 matt EVCNT_ATTACH_STATIC(sosend_copy_small);
147 1.101 matt EVCNT_ATTACH_STATIC(sosend_kvalimit);
148 1.64 thorpej #else
149 1.64 thorpej
150 1.64 thorpej #define SOSEND_COUNTER_INCR(ev) /* nothing */
151 1.64 thorpej
152 1.64 thorpej #endif /* SOSEND_COUNTERS */
153 1.64 thorpej
154 1.167 ad #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
155 1.121 yamt int sock_loan_thresh = -1;
156 1.71 thorpej #else
157 1.121 yamt int sock_loan_thresh = 4096;
158 1.65 thorpej #endif
159 1.64 thorpej
160 1.136 ad static kmutex_t so_pendfree_lock;
161 1.205 bouyer static struct mbuf *so_pendfree = NULL;
162 1.64 thorpej
163 1.84 ragge #ifndef SOMAXKVA
164 1.84 ragge #define SOMAXKVA (16 * 1024 * 1024)
165 1.84 ragge #endif
166 1.84 ragge int somaxkva = SOMAXKVA;
167 1.113 thorpej static int socurkva;
168 1.136 ad static kcondvar_t socurkva_cv;
169 1.64 thorpej
170 1.292 mlelstv #ifndef SOFIXEDBUF
171 1.292 mlelstv #define SOFIXEDBUF true
172 1.292 mlelstv #endif
173 1.292 mlelstv bool sofixedbuf = SOFIXEDBUF;
174 1.292 mlelstv
175 1.191 elad static kauth_listener_t socket_listener;
176 1.191 elad
177 1.64 thorpej #define SOCK_LOAN_CHUNK 65536
178 1.64 thorpej
179 1.205 bouyer static void sopendfree_thread(void *);
180 1.205 bouyer static kcondvar_t pendfree_thread_cv;
181 1.205 bouyer static lwp_t *sopendfree_lwp;
182 1.93 yamt
183 1.212 pooka static void sysctl_kern_socket_setup(void);
184 1.178 pooka static struct sysctllog *socket_sysctllog;
185 1.178 pooka
186 1.113 thorpej static vsize_t
187 1.129 yamt sokvareserve(struct socket *so, vsize_t len)
188 1.80 yamt {
189 1.98 christos int error;
190 1.80 yamt
191 1.136 ad mutex_enter(&so_pendfree_lock);
192 1.80 yamt while (socurkva + len > somaxkva) {
193 1.80 yamt SOSEND_COUNTER_INCR(&sosend_kvalimit);
194 1.136 ad error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
195 1.98 christos if (error) {
196 1.98 christos len = 0;
197 1.98 christos break;
198 1.98 christos }
199 1.80 yamt }
200 1.93 yamt socurkva += len;
201 1.136 ad mutex_exit(&so_pendfree_lock);
202 1.98 christos return len;
203 1.95 yamt }
204 1.95 yamt
205 1.113 thorpej static void
206 1.95 yamt sokvaunreserve(vsize_t len)
207 1.95 yamt {
208 1.95 yamt
209 1.136 ad mutex_enter(&so_pendfree_lock);
210 1.95 yamt socurkva -= len;
211 1.136 ad cv_broadcast(&socurkva_cv);
212 1.136 ad mutex_exit(&so_pendfree_lock);
213 1.95 yamt }
214 1.95 yamt
215 1.95 yamt /*
216 1.95 yamt * sokvaalloc: allocate kva for loan.
217 1.95 yamt */
218 1.95 yamt vaddr_t
219 1.209 matt sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
220 1.95 yamt {
221 1.95 yamt vaddr_t lva;
222 1.95 yamt
223 1.98 christos if (sokvareserve(so, len) == 0)
224 1.98 christos return 0;
225 1.93 yamt
226 1.209 matt lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
227 1.209 matt UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 1.95 yamt if (lva == 0) {
229 1.95 yamt sokvaunreserve(len);
230 1.270 maxv return 0;
231 1.95 yamt }
232 1.80 yamt
233 1.80 yamt return lva;
234 1.80 yamt }
235 1.80 yamt
236 1.93 yamt /*
237 1.93 yamt * sokvafree: free kva for loan.
238 1.93 yamt */
239 1.80 yamt void
240 1.80 yamt sokvafree(vaddr_t sva, vsize_t len)
241 1.80 yamt {
242 1.93 yamt
243 1.109 yamt uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
244 1.95 yamt sokvaunreserve(len);
245 1.80 yamt }
246 1.80 yamt
247 1.64 thorpej static void
248 1.134 christos sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 1.64 thorpej {
250 1.156 yamt vaddr_t sva, eva;
251 1.64 thorpej vsize_t len;
252 1.156 yamt int npgs;
253 1.156 yamt
254 1.156 yamt KASSERT(pgs != NULL);
255 1.64 thorpej
256 1.64 thorpej eva = round_page((vaddr_t) buf + size);
257 1.64 thorpej sva = trunc_page((vaddr_t) buf);
258 1.64 thorpej len = eva - sva;
259 1.64 thorpej npgs = len >> PAGE_SHIFT;
260 1.64 thorpej
261 1.64 thorpej pmap_kremove(sva, len);
262 1.64 thorpej pmap_update(pmap_kernel());
263 1.64 thorpej uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 1.80 yamt sokvafree(sva, len);
265 1.64 thorpej }
266 1.64 thorpej
267 1.93 yamt /*
268 1.270 maxv * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock
269 1.270 maxv * so_pendfree_lock when freeing mbufs.
270 1.93 yamt */
271 1.205 bouyer static void
272 1.205 bouyer sopendfree_thread(void *v)
273 1.93 yamt {
274 1.137 ad struct mbuf *m, *next;
275 1.205 bouyer size_t rv;
276 1.93 yamt
277 1.205 bouyer mutex_enter(&so_pendfree_lock);
278 1.64 thorpej
279 1.205 bouyer for (;;) {
280 1.205 bouyer rv = 0;
281 1.205 bouyer while (so_pendfree != NULL) {
282 1.205 bouyer m = so_pendfree;
283 1.205 bouyer so_pendfree = NULL;
284 1.205 bouyer mutex_exit(&so_pendfree_lock);
285 1.205 bouyer
286 1.205 bouyer for (; m != NULL; m = next) {
287 1.205 bouyer next = m->m_next;
288 1.253 ryo KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) ==
289 1.253 ryo 0);
290 1.205 bouyer KASSERT(m->m_ext.ext_refcnt == 0);
291 1.205 bouyer
292 1.205 bouyer rv += m->m_ext.ext_size;
293 1.205 bouyer sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
294 1.205 bouyer m->m_ext.ext_size);
295 1.205 bouyer pool_cache_put(mb_cache, m);
296 1.205 bouyer }
297 1.93 yamt
298 1.205 bouyer mutex_enter(&so_pendfree_lock);
299 1.93 yamt }
300 1.205 bouyer if (rv)
301 1.205 bouyer cv_broadcast(&socurkva_cv);
302 1.205 bouyer cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
303 1.64 thorpej }
304 1.205 bouyer panic("sopendfree_thread");
305 1.205 bouyer /* NOTREACHED */
306 1.64 thorpej }
307 1.64 thorpej
308 1.80 yamt void
309 1.134 christos soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
310 1.64 thorpej {
311 1.64 thorpej
312 1.156 yamt KASSERT(m != NULL);
313 1.64 thorpej
314 1.93 yamt /*
315 1.93 yamt * postpone freeing mbuf.
316 1.93 yamt *
317 1.93 yamt * we can't do it in interrupt context
318 1.93 yamt * because we need to put kva back to kernel_map.
319 1.93 yamt */
320 1.93 yamt
321 1.136 ad mutex_enter(&so_pendfree_lock);
322 1.92 yamt m->m_next = so_pendfree;
323 1.92 yamt so_pendfree = m;
324 1.205 bouyer cv_signal(&pendfree_thread_cv);
325 1.136 ad mutex_exit(&so_pendfree_lock);
326 1.64 thorpej }
327 1.64 thorpej
328 1.64 thorpej static long
329 1.64 thorpej sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
330 1.64 thorpej {
331 1.64 thorpej struct iovec *iov = uio->uio_iov;
332 1.64 thorpej vaddr_t sva, eva;
333 1.64 thorpej vsize_t len;
334 1.156 yamt vaddr_t lva;
335 1.156 yamt int npgs, error;
336 1.156 yamt vaddr_t va;
337 1.156 yamt int i;
338 1.64 thorpej
339 1.116 yamt if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
340 1.270 maxv return 0;
341 1.64 thorpej
342 1.64 thorpej if (iov->iov_len < (size_t) space)
343 1.64 thorpej space = iov->iov_len;
344 1.64 thorpej if (space > SOCK_LOAN_CHUNK)
345 1.64 thorpej space = SOCK_LOAN_CHUNK;
346 1.64 thorpej
347 1.64 thorpej eva = round_page((vaddr_t) iov->iov_base + space);
348 1.64 thorpej sva = trunc_page((vaddr_t) iov->iov_base);
349 1.64 thorpej len = eva - sva;
350 1.64 thorpej npgs = len >> PAGE_SHIFT;
351 1.64 thorpej
352 1.79 thorpej KASSERT(npgs <= M_EXT_MAXPAGES);
353 1.79 thorpej
354 1.209 matt lva = sokvaalloc(sva, len, so);
355 1.64 thorpej if (lva == 0)
356 1.252 uwe return 0;
357 1.64 thorpej
358 1.116 yamt error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
359 1.79 thorpej m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
360 1.64 thorpej if (error) {
361 1.80 yamt sokvafree(lva, len);
362 1.270 maxv return 0;
363 1.64 thorpej }
364 1.64 thorpej
365 1.64 thorpej for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
366 1.79 thorpej pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
367 1.194 cegger VM_PROT_READ, 0);
368 1.64 thorpej pmap_update(pmap_kernel());
369 1.64 thorpej
370 1.64 thorpej lva += (vaddr_t) iov->iov_base & PAGE_MASK;
371 1.64 thorpej
372 1.134 christos MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
373 1.79 thorpej m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
374 1.64 thorpej
375 1.64 thorpej uio->uio_resid -= space;
376 1.64 thorpej /* uio_offset not updated, not set/used for write(2) */
377 1.134 christos uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
378 1.64 thorpej uio->uio_iov->iov_len -= space;
379 1.64 thorpej if (uio->uio_iov->iov_len == 0) {
380 1.64 thorpej uio->uio_iov++;
381 1.64 thorpej uio->uio_iovcnt--;
382 1.64 thorpej }
383 1.64 thorpej
384 1.270 maxv return space;
385 1.64 thorpej }
386 1.64 thorpej
387 1.191 elad static int
388 1.191 elad socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
389 1.191 elad void *arg0, void *arg1, void *arg2, void *arg3)
390 1.191 elad {
391 1.191 elad int result;
392 1.191 elad enum kauth_network_req req;
393 1.191 elad
394 1.191 elad result = KAUTH_RESULT_DEFER;
395 1.287 joerg req = (enum kauth_network_req)(uintptr_t)arg0;
396 1.191 elad
397 1.193 elad if ((action != KAUTH_NETWORK_SOCKET) &&
398 1.193 elad (action != KAUTH_NETWORK_BIND))
399 1.191 elad return result;
400 1.191 elad
401 1.191 elad switch (req) {
402 1.193 elad case KAUTH_REQ_NETWORK_BIND_PORT:
403 1.193 elad result = KAUTH_RESULT_ALLOW;
404 1.193 elad break;
405 1.193 elad
406 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_DROP: {
407 1.191 elad /* Normal users can only drop their own connections. */
408 1.191 elad struct socket *so = (struct socket *)arg1;
409 1.191 elad
410 1.220 christos if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
411 1.191 elad result = KAUTH_RESULT_ALLOW;
412 1.191 elad
413 1.191 elad break;
414 1.191 elad }
415 1.191 elad
416 1.191 elad case KAUTH_REQ_NETWORK_SOCKET_OPEN:
417 1.191 elad /* We allow "raw" routing/bluetooth sockets to anyone. */
418 1.254 christos switch ((u_long)arg1) {
419 1.254 christos case PF_ROUTE:
420 1.254 christos case PF_OROUTE:
421 1.254 christos case PF_BLUETOOTH:
422 1.255 bouyer case PF_CAN:
423 1.191 elad result = KAUTH_RESULT_ALLOW;
424 1.254 christos break;
425 1.254 christos default:
426 1.191 elad /* Privileged, let secmodel handle this. */
427 1.191 elad if ((u_long)arg2 == SOCK_RAW)
428 1.191 elad break;
429 1.254 christos result = KAUTH_RESULT_ALLOW;
430 1.254 christos break;
431 1.191 elad }
432 1.191 elad break;
433 1.191 elad
434 1.192 elad case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
435 1.192 elad result = KAUTH_RESULT_ALLOW;
436 1.192 elad
437 1.192 elad break;
438 1.192 elad
439 1.191 elad default:
440 1.191 elad break;
441 1.191 elad }
442 1.191 elad
443 1.191 elad return result;
444 1.191 elad }
445 1.191 elad
446 1.119 yamt void
447 1.119 yamt soinit(void)
448 1.119 yamt {
449 1.119 yamt
450 1.212 pooka sysctl_kern_socket_setup();
451 1.178 pooka
452 1.281 pgoyette #ifdef SCTP
453 1.281 pgoyette /* Update the SCTP function hooks if necessary*/
454 1.281 pgoyette
455 1.281 pgoyette vec_sctp_add_ip_address = sctp_add_ip_address;
456 1.281 pgoyette vec_sctp_delete_ip_address = sctp_delete_ip_address;
457 1.281 pgoyette #endif
458 1.281 pgoyette
459 1.148 ad mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
460 1.160 ad softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
461 1.136 ad cv_init(&socurkva_cv, "sokva");
462 1.205 bouyer cv_init(&pendfree_thread_cv, "sopendfr");
463 1.166 ad soinit2();
464 1.136 ad
465 1.119 yamt /* Set the initial adjusted socket buffer size. */
466 1.119 yamt if (sb_max_set(sb_max))
467 1.119 yamt panic("bad initial sb_max value: %lu", sb_max);
468 1.119 yamt
469 1.191 elad socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
470 1.191 elad socket_listener_cb, NULL);
471 1.119 yamt }
472 1.119 yamt
473 1.205 bouyer void
474 1.205 bouyer soinit1(void)
475 1.205 bouyer {
476 1.205 bouyer int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
477 1.205 bouyer sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
478 1.205 bouyer if (error)
479 1.205 bouyer panic("soinit1 %d", error);
480 1.205 bouyer }
481 1.205 bouyer
482 1.1 cgd /*
483 1.222 rmind * socreate: create a new socket of the specified type and the protocol.
