uipc_socket.c revision 1.6 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.2 cgd * from: @(#)uipc_socket.c 7.28 (Berkeley) 5/4/91
34 1.6 mycroft * $Id: uipc_socket.c,v 1.6 1993/09/08 21:12:49 mycroft Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #include "param.h"
38 1.3 andrew #include "systm.h"
39 1.1 cgd #include "proc.h"
40 1.1 cgd #include "file.h"
41 1.1 cgd #include "malloc.h"
42 1.1 cgd #include "mbuf.h"
43 1.1 cgd #include "domain.h"
44 1.1 cgd #include "kernel.h"
45 1.2 cgd #include "select.h"
46 1.1 cgd #include "protosw.h"
47 1.1 cgd #include "socket.h"
48 1.1 cgd #include "socketvar.h"
49 1.1 cgd #include "resourcevar.h"
50 1.1 cgd
51 1.1 cgd /*
52 1.1 cgd * Socket operation routines.
53 1.1 cgd * These routines are called by the routines in
54 1.1 cgd * sys_socket.c or from a system process, and
55 1.1 cgd * implement the semantics of socket operations by
56 1.1 cgd * switching out to the protocol specific routines.
57 1.1 cgd */
58 1.1 cgd /*ARGSUSED*/
59 1.3 andrew int
60 1.1 cgd socreate(dom, aso, type, proto)
61 1.1 cgd struct socket **aso;
62 1.1 cgd register int type;
63 1.1 cgd int proto;
64 1.1 cgd {
65 1.1 cgd struct proc *p = curproc; /* XXX */
66 1.1 cgd register struct protosw *prp;
67 1.1 cgd register struct socket *so;
68 1.1 cgd register int error;
69 1.1 cgd
70 1.1 cgd if (proto)
71 1.1 cgd prp = pffindproto(dom, proto, type);
72 1.1 cgd else
73 1.1 cgd prp = pffindtype(dom, type);
74 1.5 mycroft if (!prp || !prp->pr_usrreq)
75 1.1 cgd return (EPROTONOSUPPORT);
76 1.1 cgd if (prp->pr_type != type)
77 1.1 cgd return (EPROTOTYPE);
78 1.1 cgd MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT);
79 1.1 cgd bzero((caddr_t)so, sizeof(*so));
80 1.1 cgd so->so_type = type;
81 1.1 cgd if (p->p_ucred->cr_uid == 0)
82 1.1 cgd so->so_state = SS_PRIV;
83 1.1 cgd so->so_proto = prp;
84 1.1 cgd error =
85 1.1 cgd (*prp->pr_usrreq)(so, PRU_ATTACH,
86 1.1 cgd (struct mbuf *)0, (struct mbuf *)proto, (struct mbuf *)0);
87 1.1 cgd if (error) {
88 1.1 cgd so->so_state |= SS_NOFDREF;
89 1.1 cgd sofree(so);
90 1.1 cgd return (error);
91 1.1 cgd }
92 1.1 cgd *aso = so;
93 1.1 cgd return (0);
94 1.1 cgd }
95 1.1 cgd
96 1.3 andrew int
97 1.1 cgd sobind(so, nam)
98 1.1 cgd struct socket *so;
99 1.1 cgd struct mbuf *nam;
100 1.1 cgd {
101 1.1 cgd int s = splnet();
102 1.1 cgd int error;
103 1.1 cgd
104 1.1 cgd error =
105 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_BIND,
106 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
107 1.1 cgd splx(s);
108 1.1 cgd return (error);
109 1.1 cgd }
110 1.1 cgd
111 1.3 andrew int
112 1.1 cgd solisten(so, backlog)
113 1.1 cgd register struct socket *so;
114 1.1 cgd int backlog;
115 1.1 cgd {
116 1.1 cgd int s = splnet(), error;
117 1.1 cgd
118 1.1 cgd error =
119 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_LISTEN,
120 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
121 1.1 cgd if (error) {
122 1.1 cgd splx(s);
123 1.1 cgd return (error);
124 1.1 cgd }
125 1.1 cgd if (so->so_q == 0)
126 1.1 cgd so->so_options |= SO_ACCEPTCONN;
127 1.1 cgd if (backlog < 0)
128 1.1 cgd backlog = 0;
129 1.1 cgd so->so_qlimit = min(backlog, SOMAXCONN);
130 1.1 cgd splx(s);
131 1.1 cgd return (0);
132 1.1 cgd }
133 1.1 cgd
134 1.3 andrew int
135 1.1 cgd sofree(so)
136 1.1 cgd register struct socket *so;
137 1.1 cgd {
138 1.1 cgd
139 1.1 cgd if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
140 1.1 cgd return;
141 1.1 cgd if (so->so_head) {
142 1.1 cgd if (!soqremque(so, 0) && !soqremque(so, 1))
143 1.1 cgd panic("sofree dq");
144 1.1 cgd so->so_head = 0;
145 1.1 cgd }
146 1.1 cgd sbrelease(&so->so_snd);
147 1.1 cgd sorflush(so);
148 1.1 cgd FREE(so, M_SOCKET);
149 1.1 cgd }
150 1.1 cgd
151 1.1 cgd /*
152 1.1 cgd * Close a socket on last file table reference removal.
153 1.1 cgd * Initiate disconnect if connected.
154 1.1 cgd * Free socket when disconnect complete.
