uipc_socket.c revision 1.100 1 /* $NetBSD: uipc_socket.c,v 1.100 2004/04/25 16:42:41 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.100 2004/04/25 16:42:41 simonb Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 #else
120
121 #define SOSEND_COUNTER_INCR(ev) /* nothing */
122
123 #endif /* SOSEND_COUNTERS */
124
125 void
126 soinit(void)
127 {
128
129 /* Set the initial adjusted socket buffer size. */
130 if (sb_max_set(sb_max))
131 panic("bad initial sb_max value: %lu\n", sb_max);
132
133 #ifdef SOSEND_COUNTERS
134 evcnt_attach_static(&sosend_loan_big);
135 evcnt_attach_static(&sosend_copy_big);
136 evcnt_attach_static(&sosend_copy_small);
137 evcnt_attach_static(&sosend_kvalimit);
138 #endif /* SOSEND_COUNTERS */
139 }
140
141 #ifdef SOSEND_NO_LOAN
142 int use_sosend_loan = 0;
143 #else
144 int use_sosend_loan = 1;
145 #endif
146
147 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
148 struct mbuf *so_pendfree;
149
150 #ifndef SOMAXKVA
151 #define SOMAXKVA (16 * 1024 * 1024)
152 #endif
153 int somaxkva = SOMAXKVA;
154 int socurkva;
155 int sokvawaiters;
156
157 #define SOCK_LOAN_THRESH 4096
158 #define SOCK_LOAN_CHUNK 65536
159
160 static size_t sodopendfree(struct socket *);
161 static size_t sodopendfreel(struct socket *);
162 static __inline vsize_t sokvareserve(struct socket *, vsize_t);
163 static __inline void sokvaunreserve(vsize_t);
164
165 static __inline vsize_t
166 sokvareserve(struct socket *so, vsize_t len)
167 {
168 int s;
169 int error;
170
171 s = splvm();
172 simple_lock(&so_pendfree_slock);
173 while (socurkva + len > somaxkva) {
174 size_t freed;
175
176 /*
177 * try to do pendfree.
178 */
179
180 freed = sodopendfreel(so);
181
182 /*
183 * if some kva was freed, try again.
184 */
185
186 if (freed)
187 continue;
188
189 SOSEND_COUNTER_INCR(&sosend_kvalimit);
190 sokvawaiters++;
191 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
192 &so_pendfree_slock);
193 sokvawaiters--;
194 if (error) {
195 len = 0;
196 break;
197 }
198 }
199 socurkva += len;
200 simple_unlock(&so_pendfree_slock);
201 splx(s);
202 return len;
203 }
204
205 static __inline void
206 sokvaunreserve(vsize_t len)
207 {
208 int s;
209
210 s = splvm();
211 simple_lock(&so_pendfree_slock);
212 socurkva -= len;
213 if (sokvawaiters)
214 wakeup(&socurkva);
215 simple_unlock(&so_pendfree_slock);
216 splx(s);
217 }
218
219 /*
220 * sokvaalloc: allocate kva for loan.
221 */
222
223 vaddr_t
224 sokvaalloc(vsize_t len, struct socket *so)
225 {
226 vaddr_t lva;
227
228 /*
229 * reserve kva.
230 */
231
232 if (sokvareserve(so, len) == 0)
233 return 0;
234
235 /*
236 * allocate kva.
237 */
238
239 lva = uvm_km_valloc_wait(kernel_map, len);
240 if (lva == 0) {
241 sokvaunreserve(len);
242 return (0);
243 }
244
245 return lva;
246 }
247
248 /*
249 * sokvafree: free kva for loan.
250 */
251
252 void
253 sokvafree(vaddr_t sva, vsize_t len)
254 {
255
256 /*
257 * free kva.
258 */
259
260 uvm_km_free(kernel_map, sva, len);
261
262 /*
263 * unreserve kva.
264 */
265
266 sokvaunreserve(len);
267 }
268
269 static void
270 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
271 {
272 vaddr_t va, sva, eva;
273 vsize_t len;
274 paddr_t pa;
275 int i, npgs;
276
277 eva = round_page((vaddr_t) buf + size);
278 sva = trunc_page((vaddr_t) buf);
279 len = eva - sva;
280 npgs = len >> PAGE_SHIFT;
281
282 if (__predict_false(pgs == NULL)) {
283 pgs = alloca(npgs * sizeof(*pgs));
284
285 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
286 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
287 panic("sodoloanfree: va 0x%lx not mapped", va);
288 pgs[i] = PHYS_TO_VM_PAGE(pa);
289 }
290 }
291
292 pmap_kremove(sva, len);
293 pmap_update(pmap_kernel());
294 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
295 sokvafree(sva, len);
296 }
297
298 static size_t
299 sodopendfree(struct socket *so)
300 {
301 int s;
302 size_t rv;
303
304 s = splvm();
305 simple_lock(&so_pendfree_slock);
306 rv = sodopendfreel(so);
307 simple_unlock(&so_pendfree_slock);
308 splx(s);
309
310 return rv;
311 }
312
313 /*
314 * sodopendfreel: free mbufs on "pendfree" list.
315 * unlock and relock so_pendfree_slock when freeing mbufs.
316 *
317 * => called with so_pendfree_slock held.
318 * => called at splvm.
319 */
320
321 static size_t
322 sodopendfreel(struct socket *so)
323 {
324 size_t rv = 0;
325
326 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
327
328 for (;;) {
329 struct mbuf *m;
330 struct mbuf *next;
331
332 m = so_pendfree;
333 if (m == NULL)
334 break;
335 so_pendfree = NULL;
336 simple_unlock(&so_pendfree_slock);
337 /* XXX splx */
338
339 for (; m != NULL; m = next) {
340 next = m->m_next;
341
342 rv += m->m_ext.ext_size;
343 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
344 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
345 m->m_ext.ext_size);
346 pool_cache_put(&mbpool_cache, m);
347 }
348
349 /* XXX splvm */
350 simple_lock(&so_pendfree_slock);
351 }
352
353 return (rv);
354 }
355
356 void
357 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
358 {
359 int s;
360
361 if (m == NULL) {
362
363 /*
364 * called from MEXTREMOVE.