484 1.222 rmind *
485 1.222 rmind * => Caller may specify another socket for lock sharing (must not be held).
486 1.222 rmind * => Returns the new socket without lock held.
487 1.224 rmind */
488 1.3 andrew int
489 1.160 ad socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
490 1.270 maxv struct socket *lockso)
491 1.1 cgd {
492 1.270 maxv const struct protosw *prp;
493 1.270 maxv struct socket *so;
494 1.270 maxv uid_t uid;
495 1.270 maxv int error;
496 1.270 maxv kmutex_t *lock;
497 1.1 cgd
498 1.132 elad error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
499 1.132 elad KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
500 1.132 elad KAUTH_ARG(proto));
501 1.140 dyoung if (error != 0)
502 1.140 dyoung return error;
503 1.127 elad
504 1.1 cgd if (proto)
505 1.1 cgd prp = pffindproto(dom, proto, type);
506 1.1 cgd else
507 1.1 cgd prp = pffindtype(dom, type);
508 1.140 dyoung if (prp == NULL) {
509 1.120 ginsbach /* no support for domain */
510 1.120 ginsbach if (pffinddomain(dom) == 0)
511 1.140 dyoung return EAFNOSUPPORT;
512 1.120 ginsbach /* no support for socket type */
513 1.120 ginsbach if (proto == 0 && type != 0)
514 1.140 dyoung return EPROTOTYPE;
515 1.140 dyoung return EPROTONOSUPPORT;
516 1.120 ginsbach }
517 1.223 rmind if (prp->pr_usrreqs == NULL)
518 1.140 dyoung return EPROTONOSUPPORT;
519 1.1 cgd if (prp->pr_type != type)
520 1.140 dyoung return EPROTOTYPE;
521 1.160 ad
522 1.160 ad so = soget(true);
523 1.1 cgd so->so_type = type;
524 1.1 cgd so->so_proto = prp;
525 1.33 matt so->so_send = sosend;
526 1.33 matt so->so_receive = soreceive;
527 1.266 christos so->so_options = sooptions;
528 1.78 matt #ifdef MBUFTRACE
529 1.78 matt so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 1.78 matt so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 1.78 matt so->so_mowner = &prp->pr_domain->dom_mowner;
532 1.78 matt #endif
533 1.138 rmind uid = kauth_cred_geteuid(l->l_cred);
534 1.115 yamt so->so_uidinfo = uid_find(uid);
535 1.291 christos so->so_egid = kauth_cred_getegid(l->l_cred);
536 1.168 yamt so->so_cpid = l->l_proc->p_pid;
537 1.224 rmind
538 1.224 rmind /*
539 1.224 rmind * Lock assigned and taken during PCB attach, unless we share
540 1.224 rmind * the lock with another socket, e.g. socketpair(2) case.
541 1.224 rmind */
542 1.224 rmind if (lockso) {
543 1.302 riastrad /*
544 1.302 riastrad * lockso->so_lock should be stable at this point, so
545 1.302 riastrad * no need for atomic_load_*.
546 1.302 riastrad */
547 1.160 ad lock = lockso->so_lock;
548 1.160 ad so->so_lock = lock;
549 1.160 ad mutex_obj_hold(lock);
550 1.160 ad mutex_enter(lock);
551 1.160 ad }
552 1.224 rmind
553 1.224 rmind /* Attach the PCB (returns with the socket lock held). */
554 1.224 rmind error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 1.160 ad KASSERT(solocked(so));
556 1.224 rmind
557 1.224 rmind if (error) {
558 1.222 rmind KASSERT(so->so_pcb == NULL);
559 1.1 cgd so->so_state |= SS_NOFDREF;
560 1.1 cgd sofree(so);
561 1.140 dyoung return error;
562 1.1 cgd }
563 1.305 ad so->so_cred = kauth_cred_hold(l->l_cred);
564 1.160 ad sounlock(so);
565 1.224 rmind
566 1.1 cgd *aso = so;
567 1.140 dyoung return 0;
568 1.1 cgd }
569 1.1 cgd
570 1.222 rmind /*
571 1.222 rmind * fsocreate: create a socket and a file descriptor associated with it.
572 1.308 jdolecek * Returns the allocated file structure in *fpp, but the descriptor
573 1.308 jdolecek * is not visible yet for the process.
574 1.308 jdolecek * Caller is responsible for calling fd_affix() for the returned *fpp once
575 1.308 jdolecek * it's socket initialization is finished successfully, or fd_abort() if it's
576 1.308 jdolecek * initialization fails.
577 1.308 jdolecek *
578 1.222 rmind *
579 1.308 jdolecek * => On success, write file descriptor to *fdout and *fpp and return zero.
580 1.308 jdolecek * => On failure, return non-zero; *fdout and *fpp will be undefined.
581 1.142 dyoung */
582 1.142 dyoung int
583 1.308 jdolecek fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout,
584 1.308 jdolecek file_t **fpp, struct socket *lockso)
585 1.142 dyoung {
586 1.222 rmind lwp_t *l = curlwp;
587 1.222 rmind int error, fd, flags;
588 1.222 rmind struct socket *so;
589 1.308 jdolecek file_t *fp;
590 1.308 jdolecek
591 1.308 jdolecek flags = type & SOCK_FLAGS_MASK;
592 1.308 jdolecek type &= ~SOCK_FLAGS_MASK;
593 1.308 jdolecek error = socreate(domain, &so, type, proto, l, lockso);
594 1.308 jdolecek if (error) {
595 1.308 jdolecek return error;
596 1.308 jdolecek }
597 1.142 dyoung
598 1.222 rmind if ((error = fd_allocfile(&fp, &fd)) != 0) {
599 1.308 jdolecek soclose(so);
600 1.204 christos return error;
601 1.222 rmind }
602 1.204 christos fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
603 1.207 christos fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
604 1.207 christos ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
605 1.142 dyoung fp->f_type = DTYPE_SOCKET;
606 1.142 dyoung fp->f_ops = &socketops;
607 1.222 rmind if (flags & SOCK_NONBLOCK) {
608 1.222 rmind so->so_state |= SS_NBIO;
609 1.222 rmind }
610 1.235 matt fp->f_socket = so;
611 1.222 rmind
612 1.222 rmind if (sop != NULL) {
613 1.222 rmind *sop = so;
614 1.142 dyoung }
615 1.222 rmind *fdout = fd;
616 1.308 jdolecek *fpp = fp;
617 1.142 dyoung return error;
618 1.142 dyoung }
619 1.142 dyoung
620 1.3 andrew int
621 1.190 dyoung sofamily(const struct socket *so)
622 1.190 dyoung {
623 1.190 dyoung const struct protosw *pr;
624 1.190 dyoung const struct domain *dom;
625 1.190 dyoung
626 1.190 dyoung if ((pr = so->so_proto) == NULL)
627 1.190 dyoung return AF_UNSPEC;
628 1.190 dyoung if ((dom = pr->pr_domain) == NULL)
629 1.190 dyoung return AF_UNSPEC;
630 1.190 dyoung return dom->dom_family;
631 1.190 dyoung }
632 1.190 dyoung
633 1.190 dyoung int
634 1.236 rtr sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
635 1.1 cgd {
636 1.270 maxv int error;
637 1.1 cgd
638 1.160 ad solock(so);
639 1.237 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
640 1.237 rtr sounlock(so);
641 1.238 rtr return EAFNOSUPPORT;
642 1.237 rtr }
643 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
644 1.160 ad sounlock(so);
645 1.140 dyoung return error;
646 1.1 cgd }
647 1.1 cgd
648 1.3 andrew int
649 1.150 elad solisten(struct socket *so, int backlog, struct lwp *l)
650 1.1 cgd {
651 1.270 maxv int error;
652 1.270 maxv short oldopt, oldqlimit;
653 1.1 cgd
654 1.160 ad solock(so);
655 1.253 ryo if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
656 1.163 ad SS_ISDISCONNECTING)) != 0) {
657 1.222 rmind sounlock(so);
658 1.222 rmind return EINVAL;
659 1.163 ad }
660 1.247 rjs oldopt = so->so_options;
661 1.247 rjs oldqlimit = so->so_qlimit;
662 1.247 rjs if (TAILQ_EMPTY(&so->so_q))
663 1.247 rjs so->so_options |= SO_ACCEPTCONN;
664 1.247 rjs if (backlog < 0)
665 1.247 rjs backlog = 0;
666 1.265 riastrad so->so_qlimit = uimin(backlog, somaxconn);
667 1.247 rjs
668 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
669 1.140 dyoung if (error != 0) {
670 1.247 rjs so->so_options = oldopt;
671 1.247 rjs so->so_qlimit = oldqlimit;
672 1.160 ad sounlock(so);
673 1.140 dyoung return error;
674 1.1 cgd }
675 1.160 ad sounlock(so);
676 1.140 dyoung return 0;
677 1.1 cgd }
678 1.1 cgd
679 1.21 christos void
680 1.54 lukem sofree(struct socket *so)
681 1.1 cgd {
682 1.161 ad u_int refs;
683 1.1 cgd
684 1.160 ad KASSERT(solocked(so));
685 1.160 ad
686 1.160 ad if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
687 1.160 ad sounlock(so);
688 1.1 cgd return;
689 1.160 ad }
690 1.43 mycroft if (so->so_head) {
691 1.43 mycroft /*
692 1.43 mycroft * We must not decommission a socket that's on the accept(2)
693 1.43 mycroft * queue. If we do, then accept(2) may hang after select(2)
694 1.43 mycroft * indicated that the listening socket was ready.
695 1.43 mycroft */
696 1.160 ad if (!soqremque(so, 0)) {
697 1.160 ad sounlock(so);
698 1.43 mycroft return;
699 1.160 ad }
700 1.43 mycroft }
701 1.98 christos if (so->so_rcv.sb_hiwat)
702 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
703 1.98 christos RLIM_INFINITY);
704 1.98 christos if (so->so_snd.sb_hiwat)
705 1.110 christos (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
706 1.98 christos RLIM_INFINITY);
707 1.98 christos sbrelease(&so->so_snd, so);
708 1.160 ad KASSERT(!cv_has_waiters(&so->so_cv));
709 1.160 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
710 1.160 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
711 1.1 cgd sorflush(so);
712 1.161 ad refs = so->so_aborting; /* XXX */
713 1.303 andvar /* Remove accept filter if one is present. */
714 1.170 tls if (so->so_accf != NULL)
715 1.177 ad (void)accept_filt_clear(so);
716 1.160 ad sounlock(so);
717 1.161 ad if (refs == 0) /* XXX */
718 1.161 ad soput(so);
719 1.1 cgd }
720 1.1 cgd
721 1.1 cgd /*
722 1.222 rmind * soclose: close a socket on last file table reference removal.
723 1.222 rmind * Initiate disconnect if connected. Free socket when disconnect complete.
724 1.1 cgd */
725 1.3 andrew int
726 1.54 lukem soclose(struct socket *so)
727 1.1 cgd {
728 1.222 rmind struct socket *so2;
729 1.222 rmind int error = 0;
730 1.1 cgd
731 1.160 ad solock(so);
732 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
733 1.172 ad for (;;) {
734 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
735 1.160 ad KASSERT(solocked2(so, so2));
736 1.160 ad (void) soqremque(so2, 0);
737 1.160 ad /* soabort drops the lock. */
738 1.160 ad (void) soabort(so2);
739 1.160 ad solock(so);
740 1.172 ad continue;
741 1.160 ad }
742 1.172 ad if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
743 1.160 ad KASSERT(solocked2(so, so2));
744 1.160 ad (void) soqremque(so2, 1);
745 1.160 ad /* soabort drops the lock. */
746 1.160 ad (void) soabort(so2);
747 1.160 ad solock(so);
748 1.172 ad continue;
749 1.160 ad }
750 1.172 ad break;
751 1.172 ad }
752 1.1 cgd }
753 1.222 rmind if (so->so_pcb == NULL)
754 1.1 cgd goto discard;
755 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
756 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
757 1.1 cgd error = sodisconnect(so);
758 1.1 cgd if (error)
759 1.1 cgd goto drop;
760 1.1 cgd }
761 1.1 cgd if (so->so_options & SO_LINGER) {
762 1.206 christos if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
763 1.206 christos (SS_ISDISCONNECTING|SS_NBIO))
764 1.1 cgd goto drop;
765 1.21 christos while (so->so_state & SS_ISCONNECTED) {
766 1.185 yamt error = sowait(so, true, so->so_linger * hz);
767 1.21 christos if (error)
768 1.1 cgd break;
769 1.21 christos }
770 1.1 cgd }
771 1.1 cgd }
772 1.54 lukem drop:
773 1.1 cgd if (so->so_pcb) {
774 1.224 rmind KASSERT(solocked(so));
775 1.224 rmind (*so->so_proto->pr_usrreqs->pr_detach)(so);
776 1.1 cgd }
777 1.54 lukem discard:
778 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) == 0);
779 1.198 elad kauth_cred_free(so->so_cred);
780 1.273 maxv so->so_cred = NULL;
781 1.1 cgd so->so_state |= SS_NOFDREF;
782 1.1 cgd sofree(so);
783 1.222 rmind return error;
784 1.1 cgd }
785 1.1 cgd
786 1.1 cgd /*
787 1.160 ad * Must be called with the socket locked.. Will return with it unlocked.