155 1.1 cgd */
156 1.3 andrew int
157 1.1 cgd soclose(so)
158 1.1 cgd register struct socket *so;
159 1.1 cgd {
160 1.1 cgd int s = splnet(); /* conservative */
161 1.1 cgd int error = 0;
162 1.1 cgd
163 1.1 cgd if (so->so_options & SO_ACCEPTCONN) {
164 1.1 cgd while (so->so_q0)
165 1.1 cgd (void) soabort(so->so_q0);
166 1.1 cgd while (so->so_q)
167 1.1 cgd (void) soabort(so->so_q);
168 1.1 cgd }
169 1.1 cgd if (so->so_pcb == 0)
170 1.1 cgd goto discard;
171 1.1 cgd if (so->so_state & SS_ISCONNECTED) {
172 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) == 0) {
173 1.1 cgd error = sodisconnect(so);
174 1.1 cgd if (error)
175 1.1 cgd goto drop;
176 1.1 cgd }
177 1.1 cgd if (so->so_options & SO_LINGER) {
178 1.1 cgd if ((so->so_state & SS_ISDISCONNECTING) &&
179 1.1 cgd (so->so_state & SS_NBIO))
180 1.1 cgd goto drop;
181 1.1 cgd while (so->so_state & SS_ISCONNECTED)
182 1.1 cgd if (error = tsleep((caddr_t)&so->so_timeo,
183 1.1 cgd PSOCK | PCATCH, netcls, so->so_linger))
184 1.1 cgd break;
185 1.1 cgd }
186 1.1 cgd }
187 1.1 cgd drop:
188 1.1 cgd if (so->so_pcb) {
189 1.1 cgd int error2 =
190 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
191 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
192 1.1 cgd if (error == 0)
193 1.1 cgd error = error2;
194 1.1 cgd }
195 1.1 cgd discard:
196 1.1 cgd if (so->so_state & SS_NOFDREF)
197 1.1 cgd panic("soclose: NOFDREF");
198 1.1 cgd so->so_state |= SS_NOFDREF;
199 1.1 cgd sofree(so);
200 1.1 cgd splx(s);
201 1.1 cgd return (error);
202 1.1 cgd }
203 1.1 cgd
204 1.1 cgd /*
205 1.1 cgd * Must be called at splnet...
206 1.1 cgd */
207 1.3 andrew int
208 1.1 cgd soabort(so)
209 1.1 cgd struct socket *so;
210 1.1 cgd {
211 1.1 cgd
212 1.1 cgd return (
213 1.1 cgd (*so->so_proto->pr_usrreq)(so, PRU_ABORT,
214 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
215 1.1 cgd }
216 1.1 cgd
217 1.3 andrew int
218 1.1 cgd soaccept(so, nam)
219 1.1 cgd register struct socket *so;
220 1.1 cgd struct mbuf *nam;
221 1.1 cgd {
222 1.1 cgd int s = splnet();
223 1.1 cgd int error;
224 1.1 cgd
225 1.1 cgd if ((so->so_state & SS_NOFDREF) == 0)
226 1.1 cgd panic("soaccept: !NOFDREF");
227 1.1 cgd so->so_state &= ~SS_NOFDREF;
228 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
229 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
230 1.1 cgd splx(s);
231 1.1 cgd return (error);
232 1.1 cgd }
233 1.1 cgd
234 1.3 andrew int
235 1.1 cgd soconnect(so, nam)
236 1.1 cgd register struct socket *so;
237 1.1 cgd struct mbuf *nam;
238 1.1 cgd {
239 1.1 cgd int s;
240 1.1 cgd int error;
241 1.1 cgd
242 1.1 cgd if (so->so_options & SO_ACCEPTCONN)
243 1.1 cgd return (EOPNOTSUPP);
244 1.1 cgd s = splnet();
245 1.1 cgd /*
246 1.1 cgd * If protocol is connection-based, can only connect once.
247 1.1 cgd * Otherwise, if connected, try to disconnect first.
248 1.1 cgd * This allows user to disconnect by connecting to, e.g.,
249 1.1 cgd * a null address.
250 1.1 cgd */
251 1.1 cgd if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
252 1.1 cgd ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
253 1.1 cgd (error = sodisconnect(so))))
254 1.1 cgd error = EISCONN;
255 1.1 cgd else
256 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
257 1.1 cgd (struct mbuf *)0, nam, (struct mbuf *)0);
258 1.1 cgd splx(s);
259 1.1 cgd return (error);
260 1.1 cgd }
261 1.1 cgd
262 1.3 andrew int
263 1.1 cgd soconnect2(so1, so2)
264 1.1 cgd register struct socket *so1;
265 1.1 cgd struct socket *so2;
266 1.1 cgd {
267 1.1 cgd int s = splnet();
268 1.1 cgd int error;
269 1.1 cgd
270 1.1 cgd error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
271 1.1 cgd (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0);
272 1.1 cgd splx(s);
273 1.1 cgd return (error);
274 1.1 cgd }
275 1.1 cgd
276 1.3 andrew int
277 1.1 cgd sodisconnect(so)
278 1.1 cgd register struct socket *so;
279 1.1 cgd {
280 1.1 cgd int s = splnet();
281 1.1 cgd int error;
282 1.1 cgd
283 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
284 1.1 cgd error = ENOTCONN;
285 1.1 cgd goto bad;
286 1.1 cgd }
287 1.1 cgd if (so->so_state & SS_ISDISCONNECTING) {
288 1.1 cgd error = EALREADY;
289 1.1 cgd goto bad;
290 1.1 cgd }
291 1.1 cgd error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
292 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0);
293 1.1 cgd bad:
294 1.1 cgd splx(s);
295 1.1 cgd return (error);
296 1.1 cgd }
297 1.1 cgd
298 1.1 cgd /*
299 1.1 cgd * Send on a socket.
300 1.1 cgd * If send must go all at once and message is larger than
301 1.1 cgd * send buffering, then hard error.
302 1.1 cgd * Lock against other senders.
303 1.1 cgd * If must go all at once and not enough room now, then
304 1.1 cgd * inform user that this would block and do nothing.
305 1.1 cgd * Otherwise, if nonblocking, send as much as possible.