365 */
366
367 sodoloanfree(NULL, buf, size);
368 return;
369 }
370
371 /*
372 * postpone freeing mbuf.
373 *
374 * we can't do it in interrupt context
375 * because we need to put kva back to kernel_map.
376 */
377
378 s = splvm();
379 simple_lock(&so_pendfree_slock);
380 m->m_next = so_pendfree;
381 so_pendfree = m;
382 if (sokvawaiters)
383 wakeup(&socurkva);
384 simple_unlock(&so_pendfree_slock);
385 splx(s);
386 }
387
388 static long
389 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
390 {
391 struct iovec *iov = uio->uio_iov;
392 vaddr_t sva, eva;
393 vsize_t len;
394 vaddr_t lva, va;
395 int npgs, i, error;
396
397 if (uio->uio_segflg != UIO_USERSPACE)
398 return (0);
399
400 if (iov->iov_len < (size_t) space)
401 space = iov->iov_len;
402 if (space > SOCK_LOAN_CHUNK)
403 space = SOCK_LOAN_CHUNK;
404
405 eva = round_page((vaddr_t) iov->iov_base + space);
406 sva = trunc_page((vaddr_t) iov->iov_base);
407 len = eva - sva;
408 npgs = len >> PAGE_SHIFT;
409
410 /* XXX KDASSERT */
411 KASSERT(npgs <= M_EXT_MAXPAGES);
412
413 lva = sokvaalloc(len, so);
414 if (lva == 0)
415 return 0;
416
417 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
418 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
419 if (error) {
420 sokvafree(lva, len);
421 return (0);
422 }
423
424 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
425 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
426 VM_PROT_READ);
427 pmap_update(pmap_kernel());
428
429 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
430
431 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
432 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
433
434 uio->uio_resid -= space;
435 /* uio_offset not updated, not set/used for write(2) */
436 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
437 uio->uio_iov->iov_len -= space;
438 if (uio->uio_iov->iov_len == 0) {
439 uio->uio_iov++;
440 uio->uio_iovcnt--;
441 }
442
443 return (space);
444 }
445
446 /*
447 * Socket operation routines.
448 * These routines are called by the routines in
449 * sys_socket.c or from a system process, and
450 * implement the semantics of socket operations by
451 * switching out to the protocol specific routines.
452 */
453 /*ARGSUSED*/
454 int
455 socreate(int dom, struct socket **aso, int type, int proto)
456 {
457 struct proc *p;
458 const struct protosw *prp;
459 struct socket *so;
460 int error, s;
461
462 p = curproc; /* XXX */
463 if (proto)
464 prp = pffindproto(dom, proto, type);
465 else
466 prp = pffindtype(dom, type);
467 if (prp == 0 || prp->pr_usrreq == 0)
468 return (EPROTONOSUPPORT);
469 if (prp->pr_type != type)
470 return (EPROTOTYPE);
471 s = splsoftnet();
472 so = pool_get(&socket_pool, PR_WAITOK);
473 memset((caddr_t)so, 0, sizeof(*so));
474 TAILQ_INIT(&so->so_q0);
475 TAILQ_INIT(&so->so_q);
476 so->so_type = type;
477 so->so_proto = prp;
478 so->so_send = sosend;
479 so->so_receive = soreceive;
480 #ifdef MBUFTRACE
481 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
482 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
483 so->so_mowner = &prp->pr_domain->dom_mowner;
484 #endif
485 if (p != 0)
486 so->so_uid = p->p_ucred->cr_uid;
487 else
488 so->so_uid = UID_MAX;
489 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
490 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
491 if (error) {
492 so->so_state |= SS_NOFDREF;
493 sofree(so);
494 splx(s);
495 return (error);
496 }
497 splx(s);
498 *aso = so;
499 return (0);
500 }
501
502 int
503 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
504 {
505 int s, error;
506
507 s = splsoftnet();
508 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
509 nam, (struct mbuf *)0, p);
510 splx(s);
511 return (error);
512 }
513
514 int
515 solisten(struct socket *so, int backlog)
516 {
517 int s, error;
518
519 s = splsoftnet();
520 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
521 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
522 if (error) {
523 splx(s);
524 return (error);
525 }
526 if (TAILQ_EMPTY(&so->so_q))
527 so->so_options |= SO_ACCEPTCONN;
528 if (backlog < 0)
529 backlog = 0;
530 so->so_qlimit = min(backlog, somaxconn);
531 splx(s);
532 return (0);
533 }
534
535 void
536 sofree(struct socket *so)
537 {
538
539 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
540 return;
541 if (so->so_head) {
542 /*
543 * We must not decommission a socket that's on the accept(2)
544 * queue. If we do, then accept(2) may hang after select(2)
545 * indicated that the listening socket was ready.
546 */
547 if (!soqremque(so, 0))
548 return;
549 }
550 if (so->so_rcv.sb_hiwat)
551 (void)chgsbsize(so->so_uid, &so->so_rcv.sb_hiwat, 0,
552 RLIM_INFINITY);
553 if (so->so_snd.sb_hiwat)
554 (void)chgsbsize(so->so_uid, &so->so_snd.sb_hiwat, 0,
555 RLIM_INFINITY);
556 sbrelease(&so->so_snd, so);
557 sorflush(so);
558 pool_put(&socket_pool, so);
559 }
560
561 /*
562 * Close a socket on last file table reference removal.