788 1.1 cgd */
789 1.3 andrew int
790 1.54 lukem soabort(struct socket *so)
791 1.1 cgd {
792 1.161 ad u_int refs;
793 1.139 yamt int error;
794 1.253 ryo
795 1.160 ad KASSERT(solocked(so));
796 1.160 ad KASSERT(so->so_head == NULL);
797 1.1 cgd
798 1.161 ad so->so_aborting++; /* XXX */
799 1.230 mrg error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
800 1.161 ad refs = --so->so_aborting; /* XXX */
801 1.164 drochner if (error || (refs == 0)) {
802 1.139 yamt sofree(so);
803 1.160 ad } else {
804 1.160 ad sounlock(so);
805 1.139 yamt }
806 1.139 yamt return error;
807 1.1 cgd }
808 1.1 cgd
809 1.3 andrew int
810 1.239 rtr soaccept(struct socket *so, struct sockaddr *nam)
811 1.1 cgd {
812 1.222 rmind int error;
813 1.160 ad
814 1.160 ad KASSERT(solocked(so));
815 1.222 rmind KASSERT((so->so_state & SS_NOFDREF) != 0);
816 1.1 cgd
817 1.1 cgd so->so_state &= ~SS_NOFDREF;
818 1.55 thorpej if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
819 1.55 thorpej (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
820 1.225 rtr error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
821 1.41 mycroft else
822 1.53 itojun error = ECONNABORTED;
823 1.52 itojun
824 1.222 rmind return error;
825 1.1 cgd }
826 1.1 cgd
827 1.3 andrew int
828 1.240 rtr soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
829 1.1 cgd {
830 1.222 rmind int error;
831 1.160 ad
832 1.160 ad KASSERT(solocked(so));
833 1.1 cgd
834 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
835 1.222 rmind return EOPNOTSUPP;
836 1.1 cgd /*
837 1.1 cgd * If protocol is connection-based, can only connect once.
838 1.1 cgd * Otherwise, if connected, try to disconnect first.
839 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
840 1.1 cgd * a null address.
841 1.1 cgd */
842 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
843 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
844 1.241 rtr (error = sodisconnect(so)))) {
845 1.1 cgd error = EISCONN;
846 1.241 rtr } else {
847 1.242 rtr if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
848 1.241 rtr return EAFNOSUPPORT;
849 1.241 rtr }
850 1.231 rtr error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
851 1.241 rtr }
852 1.222 rmind
853 1.222 rmind return error;
854 1.1 cgd }
855 1.1 cgd
856 1.3 andrew int
857 1.54 lukem soconnect2(struct socket *so1, struct socket *so2)
858 1.1 cgd {
859 1.160 ad KASSERT(solocked2(so1, so2));
860 1.1 cgd
861 1.234 rtr return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
862 1.1 cgd }
863 1.1 cgd
864 1.3 andrew int
865 1.54 lukem sodisconnect(struct socket *so)
866 1.1 cgd {
867 1.270 maxv int error;
868 1.160 ad
869 1.160 ad KASSERT(solocked(so));
870 1.1 cgd
871 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
872 1.1 cgd error = ENOTCONN;
873 1.160 ad } else if (so->so_state & SS_ISDISCONNECTING) {
874 1.1 cgd error = EALREADY;
875 1.160 ad } else {
876 1.229 rtr error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
877 1.1 cgd }
878 1.270 maxv return error;
879 1.1 cgd }
880 1.1 cgd
881 1.15 mycroft #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
882 1.1 cgd /*
883 1.1 cgd * Send on a socket.
884 1.1 cgd * If send must go all at once and message is larger than
885 1.1 cgd * send buffering, then hard error.
886 1.1 cgd * Lock against other senders.
887 1.1 cgd * If must go all at once and not enough room now, then
888 1.1 cgd * inform user that this would block and do nothing.
889 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
890 1.1 cgd * The data to be sent is described by "uio" if nonzero,
891 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
892 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
893 1.1 cgd * enough to send all at once.
894 1.1 cgd *
895 1.1 cgd * Returns nonzero on error, timeout or signal; callers
896 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
897 1.1 cgd * Data and control buffers are freed on return.
898 1.1 cgd */
899 1.3 andrew int
900 1.245 rtr sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
901 1.245 rtr struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
902 1.1 cgd {
903 1.270 maxv struct mbuf **mp, *m;
904 1.270 maxv long space, len, resid, clen, mlen;
905 1.270 maxv int error, s, dontroute, atomic;
906 1.307 martin short wakeup_state = 0;
907 1.54 lukem
908 1.160 ad clen = 0;
909 1.64 thorpej
910 1.160 ad /*
911 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
912 1.160 ad * protocol processing soft interrupts from interrupting us and
913 1.160 ad * blocking (expensive).
914 1.160 ad */
915 1.160 ad s = splsoftnet();
916 1.160 ad solock(so);
917 1.54 lukem atomic = sosendallatonce(so) || top;
918 1.1 cgd if (uio)
919 1.1 cgd resid = uio->uio_resid;
920 1.1 cgd else
921 1.1 cgd resid = top->m_pkthdr.len;
922 1.7 cgd /*
923 1.7 cgd * In theory resid should be unsigned.
924 1.7 cgd * However, space must be signed, as it might be less than 0
925 1.7 cgd * if we over-committed, and we must use a signed comparison
926 1.7 cgd * of space and resid. On the other hand, a negative resid
927 1.7 cgd * causes us to loop sending 0-length segments to the protocol.
928 1.7 cgd */
929 1.29 mycroft if (resid < 0) {
930 1.29 mycroft error = EINVAL;
931 1.29 mycroft goto out;
932 1.29 mycroft }
933 1.1 cgd dontroute =
934 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
935 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
936 1.165 christos l->l_ru.ru_msgsnd++;
937 1.1 cgd if (control)
938 1.1 cgd clen = control->m_len;
939 1.54 lukem restart:
940 1.21 christos if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
941 1.1 cgd goto out;
942 1.1 cgd do {
943 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
944 1.160 ad error = EPIPE;
945 1.160 ad goto release;
946 1.160 ad }
947 1.48 thorpej if (so->so_error) {
948 1.48 thorpej error = so->so_error;
949 1.282 christos if ((flags & MSG_PEEK) == 0)
950 1.282 christos so->so_error = 0;
951 1.48 thorpej goto release;
952 1.48 thorpej }
953 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
954 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 1.217 rmind if (resid || clen == 0) {
956 1.160 ad error = ENOTCONN;
957 1.160 ad goto release;
958 1.160 ad }
959 1.244 rtr } else if (addr == NULL) {
960 1.160 ad error = EDESTADDRREQ;
961 1.160 ad goto release;
962 1.160 ad }
963 1.1 cgd }
964 1.1 cgd space = sbspace(&so->so_snd);
965 1.1 cgd if (flags & MSG_OOB)
966 1.1 cgd space += 1024;
967 1.21 christos if ((atomic && resid > so->so_snd.sb_hiwat) ||
968 1.160 ad clen > so->so_snd.sb_hiwat) {
969 1.160 ad error = EMSGSIZE;
970 1.160 ad goto release;
971 1.160 ad }
972 1.96 mycroft if (space < resid + clen &&
973 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
974 1.206 christos if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
975 1.160 ad error = EWOULDBLOCK;
976 1.160 ad goto release;
977 1.160 ad }
978 1.1 cgd sbunlock(&so->so_snd);
979 1.307 martin if (wakeup_state & SS_RESTARTSYS) {
980 1.307 martin error = ERESTART;
981 1.307 martin goto out;
982 1.307 martin }
983 1.1 cgd error = sbwait(&so->so_snd);
984 1.1 cgd if (error)
985 1.1 cgd goto out;
986 1.307 martin wakeup_state = so->so_state;
987 1.1 cgd goto restart;
988 1.1 cgd }
989 1.307 martin wakeup_state = 0;
990 1.1 cgd mp = ⊤
991 1.1 cgd space -= clen;
992 1.1 cgd do {
993 1.45 tv if (uio == NULL) {
994 1.45 tv /*
995 1.45 tv * Data is prepackaged in "top".
996 1.45 tv */
997 1.45 tv resid = 0;
998 1.45 tv if (flags & MSG_EOR)
999 1.45 tv top->m_flags |= M_EOR;
1000 1.45 tv } else do {
1001 1.160 ad sounlock(so);
1002 1.160 ad splx(s);
1003 1.144 dyoung if (top == NULL) {
1004 1.78 matt m = m_gethdr(M_WAIT, MT_DATA);
1005 1.45 tv mlen = MHLEN;
1006 1.45 tv m->m_pkthdr.len = 0;
1007 1.248 ozaki m_reset_rcvif(m);
1008 1.45 tv } else {
1009 1.78 matt m = m_get(M_WAIT, MT_DATA);
1010 1.45 tv mlen = MLEN;
1011 1.45 tv }
1012 1.78 matt MCLAIM(m, so->so_snd.sb_mowner);
1013 1.121 yamt if (sock_loan_thresh >= 0 &&
1014 1.121 yamt uio->uio_iov->iov_len >= sock_loan_thresh &&
1015 1.121 yamt space >= sock_loan_thresh &&
1016 1.64 thorpej (len = sosend_loan(so, uio, m,
1017 1.252 uwe space)) != 0) {
1018 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_loan_big);
1019 1.64 thorpej space -= len;
1020 1.64 thorpej goto have_data;
1021 1.64 thorpej }
1022 1.45 tv if (resid >= MINCLSIZE && space >= MCLBYTES) {
1023 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_big);
1024 1.201 oki m_clget(m, M_DONTWAIT);
1025 1.45 tv if ((m->m_flags & M_EXT) == 0)
1026 1.45 tv goto nopages;
1027 1.45 tv mlen = MCLBYTES;
1028 1.45 tv if (atomic && top == 0) {
1029 1.58 jdolecek len = lmin(MCLBYTES - max_hdr,
1030 1.54 lukem resid);
1031 1.45 tv m->m_data += max_hdr;
1032 1.45 tv } else
1033 1.58 jdolecek len = lmin(MCLBYTES, resid);
1034 1.45 tv space -= len;
1035 1.45 tv } else {
1036 1.64 thorpej nopages:
1037 1.64 thorpej SOSEND_COUNTER_INCR(&sosend_copy_small);
1038 1.58 jdolecek len = lmin(lmin(mlen, resid), space);
1039 1.45 tv space -= len;
1040 1.45 tv /*
1041 1.45 tv * For datagram protocols, leave room
1042 1.45 tv * for protocol headers in first mbuf.
1043 1.45 tv */
1044 1.45 tv if (atomic && top == 0 && len < mlen)
1045 1.268 maxv m_align(m, len);
1046 1.45 tv }
1047 1.144 dyoung error = uiomove(mtod(m, void *), (int)len, uio);
1048 1.64 thorpej have_data:
1049 1.45 tv resid = uio->uio_resid;
1050 1.45 tv m->m_len = len;
1051 1.45 tv *mp = m;
1052 1.45 tv top->m_pkthdr.len += len;
1053 1.160 ad s = splsoftnet();
1054 1.160 ad solock(so);
1055 1.144 dyoung if (error != 0)
1056 1.45 tv goto release;
1057 1.45 tv mp = &m->m_next;
1058 1.45 tv if (resid <= 0) {
1059 1.45 tv if (flags & MSG_EOR)
1060 1.45 tv top->m_flags |= M_EOR;
1061 1.45 tv break;
1062 1.45 tv }
1063 1.45 tv } while (space > 0 && atomic);
1064 1.108 perry
1065 1.160 ad if (so->so_state & SS_CANTSENDMORE) {
1066 1.160 ad error = EPIPE;
1067 1.160 ad goto release;
1068 1.160 ad }
1069 1.45 tv if (dontroute)
1070 1.45 tv so->so_options |= SO_DONTROUTE;
1071 1.45 tv if (resid > 0)
1072 1.45 tv so->so_state |= SS_MORETOCOME;
1073 1.240 rtr if (flags & MSG_OOB) {
1074 1.253 ryo error = (*so->so_proto->pr_usrreqs->pr_sendoob)(
1075 1.253 ryo so, top, control);
1076 1.240 rtr } else {
1077 1.232 rtr error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1078 1.245 rtr top, addr, control, l);
1079 1.240 rtr }
1080 1.45 tv if (dontroute)
1081 1.45 tv so->so_options &= ~SO_DONTROUTE;
1082 1.45 tv if (resid > 0)
1083 1.45 tv so->so_state &= ~SS_MORETOCOME;
1084 1.45 tv clen = 0;
1085 1.144 dyoung control = NULL;
1086 1.144 dyoung top = NULL;
1087 1.45 tv mp = ⊤
1088 1.144 dyoung if (error != 0)
1089 1.1 cgd goto release;
1090 1.1 cgd } while (resid && space > 0);
1091 1.1 cgd } while (resid);
1092 1.1 cgd
1093 1.54 lukem release:
1094 1.1 cgd sbunlock(&so->so_snd);
1095 1.54 lukem out:
1096 1.160 ad sounlock(so);
1097 1.160 ad splx(s);
1098 1.1 cgd if (top)
1099 1.1 cgd m_freem(top);
1100 1.1 cgd if (control)
1101 1.1 cgd m_freem(control);
1102 1.270 maxv return error;
1103 1.1 cgd }
1104 1.1 cgd
1105 1.1 cgd /*
1106 1.159 ad * Following replacement or removal of the first mbuf on the first
1107 1.159 ad * mbuf chain of a socket buffer, push necessary state changes back
1108 1.159 ad * into the socket buffer so that other consumers see the values
1109 1.270 maxv * consistently. 'nextrecord' is the caller's locally stored value of
1110 1.159 ad * the original value of sb->sb_mb->m_nextpkt which must be restored
1111 1.159 ad * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1112 1.159 ad */
1113 1.159 ad static void
1114 1.159 ad sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1115 1.159 ad {
1116 1.159 ad
1117 1.160 ad KASSERT(solocked(sb->sb_so));
1118 1.160 ad
1119 1.159 ad /*
1120 1.159 ad * First, update for the new value of nextrecord. If necessary,
1121 1.159 ad * make it the first record.