306 1.1 cgd * The data to be sent is described by "uio" if nonzero,
307 1.1 cgd * otherwise by the mbuf chain "top" (which must be null
308 1.1 cgd * if uio is not). Data provided in mbuf chain must be small
309 1.1 cgd * enough to send all at once.
310 1.1 cgd *
311 1.1 cgd * Returns nonzero on error, timeout or signal; callers
312 1.1 cgd * must check for short counts if EINTR/ERESTART are returned.
313 1.1 cgd * Data and control buffers are freed on return.
314 1.1 cgd */
315 1.3 andrew int
316 1.1 cgd sosend(so, addr, uio, top, control, flags)
317 1.1 cgd register struct socket *so;
318 1.1 cgd struct mbuf *addr;
319 1.1 cgd struct uio *uio;
320 1.1 cgd struct mbuf *top;
321 1.1 cgd struct mbuf *control;
322 1.1 cgd int flags;
323 1.1 cgd {
324 1.1 cgd struct proc *p = curproc; /* XXX */
325 1.1 cgd struct mbuf **mp;
326 1.1 cgd register struct mbuf *m;
327 1.1 cgd register long space, len, resid;
328 1.1 cgd int clen = 0, error, s, dontroute, mlen;
329 1.1 cgd int atomic = sosendallatonce(so) || top;
330 1.1 cgd
331 1.1 cgd if (uio)
332 1.1 cgd resid = uio->uio_resid;
333 1.1 cgd else
334 1.1 cgd resid = top->m_pkthdr.len;
335 1.1 cgd dontroute =
336 1.1 cgd (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
337 1.1 cgd (so->so_proto->pr_flags & PR_ATOMIC);
338 1.1 cgd p->p_stats->p_ru.ru_msgsnd++;
339 1.1 cgd if (control)
340 1.1 cgd clen = control->m_len;
341 1.1 cgd #define snderr(errno) { error = errno; splx(s); goto release; }
342 1.1 cgd
343 1.1 cgd restart:
344 1.1 cgd if (error = sblock(&so->so_snd))
345 1.1 cgd goto out;
346 1.1 cgd do {
347 1.1 cgd s = splnet();
348 1.1 cgd if (so->so_state & SS_CANTSENDMORE)
349 1.1 cgd snderr(EPIPE);
350 1.1 cgd if (so->so_error)
351 1.1 cgd snderr(so->so_error);
352 1.1 cgd if ((so->so_state & SS_ISCONNECTED) == 0) {
353 1.1 cgd if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
354 1.1 cgd if ((so->so_state & SS_ISCONFIRMING) == 0 &&
355 1.1 cgd !(resid == 0 && clen != 0))
356 1.1 cgd snderr(ENOTCONN);
357 1.1 cgd } else if (addr == 0)
358 1.1 cgd snderr(EDESTADDRREQ);
359 1.1 cgd }
360 1.1 cgd space = sbspace(&so->so_snd);
361 1.1 cgd if (flags & MSG_OOB)
362 1.1 cgd space += 1024;
363 1.1 cgd if (space < resid + clen &&
364 1.1 cgd (atomic || space < so->so_snd.sb_lowat || space < clen)) {
365 1.1 cgd if (atomic && resid > so->so_snd.sb_hiwat ||
366 1.1 cgd clen > so->so_snd.sb_hiwat)
367 1.1 cgd snderr(EMSGSIZE);
368 1.1 cgd if (so->so_state & SS_NBIO)
369 1.1 cgd snderr(EWOULDBLOCK);
370 1.1 cgd sbunlock(&so->so_snd);
371 1.1 cgd error = sbwait(&so->so_snd);
372 1.1 cgd splx(s);
373 1.1 cgd if (error)
374 1.1 cgd goto out;
375 1.1 cgd goto restart;
376 1.1 cgd }
377 1.1 cgd splx(s);
378 1.1 cgd mp = ⊤
379 1.1 cgd space -= clen;
380 1.1 cgd do {
381 1.1 cgd if (uio == NULL) {
382 1.1 cgd /*
383 1.1 cgd * Data is prepackaged in "top".
384 1.1 cgd */
385 1.1 cgd resid = 0;
386 1.1 cgd if (flags & MSG_EOR)
387 1.1 cgd top->m_flags |= M_EOR;
388 1.1 cgd } else do {
389 1.1 cgd if (top == 0) {
390 1.1 cgd MGETHDR(m, M_WAIT, MT_DATA);
391 1.1 cgd mlen = MHLEN;
392 1.1 cgd m->m_pkthdr.len = 0;
393 1.1 cgd m->m_pkthdr.rcvif = (struct ifnet *)0;
394 1.1 cgd } else {
395 1.1 cgd MGET(m, M_WAIT, MT_DATA);
396 1.1 cgd mlen = MLEN;
397 1.1 cgd }
398 1.6 mycroft if (resid >= MINCLSIZE) {
399 1.1 cgd MCLGET(m, M_WAIT);
400 1.1 cgd if ((m->m_flags & M_EXT) == 0)
401 1.1 cgd goto nopages;
402 1.1 cgd mlen = MCLBYTES;
403 1.1 cgd #ifdef MAPPED_MBUFS
404 1.1 cgd len = min(MCLBYTES, resid);
405 1.1 cgd #else
406 1.1 cgd if (top == 0) {
407 1.1 cgd len = min(MCLBYTES - max_hdr, resid);
408 1.1 cgd m->m_data += max_hdr;
409 1.1 cgd } else
410 1.1 cgd len = min(MCLBYTES, resid);
411 1.1 cgd #endif
412 1.6 mycroft len = min(len, space);
413 1.6 mycroft space -= len;
414 1.1 cgd } else {
415 1.1 cgd nopages:
416 1.1 cgd len = min(min(mlen, resid), space);
417 1.1 cgd space -= len;
418 1.1 cgd /*
419 1.1 cgd * For datagram protocols, leave room
420 1.1 cgd * for protocol headers in first mbuf.