563 * Initiate disconnect if connected.
564 * Free socket when disconnect complete.
565 */
566 int
567 soclose(struct socket *so)
568 {
569 struct socket *so2;
570 int s, error;
571
572 error = 0;
573 s = splsoftnet(); /* conservative */
574 if (so->so_options & SO_ACCEPTCONN) {
575 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
576 (void) soqremque(so2, 0);
577 (void) soabort(so2);
578 }
579 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
580 (void) soqremque(so2, 1);
581 (void) soabort(so2);
582 }
583 }
584 if (so->so_pcb == 0)
585 goto discard;
586 if (so->so_state & SS_ISCONNECTED) {
587 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
588 error = sodisconnect(so);
589 if (error)
590 goto drop;
591 }
592 if (so->so_options & SO_LINGER) {
593 if ((so->so_state & SS_ISDISCONNECTING) &&
594 (so->so_state & SS_NBIO))
595 goto drop;
596 while (so->so_state & SS_ISCONNECTED) {
597 error = tsleep((caddr_t)&so->so_timeo,
598 PSOCK | PCATCH, netcls,
599 so->so_linger * hz);
600 if (error)
601 break;
602 }
603 }
604 }
605 drop:
606 if (so->so_pcb) {
607 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
608 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
609 (struct proc *)0);
610 if (error == 0)
611 error = error2;
612 }
613 discard:
614 if (so->so_state & SS_NOFDREF)
615 panic("soclose: NOFDREF");
616 so->so_state |= SS_NOFDREF;
617 sofree(so);
618 splx(s);
619 return (error);
620 }
621
622 /*
623 * Must be called at splsoftnet...
624 */
625 int
626 soabort(struct socket *so)
627 {
628
629 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
630 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
631 }
632
633 int
634 soaccept(struct socket *so, struct mbuf *nam)
635 {
636 int s, error;
637
638 error = 0;
639 s = splsoftnet();
640 if ((so->so_state & SS_NOFDREF) == 0)
641 panic("soaccept: !NOFDREF");
642 so->so_state &= ~SS_NOFDREF;
643 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
644 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
645 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
646 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
647 else
648 error = ECONNABORTED;
649
650 splx(s);
651 return (error);
652 }
653
654 int
655 soconnect(struct socket *so, struct mbuf *nam)
656 {
657 struct proc *p;
658 int s, error;
659
660 p = curproc; /* XXX */
661 if (so->so_options & SO_ACCEPTCONN)
662 return (EOPNOTSUPP);
663 s = splsoftnet();
664 /*
665 * If protocol is connection-based, can only connect once.
666 * Otherwise, if connected, try to disconnect first.
667 * This allows user to disconnect by connecting to, e.g.,
668 * a null address.
669 */
670 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
671 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
672 (error = sodisconnect(so))))
673 error = EISCONN;
674 else
675 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
676 (struct mbuf *)0, nam, (struct mbuf *)0, p);
677 splx(s);
678 return (error);
679 }
680
681 int
682 soconnect2(struct socket *so1, struct socket *so2)
683 {
684 int s, error;
685
686 s = splsoftnet();
687 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
688 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
689 (struct proc *)0);
690 splx(s);
691 return (error);
692 }
693
694 int
695 sodisconnect(struct socket *so)
696 {
697 int s, error;
698
699 s = splsoftnet();
700 if ((so->so_state & SS_ISCONNECTED) == 0) {
701 error = ENOTCONN;
702 goto bad;
703 }
704 if (so->so_state & SS_ISDISCONNECTING) {
705 error = EALREADY;
706 goto bad;
707 }
708 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
709 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
710 (struct proc *)0);
711 bad:
712 splx(s);
713 sodopendfree(so);
714 return (error);
715 }
716
717 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
718 /*
719 * Send on a socket.
720 * If send must go all at once and message is larger than
721 * send buffering, then hard error.
722 * Lock against other senders.
723 * If must go all at once and not enough room now, then
724 * inform user that this would block and do nothing.
725 * Otherwise, if nonblocking, send as much as possible.
726 * The data to be sent is described by "uio" if nonzero,
727 * otherwise by the mbuf chain "top" (which must be null
728 * if uio is not). Data provided in mbuf chain must be small
729 * enough to send all at once.
730 *
731 * Returns nonzero on error, timeout or signal; callers
732 * must check for short counts if EINTR/ERESTART are returned.
733 * Data and control buffers are freed on return.
734 */
735 int
736 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
737 struct mbuf *control, int flags)
738 {
739 struct proc *p;
740 struct mbuf **mp, *m;
741 long space, len, resid, clen, mlen;
742 int error, s, dontroute, atomic;
743
744 sodopendfree(so);
745
746 p = curproc; /* XXX */
747 clen = 0;
748 atomic = sosendallatonce(so) || top;
749 if (uio)
750 resid = uio->uio_resid;
751 else
752 resid = top->m_pkthdr.len;
753 /*
754 * In theory resid should be unsigned.
755 * However, space must be signed, as it might be less than 0
756 * if we over-committed, and we must use a signed comparison
757 * of space and resid. On the other hand, a negative resid
758 * causes us to loop sending 0-length segments to the protocol.