1122 1.159 ad */
1123 1.159 ad if (sb->sb_mb != NULL)
1124 1.159 ad sb->sb_mb->m_nextpkt = nextrecord;
1125 1.159 ad else
1126 1.159 ad sb->sb_mb = nextrecord;
1127 1.159 ad
1128 1.159 ad /*
1129 1.159 ad * Now update any dependent socket buffer fields to reflect
1130 1.159 ad * the new state. This is an inline of SB_EMPTY_FIXUP, with
1131 1.159 ad * the addition of a second clause that takes care of the
1132 1.159 ad * case where sb_mb has been updated, but remains the last
1133 1.159 ad * record.
1134 1.159 ad */
1135 1.159 ad if (sb->sb_mb == NULL) {
1136 1.159 ad sb->sb_mbtail = NULL;
1137 1.159 ad sb->sb_lastrecord = NULL;
1138 1.159 ad } else if (sb->sb_mb->m_nextpkt == NULL)
1139 1.159 ad sb->sb_lastrecord = sb->sb_mb;
1140 1.159 ad }
1141 1.159 ad
1142 1.159 ad /*
1143 1.1 cgd * Implement receive operations on a socket.
1144 1.1 cgd *
1145 1.270 maxv * We depend on the way that records are added to the sockbuf by sbappend*. In
1146 1.270 maxv * particular, each record (mbufs linked through m_next) must begin with an
1147 1.270 maxv * address if the protocol so specifies, followed by an optional mbuf or mbufs
1148 1.270 maxv * containing ancillary data, and then zero or more mbufs of data.
1149 1.270 maxv *
1150 1.270 maxv * In order to avoid blocking network interrupts for the entire time here, we
1151 1.270 maxv * splx() while doing the actual copy to user space. Although the sockbuf is
1152 1.270 maxv * locked, new data may still be appended, and thus we must maintain
1153 1.270 maxv * consistency of the sockbuf during that time.
1154 1.270 maxv *
1155 1.270 maxv * The caller may receive the data as a single mbuf chain by supplying an mbuf
1156 1.270 maxv * **mp0 for use in returning the chain. The uio is then used only for the
1157 1.270 maxv * count in uio_resid.
1158 1.1 cgd */
1159 1.3 andrew int
1160 1.54 lukem soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1161 1.270 maxv struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1162 1.1 cgd {
1163 1.116 yamt struct lwp *l = curlwp;
1164 1.270 maxv struct mbuf *m, **mp, *mt;
1165 1.211 chs size_t len, offset, moff, orig_resid;
1166 1.211 chs int atomic, flags, error, s, type;
1167 1.270 maxv const struct protosw *pr;
1168 1.270 maxv struct mbuf *nextrecord;
1169 1.270 maxv int mbuf_removed = 0;
1170 1.146 dyoung const struct domain *dom;
1171 1.307 martin short wakeup_state = 0;
1172 1.64 thorpej
1173 1.54 lukem pr = so->so_proto;
1174 1.146 dyoung atomic = pr->pr_flags & PR_ATOMIC;
1175 1.146 dyoung dom = pr->pr_domain;
1176 1.1 cgd mp = mp0;
1177 1.54 lukem type = 0;
1178 1.54 lukem orig_resid = uio->uio_resid;
1179 1.102 jonathan
1180 1.144 dyoung if (paddr != NULL)
1181 1.144 dyoung *paddr = NULL;
1182 1.144 dyoung if (controlp != NULL)
1183 1.144 dyoung *controlp = NULL;
1184 1.144 dyoung if (flagsp != NULL)
1185 1.252 uwe flags = *flagsp &~ MSG_EOR;
1186 1.1 cgd else
1187 1.1 cgd flags = 0;
1188 1.66 enami
1189 1.1 cgd if (flags & MSG_OOB) {
1190 1.1 cgd m = m_get(M_WAIT, MT_DATA);
1191 1.160 ad solock(so);
1192 1.226 rtr error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1193 1.160 ad sounlock(so);
1194 1.1 cgd if (error)
1195 1.1 cgd goto bad;
1196 1.1 cgd do {
1197 1.134 christos error = uiomove(mtod(m, void *),
1198 1.211 chs MIN(uio->uio_resid, m->m_len), uio);
1199 1.1 cgd m = m_free(m);
1200 1.144 dyoung } while (uio->uio_resid > 0 && error == 0 && m);
1201 1.270 maxv bad:
1202 1.144 dyoung if (m != NULL)
1203 1.1 cgd m_freem(m);
1204 1.144 dyoung return error;
1205 1.1 cgd }
1206 1.144 dyoung if (mp != NULL)
1207 1.140 dyoung *mp = NULL;
1208 1.160 ad
1209 1.160 ad /*
1210 1.160 ad * solock() provides atomicity of access. splsoftnet() prevents
1211 1.160 ad * protocol processing soft interrupts from interrupting us and
1212 1.160 ad * blocking (expensive).
1213 1.160 ad */
1214 1.160 ad s = splsoftnet();
1215 1.160 ad solock(so);
1216 1.270 maxv restart:
1217 1.160 ad if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1218 1.160 ad sounlock(so);
1219 1.160 ad splx(s);
1220 1.144 dyoung return error;
1221 1.160 ad }
1222 1.270 maxv m = so->so_rcv.sb_mb;
1223 1.1 cgd
1224 1.1 cgd /*
1225 1.1 cgd * If we have less data than requested, block awaiting more
1226 1.1 cgd * (subject to any timeout) if:
1227 1.15 mycroft * 1. the current count is less than the low water mark,
1228 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
1229 1.15 mycroft * receive operation at once if we block (resid <= hiwat), or
1230 1.15 mycroft * 3. MSG_DONTWAIT is not set.
1231 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
1232 1.1 cgd * we have to do the receive in sections, and thus risk returning
1233 1.1 cgd * a short count if a timeout or signal occurs after we start.
1234 1.1 cgd */
1235 1.144 dyoung if (m == NULL ||
1236 1.144 dyoung ((flags & MSG_DONTWAIT) == 0 &&
1237 1.144 dyoung so->so_rcv.sb_cc < uio->uio_resid &&
1238 1.144 dyoung (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1239 1.144 dyoung ((flags & MSG_WAITALL) &&
1240 1.144 dyoung uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1241 1.146 dyoung m->m_nextpkt == NULL && !atomic)) {
1242 1.1 cgd #ifdef DIAGNOSTIC
1243 1.144 dyoung if (m == NULL && so->so_rcv.sb_cc)
1244 1.1 cgd panic("receive 1");
1245 1.1 cgd #endif
1246 1.264 roy if (so->so_error || so->so_rerror) {
1247 1.282 christos u_short *e;
1248 1.144 dyoung if (m != NULL)
1249 1.15 mycroft goto dontblock;
1250 1.283 mlelstv e = so->so_error ? &so->so_error : &so->so_rerror;
1251 1.282 christos error = *e;
1252 1.282 christos if ((flags & MSG_PEEK) == 0)
1253 1.282 christos *e = 0;
1254 1.1 cgd goto release;
1255 1.1 cgd }
1256 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
1257 1.144 dyoung if (m != NULL)
1258 1.15 mycroft goto dontblock;
1259 1.1 cgd else
1260 1.1 cgd goto release;
1261 1.1 cgd }
1262 1.144 dyoung for (; m != NULL; m = m->m_next)
1263 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1264 1.1 cgd m = so->so_rcv.sb_mb;
1265 1.1 cgd goto dontblock;
1266 1.1 cgd }
1267 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1268 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1269 1.1 cgd error = ENOTCONN;
1270 1.1 cgd goto release;
1271 1.1 cgd }
1272 1.1 cgd if (uio->uio_resid == 0)
1273 1.1 cgd goto release;
1274 1.206 christos if ((so->so_state & SS_NBIO) ||
1275 1.206 christos (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1276 1.1 cgd error = EWOULDBLOCK;
1277 1.1 cgd goto release;
1278 1.1 cgd }
1279 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1280 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1281 1.1 cgd sbunlock(&so->so_rcv);
1282 1.307 martin if (wakeup_state & SS_RESTARTSYS)
1283 1.307 martin error = ERESTART;
1284 1.307 martin else
1285 1.307 martin error = sbwait(&so->so_rcv);
1286 1.160 ad if (error != 0) {
1287 1.160 ad sounlock(so);
1288 1.160 ad splx(s);
1289 1.144 dyoung return error;
1290 1.160 ad }
1291 1.307 martin wakeup_state = so->so_state;
1292 1.1 cgd goto restart;
1293 1.1 cgd }
1294 1.270 maxv
1295 1.270 maxv dontblock:
1296 1.69 thorpej /*
1297 1.69 thorpej * On entry here, m points to the first record of the socket buffer.
1298 1.159 ad * From this point onward, we maintain 'nextrecord' as a cache of the
1299 1.159 ad * pointer to the next record in the socket buffer. We must keep the
1300 1.159 ad * various socket buffer pointers and local stack versions of the
1301 1.159 ad * pointers in sync, pushing out modifications before dropping the
1302 1.160 ad * socket lock, and re-reading them when picking it up.
1303 1.159 ad *
1304 1.159 ad * Otherwise, we will race with the network stack appending new data
1305 1.159 ad * or records onto the socket buffer by using inconsistent/stale
1306 1.159 ad * versions of the field, possibly resulting in socket buffer
1307 1.159 ad * corruption.
1308 1.159 ad *
1309 1.159 ad * By holding the high-level sblock(), we prevent simultaneous
1310 1.159 ad * readers from pulling off the front of the socket buffer.
1311 1.69 thorpej */
1312 1.144 dyoung if (l != NULL)
1313 1.157 ad l->l_ru.ru_msgrcv++;
1314 1.69 thorpej KASSERT(m == so->so_rcv.sb_mb);
1315 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1316 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1317 1.1 cgd nextrecord = m->m_nextpkt;
1318 1.270 maxv
1319 1.1 cgd if (pr->pr_flags & PR_ADDR) {
1320 1.270 maxv KASSERT(m->m_type == MT_SONAME);
1321 1.3 andrew orig_resid = 0;
1322 1.1 cgd if (flags & MSG_PEEK) {
1323 1.1 cgd if (paddr)
1324 1.263 maxv *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1325 1.1 cgd m = m->m_next;
1326 1.1 cgd } else {
1327 1.1 cgd sbfree(&so->so_rcv, m);
1328 1.67 he mbuf_removed = 1;
1329 1.144 dyoung if (paddr != NULL) {
1330 1.1 cgd *paddr = m;
1331 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1332 1.144 dyoung m->m_next = NULL;
1333 1.1 cgd m = so->so_rcv.sb_mb;
1334 1.1 cgd } else {
1335 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1336 1.1 cgd }
1337 1.159 ad sbsync(&so->so_rcv, nextrecord);
1338 1.1 cgd }
1339 1.1 cgd }
1340 1.270 maxv
1341 1.247 rjs if (pr->pr_flags & PR_ADDR_OPT) {
1342 1.247 rjs /*
1343 1.270 maxv * For SCTP we may be getting a whole message OR a partial
1344 1.270 maxv * delivery.
1345 1.247 rjs */
1346 1.247 rjs if (m->m_type == MT_SONAME) {
1347 1.247 rjs orig_resid = 0;
1348 1.247 rjs if (flags & MSG_PEEK) {
1349 1.247 rjs if (paddr)
1350 1.263 maxv *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT);
1351 1.247 rjs m = m->m_next;
1352 1.247 rjs } else {
1353 1.247 rjs sbfree(&so->so_rcv, m);
1354 1.289 jakllsch mbuf_removed = 1;
1355 1.247 rjs if (paddr) {
1356 1.247 rjs *paddr = m;
1357 1.247 rjs so->so_rcv.sb_mb = m->m_next;
1358 1.247 rjs m->m_next = 0;
1359 1.247 rjs m = so->so_rcv.sb_mb;
1360 1.247 rjs } else {
1361 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1362 1.247 rjs }
1363 1.289 jakllsch sbsync(&so->so_rcv, nextrecord);
1364 1.247 rjs }
1365 1.247 rjs }
1366 1.247 rjs }
1367 1.159 ad
1368 1.159 ad /*
1369 1.159 ad * Process one or more MT_CONTROL mbufs present before any data mbufs
1370 1.159 ad * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1371 1.159 ad * just copy the data; if !MSG_PEEK, we call into the protocol to
1372 1.159 ad * perform externalization (or freeing if controlp == NULL).
1373 1.159 ad */
1374 1.159 ad if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1375 1.159 ad struct mbuf *cm = NULL, *cmn;
1376 1.159 ad struct mbuf **cme = &cm;
1377 1.159 ad
1378 1.159 ad do {
1379 1.159 ad if (flags & MSG_PEEK) {
1380 1.159 ad if (controlp != NULL) {
1381 1.263 maxv *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT);
1382 1.301 riastrad controlp = (*controlp == NULL ? NULL :
1383 1.301 riastrad &(*controlp)->m_next);
1384 1.159 ad }
1385 1.159 ad m = m->m_next;
1386 1.159 ad } else {
1387 1.159 ad sbfree(&so->so_rcv, m);
1388 1.1 cgd so->so_rcv.sb_mb = m->m_next;
1389 1.144 dyoung m->m_next = NULL;
1390 1.159 ad *cme = m;
1391 1.159 ad cme = &(*cme)->m_next;
1392 1.1 cgd m = so->so_rcv.sb_mb;
1393 1.159 ad }
1394 1.159 ad } while (m != NULL && m->m_type == MT_CONTROL);
1395 1.159 ad if ((flags & MSG_PEEK) == 0)
1396 1.159 ad sbsync(&so->so_rcv, nextrecord);
1397 1.270 maxv
1398 1.159 ad for (; cm != NULL; cm = cmn) {
1399 1.159 ad cmn = cm->m_next;
1400 1.159 ad cm->m_next = NULL;
1401 1.159 ad type = mtod(cm, struct cmsghdr *)->cmsg_type;
1402 1.159 ad if (controlp != NULL) {
1403 1.159 ad if (dom->dom_externalize != NULL &&
1404 1.159 ad type == SCM_RIGHTS) {
1405 1.160 ad sounlock(so);
1406 1.159 ad splx(s);
1407 1.204 christos error = (*dom->dom_externalize)(cm, l,
1408 1.204 christos (flags & MSG_CMSG_CLOEXEC) ?