421 1.1 cgd */
422 1.1 cgd if (atomic && top == 0 && len < mlen)
423 1.1 cgd MH_ALIGN(m, len);
424 1.1 cgd }
425 1.1 cgd error = uiomove(mtod(m, caddr_t), (int)len, uio);
426 1.1 cgd resid = uio->uio_resid;
427 1.1 cgd m->m_len = len;
428 1.1 cgd *mp = m;
429 1.1 cgd top->m_pkthdr.len += len;
430 1.1 cgd if (error)
431 1.1 cgd goto release;
432 1.1 cgd mp = &m->m_next;
433 1.1 cgd if (resid <= 0) {
434 1.1 cgd if (flags & MSG_EOR)
435 1.1 cgd top->m_flags |= M_EOR;
436 1.1 cgd break;
437 1.1 cgd }
438 1.1 cgd } while (space > 0 && atomic);
439 1.1 cgd if (dontroute)
440 1.1 cgd so->so_options |= SO_DONTROUTE;
441 1.1 cgd s = splnet(); /* XXX */
442 1.1 cgd error = (*so->so_proto->pr_usrreq)(so,
443 1.1 cgd (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
444 1.1 cgd top, addr, control);
445 1.1 cgd splx(s);
446 1.1 cgd if (dontroute)
447 1.1 cgd so->so_options &= ~SO_DONTROUTE;
448 1.1 cgd clen = 0;
449 1.1 cgd control = 0;
450 1.1 cgd top = 0;
451 1.1 cgd mp = ⊤
452 1.1 cgd if (error)
453 1.1 cgd goto release;
454 1.1 cgd } while (resid && space > 0);
455 1.1 cgd } while (resid);
456 1.1 cgd
457 1.1 cgd release:
458 1.1 cgd sbunlock(&so->so_snd);
459 1.1 cgd out:
460 1.1 cgd if (top)
461 1.1 cgd m_freem(top);
462 1.1 cgd if (control)
463 1.1 cgd m_freem(control);
464 1.1 cgd return (error);
465 1.1 cgd }
466 1.1 cgd
467 1.1 cgd /*
468 1.1 cgd * Implement receive operations on a socket.
469 1.1 cgd * We depend on the way that records are added to the sockbuf
470 1.1 cgd * by sbappend*. In particular, each record (mbufs linked through m_next)
471 1.1 cgd * must begin with an address if the protocol so specifies,
472 1.1 cgd * followed by an optional mbuf or mbufs containing ancillary data,
473 1.1 cgd * and then zero or more mbufs of data.
474 1.1 cgd * In order to avoid blocking network interrupts for the entire time here,
475 1.1 cgd * we splx() while doing the actual copy to user space.
476 1.1 cgd * Although the sockbuf is locked, new data may still be appended,
477 1.1 cgd * and thus we must maintain consistency of the sockbuf during that time.
478 1.1 cgd *
479 1.1 cgd * The caller may receive the data as a single mbuf chain by supplying
480 1.1 cgd * an mbuf **mp0 for use in returning the chain. The uio is then used
481 1.1 cgd * only for the count in uio_resid.
482 1.1 cgd */
483 1.3 andrew int
484 1.1 cgd soreceive(so, paddr, uio, mp0, controlp, flagsp)
485 1.1 cgd register struct socket *so;
486 1.1 cgd struct mbuf **paddr;
487 1.1 cgd struct uio *uio;
488 1.1 cgd struct mbuf **mp0;
489 1.1 cgd struct mbuf **controlp;
490 1.1 cgd int *flagsp;
491 1.1 cgd {
492 1.1 cgd struct proc *p = curproc; /* XXX */
493 1.1 cgd register struct mbuf *m, **mp;
494 1.1 cgd register int flags, len, error, s, offset;
495 1.1 cgd struct protosw *pr = so->so_proto;
496 1.1 cgd struct mbuf *nextrecord;
497 1.1 cgd int moff, type;
498 1.3 andrew int orig_resid = uio->uio_resid;
499 1.1 cgd
500 1.1 cgd mp = mp0;
501 1.1 cgd if (paddr)
502 1.1 cgd *paddr = 0;
503 1.1 cgd if (controlp)
504 1.1 cgd *controlp = 0;
505 1.1 cgd if (flagsp)
506 1.1 cgd flags = *flagsp &~ MSG_EOR;
507 1.1 cgd else
508 1.1 cgd flags = 0;
509 1.1 cgd if (flags & MSG_OOB) {
510 1.1 cgd m = m_get(M_WAIT, MT_DATA);
511 1.1 cgd error = (*pr->pr_usrreq)(so, PRU_RCVOOB,
512 1.1 cgd m, (struct mbuf *)(flags & MSG_PEEK), (struct mbuf *)0);
513 1.1 cgd if (error)
514 1.1 cgd goto bad;
515 1.1 cgd do {
516 1.1 cgd error = uiomove(mtod(m, caddr_t),
517 1.1 cgd (int) min(uio->uio_resid, m->m_len), uio);
518 1.1 cgd m = m_free(m);
519 1.1 cgd } while (uio->uio_resid && error == 0 && m);
520 1.1 cgd bad:
521 1.1 cgd if (m)
522 1.1 cgd m_freem(m);
523 1.1 cgd return (error);
524 1.1 cgd }
525 1.1 cgd if (mp)
526 1.1 cgd *mp = (struct mbuf *)0;
527 1.1 cgd if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
528 1.1 cgd (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
529 1.1 cgd (struct mbuf *)0, (struct mbuf *)0);
530 1.1 cgd
531 1.1 cgd restart:
532 1.1 cgd if (error = sblock(&so->so_rcv))
533 1.1 cgd return (error);
534 1.1 cgd s = splnet();
535 1.1 cgd
536 1.1 cgd m = so->so_rcv.sb_mb;
537 1.1 cgd /*
538 1.1 cgd * If we have less data than requested, block awaiting more
539 1.1 cgd * (subject to any timeout) if:
540 1.1 cgd * 1. the current count is less than the low water mark, or
541 1.1 cgd * 2. MSG_WAITALL is set, and it is possible to do the entire
542 1.1 cgd * receive operation at once if we block (resid <= hiwat).