759 */
760 if (resid < 0) {
761 error = EINVAL;
762 goto out;
763 }
764 dontroute =
765 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
766 (so->so_proto->pr_flags & PR_ATOMIC);
767 p->p_stats->p_ru.ru_msgsnd++;
768 if (control)
769 clen = control->m_len;
770 #define snderr(errno) { error = errno; splx(s); goto release; }
771
772 restart:
773 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
774 goto out;
775 do {
776 s = splsoftnet();
777 if (so->so_state & SS_CANTSENDMORE)
778 snderr(EPIPE);
779 if (so->so_error) {
780 error = so->so_error;
781 so->so_error = 0;
782 splx(s);
783 goto release;
784 }
785 if ((so->so_state & SS_ISCONNECTED) == 0) {
786 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
787 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
788 !(resid == 0 && clen != 0))
789 snderr(ENOTCONN);
790 } else if (addr == 0)
791 snderr(EDESTADDRREQ);
792 }
793 space = sbspace(&so->so_snd);
794 if (flags & MSG_OOB)
795 space += 1024;
796 if ((atomic && resid > so->so_snd.sb_hiwat) ||
797 clen > so->so_snd.sb_hiwat)
798 snderr(EMSGSIZE);
799 if (space < resid + clen &&
800 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
801 if (so->so_state & SS_NBIO)
802 snderr(EWOULDBLOCK);
803 sbunlock(&so->so_snd);
804 error = sbwait(&so->so_snd);
805 splx(s);
806 if (error)
807 goto out;
808 goto restart;
809 }
810 splx(s);
811 mp = ⊤
812 space -= clen;
813 do {
814 if (uio == NULL) {
815 /*
816 * Data is prepackaged in "top".
817 */
818 resid = 0;
819 if (flags & MSG_EOR)
820 top->m_flags |= M_EOR;
821 } else do {
822 if (top == 0) {
823 m = m_gethdr(M_WAIT, MT_DATA);
824 mlen = MHLEN;
825 m->m_pkthdr.len = 0;
826 m->m_pkthdr.rcvif = (struct ifnet *)0;
827 } else {
828 m = m_get(M_WAIT, MT_DATA);
829 mlen = MLEN;
830 }
831 MCLAIM(m, so->so_snd.sb_mowner);
832 if (use_sosend_loan &&
833 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
834 space >= SOCK_LOAN_THRESH &&
835 (len = sosend_loan(so, uio, m,
836 space)) != 0) {
837 SOSEND_COUNTER_INCR(&sosend_loan_big);
838 space -= len;
839 goto have_data;
840 }
841 if (resid >= MINCLSIZE && space >= MCLBYTES) {
842 SOSEND_COUNTER_INCR(&sosend_copy_big);
843 m_clget(m, M_WAIT);
844 if ((m->m_flags & M_EXT) == 0)
845 goto nopages;
846 mlen = MCLBYTES;
847 if (atomic && top == 0) {
848 len = lmin(MCLBYTES - max_hdr,
849 resid);
850 m->m_data += max_hdr;
851 } else
852 len = lmin(MCLBYTES, resid);
853 space -= len;
854 } else {
855 nopages:
856 SOSEND_COUNTER_INCR(&sosend_copy_small);
857 len = lmin(lmin(mlen, resid), space);
858 space -= len;
859 /*
860 * For datagram protocols, leave room
861 * for protocol headers in first mbuf.
862 */
863 if (atomic && top == 0 && len < mlen)
864 MH_ALIGN(m, len);
865 }
866 error = uiomove(mtod(m, caddr_t), (int)len,
867 uio);
868 have_data:
869 resid = uio->uio_resid;
870 m->m_len = len;
871 *mp = m;
872 top->m_pkthdr.len += len;
873 if (error)
874 goto release;
875 mp = &m->m_next;
876 if (resid <= 0) {
877 if (flags & MSG_EOR)
878 top->m_flags |= M_EOR;
879 break;
880 }
881 } while (space > 0 && atomic);
882
883 s = splsoftnet();
884
885 if (so->so_state & SS_CANTSENDMORE)
886 snderr(EPIPE);
887
888 if (dontroute)
889 so->so_options |= SO_DONTROUTE;
890 if (resid > 0)
891 so->so_state |= SS_MORETOCOME;
892 error = (*so->so_proto->pr_usrreq)(so,
893 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
894 top, addr, control, p);
895 if (dontroute)
896 so->so_options &= ~SO_DONTROUTE;
897 if (resid > 0)
898 so->so_state &= ~SS_MORETOCOME;
899 splx(s);
900
901 clen = 0;
902 control = 0;
903 top = 0;
904 mp = ⊤
905 if (error)
906 goto release;
907 } while (resid && space > 0);
908 } while (resid);
909
910 release:
911 sbunlock(&so->so_snd);
912 out:
913 if (top)
914 m_freem(top);
915 if (control)
916 m_freem(control);
917 return (error);
918 }
919
920 /*
921 * Implement receive operations on a socket.
922 * We depend on the way that records are added to the sockbuf
923 * by sbappend*. In particular, each record (mbufs linked through m_next)
924 * must begin with an address if the protocol so specifies,
925 * followed by an optional mbuf or mbufs containing ancillary data,
926 * and then zero or more mbufs of data.
927 * In order to avoid blocking network interrupts for the entire time here,
928 * we splx() while doing the actual copy to user space.
929 * Although the sockbuf is locked, new data may still be appended,
930 * and thus we must maintain consistency of the sockbuf during that time.
931 *
932 * The caller may receive the data as a single mbuf chain by supplying
933 * an mbuf **mp0 for use in returning the chain. The uio is then used
934 * only for the count in uio_resid.