1409 1.204 christos O_CLOEXEC : 0);
1410 1.159 ad s = splsoftnet();
1411 1.160 ad solock(so);
1412 1.159 ad }
1413 1.159 ad *controlp = cm;
1414 1.159 ad while (*controlp != NULL)
1415 1.159 ad controlp = &(*controlp)->m_next;
1416 1.1 cgd } else {
1417 1.106 itojun /*
1418 1.106 itojun * Dispose of any SCM_RIGHTS message that went
1419 1.106 itojun * through the read path rather than recv.
1420 1.106 itojun */
1421 1.159 ad if (dom->dom_dispose != NULL &&
1422 1.159 ad type == SCM_RIGHTS) {
1423 1.253 ryo sounlock(so);
1424 1.159 ad (*dom->dom_dispose)(cm);
1425 1.160 ad solock(so);
1426 1.159 ad }
1427 1.159 ad m_freem(cm);
1428 1.1 cgd }
1429 1.1 cgd }
1430 1.159 ad if (m != NULL)
1431 1.159 ad nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1432 1.159 ad else
1433 1.159 ad nextrecord = so->so_rcv.sb_mb;
1434 1.159 ad orig_resid = 0;
1435 1.1 cgd }
1436 1.69 thorpej
1437 1.159 ad /* If m is non-NULL, we have some data to read. */
1438 1.159 ad if (__predict_true(m != NULL)) {
1439 1.1 cgd type = m->m_type;
1440 1.1 cgd if (type == MT_OOBDATA)
1441 1.1 cgd flags |= MSG_OOB;
1442 1.1 cgd }
1443 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1444 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1445 1.69 thorpej
1446 1.1 cgd moff = 0;
1447 1.1 cgd offset = 0;
1448 1.144 dyoung while (m != NULL && uio->uio_resid > 0 && error == 0) {
1449 1.272 maxv /*
1450 1.272 maxv * If the type of mbuf has changed, end the receive
1451 1.272 maxv * operation and do a short read.
1452 1.272 maxv */
1453 1.1 cgd if (m->m_type == MT_OOBDATA) {
1454 1.1 cgd if (type != MT_OOBDATA)
1455 1.1 cgd break;
1456 1.270 maxv } else if (type == MT_OOBDATA) {
1457 1.1 cgd break;
1458 1.272 maxv } else if (m->m_type == MT_CONTROL) {
1459 1.272 maxv break;
1460 1.270 maxv }
1461 1.1 cgd #ifdef DIAGNOSTIC
1462 1.270 maxv else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1463 1.272 maxv panic("%s: m_type=%d", __func__, m->m_type);
1464 1.270 maxv }
1465 1.1 cgd #endif
1466 1.270 maxv
1467 1.1 cgd so->so_state &= ~SS_RCVATMARK;
1468 1.307 martin wakeup_state = 0;
1469 1.1 cgd len = uio->uio_resid;
1470 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
1471 1.1 cgd len = so->so_oobmark - offset;
1472 1.1 cgd if (len > m->m_len - moff)
1473 1.1 cgd len = m->m_len - moff;
1474 1.270 maxv
1475 1.1 cgd /*
1476 1.1 cgd * If mp is set, just pass back the mbufs.
1477 1.1 cgd * Otherwise copy them out via the uio, then free.
1478 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
1479 1.1 cgd * it points to next record) when we drop priority;
1480 1.1 cgd * we must note any additions to the sockbuf when we
1481 1.1 cgd * block interrupts again.
1482 1.1 cgd */
1483 1.144 dyoung if (mp == NULL) {
1484 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1485 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1486 1.160 ad sounlock(so);
1487 1.1 cgd splx(s);
1488 1.211 chs error = uiomove(mtod(m, char *) + moff, len, uio);
1489 1.20 mycroft s = splsoftnet();
1490 1.160 ad solock(so);
1491 1.144 dyoung if (error != 0) {
1492 1.67 he /*
1493 1.67 he * If any part of the record has been removed
1494 1.67 he * (such as the MT_SONAME mbuf, which will
1495 1.67 he * happen when PR_ADDR, and thus also
1496 1.67 he * PR_ATOMIC, is set), then drop the entire
1497 1.67 he * record to maintain the atomicity of the
1498 1.67 he * receive operation.
1499 1.67 he *
1500 1.67 he * This avoids a later panic("receive 1a")
1501 1.67 he * when compiled with DIAGNOSTIC.
1502 1.67 he */
1503 1.146 dyoung if (m && mbuf_removed && atomic)
1504 1.67 he (void) sbdroprecord(&so->so_rcv);
1505 1.67 he
1506 1.57 jdolecek goto release;
1507 1.67 he }
1508 1.270 maxv } else {
1509 1.1 cgd uio->uio_resid -= len;
1510 1.270 maxv }
1511 1.270 maxv
1512 1.1 cgd if (len == m->m_len - moff) {
1513 1.1 cgd if (m->m_flags & M_EOR)
1514 1.1 cgd flags |= MSG_EOR;
1515 1.247 rjs #ifdef SCTP
1516 1.247 rjs if (m->m_flags & M_NOTIFICATION)
1517 1.247 rjs flags |= MSG_NOTIFICATION;
1518 1.270 maxv #endif
1519 1.1 cgd if (flags & MSG_PEEK) {
1520 1.1 cgd m = m->m_next;
1521 1.1 cgd moff = 0;
1522 1.1 cgd } else {
1523 1.1 cgd nextrecord = m->m_nextpkt;
1524 1.1 cgd sbfree(&so->so_rcv, m);
1525 1.1 cgd if (mp) {
1526 1.1 cgd *mp = m;
1527 1.1 cgd mp = &m->m_next;
1528 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
1529 1.140 dyoung *mp = NULL;
1530 1.1 cgd } else {
1531 1.249 christos m = so->so_rcv.sb_mb = m_free(m);
1532 1.1 cgd }
1533 1.69 thorpej /*
1534 1.69 thorpej * If m != NULL, we also know that
1535 1.69 thorpej * so->so_rcv.sb_mb != NULL.
1536 1.69 thorpej */
1537 1.69 thorpej KASSERT(so->so_rcv.sb_mb == m);
1538 1.69 thorpej if (m) {
1539 1.1 cgd m->m_nextpkt = nextrecord;
1540 1.69 thorpej if (nextrecord == NULL)
1541 1.69 thorpej so->so_rcv.sb_lastrecord = m;
1542 1.69 thorpej } else {
1543 1.69 thorpej so->so_rcv.sb_mb = nextrecord;
1544 1.70 thorpej SB_EMPTY_FIXUP(&so->so_rcv);
1545 1.69 thorpej }
1546 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1547 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1548 1.1 cgd }
1549 1.270 maxv } else if (flags & MSG_PEEK) {
1550 1.144 dyoung moff += len;
1551 1.270 maxv } else {
1552 1.160 ad if (mp != NULL) {
1553 1.160 ad mt = m_copym(m, 0, len, M_NOWAIT);
1554 1.160 ad if (__predict_false(mt == NULL)) {
1555 1.160 ad sounlock(so);
1556 1.160 ad mt = m_copym(m, 0, len, M_WAIT);
1557 1.160 ad solock(so);
1558 1.160 ad }
1559 1.160 ad *mp = mt;
1560 1.160 ad }
1561 1.144 dyoung m->m_data += len;
1562 1.144 dyoung m->m_len -= len;
1563 1.144 dyoung so->so_rcv.sb_cc -= len;
1564 1.1 cgd }
1565 1.270 maxv
1566 1.1 cgd if (so->so_oobmark) {
1567 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1568 1.1 cgd so->so_oobmark -= len;
1569 1.1 cgd if (so->so_oobmark == 0) {
1570 1.1 cgd so->so_state |= SS_RCVATMARK;
1571 1.1 cgd break;
1572 1.1 cgd }
1573 1.7 cgd } else {
1574 1.1 cgd offset += len;
1575 1.7 cgd if (offset == so->so_oobmark)
1576 1.7 cgd break;
1577 1.7 cgd }
1578 1.293 chs } else {
1579 1.293 chs so->so_state &= ~SS_POLLRDBAND;
1580 1.1 cgd }
1581 1.1 cgd if (flags & MSG_EOR)
1582 1.1 cgd break;
1583 1.270 maxv
1584 1.1 cgd /*
1585 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
1586 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
1587 1.1 cgd * termination. If a signal/timeout occurs, return
1588 1.1 cgd * with a short count but without error.
1589 1.1 cgd * Keep sockbuf locked against other readers.
1590 1.1 cgd */
1591 1.144 dyoung while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1592 1.3 andrew !sosendallatonce(so) && !nextrecord) {
1593 1.264 roy if (so->so_error || so->so_rerror ||
1594 1.264 roy so->so_state & SS_CANTRCVMORE)
1595 1.1 cgd break;
1596 1.68 matt /*
1597 1.68 matt * If we are peeking and the socket receive buffer is
1598 1.68 matt * full, stop since we can't get more data to peek at.
1599 1.68 matt */
1600 1.68 matt if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1601 1.68 matt break;
1602 1.68 matt /*
1603 1.68 matt * If we've drained the socket buffer, tell the
1604 1.68 matt * protocol in case it needs to do something to
1605 1.68 matt * get it filled again.
1606 1.68 matt */
1607 1.68 matt if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1608 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1609 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1610 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1611 1.307 martin if (wakeup_state & SS_RESTARTSYS)
1612 1.307 martin error = ERESTART;
1613 1.307 martin else
1614 1.307 martin error = sbwait(&so->so_rcv);
1615 1.144 dyoung if (error != 0) {
1616 1.1 cgd sbunlock(&so->so_rcv);
1617 1.160 ad sounlock(so);
1618 1.1 cgd splx(s);
1619 1.144 dyoung return 0;
1620 1.1 cgd }
1621 1.21 christos if ((m = so->so_rcv.sb_mb) != NULL)
1622 1.1 cgd nextrecord = m->m_nextpkt;
1623 1.307 martin wakeup_state = so->so_state;
1624 1.1 cgd }
1625 1.1 cgd }
1626 1.3 andrew
1627 1.146 dyoung if (m && atomic) {
1628 1.3 andrew flags |= MSG_TRUNC;
1629 1.3 andrew if ((flags & MSG_PEEK) == 0)
1630 1.3 andrew (void) sbdroprecord(&so->so_rcv);
1631 1.3 andrew }
1632 1.1 cgd if ((flags & MSG_PEEK) == 0) {
1633 1.144 dyoung if (m == NULL) {
1634 1.69 thorpej /*
1635 1.70 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second
1636 1.69 thorpej * part makes sure sb_lastrecord is up-to-date if
1637 1.69 thorpej * there is still data in the socket buffer.
1638 1.69 thorpej */
1639 1.1 cgd so->so_rcv.sb_mb = nextrecord;
1640 1.69 thorpej if (so->so_rcv.sb_mb == NULL) {
1641 1.69 thorpej so->so_rcv.sb_mbtail = NULL;
1642 1.69 thorpej so->so_rcv.sb_lastrecord = NULL;
1643 1.69 thorpej } else if (nextrecord->m_nextpkt == NULL)
1644 1.69 thorpej so->so_rcv.sb_lastrecord = nextrecord;
1645 1.69 thorpej }
1646 1.69 thorpej SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1647 1.69 thorpej SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1648 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1649 1.233 rtr (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1650 1.1 cgd }
1651 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
1652 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1653 1.3 andrew sbunlock(&so->so_rcv);
1654 1.3 andrew goto restart;
1655 1.3 andrew }
1656 1.108 perry
1657 1.144 dyoung if (flagsp != NULL)
1658 1.1 cgd *flagsp |= flags;
1659 1.270 maxv release:
1660 1.1 cgd sbunlock(&so->so_rcv);
1661 1.160 ad sounlock(so);
1662 1.1 cgd splx(s);
1663 1.144 dyoung return error;
1664 1.1 cgd }
1665 1.1 cgd
1666 1.14 mycroft int
1667 1.54 lukem soshutdown(struct socket *so, int how)
1668 1.1 cgd {
1669 1.270 maxv const struct protosw *pr;
1670 1.270 maxv int error;
1671 1.160 ad
1672 1.160 ad KASSERT(solocked(so));
1673 1.34 kleink
1674 1.54 lukem pr = so->so_proto;
1675 1.34 kleink if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1676 1.270 maxv return EINVAL;
1677 1.1 cgd
1678 1.160 ad if (how == SHUT_RD || how == SHUT_RDWR) {
1679 1.1 cgd sorflush(so);
1680 1.160 ad error = 0;
1681 1.160 ad }
1682 1.34 kleink if (how == SHUT_WR || how == SHUT_RDWR)
1683 1.229 rtr error = (*pr->pr_usrreqs->pr_shutdown)(so);
1684 1.160 ad
1685 1.160 ad return error;
1686 1.1 cgd }
1687 1.1 cgd
1688 1.195 dsl void
1689 1.196 dsl sorestart(struct socket *so)
1690 1.188 ad {
1691 1.196 dsl /*
1692 1.196 dsl * An application has called close() on an fd on which another
1693 1.196 dsl * of its threads has called a socket system call.
1694 1.196 dsl * Mark this and wake everyone up, and code that would block again
1695 1.196 dsl * instead returns ERESTART.
1696 1.196 dsl * On system call re-entry the fd is validated and EBADF returned.
1697 1.196 dsl * Any other fd will block again on the 2nd syscall.