543 1.1 cgd * If MSG_WAITALL is set but resid is larger than the receive buffer,
544 1.1 cgd * we have to do the receive in sections, and thus risk returning
545 1.1 cgd * a short count if a timeout or signal occurs after we start.
546 1.1 cgd */
547 1.1 cgd while (m == 0 || so->so_rcv.sb_cc < uio->uio_resid &&
548 1.1 cgd (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
549 1.1 cgd ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
550 1.3 andrew m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0) {
551 1.1 cgd #ifdef DIAGNOSTIC
552 1.1 cgd if (m == 0 && so->so_rcv.sb_cc)
553 1.1 cgd panic("receive 1");
554 1.1 cgd #endif
555 1.1 cgd if (so->so_error) {
556 1.1 cgd if (m)
557 1.1 cgd break;
558 1.1 cgd error = so->so_error;
559 1.1 cgd if ((flags & MSG_PEEK) == 0)
560 1.1 cgd so->so_error = 0;
561 1.1 cgd goto release;
562 1.1 cgd }
563 1.1 cgd if (so->so_state & SS_CANTRCVMORE) {
564 1.1 cgd if (m)
565 1.1 cgd break;
566 1.1 cgd else
567 1.1 cgd goto release;
568 1.1 cgd }
569 1.1 cgd for (; m; m = m->m_next)
570 1.1 cgd if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
571 1.1 cgd m = so->so_rcv.sb_mb;
572 1.1 cgd goto dontblock;
573 1.1 cgd }
574 1.1 cgd if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
575 1.1 cgd (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
576 1.1 cgd error = ENOTCONN;
577 1.1 cgd goto release;
578 1.1 cgd }
579 1.1 cgd if (uio->uio_resid == 0)
580 1.1 cgd goto release;
581 1.1 cgd if (so->so_state & SS_NBIO) {
582 1.1 cgd error = EWOULDBLOCK;
583 1.1 cgd goto release;
584 1.1 cgd }
585 1.1 cgd sbunlock(&so->so_rcv);
586 1.1 cgd error = sbwait(&so->so_rcv);
587 1.1 cgd splx(s);
588 1.1 cgd if (error)
589 1.1 cgd return (error);
590 1.1 cgd goto restart;
591 1.1 cgd }
592 1.1 cgd dontblock:
593 1.1 cgd p->p_stats->p_ru.ru_msgrcv++;
594 1.1 cgd nextrecord = m->m_nextpkt;
595 1.1 cgd if (pr->pr_flags & PR_ADDR) {
596 1.1 cgd #ifdef DIAGNOSTIC
597 1.1 cgd if (m->m_type != MT_SONAME)
598 1.1 cgd panic("receive 1a");
599 1.1 cgd #endif
600 1.3 andrew orig_resid = 0;
601 1.1 cgd if (flags & MSG_PEEK) {
602 1.1 cgd if (paddr)
603 1.1 cgd *paddr = m_copy(m, 0, m->m_len);
604 1.1 cgd m = m->m_next;
605 1.1 cgd } else {
606 1.1 cgd sbfree(&so->so_rcv, m);
607 1.1 cgd if (paddr) {
608 1.1 cgd *paddr = m;
609 1.1 cgd so->so_rcv.sb_mb = m->m_next;
610 1.1 cgd m->m_next = 0;
611 1.1 cgd m = so->so_rcv.sb_mb;
612 1.1 cgd } else {
613 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
614 1.1 cgd m = so->so_rcv.sb_mb;
615 1.1 cgd }
616 1.1 cgd }
617 1.1 cgd }
618 1.1 cgd while (m && m->m_type == MT_CONTROL && error == 0) {
619 1.1 cgd if (flags & MSG_PEEK) {
620 1.1 cgd if (controlp)
621 1.1 cgd *controlp = m_copy(m, 0, m->m_len);
622 1.1 cgd m = m->m_next;
623 1.1 cgd } else {
624 1.1 cgd sbfree(&so->so_rcv, m);
625 1.1 cgd if (controlp) {
626 1.1 cgd if (pr->pr_domain->dom_externalize &&
627 1.1 cgd mtod(m, struct cmsghdr *)->cmsg_type ==
628 1.1 cgd SCM_RIGHTS)
629 1.1 cgd error = (*pr->pr_domain->dom_externalize)(m);
630 1.1 cgd *controlp = m;
631 1.1 cgd so->so_rcv.sb_mb = m->m_next;
632 1.1 cgd m->m_next = 0;
633 1.1 cgd m = so->so_rcv.sb_mb;
634 1.1 cgd } else {
635 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
636 1.1 cgd m = so->so_rcv.sb_mb;
637 1.1 cgd }
638 1.1 cgd }
639 1.3 andrew if (controlp) {
640 1.3 andrew orig_resid = 0;
641 1.1 cgd controlp = &(*controlp)->m_next;
642 1.3 andrew }
643 1.1 cgd }
644 1.1 cgd if (m) {
645 1.1 cgd if ((flags & MSG_PEEK) == 0)
646 1.1 cgd m->m_nextpkt = nextrecord;
647 1.1 cgd type = m->m_type;
648 1.1 cgd if (type == MT_OOBDATA)
649 1.1 cgd flags |= MSG_OOB;
650 1.1 cgd }
651 1.1 cgd moff = 0;
652 1.1 cgd offset = 0;
653 1.1 cgd while (m && uio->uio_resid > 0 && error == 0) {
654 1.1 cgd if (m->m_type == MT_OOBDATA) {
655 1.1 cgd if (type != MT_OOBDATA)
656 1.1 cgd break;
657 1.1 cgd } else if (type == MT_OOBDATA)
658 1.1 cgd break;
659 1.1 cgd #ifdef DIAGNOSTIC
660 1.1 cgd else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
661 1.1 cgd panic("receive 3");
662 1.1 cgd #endif
663 1.1 cgd so->so_state &= ~SS_RCVATMARK;
664 1.1 cgd len = uio->uio_resid;
665 1.1 cgd if (so->so_oobmark && len > so->so_oobmark - offset)
666 1.1 cgd len = so->so_oobmark - offset;
667 1.1 cgd if (len > m->m_len - moff)
668 1.1 cgd len = m->m_len - moff;
669 1.1 cgd /*
670 1.1 cgd * If mp is set, just pass back the mbufs.