935 */
936 int
937 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
938 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
939 {
940 struct mbuf *m, **mp;
941 int flags, len, error, s, offset, moff, type, orig_resid;
942 const struct protosw *pr;
943 struct mbuf *nextrecord;
944 int mbuf_removed = 0;
945
946 pr = so->so_proto;
947 mp = mp0;
948 type = 0;
949 orig_resid = uio->uio_resid;
950 if (paddr)
951 *paddr = 0;
952 if (controlp)
953 *controlp = 0;
954 if (flagsp)
955 flags = *flagsp &~ MSG_EOR;
956 else
957 flags = 0;
958
959 if ((flags & MSG_DONTWAIT) == 0)
960 sodopendfree(so);
961
962 if (flags & MSG_OOB) {
963 m = m_get(M_WAIT, MT_DATA);
964 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
965 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
966 (struct proc *)0);
967 if (error)
968 goto bad;
969 do {
970 error = uiomove(mtod(m, caddr_t),
971 (int) min(uio->uio_resid, m->m_len), uio);
972 m = m_free(m);
973 } while (uio->uio_resid && error == 0 && m);
974 bad:
975 if (m)
976 m_freem(m);
977 return (error);
978 }
979 if (mp)
980 *mp = (struct mbuf *)0;
981 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
982 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
983 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
984
985 restart:
986 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
987 return (error);
988 s = splsoftnet();
989
990 m = so->so_rcv.sb_mb;
991 /*
992 * If we have less data than requested, block awaiting more
993 * (subject to any timeout) if:
994 * 1. the current count is less than the low water mark,
995 * 2. MSG_WAITALL is set, and it is possible to do the entire
996 * receive operation at once if we block (resid <= hiwat), or
997 * 3. MSG_DONTWAIT is not set.
998 * If MSG_WAITALL is set but resid is larger than the receive buffer,
999 * we have to do the receive in sections, and thus risk returning
1000 * a short count if a timeout or signal occurs after we start.
1001 */
1002 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1003 so->so_rcv.sb_cc < uio->uio_resid) &&
1004 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1005 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1006 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1007 #ifdef DIAGNOSTIC
1008 if (m == 0 && so->so_rcv.sb_cc)
1009 panic("receive 1");
1010 #endif
1011 if (so->so_error) {
1012 if (m)
1013 goto dontblock;
1014 error = so->so_error;
1015 if ((flags & MSG_PEEK) == 0)
1016 so->so_error = 0;
1017 goto release;
1018 }
1019 if (so->so_state & SS_CANTRCVMORE) {
1020 if (m)
1021 goto dontblock;
1022 else
1023 goto release;
1024 }
1025 for (; m; m = m->m_next)
1026 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1027 m = so->so_rcv.sb_mb;
1028 goto dontblock;
1029 }
1030 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1031 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1032 error = ENOTCONN;
1033 goto release;
1034 }
1035 if (uio->uio_resid == 0)
1036 goto release;
1037 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1038 error = EWOULDBLOCK;
1039 goto release;
1040 }
1041 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1042 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1043 sbunlock(&so->so_rcv);
1044 error = sbwait(&so->so_rcv);
1045 splx(s);
1046 if (error)
1047 return (error);
1048 goto restart;
1049 }
1050 dontblock:
1051 /*
1052 * On entry here, m points to the first record of the socket buffer.
1053 * While we process the initial mbufs containing address and control
1054 * info, we save a copy of m->m_nextpkt into nextrecord.
1055 */
1056 #ifdef notyet /* XXXX */
1057 if (uio->uio_procp)
1058 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
1059 #endif
1060 KASSERT(m == so->so_rcv.sb_mb);
1061 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1062 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1063 nextrecord = m->m_nextpkt;
1064 if (pr->pr_flags & PR_ADDR) {
1065 #ifdef DIAGNOSTIC
1066 if (m->m_type != MT_SONAME)
1067 panic("receive 1a");
1068 #endif
1069 orig_resid = 0;
1070 if (flags & MSG_PEEK) {
1071 if (paddr)
1072 *paddr = m_copy(m, 0, m->m_len);
1073 m = m->m_next;
1074 } else {
1075 sbfree(&so->so_rcv, m);
1076 mbuf_removed = 1;
1077 if (paddr) {
1078 *paddr = m;
1079 so->so_rcv.sb_mb = m->m_next;
1080 m->m_next = 0;
1081 m = so->so_rcv.sb_mb;
1082 } else {
1083 MFREE(m, so->so_rcv.sb_mb);
1084 m = so->so_rcv.sb_mb;
1085 }
1086 }
1087 }
1088 while (m && m->m_type == MT_CONTROL && error == 0) {
1089 if (flags & MSG_PEEK) {
1090 if (controlp)
1091 *controlp = m_copy(m, 0, m->m_len);
1092 m = m->m_next;
1093 } else {
1094 sbfree(&so->so_rcv, m);
1095 mbuf_removed = 1;
1096 if (controlp) {
1097 if (pr->pr_domain->dom_externalize &&
1098 mtod(m, struct cmsghdr *)->cmsg_type ==
1099 SCM_RIGHTS)
1100 error = (*pr->pr_domain->dom_externalize)(m);
1101 *controlp = m;
1102 so->so_rcv.sb_mb = m->m_next;
1103 m->m_next = 0;
1104 m = so->so_rcv.sb_mb;
1105 } else {
1106 MFREE(m, so->so_rcv.sb_mb);
1107 m = so->so_rcv.sb_mb;
1108 }
1109 }
1110 if (controlp) {
1111 orig_resid = 0;
1112 controlp = &(*controlp)->m_next;
1113 }
1114 }
1115
1116 /*
1117 * If m is non-NULL, we have some data to read. From now on,
1118 * make sure to keep sb_lastrecord consistent when working on
1119 * the last packet on the chain (nextrecord == NULL) and we
1120 * change m->m_nextpkt.
1121 */
1122 if (m) {
1123 if ((flags & MSG_PEEK) == 0) {
1124 m->m_nextpkt = nextrecord;
1125 /*
1126 * If nextrecord == NULL (this is a single chain),
1127 * then sb_lastrecord may not be valid here if m
1128 * was changed earlier.