1698 1.196 dsl */
1699 1.188 ad solock(so);
1700 1.307 martin so->so_state |= SS_RESTARTSYS;
1701 1.307 martin cv_broadcast(&so->so_cv);
1702 1.307 martin cv_broadcast(&so->so_snd.sb_cv);
1703 1.307 martin cv_broadcast(&so->so_rcv.sb_cv);
1704 1.188 ad sounlock(so);
1705 1.188 ad }
1706 1.188 ad
1707 1.14 mycroft void
1708 1.54 lukem sorflush(struct socket *so)
1709 1.1 cgd {
1710 1.270 maxv struct sockbuf *sb, asb;
1711 1.270 maxv const struct protosw *pr;
1712 1.160 ad
1713 1.160 ad KASSERT(solocked(so));
1714 1.1 cgd
1715 1.54 lukem sb = &so->so_rcv;
1716 1.54 lukem pr = so->so_proto;
1717 1.160 ad socantrcvmore(so);
1718 1.1 cgd sb->sb_flags |= SB_NOINTR;
1719 1.160 ad (void )sblock(sb, M_WAITOK);
1720 1.1 cgd sbunlock(sb);
1721 1.1 cgd asb = *sb;
1722 1.86 wrstuden /*
1723 1.86 wrstuden * Clear most of the sockbuf structure, but leave some of the
1724 1.86 wrstuden * fields valid.
1725 1.86 wrstuden */
1726 1.86 wrstuden memset(&sb->sb_startzero, 0,
1727 1.86 wrstuden sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1728 1.160 ad if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1729 1.160 ad sounlock(so);
1730 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1731 1.160 ad solock(so);
1732 1.160 ad }
1733 1.98 christos sbrelease(&asb, so);
1734 1.1 cgd }
1735 1.1 cgd
1736 1.171 plunky /*
1737 1.171 plunky * internal set SOL_SOCKET options
1738 1.171 plunky */
1739 1.142 dyoung static int
1740 1.171 plunky sosetopt1(struct socket *so, const struct sockopt *sopt)
1741 1.1 cgd {
1742 1.275 pgoyette int error, opt;
1743 1.219 christos int optval = 0; /* XXX: gcc */
1744 1.171 plunky struct linger l;
1745 1.171 plunky struct timeval tv;
1746 1.142 dyoung
1747 1.275 pgoyette opt = sopt->sopt_name;
1748 1.275 pgoyette
1749 1.275 pgoyette switch (opt) {
1750 1.142 dyoung
1751 1.170 tls case SO_ACCEPTFILTER:
1752 1.177 ad error = accept_filt_setopt(so, sopt);
1753 1.177 ad KASSERT(solocked(so));
1754 1.170 tls break;
1755 1.170 tls
1756 1.253 ryo case SO_LINGER:
1757 1.253 ryo error = sockopt_get(sopt, &l, sizeof(l));
1758 1.177 ad solock(so);
1759 1.253 ryo if (error)
1760 1.253 ryo break;
1761 1.253 ryo if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1762 1.253 ryo l.l_linger > (INT_MAX / hz)) {
1763 1.177 ad error = EDOM;
1764 1.177 ad break;
1765 1.177 ad }
1766 1.253 ryo so->so_linger = l.l_linger;
1767 1.253 ryo if (l.l_onoff)
1768 1.253 ryo so->so_options |= SO_LINGER;
1769 1.253 ryo else
1770 1.253 ryo so->so_options &= ~SO_LINGER;
1771 1.253 ryo break;
1772 1.1 cgd
1773 1.142 dyoung case SO_DEBUG:
1774 1.142 dyoung case SO_KEEPALIVE:
1775 1.142 dyoung case SO_DONTROUTE:
1776 1.142 dyoung case SO_USELOOPBACK:
1777 1.142 dyoung case SO_BROADCAST:
1778 1.142 dyoung case SO_REUSEADDR:
1779 1.142 dyoung case SO_REUSEPORT:
1780 1.142 dyoung case SO_OOBINLINE:
1781 1.142 dyoung case SO_TIMESTAMP:
1782 1.207 christos case SO_NOSIGPIPE:
1783 1.266 christos case SO_RERROR:
1784 1.171 plunky error = sockopt_getint(sopt, &optval);
1785 1.177 ad solock(so);
1786 1.171 plunky if (error)
1787 1.177 ad break;
1788 1.171 plunky if (optval)
1789 1.179 christos so->so_options |= opt;
1790 1.142 dyoung else
1791 1.179 christos so->so_options &= ~opt;
1792 1.142 dyoung break;
1793 1.142 dyoung
1794 1.142 dyoung case SO_SNDBUF:
1795 1.142 dyoung case SO_RCVBUF:
1796 1.142 dyoung case SO_SNDLOWAT:
1797 1.142 dyoung case SO_RCVLOWAT:
1798 1.171 plunky error = sockopt_getint(sopt, &optval);
1799 1.177 ad solock(so);
1800 1.171 plunky if (error)
1801 1.177 ad break;
1802 1.1 cgd
1803 1.142 dyoung /*
1804 1.142 dyoung * Values < 1 make no sense for any of these
1805 1.142 dyoung * options, so disallow them.
1806 1.142 dyoung */
1807 1.177 ad if (optval < 1) {
1808 1.177 ad error = EINVAL;
1809 1.177 ad break;
1810 1.177 ad }
1811 1.1 cgd
1812 1.179 christos switch (opt) {
1813 1.171 plunky case SO_SNDBUF:
1814 1.177 ad if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1815 1.177 ad error = ENOBUFS;
1816 1.177 ad break;
1817 1.177 ad }
1818 1.292 mlelstv if (sofixedbuf)
1819 1.292 mlelstv so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1820 1.171 plunky break;
1821 1.1 cgd
1822 1.1 cgd case SO_RCVBUF:
1823 1.177 ad if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1824 1.177 ad error = ENOBUFS;
1825 1.177 ad break;
1826 1.177 ad }
1827 1.292 mlelstv if (sofixedbuf)
1828 1.292 mlelstv so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1829 1.142 dyoung break;
1830 1.142 dyoung
1831 1.142 dyoung /*
1832 1.142 dyoung * Make sure the low-water is never greater than
1833 1.142 dyoung * the high-water.
1834 1.142 dyoung */
1835 1.1 cgd case SO_SNDLOWAT:
1836 1.171 plunky if (optval > so->so_snd.sb_hiwat)
1837 1.171 plunky optval = so->so_snd.sb_hiwat;
1838 1.171 plunky
1839 1.171 plunky so->so_snd.sb_lowat = optval;
1840 1.142 dyoung break;
1841 1.171 plunky
1842 1.1 cgd case SO_RCVLOWAT:
1843 1.171 plunky if (optval > so->so_rcv.sb_hiwat)
1844 1.171 plunky optval = so->so_rcv.sb_hiwat;
1845 1.171 plunky
1846 1.171 plunky so->so_rcv.sb_lowat = optval;
1847 1.142 dyoung break;
1848 1.142 dyoung }
1849 1.142 dyoung break;
1850 1.28 thorpej
1851 1.142 dyoung case SO_SNDTIMEO:
1852 1.142 dyoung case SO_RCVTIMEO:
1853 1.177 ad solock(so);
1854 1.278 pgoyette error = sockopt_get(sopt, &tv, sizeof(tv));
1855 1.171 plunky if (error)
1856 1.177 ad break;
1857 1.171 plunky
1858 1.274 maxv if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1859 1.274 maxv error = EDOM;
1860 1.274 maxv break;
1861 1.274 maxv }
1862 1.177 ad if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1863 1.177 ad error = EDOM;
1864 1.177 ad break;
1865 1.177 ad }
1866 1.28 thorpej
1867 1.171 plunky optval = tv.tv_sec * hz + tv.tv_usec / tick;
1868 1.171 plunky if (optval == 0 && tv.tv_usec != 0)
1869 1.171 plunky optval = 1;
1870 1.28 thorpej
1871 1.179 christos switch (opt) {
1872 1.142 dyoung case SO_SNDTIMEO:
1873 1.171 plunky so->so_snd.sb_timeo = optval;
1874 1.1 cgd break;
1875 1.1 cgd case SO_RCVTIMEO:
1876 1.171 plunky so->so_rcv.sb_timeo = optval;
1877 1.142 dyoung break;
1878 1.142 dyoung }
1879 1.142 dyoung break;
1880 1.1 cgd
1881 1.142 dyoung default:
1882 1.278 pgoyette MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook,
1883 1.278 pgoyette (opt, so, sopt), enosys(), error);
1884 1.278 pgoyette if (error == ENOSYS || error == EPASSTHROUGH) {
1885 1.278 pgoyette solock(so);
1886 1.278 pgoyette error = ENOPROTOOPT;
1887 1.278 pgoyette }
1888 1.177 ad break;
1889 1.142 dyoung }
1890 1.177 ad KASSERT(solocked(so));
1891 1.177 ad return error;
1892 1.142 dyoung }
1893 1.1 cgd
1894 1.142 dyoung int
1895 1.171 plunky sosetopt(struct socket *so, struct sockopt *sopt)
1896 1.142 dyoung {
1897 1.142 dyoung int error, prerr;
1898 1.1 cgd
1899 1.177 ad if (sopt->sopt_level == SOL_SOCKET) {
1900 1.171 plunky error = sosetopt1(so, sopt);
1901 1.177 ad KASSERT(solocked(so));
1902 1.177 ad } else {
1903 1.142 dyoung error = ENOPROTOOPT;
1904 1.177 ad solock(so);
1905 1.177 ad }
1906 1.1 cgd
1907 1.142 dyoung if ((error == 0 || error == ENOPROTOOPT) &&
1908 1.142 dyoung so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1909 1.142 dyoung /* give the protocol stack a shot */
1910 1.171 plunky prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1911 1.142 dyoung if (prerr == 0)
1912 1.142 dyoung error = 0;
1913 1.142 dyoung else if (prerr != ENOPROTOOPT)
1914 1.142 dyoung error = prerr;
1915 1.171 plunky }
1916 1.160 ad sounlock(so);
1917 1.142 dyoung return error;
1918 1.1 cgd }
1919 1.1 cgd
1920 1.171 plunky /*
1921 1.171 plunky * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1922 1.171 plunky */
1923 1.171 plunky int
1924 1.171 plunky so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1925 1.171 plunky const void *val, size_t valsize)
1926 1.171 plunky {
1927 1.171 plunky struct sockopt sopt;
1928 1.171 plunky int error;
1929 1.171 plunky
1930 1.171 plunky KASSERT(valsize == 0 || val != NULL);
1931 1.171 plunky
1932 1.171 plunky sockopt_init(&sopt, level, name, valsize);
1933 1.171 plunky sockopt_set(&sopt, val, valsize);
1934 1.171 plunky
1935 1.171 plunky error = sosetopt(so, &sopt);
1936 1.171 plunky
1937 1.171 plunky sockopt_destroy(&sopt);
1938 1.171 plunky
1939 1.171 plunky return error;
1940 1.171 plunky }
1941 1.253 ryo
1942 1.171 plunky /*
1943 1.171 plunky * internal get SOL_SOCKET options
1944 1.171 plunky */
1945 1.171 plunky static int
1946 1.171 plunky sogetopt1(struct socket *so, struct sockopt *sopt)
1947 1.171 plunky {
1948 1.179 christos int error, optval, opt;
1949 1.171 plunky struct linger l;
1950 1.171 plunky struct timeval tv;
1951 1.171 plunky
1952 1.179 christos switch ((opt = sopt->sopt_name)) {
1953 1.171 plunky
1954 1.171 plunky case SO_ACCEPTFILTER:
1955 1.177 ad error = accept_filt_getopt(so, sopt);
1956 1.171 plunky break;
1957 1.171 plunky
1958 1.171 plunky case SO_LINGER:
1959 1.171 plunky l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1960 1.171 plunky l.l_linger = so->so_linger;
1961 1.171 plunky
1962 1.171 plunky error = sockopt_set(sopt, &l, sizeof(l));
1963 1.171 plunky break;
1964 1.171 plunky
1965 1.171 plunky case SO_USELOOPBACK:
1966 1.171 plunky case SO_DONTROUTE:
1967 1.171 plunky case SO_DEBUG:
1968 1.171 plunky case SO_KEEPALIVE:
1969 1.171 plunky case SO_REUSEADDR:
1970 1.171 plunky case SO_REUSEPORT:
1971 1.171 plunky case SO_BROADCAST:
1972 1.171 plunky case SO_OOBINLINE:
1973 1.171 plunky case SO_TIMESTAMP:
1974 1.207 christos case SO_NOSIGPIPE:
1975 1.266 christos case SO_RERROR:
1976 1.218 seanb case SO_ACCEPTCONN:
1977 1.179 christos error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1978 1.171 plunky break;
1979 1.171 plunky
1980 1.171 plunky case SO_TYPE:
1981 1.171 plunky error = sockopt_setint(sopt, so->so_type);
1982 1.171 plunky break;
1983 1.171 plunky
1984 1.171 plunky case SO_ERROR:
1985 1.267 hannken if (so->so_error == 0) {
1986 1.267 hannken so->so_error = so->so_rerror;
1987 1.267 hannken so->so_rerror = 0;
1988 1.267 hannken }
1989 1.171 plunky error = sockopt_setint(sopt, so->so_error);
1990 1.171 plunky so->so_error = 0;
1991 1.171 plunky break;
1992 1.171 plunky
1993 1.171 plunky case SO_SNDBUF:
1994 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1995 1.171 plunky break;
1996 1.171 plunky
1997 1.171 plunky case SO_RCVBUF:
1998 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1999 1.171 plunky break;
2000 1.171 plunky
2001 1.171 plunky case SO_SNDLOWAT:
2002 1.171 plunky error = sockopt_setint(sopt, so->so_snd.sb_lowat);
2003 1.171 plunky break;
2004 1.171 plunky
2005 1.171 plunky case SO_RCVLOWAT:
2006 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
2007 1.171 plunky break;
2008 1.171 plunky
2009 1.171 plunky case SO_SNDTIMEO:
2010 1.171 plunky case SO_RCVTIMEO:
2011 1.179 christos optval = (opt == SO_SNDTIMEO ?