671 1.1 cgd * Otherwise copy them out via the uio, then free.
672 1.1 cgd * Sockbuf must be consistent here (points to current mbuf,
673 1.1 cgd * it points to next record) when we drop priority;
674 1.1 cgd * we must note any additions to the sockbuf when we
675 1.1 cgd * block interrupts again.
676 1.1 cgd */
677 1.1 cgd if (mp == 0) {
678 1.1 cgd splx(s);
679 1.1 cgd error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
680 1.1 cgd s = splnet();
681 1.1 cgd } else
682 1.1 cgd uio->uio_resid -= len;
683 1.1 cgd if (len == m->m_len - moff) {
684 1.1 cgd if (m->m_flags & M_EOR)
685 1.1 cgd flags |= MSG_EOR;
686 1.1 cgd if (flags & MSG_PEEK) {
687 1.1 cgd m = m->m_next;
688 1.1 cgd moff = 0;
689 1.1 cgd } else {
690 1.1 cgd nextrecord = m->m_nextpkt;
691 1.1 cgd sbfree(&so->so_rcv, m);
692 1.1 cgd if (mp) {
693 1.1 cgd *mp = m;
694 1.1 cgd mp = &m->m_next;
695 1.1 cgd so->so_rcv.sb_mb = m = m->m_next;
696 1.1 cgd *mp = (struct mbuf *)0;
697 1.1 cgd } else {
698 1.1 cgd MFREE(m, so->so_rcv.sb_mb);
699 1.1 cgd m = so->so_rcv.sb_mb;
700 1.1 cgd }
701 1.1 cgd if (m)
702 1.1 cgd m->m_nextpkt = nextrecord;
703 1.1 cgd }
704 1.1 cgd } else {
705 1.1 cgd if (flags & MSG_PEEK)
706 1.1 cgd moff += len;
707 1.1 cgd else {
708 1.1 cgd if (mp)
709 1.1 cgd *mp = m_copym(m, 0, len, M_WAIT);
710 1.1 cgd m->m_data += len;
711 1.1 cgd m->m_len -= len;
712 1.1 cgd so->so_rcv.sb_cc -= len;
713 1.1 cgd }
714 1.1 cgd }
715 1.1 cgd if (so->so_oobmark) {
716 1.1 cgd if ((flags & MSG_PEEK) == 0) {
717 1.1 cgd so->so_oobmark -= len;
718 1.1 cgd if (so->so_oobmark == 0) {
719 1.1 cgd so->so_state |= SS_RCVATMARK;
720 1.1 cgd break;
721 1.1 cgd }
722 1.1 cgd } else
723 1.1 cgd offset += len;
724 1.1 cgd }
725 1.1 cgd if (flags & MSG_EOR)
726 1.1 cgd break;
727 1.1 cgd /*
728 1.1 cgd * If the MSG_WAITALL flag is set (for non-atomic socket),
729 1.1 cgd * we must not quit until "uio->uio_resid == 0" or an error
730 1.1 cgd * termination. If a signal/timeout occurs, return
731 1.1 cgd * with a short count but without error.
732 1.1 cgd * Keep sockbuf locked against other readers.