1129 */
1130 if (nextrecord == NULL) {
1131 KASSERT(so->so_rcv.sb_mb == m);
1132 so->so_rcv.sb_lastrecord = m;
1133 }
1134 }
1135 type = m->m_type;
1136 if (type == MT_OOBDATA)
1137 flags |= MSG_OOB;
1138 } else {
1139 if ((flags & MSG_PEEK) == 0) {
1140 KASSERT(so->so_rcv.sb_mb == m);
1141 so->so_rcv.sb_mb = nextrecord;
1142 SB_EMPTY_FIXUP(&so->so_rcv);
1143 }
1144 }
1145 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1146 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1147
1148 moff = 0;
1149 offset = 0;
1150 while (m && uio->uio_resid > 0 && error == 0) {
1151 if (m->m_type == MT_OOBDATA) {
1152 if (type != MT_OOBDATA)
1153 break;
1154 } else if (type == MT_OOBDATA)
1155 break;
1156 #ifdef DIAGNOSTIC
1157 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1158 panic("receive 3");
1159 #endif
1160 so->so_state &= ~SS_RCVATMARK;
1161 len = uio->uio_resid;
1162 if (so->so_oobmark && len > so->so_oobmark - offset)
1163 len = so->so_oobmark - offset;
1164 if (len > m->m_len - moff)
1165 len = m->m_len - moff;
1166 /*
1167 * If mp is set, just pass back the mbufs.
1168 * Otherwise copy them out via the uio, then free.
1169 * Sockbuf must be consistent here (points to current mbuf,
1170 * it points to next record) when we drop priority;
1171 * we must note any additions to the sockbuf when we
1172 * block interrupts again.
1173 */
1174 if (mp == 0) {
1175 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1176 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1177 splx(s);
1178 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1179 s = splsoftnet();
1180 if (error) {
1181 /*
1182 * If any part of the record has been removed
1183 * (such as the MT_SONAME mbuf, which will
1184 * happen when PR_ADDR, and thus also
1185 * PR_ATOMIC, is set), then drop the entire
1186 * record to maintain the atomicity of the
1187 * receive operation.
1188 *
1189 * This avoids a later panic("receive 1a")
1190 * when compiled with DIAGNOSTIC.
1191 */
1192 if (m && mbuf_removed
1193 && (pr->pr_flags & PR_ATOMIC))
1194 (void) sbdroprecord(&so->so_rcv);
1195
1196 goto release;
1197 }
1198 } else
1199 uio->uio_resid -= len;
1200 if (len == m->m_len - moff) {
1201 if (m->m_flags & M_EOR)
1202 flags |= MSG_EOR;
1203 if (flags & MSG_PEEK) {
1204 m = m->m_next;
1205 moff = 0;
1206 } else {
1207 nextrecord = m->m_nextpkt;
1208 sbfree(&so->so_rcv, m);
1209 if (mp) {
1210 *mp = m;
1211 mp = &m->m_next;
1212 so->so_rcv.sb_mb = m = m->m_next;
1213 *mp = (struct mbuf *)0;
1214 } else {
1215 MFREE(m, so->so_rcv.sb_mb);
1216 m = so->so_rcv.sb_mb;
1217 }
1218 /*
1219 * If m != NULL, we also know that
1220 * so->so_rcv.sb_mb != NULL.
1221 */
1222 KASSERT(so->so_rcv.sb_mb == m);
1223 if (m) {
1224 m->m_nextpkt = nextrecord;
1225 if (nextrecord == NULL)
1226 so->so_rcv.sb_lastrecord = m;
1227 } else {
1228 so->so_rcv.sb_mb = nextrecord;
1229 SB_EMPTY_FIXUP(&so->so_rcv);
1230 }
1231 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1232 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1233 }
1234 } else {
1235 if (flags & MSG_PEEK)
1236 moff += len;
1237 else {
1238 if (mp)
1239 *mp = m_copym(m, 0, len, M_WAIT);
1240 m->m_data += len;
1241 m->m_len -= len;
1242 so->so_rcv.sb_cc -= len;
1243 }
1244 }
1245 if (so->so_oobmark) {
1246 if ((flags & MSG_PEEK) == 0) {
1247 so->so_oobmark -= len;
1248 if (so->so_oobmark == 0) {
1249 so->so_state |= SS_RCVATMARK;
1250 break;
1251 }
1252 } else {
1253 offset += len;
1254 if (offset == so->so_oobmark)
1255 break;
1256 }
1257 }
1258 if (flags & MSG_EOR)
1259 break;
1260 /*
1261 * If the MSG_WAITALL flag is set (for non-atomic socket),
1262 * we must not quit until "uio->uio_resid == 0" or an error
1263 * termination. If a signal/timeout occurs, return
1264 * with a short count but without error.
1265 * Keep sockbuf locked against other readers.
1266 */
1267 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1268 !sosendallatonce(so) && !nextrecord) {
1269 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1270 break;
1271 /*
1272 * If we are peeking and the socket receive buffer is
1273 * full, stop since we can't get more data to peek at.
1274 */
1275 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1276 break;
1277 /*
1278 * If we've drained the socket buffer, tell the
1279 * protocol in case it needs to do something to
1280 * get it filled again.
1281 */
1282 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1283 (*pr->pr_usrreq)(so, PRU_RCVD,
1284 (struct mbuf *)0,
1285 (struct mbuf *)(long)flags,
1286 (struct mbuf *)0,
1287 (struct proc *)0);
1288 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1289 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1290 error = sbwait(&so->so_rcv);
1291 if (error) {
1292 sbunlock(&so->so_rcv);
1293 splx(s);
1294 return (0);
1295 }
1296 if ((m = so->so_rcv.sb_mb) != NULL)
1297 nextrecord = m->m_nextpkt;
1298 }
1299 }
1300
1301 if (m && pr->pr_flags & PR_ATOMIC) {
1302 flags |= MSG_TRUNC;
1303 if ((flags & MSG_PEEK) == 0)
1304 (void) sbdroprecord(&so->so_rcv);
1305 }
1306 if ((flags & MSG_PEEK) == 0) {
1307 if (m == 0) {
1308 /*
1309 * First part is an inline SB_EMPTY_FIXUP(). Second
1310 * part makes sure sb_lastrecord is up-to-date if
1311 * there is still data in the socket buffer.