2012 1.171 plunky so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2013 1.171 plunky
2014 1.288 maxv memset(&tv, 0, sizeof(tv));
2015 1.171 plunky tv.tv_sec = optval / hz;
2016 1.171 plunky tv.tv_usec = (optval % hz) * tick;
2017 1.171 plunky
2018 1.171 plunky error = sockopt_set(sopt, &tv, sizeof(tv));
2019 1.171 plunky break;
2020 1.171 plunky
2021 1.171 plunky case SO_OVERFLOWED:
2022 1.171 plunky error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2023 1.171 plunky break;
2024 1.171 plunky
2025 1.171 plunky default:
2026 1.275 pgoyette MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook,
2027 1.278 pgoyette (opt, so, sopt), enosys(), error);
2028 1.275 pgoyette if (error)
2029 1.275 pgoyette error = ENOPROTOOPT;
2030 1.171 plunky break;
2031 1.171 plunky }
2032 1.171 plunky
2033 1.270 maxv return error;
2034 1.171 plunky }
2035 1.171 plunky
2036 1.14 mycroft int
2037 1.171 plunky sogetopt(struct socket *so, struct sockopt *sopt)
2038 1.1 cgd {
2039 1.270 maxv int error;
2040 1.1 cgd
2041 1.160 ad solock(so);
2042 1.171 plunky if (sopt->sopt_level != SOL_SOCKET) {
2043 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
2044 1.160 ad error = ((*so->so_proto->pr_ctloutput)
2045 1.171 plunky (PRCO_GETOPT, so, sopt));
2046 1.1 cgd } else
2047 1.160 ad error = (ENOPROTOOPT);
2048 1.1 cgd } else {
2049 1.171 plunky error = sogetopt1(so, sopt);
2050 1.171 plunky }
2051 1.171 plunky sounlock(so);
2052 1.270 maxv return error;
2053 1.171 plunky }
2054 1.171 plunky
2055 1.171 plunky /*
2056 1.171 plunky * alloc sockopt data buffer buffer
2057 1.171 plunky * - will be released at destroy
2058 1.171 plunky */
2059 1.176 plunky static int
2060 1.176 plunky sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2061 1.171 plunky {
2062 1.290 maxv void *data;
2063 1.171 plunky
2064 1.171 plunky KASSERT(sopt->sopt_size == 0);
2065 1.171 plunky
2066 1.176 plunky if (len > sizeof(sopt->sopt_buf)) {
2067 1.290 maxv data = kmem_zalloc(len, kmflag);
2068 1.290 maxv if (data == NULL)
2069 1.176 plunky return ENOMEM;
2070 1.290 maxv sopt->sopt_data = data;
2071 1.176 plunky } else
2072 1.171 plunky sopt->sopt_data = sopt->sopt_buf;
2073 1.171 plunky
2074 1.171 plunky sopt->sopt_size = len;
2075 1.176 plunky return 0;
2076 1.171 plunky }
2077 1.171 plunky
2078 1.171 plunky /*
2079 1.171 plunky * initialise sockopt storage
2080 1.176 plunky * - MAY sleep during allocation
2081 1.171 plunky */
2082 1.171 plunky void
2083 1.171 plunky sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2084 1.171 plunky {
2085 1.1 cgd
2086 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2087 1.1 cgd
2088 1.171 plunky sopt->sopt_level = level;
2089 1.171 plunky sopt->sopt_name = name;
2090 1.176 plunky (void)sockopt_alloc(sopt, size, KM_SLEEP);
2091 1.171 plunky }
2092 1.171 plunky
2093 1.171 plunky /*
2094 1.171 plunky * destroy sockopt storage
2095 1.171 plunky * - will release any held memory references
2096 1.171 plunky */
2097 1.171 plunky void
2098 1.171 plunky sockopt_destroy(struct sockopt *sopt)
2099 1.171 plunky {
2100 1.171 plunky
2101 1.171 plunky if (sopt->sopt_data != sopt->sopt_buf)
2102 1.173 plunky kmem_free(sopt->sopt_data, sopt->sopt_size);
2103 1.171 plunky
2104 1.171 plunky memset(sopt, 0, sizeof(*sopt));
2105 1.171 plunky }
2106 1.171 plunky
2107 1.171 plunky /*
2108 1.171 plunky * set sockopt value
2109 1.171 plunky * - value is copied into sockopt
2110 1.253 ryo * - memory is allocated when necessary, will not sleep
2111 1.171 plunky */
2112 1.171 plunky int
2113 1.171 plunky sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2114 1.171 plunky {
2115 1.176 plunky int error;
2116 1.171 plunky
2117 1.176 plunky if (sopt->sopt_size == 0) {
2118 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2119 1.176 plunky if (error)
2120 1.176 plunky return error;
2121 1.176 plunky }
2122 1.171 plunky
2123 1.279 christos sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2124 1.285 maxv if (sopt->sopt_retsize > 0) {
2125 1.285 maxv memcpy(sopt->sopt_data, buf, sopt->sopt_retsize);
2126 1.285 maxv }
2127 1.259 christos
2128 1.171 plunky return 0;
2129 1.171 plunky }
2130 1.171 plunky
2131 1.171 plunky /*
2132 1.171 plunky * common case of set sockopt integer value
2133 1.171 plunky */
2134 1.171 plunky int
2135 1.171 plunky sockopt_setint(struct sockopt *sopt, int val)
2136 1.171 plunky {
2137 1.171 plunky
2138 1.171 plunky return sockopt_set(sopt, &val, sizeof(int));
2139 1.171 plunky }
2140 1.171 plunky
2141 1.171 plunky /*
2142 1.171 plunky * get sockopt value
2143 1.171 plunky * - correct size must be given
2144 1.171 plunky */
2145 1.171 plunky int
2146 1.171 plunky sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2147 1.171 plunky {
2148 1.170 tls
2149 1.171 plunky if (sopt->sopt_size != len)
2150 1.171 plunky return EINVAL;
2151 1.1 cgd
2152 1.171 plunky memcpy(buf, sopt->sopt_data, len);
2153 1.171 plunky return 0;
2154 1.171 plunky }
2155 1.1 cgd
2156 1.171 plunky /*
2157 1.171 plunky * common case of get sockopt integer value
2158 1.171 plunky */
2159 1.171 plunky int
2160 1.171 plunky sockopt_getint(const struct sockopt *sopt, int *valp)
2161 1.171 plunky {
2162 1.1 cgd
2163 1.171 plunky return sockopt_get(sopt, valp, sizeof(int));
2164 1.171 plunky }
2165 1.1 cgd
2166 1.171 plunky /*
2167 1.171 plunky * set sockopt value from mbuf
2168 1.171 plunky * - ONLY for legacy code
2169 1.171 plunky * - mbuf is released by sockopt
2170 1.176 plunky * - will not sleep
2171 1.171 plunky */
2172 1.171 plunky int
2173 1.171 plunky sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2174 1.171 plunky {
2175 1.171 plunky size_t len;
2176 1.176 plunky int error;
2177 1.1 cgd
2178 1.171 plunky len = m_length(m);
2179 1.1 cgd
2180 1.176 plunky if (sopt->sopt_size == 0) {
2181 1.176 plunky error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2182 1.176 plunky if (error)
2183 1.176 plunky return error;
2184 1.176 plunky }
2185 1.1 cgd
2186 1.279 christos sopt->sopt_retsize = MIN(sopt->sopt_size, len);
2187 1.279 christos m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data);
2188 1.171 plunky m_freem(m);
2189 1.1 cgd
2190 1.171 plunky return 0;
2191 1.171 plunky }
2192 1.1 cgd
2193 1.171 plunky /*
2194 1.171 plunky * get sockopt value into mbuf
2195 1.171 plunky * - ONLY for legacy code
2196 1.171 plunky * - mbuf to be released by the caller
2197 1.176 plunky * - will not sleep
2198 1.171 plunky */
2199 1.171 plunky struct mbuf *
2200 1.171 plunky sockopt_getmbuf(const struct sockopt *sopt)
2201 1.171 plunky {
2202 1.171 plunky struct mbuf *m;
2203 1.107 darrenr
2204 1.176 plunky if (sopt->sopt_size > MCLBYTES)
2205 1.176 plunky return NULL;
2206 1.176 plunky
2207 1.176 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
2208 1.171 plunky if (m == NULL)
2209 1.171 plunky return NULL;
2210 1.171 plunky
2211 1.176 plunky if (sopt->sopt_size > MLEN) {
2212 1.176 plunky MCLGET(m, M_DONTWAIT);
2213 1.176 plunky if ((m->m_flags & M_EXT) == 0) {
2214 1.176 plunky m_free(m);
2215 1.176 plunky return NULL;
2216 1.176 plunky }
2217 1.1 cgd }
2218 1.176 plunky
2219 1.176 plunky memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2220 1.176 plunky m->m_len = sopt->sopt_size;
2221 1.160 ad
2222 1.171 plunky return m;
2223 1.1 cgd }
2224 1.1 cgd
2225 1.14 mycroft void
2226 1.54 lukem sohasoutofband(struct socket *so)
2227 1.1 cgd {
2228 1.153 rmind
2229 1.293 chs so->so_state |= SS_POLLRDBAND;
2230 1.90 christos fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2231 1.189 ad selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2232 1.1 cgd }
2233 1.72 jdolecek
2234 1.72 jdolecek static void
2235 1.72 jdolecek filt_sordetach(struct knote *kn)
2236 1.72 jdolecek {
2237 1.270 maxv struct socket *so;
2238 1.72 jdolecek
2239 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2240 1.160 ad solock(so);
2241 1.297 thorpej if (selremove_knote(&so->so_rcv.sb_sel, kn))
2242 1.297 thorpej so->so_rcv.sb_flags &= ~SB_KNOTE;
2243 1.160 ad sounlock(so);
2244 1.72 jdolecek }
2245 1.72 jdolecek
2246 1.72 jdolecek /*ARGSUSED*/
2247 1.72 jdolecek static int
2248 1.129 yamt filt_soread(struct knote *kn, long hint)
2249 1.72 jdolecek {
2250 1.270 maxv struct socket *so;
2251 1.160 ad int rv;
2252 1.72 jdolecek
2253 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2254 1.160 ad if (hint != NOTE_SUBMIT)
2255 1.160 ad solock(so);
2256 1.72 jdolecek kn->kn_data = so->so_rcv.sb_cc;
2257 1.72 jdolecek if (so->so_state & SS_CANTRCVMORE) {
2258 1.299 thorpej knote_set_eof(kn, 0);
2259 1.72 jdolecek kn->kn_fflags = so->so_error;
2260 1.160 ad rv = 1;
2261 1.264 roy } else if (so->so_error || so->so_rerror)
2262 1.160 ad rv = 1;
2263 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2264 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2265 1.253 ryo else
2266 1.160 ad rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2267 1.160 ad if (hint != NOTE_SUBMIT)
2268 1.160 ad sounlock(so);
2269 1.160 ad return rv;
2270 1.72 jdolecek }
2271 1.72 jdolecek
2272 1.72 jdolecek static void
2273 1.72 jdolecek filt_sowdetach(struct knote *kn)
2274 1.72 jdolecek {
2275 1.270 maxv struct socket *so;
2276 1.72 jdolecek
2277 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2278 1.160 ad solock(so);
2279 1.297 thorpej if (selremove_knote(&so->so_snd.sb_sel, kn))
2280 1.297 thorpej so->so_snd.sb_flags &= ~SB_KNOTE;
2281 1.160 ad sounlock(so);
2282 1.72 jdolecek }
2283 1.72 jdolecek
2284 1.72 jdolecek /*ARGSUSED*/
2285 1.72 jdolecek static int
2286 1.129 yamt filt_sowrite(struct knote *kn, long hint)
2287 1.72 jdolecek {
2288 1.270 maxv struct socket *so;
2289 1.160 ad int rv;
2290 1.72 jdolecek
2291 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2292 1.160 ad if (hint != NOTE_SUBMIT)
2293 1.160 ad solock(so);
2294 1.72 jdolecek kn->kn_data = sbspace(&so->so_snd);
2295 1.72 jdolecek if (so->so_state & SS_CANTSENDMORE) {
2296 1.299 thorpej knote_set_eof(kn, 0);
2297 1.72 jdolecek kn->kn_fflags = so->so_error;
2298 1.160 ad rv = 1;
2299 1.261 roy } else if (so->so_error)
2300 1.160 ad rv = 1;
2301 1.160 ad else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2302 1.72 jdolecek (so->so_proto->pr_flags & PR_CONNREQUIRED))
2303 1.160 ad rv = 0;
2304 1.160 ad else if (kn->kn_sfflags & NOTE_LOWAT)
2305 1.160 ad rv = (kn->kn_data >= kn->kn_sdata);
2306 1.160 ad else
2307 1.160 ad rv = (kn->kn_data >= so->so_snd.sb_lowat);
2308 1.160 ad if (hint != NOTE_SUBMIT)
2309 1.160 ad sounlock(so);
2310 1.160 ad return rv;
2311 1.72 jdolecek }
2312 1.72 jdolecek
2313 1.300 thorpej static int
2314 1.300 thorpej filt_soempty(struct knote *kn, long hint)
2315 1.300 thorpej {
2316 1.300 thorpej struct socket *so;
2317 1.300 thorpej int rv;
2318 1.300 thorpej
2319 1.300 thorpej so = ((file_t *)kn->kn_obj)->f_socket;
2320 1.300 thorpej if (hint != NOTE_SUBMIT)
2321 1.300 thorpej solock(so);
2322 1.300 thorpej rv = (kn->kn_data = sbused(&so->so_snd)) == 0 ||
2323 1.300 thorpej (so->so_options & SO_ACCEPTCONN) != 0;
2324 1.300 thorpej if (hint != NOTE_SUBMIT)
2325 1.300 thorpej sounlock(so);
2326 1.300 thorpej return rv;
2327 1.300 thorpej }
2328 1.300 thorpej
2329 1.72 jdolecek /*ARGSUSED*/
2330 1.72 jdolecek static int
2331 1.129 yamt filt_solisten(struct knote *kn, long hint)
2332 1.72 jdolecek {
2333 1.270 maxv struct socket *so;
2334 1.160 ad int rv;
2335 1.72 jdolecek
2336 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2337 1.72 jdolecek
2338 1.72 jdolecek /*
2339 1.72 jdolecek * Set kn_data to number of incoming connections, not
2340 1.72 jdolecek * counting partial (incomplete) connections.