733 1.1 cgd */
734 1.1 cgd while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
735 1.3 andrew !sosendallatonce(so) && !nextrecord) {
736 1.1 cgd if (so->so_error || so->so_state & SS_CANTRCVMORE)
737 1.1 cgd break;
738 1.1 cgd error = sbwait(&so->so_rcv);
739 1.1 cgd if (error) {
740 1.1 cgd sbunlock(&so->so_rcv);
741 1.1 cgd splx(s);
742 1.1 cgd return (0);
743 1.1 cgd }
744 1.1 cgd if (m = so->so_rcv.sb_mb)
745 1.1 cgd nextrecord = m->m_nextpkt;
746 1.1 cgd }
747 1.1 cgd }
748 1.3 andrew
749 1.3 andrew if (m && pr->pr_flags & PR_ATOMIC) {
750 1.3 andrew flags |= MSG_TRUNC;
751 1.3 andrew if ((flags & MSG_PEEK) == 0)
752 1.3 andrew (void) sbdroprecord(&so->so_rcv);
753 1.3 andrew }
754 1.1 cgd if ((flags & MSG_PEEK) == 0) {
755 1.1 cgd if (m == 0)
756 1.1 cgd so->so_rcv.sb_mb = nextrecord;
757 1.1 cgd if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
758 1.1 cgd (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
759 1.1 cgd (struct mbuf *)flags, (struct mbuf *)0,
760 1.1 cgd (struct mbuf *)0);
761 1.1 cgd }
762 1.3 andrew if (orig_resid == uio->uio_resid && orig_resid &&
763 1.3 andrew (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
764 1.3 andrew sbunlock(&so->so_rcv);
765 1.3 andrew splx(s);
766 1.3 andrew goto restart;
767 1.3 andrew }
768 1.3 andrew
769 1.1 cgd if (flagsp)
770 1.1 cgd *flagsp |= flags;
771 1.1 cgd release:
772 1.1 cgd sbunlock(&so->so_rcv);
773 1.1 cgd splx(s);
774 1.1 cgd return (error);
775 1.1 cgd }
776 1.1 cgd
777 1.1 cgd soshutdown(so, how)
778 1.1 cgd register struct socket *so;
779 1.1 cgd register int how;
780 1.1 cgd {
781 1.1 cgd register struct protosw *pr = so->so_proto;
782 1.1 cgd
783 1.1 cgd how++;
784 1.1 cgd if (how & FREAD)
785 1.1 cgd sorflush(so);
786 1.1 cgd if (how & FWRITE)
787 1.1 cgd return ((*pr->pr_usrreq)(so, PRU_SHUTDOWN,
788 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0));
789 1.1 cgd return (0);
790 1.1 cgd }
791 1.1 cgd
792 1.1 cgd sorflush(so)
793 1.1 cgd register struct socket *so;
794 1.1 cgd {
795 1.1 cgd register struct sockbuf *sb = &so->so_rcv;
796 1.1 cgd register struct protosw *pr = so->so_proto;
797 1.1 cgd register int s;
798 1.1 cgd struct sockbuf asb;
799 1.1 cgd
800 1.1 cgd sb->sb_flags |= SB_NOINTR;
801 1.1 cgd (void) sblock(sb);
802 1.1 cgd s = splimp();
803 1.1 cgd socantrcvmore(so);
804 1.1 cgd sbunlock(sb);
805 1.1 cgd asb = *sb;
806 1.1 cgd bzero((caddr_t)sb, sizeof (*sb));
807 1.1 cgd splx(s);
808 1.1 cgd if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
809 1.1 cgd (*pr->pr_domain->dom_dispose)(asb.sb_mb);
810 1.1 cgd sbrelease(&asb);
811 1.1 cgd }
812 1.1 cgd
813 1.1 cgd sosetopt(so, level, optname, m0)
814 1.1 cgd register struct socket *so;
815 1.1 cgd int level, optname;
816 1.1 cgd struct mbuf *m0;
817 1.1 cgd {
818 1.1 cgd int error = 0;
819 1.1 cgd register struct mbuf *m = m0;
820 1.1 cgd
821 1.1 cgd if (level != SOL_SOCKET) {
822 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput)
823 1.1 cgd return ((*so->so_proto->pr_ctloutput)
824 1.1 cgd (PRCO_SETOPT, so, level, optname, &m0));
825 1.1 cgd error = ENOPROTOOPT;
826 1.1 cgd } else {
827 1.1 cgd switch (optname) {
828 1.1 cgd
829 1.1 cgd case SO_LINGER:
830 1.1 cgd if (m == NULL || m->m_len != sizeof (struct linger)) {
831 1.1 cgd error = EINVAL;
832 1.1 cgd goto bad;
833 1.1 cgd }
834 1.1 cgd so->so_linger = mtod(m, struct linger *)->l_linger;
835 1.1 cgd /* fall thru... */
836 1.1 cgd
837 1.1 cgd case SO_DEBUG:
838 1.1 cgd case SO_KEEPALIVE:
839 1.1 cgd case SO_DONTROUTE:
840 1.1 cgd case SO_USELOOPBACK:
841 1.1 cgd case SO_BROADCAST:
842 1.1 cgd case SO_REUSEADDR:
843 1.1 cgd case SO_OOBINLINE:
844 1.1 cgd if (m == NULL || m->m_len < sizeof (int)) {
845 1.1 cgd error = EINVAL;
846 1.1 cgd goto bad;
847 1.1 cgd }
848 1.1 cgd if (*mtod(m, int *))
849 1.1 cgd so->so_options |= optname;
850 1.1 cgd else
851 1.1 cgd so->so_options &= ~optname;
852 1.1 cgd break;
853 1.1 cgd
854 1.1 cgd case SO_SNDBUF:
855 1.1 cgd case SO_RCVBUF:
856 1.1 cgd case SO_SNDLOWAT:
857 1.1 cgd case SO_RCVLOWAT:
858 1.1 cgd if (m == NULL || m->m_len < sizeof (int)) {
859 1.1 cgd error = EINVAL;
860 1.1 cgd goto bad;
861 1.1 cgd }
862 1.1 cgd switch (optname) {
863 1.1 cgd
864 1.1 cgd case SO_SNDBUF:
865 1.1 cgd case SO_RCVBUF:
866 1.1 cgd if (sbreserve(optname == SO_SNDBUF ?