1312 */
1313 so->so_rcv.sb_mb = nextrecord;
1314 if (so->so_rcv.sb_mb == NULL) {
1315 so->so_rcv.sb_mbtail = NULL;
1316 so->so_rcv.sb_lastrecord = NULL;
1317 } else if (nextrecord->m_nextpkt == NULL)
1318 so->so_rcv.sb_lastrecord = nextrecord;
1319 }
1320 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1321 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1322 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1323 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1324 (struct mbuf *)(long)flags, (struct mbuf *)0,
1325 (struct proc *)0);
1326 }
1327 if (orig_resid == uio->uio_resid && orig_resid &&
1328 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1329 sbunlock(&so->so_rcv);
1330 splx(s);
1331 goto restart;
1332 }
1333
1334 if (flagsp)
1335 *flagsp |= flags;
1336 release:
1337 sbunlock(&so->so_rcv);
1338 splx(s);
1339 return (error);
1340 }
1341
1342 int
1343 soshutdown(struct socket *so, int how)
1344 {
1345 const struct protosw *pr;
1346
1347 pr = so->so_proto;
1348 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1349 return (EINVAL);
1350
1351 if (how == SHUT_RD || how == SHUT_RDWR)
1352 sorflush(so);
1353 if (how == SHUT_WR || how == SHUT_RDWR)
1354 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1355 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1356 return (0);
1357 }
1358
1359 void
1360 sorflush(struct socket *so)
1361 {
1362 struct sockbuf *sb, asb;
1363 const struct protosw *pr;
1364 int s;
1365
1366 sb = &so->so_rcv;
1367 pr = so->so_proto;
1368 sb->sb_flags |= SB_NOINTR;
1369 (void) sblock(sb, M_WAITOK);
1370 s = splnet();
1371 socantrcvmore(so);
1372 sbunlock(sb);
1373 asb = *sb;
1374 /*
1375 * Clear most of the sockbuf structure, but leave some of the
1376 * fields valid.
1377 */
1378 memset(&sb->sb_startzero, 0,
1379 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1380 splx(s);
1381 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1382 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1383 sbrelease(&asb, so);
1384 }
1385
1386 int
1387 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1388 {
1389 int error;
1390 struct mbuf *m;
1391
1392 error = 0;
1393 m = m0;
1394 if (level != SOL_SOCKET) {
1395 if (so->so_proto && so->so_proto->pr_ctloutput)
1396 return ((*so->so_proto->pr_ctloutput)
1397 (PRCO_SETOPT, so, level, optname, &m0));
1398 error = ENOPROTOOPT;
1399 } else {
1400 switch (optname) {
1401
1402 case SO_LINGER:
1403 if (m == NULL || m->m_len != sizeof(struct linger)) {
1404 error = EINVAL;
1405 goto bad;
1406 }
1407 so->so_linger = mtod(m, struct linger *)->l_linger;
1408 /* fall thru... */
1409
1410 case SO_DEBUG:
1411 case SO_KEEPALIVE:
1412 case SO_DONTROUTE:
1413 case SO_USELOOPBACK:
1414 case SO_BROADCAST:
1415 case SO_REUSEADDR:
1416 case SO_REUSEPORT:
1417 case SO_OOBINLINE:
1418 case SO_TIMESTAMP:
1419 if (m == NULL || m->m_len < sizeof(int)) {
1420 error = EINVAL;
1421 goto bad;
1422 }
1423 if (*mtod(m, int *))
1424 so->so_options |= optname;
1425 else
1426 so->so_options &= ~optname;
1427 break;
1428
1429 case SO_SNDBUF:
1430 case SO_RCVBUF:
1431 case SO_SNDLOWAT:
1432 case SO_RCVLOWAT:
1433 {
1434 int optval;
1435
1436 if (m == NULL || m->m_len < sizeof(int)) {
1437 error = EINVAL;
1438 goto bad;
1439 }
1440
1441 /*
1442 * Values < 1 make no sense for any of these
1443 * options, so disallow them.
1444 */
1445 optval = *mtod(m, int *);
1446 if (optval < 1) {
1447 error = EINVAL;
1448 goto bad;
1449 }
1450
1451 switch (optname) {
1452
1453 case SO_SNDBUF:
1454 case SO_RCVBUF:
1455 if (sbreserve(optname == SO_SNDBUF ?
1456 &so->so_snd : &so->so_rcv,
1457 (u_long) optval, so) == 0) {
1458 error = ENOBUFS;
1459 goto bad;
1460 }
1461 break;
1462
1463 /*
1464 * Make sure the low-water is never greater than
1465 * the high-water.
1466 */
1467 case SO_SNDLOWAT:
1468 so->so_snd.sb_lowat =
1469 (optval > so->so_snd.sb_hiwat) ?
1470 so->so_snd.sb_hiwat : optval;
1471 break;
1472 case SO_RCVLOWAT:
1473 so->so_rcv.sb_lowat =
1474 (optval > so->so_rcv.sb_hiwat) ?