2341 1.108 perry */
2342 1.160 ad if (hint != NOTE_SUBMIT)
2343 1.160 ad solock(so);
2344 1.72 jdolecek kn->kn_data = so->so_qlen;
2345 1.160 ad rv = (kn->kn_data > 0);
2346 1.160 ad if (hint != NOTE_SUBMIT)
2347 1.160 ad sounlock(so);
2348 1.160 ad return rv;
2349 1.72 jdolecek }
2350 1.72 jdolecek
2351 1.257 maya static const struct filterops solisten_filtops = {
2352 1.298 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2353 1.257 maya .f_attach = NULL,
2354 1.257 maya .f_detach = filt_sordetach,
2355 1.257 maya .f_event = filt_solisten,
2356 1.257 maya };
2357 1.257 maya
2358 1.257 maya static const struct filterops soread_filtops = {
2359 1.298 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2360 1.257 maya .f_attach = NULL,
2361 1.257 maya .f_detach = filt_sordetach,
2362 1.257 maya .f_event = filt_soread,
2363 1.257 maya };
2364 1.257 maya
2365 1.257 maya static const struct filterops sowrite_filtops = {
2366 1.298 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2367 1.257 maya .f_attach = NULL,
2368 1.257 maya .f_detach = filt_sowdetach,
2369 1.257 maya .f_event = filt_sowrite,
2370 1.257 maya };
2371 1.72 jdolecek
2372 1.300 thorpej static const struct filterops soempty_filtops = {
2373 1.300 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
2374 1.300 thorpej .f_attach = NULL,
2375 1.300 thorpej .f_detach = filt_sowdetach,
2376 1.300 thorpej .f_event = filt_soempty,
2377 1.300 thorpej };
2378 1.300 thorpej
2379 1.72 jdolecek int
2380 1.129 yamt soo_kqfilter(struct file *fp, struct knote *kn)
2381 1.72 jdolecek {
2382 1.270 maxv struct socket *so;
2383 1.270 maxv struct sockbuf *sb;
2384 1.72 jdolecek
2385 1.235 matt so = ((file_t *)kn->kn_obj)->f_socket;
2386 1.160 ad solock(so);
2387 1.72 jdolecek switch (kn->kn_filter) {
2388 1.72 jdolecek case EVFILT_READ:
2389 1.72 jdolecek if (so->so_options & SO_ACCEPTCONN)
2390 1.72 jdolecek kn->kn_fop = &solisten_filtops;
2391 1.72 jdolecek else
2392 1.72 jdolecek kn->kn_fop = &soread_filtops;
2393 1.72 jdolecek sb = &so->so_rcv;
2394 1.72 jdolecek break;
2395 1.72 jdolecek case EVFILT_WRITE:
2396 1.72 jdolecek kn->kn_fop = &sowrite_filtops;
2397 1.72 jdolecek sb = &so->so_snd;
2398 1.309 jdolecek
2399 1.309 jdolecek #ifdef PIPE_SOCKETPAIR
2400 1.309 jdolecek if (so->so_state & SS_ISAPIPE) {
2401 1.309 jdolecek /* Other end of pipe has been closed. */
2402 1.309 jdolecek if (so->so_state & SS_ISDISCONNECTED) {
2403 1.309 jdolecek sounlock(so);
2404 1.309 jdolecek return EBADF;
2405 1.309 jdolecek }
2406 1.309 jdolecek }
2407 1.309 jdolecek #endif
2408 1.72 jdolecek break;
2409 1.300 thorpej case EVFILT_EMPTY:
2410 1.300 thorpej kn->kn_fop = &soempty_filtops;
2411 1.300 thorpej sb = &so->so_snd;
2412 1.300 thorpej break;
2413 1.72 jdolecek default:
2414 1.160 ad sounlock(so);
2415 1.270 maxv return EINVAL;
2416 1.72 jdolecek }
2417 1.294 thorpej selrecord_knote(&sb->sb_sel, kn);
2418 1.72 jdolecek sb->sb_flags |= SB_KNOTE;
2419 1.160 ad sounlock(so);
2420 1.270 maxv return 0;
2421 1.72 jdolecek }
2422 1.72 jdolecek
2423 1.154 ad static int
2424 1.154 ad sodopoll(struct socket *so, int events)
2425 1.154 ad {
2426 1.154 ad int revents;
2427 1.154 ad
2428 1.154 ad revents = 0;
2429 1.154 ad
2430 1.154 ad if (events & (POLLIN | POLLRDNORM))
2431 1.154 ad if (soreadable(so))
2432 1.154 ad revents |= events & (POLLIN | POLLRDNORM);
2433 1.154 ad
2434 1.154 ad if (events & (POLLOUT | POLLWRNORM))
2435 1.154 ad if (sowritable(so))
2436 1.154 ad revents |= events & (POLLOUT | POLLWRNORM);
2437 1.154 ad
2438 1.154 ad if (events & (POLLPRI | POLLRDBAND))
2439 1.293 chs if (so->so_state & SS_POLLRDBAND)
2440 1.154 ad revents |= events & (POLLPRI | POLLRDBAND);
2441 1.154 ad
2442 1.154 ad return revents;
2443 1.154 ad }
2444 1.154 ad
2445 1.154 ad int
2446 1.154 ad sopoll(struct socket *so, int events)
2447 1.154 ad {
2448 1.154 ad int revents = 0;
2449 1.154 ad
2450 1.160 ad #ifndef DIAGNOSTIC
2451 1.160 ad /*
2452 1.160 ad * Do a quick, unlocked check in expectation that the socket
2453 1.160 ad * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2454 1.160 ad * as the solocked() assertions will fail.
2455 1.160 ad */
2456 1.154 ad if ((revents = sodopoll(so, events)) != 0)
2457 1.154 ad return revents;
2458 1.160 ad #endif
2459 1.154 ad
2460 1.160 ad solock(so);
2461 1.154 ad if ((revents = sodopoll(so, events)) == 0) {
2462 1.154 ad if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2463 1.154 ad selrecord(curlwp, &so->so_rcv.sb_sel);
2464 1.160 ad so->so_rcv.sb_flags |= SB_NOTIFY;
2465 1.154 ad }
2466 1.154 ad
2467 1.154 ad if (events & (POLLOUT | POLLWRNORM)) {
2468 1.154 ad selrecord(curlwp, &so->so_snd.sb_sel);
2469 1.160 ad so->so_snd.sb_flags |= SB_NOTIFY;
2470 1.154 ad }
2471 1.154 ad }
2472 1.160 ad sounlock(so);
2473 1.154 ad
2474 1.154 ad return revents;
2475 1.154 ad }
2476 1.154 ad
2477 1.256 christos struct mbuf **
2478 1.262 maxv sbsavetimestamp(int opt, struct mbuf **mp)
2479 1.256 christos {
2480 1.256 christos struct timeval tv;
2481 1.275 pgoyette int error;
2482 1.275 pgoyette
2483 1.295 chs memset(&tv, 0, sizeof(tv));
2484 1.256 christos microtime(&tv);
2485 1.256 christos
2486 1.284 pgoyette MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, &mp), enosys(), error);
2487 1.275 pgoyette if (error == 0)
2488 1.275 pgoyette return mp;
2489 1.256 christos
2490 1.256 christos if (opt & SO_TIMESTAMP) {
2491 1.256 christos *mp = sbcreatecontrol(&tv, sizeof(tv),
2492 1.256 christos SCM_TIMESTAMP, SOL_SOCKET);
2493 1.256 christos if (*mp)
2494 1.256 christos mp = &(*mp)->m_next;
2495 1.256 christos }
2496 1.256 christos return mp;
2497 1.256 christos }
2498 1.256 christos
2499 1.154 ad
2500 1.94 yamt #include <sys/sysctl.h>
2501 1.94 yamt
2502 1.94 yamt static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2503 1.212 pooka static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2504 1.94 yamt
2505 1.94 yamt /*
2506 1.94 yamt * sysctl helper routine for kern.somaxkva. ensures that the given
2507 1.94 yamt * value is not too small.
2508 1.94 yamt * (XXX should we maybe make sure it's not too large as well?)
2509 1.94 yamt */
2510 1.94 yamt static int
2511 1.94 yamt sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2512 1.94 yamt {
2513 1.94 yamt int error, new_somaxkva;
2514 1.94 yamt struct sysctlnode node;
2515 1.94 yamt
2516 1.94 yamt new_somaxkva = somaxkva;
2517 1.94 yamt node = *rnode;
2518 1.94 yamt node.sysctl_data = &new_somaxkva;
2519 1.94 yamt error = sysctl_lookup(SYSCTLFN_CALL(&node));
2520 1.94 yamt if (error || newp == NULL)
2521 1.270 maxv return error;
2522 1.94 yamt
2523 1.94 yamt if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2524 1.270 maxv return EINVAL;
2525 1.94 yamt
2526 1.136 ad mutex_enter(&so_pendfree_lock);
2527 1.94 yamt somaxkva = new_somaxkva;
2528 1.136 ad cv_broadcast(&socurkva_cv);
2529 1.136 ad mutex_exit(&so_pendfree_lock);
2530 1.94 yamt
2531 1.270 maxv return error;
2532 1.94 yamt }
2533 1.94 yamt
2534 1.212 pooka /*
2535 1.212 pooka * sysctl helper routine for kern.sbmax. Basically just ensures that
2536 1.212 pooka * any new value is not too small.
2537 1.212 pooka */
2538 1.212 pooka static int
2539 1.212 pooka sysctl_kern_sbmax(SYSCTLFN_ARGS)
2540 1.212 pooka {
2541 1.212 pooka int error, new_sbmax;
2542 1.212 pooka struct sysctlnode node;
2543 1.212 pooka
2544 1.212 pooka new_sbmax = sb_max;
2545 1.212 pooka node = *rnode;
2546 1.212 pooka node.sysctl_data = &new_sbmax;
2547 1.212 pooka error = sysctl_lookup(SYSCTLFN_CALL(&node));
2548 1.212 pooka if (error || newp == NULL)
2549 1.270 maxv return error;
2550 1.212 pooka
2551 1.212 pooka KERNEL_LOCK(1, NULL);
2552 1.212 pooka error = sb_max_set(new_sbmax);
2553 1.212 pooka KERNEL_UNLOCK_ONE(NULL);
2554 1.212 pooka
2555 1.270 maxv return error;
2556 1.212 pooka }
2557 1.212 pooka
2558 1.266 christos /*
2559 1.266 christos * sysctl helper routine for kern.sooptions. Ensures that only allowed
2560 1.266 christos * options can be set.
2561 1.266 christos */
2562 1.266 christos static int
2563 1.266 christos sysctl_kern_sooptions(SYSCTLFN_ARGS)
2564 1.266 christos {
2565 1.266 christos int error, new_options;
2566 1.266 christos struct sysctlnode node;
2567 1.266 christos
2568 1.266 christos new_options = sooptions;
2569 1.266 christos node = *rnode;
2570 1.266 christos node.sysctl_data = &new_options;
2571 1.266 christos error = sysctl_lookup(SYSCTLFN_CALL(&node));
2572 1.266 christos if (error || newp == NULL)
2573 1.266 christos return error;
2574 1.266 christos
2575 1.266 christos if (new_options & ~SO_DEFOPTS)
2576 1.266 christos return EINVAL;
2577 1.266 christos
2578 1.266 christos sooptions = new_options;
2579 1.266 christos
2580 1.266 christos return 0;
2581 1.266 christos }
2582 1.266 christos
2583 1.178 pooka static void
2584 1.212 pooka sysctl_kern_socket_setup(void)
2585 1.94 yamt {
2586 1.94 yamt
2587 1.178 pooka KASSERT(socket_sysctllog == NULL);
2588 1.97 atatat
2589 1.178 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2590 1.97 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2591 1.103 atatat CTLTYPE_INT, "somaxkva",
2592 1.103 atatat SYSCTL_DESCR("Maximum amount of kernel memory to be "
2593 1.270 maxv "used for socket buffers"),
2594 1.94 yamt sysctl_kern_somaxkva, 0, NULL, 0,
2595 1.94 yamt CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2596 1.212 pooka
2597 1.212 pooka sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2598 1.212 pooka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2599 1.292 mlelstv CTLTYPE_BOOL, "sofixedbuf",
2600 1.292 mlelstv SYSCTL_DESCR("Prevent scaling of fixed socket buffers"),
2601 1.292 mlelstv NULL, 0, &sofixedbuf, 0,
2602 1.292 mlelstv CTL_KERN, KERN_SOFIXEDBUF, CTL_EOL);
2603 1.292 mlelstv
2604 1.292 mlelstv sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2605 1.292 mlelstv CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2606 1.212 pooka CTLTYPE_INT, "sbmax",
2607 1.212 pooka SYSCTL_DESCR("Maximum socket buffer size"),
2608 1.212 pooka sysctl_kern_sbmax, 0, NULL, 0,
2609 1.212 pooka CTL_KERN, KERN_SBMAX, CTL_EOL);
2610 1.266 christos
2611 1.266 christos sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2612 1.266 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2613 1.266 christos CTLTYPE_INT, "sooptions",
2614 1.266 christos SYSCTL_DESCR("Default socket options"),
2615 1.266 christos sysctl_kern_sooptions, 0, NULL, 0,
2616 1.266 christos CTL_KERN, CTL_CREATE, CTL_EOL);
2617 1.94 yamt }
2618