867 1.1 cgd &so->so_snd : &so->so_rcv,
868 1.1 cgd (u_long) *mtod(m, int *)) == 0) {
869 1.1 cgd error = ENOBUFS;
870 1.1 cgd goto bad;
871 1.1 cgd }
872 1.1 cgd break;
873 1.1 cgd
874 1.1 cgd case SO_SNDLOWAT:
875 1.1 cgd so->so_snd.sb_lowat = *mtod(m, int *);
876 1.1 cgd break;
877 1.1 cgd case SO_RCVLOWAT:
878 1.1 cgd so->so_rcv.sb_lowat = *mtod(m, int *);
879 1.1 cgd break;
880 1.1 cgd }
881 1.1 cgd break;
882 1.1 cgd
883 1.1 cgd case SO_SNDTIMEO:
884 1.1 cgd case SO_RCVTIMEO:
885 1.1 cgd {
886 1.1 cgd struct timeval *tv;
887 1.1 cgd short val;
888 1.1 cgd
889 1.1 cgd if (m == NULL || m->m_len < sizeof (*tv)) {
890 1.1 cgd error = EINVAL;
891 1.1 cgd goto bad;
892 1.1 cgd }
893 1.1 cgd tv = mtod(m, struct timeval *);
894 1.1 cgd if (tv->tv_sec > SHRT_MAX / hz - hz) {
895 1.1 cgd error = EDOM;
896 1.1 cgd goto bad;
897 1.1 cgd }
898 1.1 cgd val = tv->tv_sec * hz + tv->tv_usec / tick;
899 1.1 cgd
900 1.1 cgd switch (optname) {
901 1.1 cgd
902 1.1 cgd case SO_SNDTIMEO:
903 1.1 cgd so->so_snd.sb_timeo = val;
904 1.1 cgd break;
905 1.1 cgd case SO_RCVTIMEO:
906 1.1 cgd so->so_rcv.sb_timeo = val;
907 1.1 cgd break;
908 1.1 cgd }
909 1.1 cgd break;
910 1.1 cgd }
911 1.1 cgd
912 1.1 cgd default:
913 1.1 cgd error = ENOPROTOOPT;
914 1.1 cgd break;
915 1.1 cgd }
916 1.1 cgd }
917 1.1 cgd bad:
918 1.1 cgd if (m)
919 1.1 cgd (void) m_free(m);
920 1.1 cgd return (error);
921 1.1 cgd }
922 1.1 cgd
923 1.1 cgd sogetopt(so, level, optname, mp)
924 1.1 cgd register struct socket *so;
925 1.1 cgd int level, optname;
926 1.1 cgd struct mbuf **mp;
927 1.1 cgd {
928 1.1 cgd register struct mbuf *m;
929 1.1 cgd
930 1.1 cgd if (level != SOL_SOCKET) {
931 1.1 cgd if (so->so_proto && so->so_proto->pr_ctloutput) {
932 1.1 cgd return ((*so->so_proto->pr_ctloutput)
933 1.1 cgd (PRCO_GETOPT, so, level, optname, mp));
934 1.1 cgd } else
935 1.1 cgd return (ENOPROTOOPT);
936 1.1 cgd } else {
937 1.1 cgd m = m_get(M_WAIT, MT_SOOPTS);
938 1.1 cgd m->m_len = sizeof (int);
939 1.1 cgd
940 1.1 cgd switch (optname) {
941 1.1 cgd
942 1.1 cgd case SO_LINGER:
943 1.1 cgd m->m_len = sizeof (struct linger);
944 1.1 cgd mtod(m, struct linger *)->l_onoff =
945 1.1 cgd so->so_options & SO_LINGER;
946 1.1 cgd mtod(m, struct linger *)->l_linger = so->so_linger;
947 1.1 cgd break;
948 1.1 cgd
949 1.1 cgd case SO_USELOOPBACK:
950 1.1 cgd case SO_DONTROUTE:
951 1.1 cgd case SO_DEBUG:
952 1.1 cgd case SO_KEEPALIVE:
953 1.1 cgd case SO_REUSEADDR:
954 1.1 cgd case SO_BROADCAST:
955 1.1 cgd case SO_OOBINLINE:
956 1.1 cgd *mtod(m, int *) = so->so_options & optname;
957 1.1 cgd break;
958 1.1 cgd
959 1.1 cgd case SO_TYPE:
960 1.1 cgd *mtod(m, int *) = so->so_type;
961 1.1 cgd break;
962 1.1 cgd
963 1.1 cgd case SO_ERROR:
964 1.1 cgd *mtod(m, int *) = so->so_error;
965 1.1 cgd so->so_error = 0;
966 1.1 cgd break;
967 1.1 cgd
968 1.1 cgd case SO_SNDBUF:
969 1.1 cgd *mtod(m, int *) = so->so_snd.sb_hiwat;
970 1.1 cgd break;
971 1.1 cgd
972 1.1 cgd case SO_RCVBUF:
973 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_hiwat;
974 1.1 cgd break;
975 1.1 cgd
976 1.1 cgd case SO_SNDLOWAT:
977 1.1 cgd *mtod(m, int *) = so->so_snd.sb_lowat;
978 1.1 cgd break;
979 1.1 cgd
980 1.1 cgd case SO_RCVLOWAT:
981 1.1 cgd *mtod(m, int *) = so->so_rcv.sb_lowat;
982 1.1 cgd break;
983 1.1 cgd
984 1.1 cgd case SO_SNDTIMEO:
985 1.1 cgd case SO_RCVTIMEO:
986 1.1 cgd {
987 1.1 cgd int val = (optname == SO_SNDTIMEO ?
988 1.1 cgd so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
989 1.1 cgd
990 1.1 cgd m->m_len = sizeof(struct timeval);
991 1.1 cgd mtod(m, struct timeval *)->tv_sec = val / hz;
992 1.1 cgd mtod(m, struct timeval *)->tv_usec =
993 1.1 cgd (val % hz) / tick;
994 1.1 cgd break;
995 1.1 cgd }
996 1.1 cgd
997 1.1 cgd default:
998 1.1 cgd (void)m_free(m);
999 1.1 cgd return (ENOPROTOOPT);
1000 1.1 cgd }
1001 1.1 cgd *mp = m;
1002 1.1 cgd return (0);
1003 1.1 cgd }
1004 1.1 cgd }
1005 1.1 cgd
1006 1.1 cgd sohasoutofband(so)
1007 1.1 cgd register struct socket *so;
1008 1.1 cgd {
1009 1.1 cgd struct proc *p;
1010 1.1 cgd
1011 1.1 cgd if (so->so_pgid < 0)
1012 1.1 cgd gsignal(-so->so_pgid, SIGURG);
1013 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1014 1.1 cgd psignal(p, SIGURG);
1015 1.2 cgd selwakeup(&so->so_rcv.sb_sel);
1016 1.1 cgd }
1017