1475 so->so_rcv.sb_hiwat : optval;
1476 break;
1477 }
1478 break;
1479 }
1480
1481 case SO_SNDTIMEO:
1482 case SO_RCVTIMEO:
1483 {
1484 struct timeval *tv;
1485 short val;
1486
1487 if (m == NULL || m->m_len < sizeof(*tv)) {
1488 error = EINVAL;
1489 goto bad;
1490 }
1491 tv = mtod(m, struct timeval *);
1492 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
1493 error = EDOM;
1494 goto bad;
1495 }
1496 val = tv->tv_sec * hz + tv->tv_usec / tick;
1497 if (val == 0 && tv->tv_usec != 0)
1498 val = 1;
1499
1500 switch (optname) {
1501
1502 case SO_SNDTIMEO:
1503 so->so_snd.sb_timeo = val;
1504 break;
1505 case SO_RCVTIMEO:
1506 so->so_rcv.sb_timeo = val;
1507 break;
1508 }
1509 break;
1510 }
1511
1512 default:
1513 error = ENOPROTOOPT;
1514 break;
1515 }
1516 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1517 (void) ((*so->so_proto->pr_ctloutput)
1518 (PRCO_SETOPT, so, level, optname, &m0));
1519 m = NULL; /* freed by protocol */
1520 }
1521 }
1522 bad:
1523 if (m)
1524 (void) m_free(m);
1525 return (error);
1526 }
1527
1528 int
1529 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1530 {
1531 struct mbuf *m;
1532
1533 if (level != SOL_SOCKET) {
1534 if (so->so_proto && so->so_proto->pr_ctloutput) {
1535 return ((*so->so_proto->pr_ctloutput)
1536 (PRCO_GETOPT, so, level, optname, mp));
1537 } else
1538 return (ENOPROTOOPT);
1539 } else {
1540 m = m_get(M_WAIT, MT_SOOPTS);
1541 m->m_len = sizeof(int);
1542
1543 switch (optname) {
1544
1545 case SO_LINGER:
1546 m->m_len = sizeof(struct linger);
1547 mtod(m, struct linger *)->l_onoff =
1548 so->so_options & SO_LINGER;
1549 mtod(m, struct linger *)->l_linger = so->so_linger;
1550 break;
1551
1552 case SO_USELOOPBACK:
1553 case SO_DONTROUTE:
1554 case SO_DEBUG:
1555 case SO_KEEPALIVE:
1556 case SO_REUSEADDR:
1557 case SO_REUSEPORT:
1558 case SO_BROADCAST:
1559 case SO_OOBINLINE:
1560 case SO_TIMESTAMP:
1561 *mtod(m, int *) = so->so_options & optname;
1562 break;
1563
1564 case SO_TYPE:
1565 *mtod(m, int *) = so->so_type;
1566 break;
1567
1568 case SO_ERROR:
1569 *mtod(m, int *) = so->so_error;
1570 so->so_error = 0;
1571 break;
1572
1573 case SO_SNDBUF:
1574 *mtod(m, int *) = so->so_snd.sb_hiwat;
1575 break;
1576
1577 case SO_RCVBUF:
1578 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1579 break;
1580
1581 case SO_SNDLOWAT:
1582 *mtod(m, int *) = so->so_snd.sb_lowat;
1583 break;
1584
1585 case SO_RCVLOWAT:
1586 *mtod(m, int *) = so->so_rcv.sb_lowat;
1587 break;
1588
1589 case SO_SNDTIMEO:
1590 case SO_RCVTIMEO:
1591 {
1592 int val = (optname == SO_SNDTIMEO ?
1593 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1594
1595 m->m_len = sizeof(struct timeval);
1596 mtod(m, struct timeval *)->tv_sec = val / hz;
1597 mtod(m, struct timeval *)->tv_usec =
1598 (val % hz) * tick;
1599 break;
1600 }
1601
1602 default:
1603 (void)m_free(m);
1604 return (ENOPROTOOPT);
1605 }
1606 *mp = m;
1607 return (0);
1608 }
1609 }
1610
1611 void
1612 sohasoutofband(struct socket *so)
1613 {
1614 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1615 selwakeup(&so->so_rcv.sb_sel);
1616 }
1617
1618 static void
1619 filt_sordetach(struct knote *kn)
1620 {
1621 struct socket *so;
1622
1623 so = (struct socket *)kn->kn_fp->f_data;
1624 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1625 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1626 so->so_rcv.sb_flags &= ~SB_KNOTE;
1627 }
1628
1629 /*ARGSUSED*/
1630 static int
1631 filt_soread(struct knote *kn, long hint)
1632 {
1633 struct socket *so;
1634
1635 so = (struct socket *)kn->kn_fp->f_data;
1636 kn->kn_data = so->so_rcv.sb_cc;
1637 if (so->so_state & SS_CANTRCVMORE) {
1638 kn->kn_flags |= EV_EOF;
1639 kn->kn_fflags = so->so_error;
1640 return (1);
1641 }
1642 if (so->so_error) /* temporary udp error */
1643 return (1);
1644 if (kn->kn_sfflags & NOTE_LOWAT)
1645 return (kn->kn_data >= kn->kn_sdata);
1646 return (kn->kn_data >= so->so_rcv.sb_lowat);
1647 }
1648
1649 static void
1650 filt_sowdetach(struct knote *kn)
1651 {
1652 struct socket *so;
1653
1654 so = (struct socket *)kn->kn_fp->f_data;
1655 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1656 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1657 so->so_snd.sb_flags &= ~SB_KNOTE;
1658 }
1659
1660 /*ARGSUSED*/
1661 static int
1662 filt_sowrite(struct knote *kn, long hint)
1663 {
1664 struct socket *so;
1665
1666 so = (struct socket *)kn->kn_fp->f_data;
1667 kn->kn_data = sbspace(&so->so_snd);
1668 if (so->so_state & SS_CANTSENDMORE) {
1669 kn->kn_flags |= EV_EOF;
1670 kn->kn_fflags = so->so_error;
1671 return (1);
1672 }
1673 if (so->so_error) /* temporary udp error */
1674 return (1);
1675 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1676 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1677 return (0);
1678 if (kn->kn_sfflags & NOTE_LOWAT)
1679 return (kn->kn_data >= kn->kn_sdata);
1680 return (kn->kn_data >= so->so_snd.sb_lowat);
1681 }
1682
1683 /*ARGSUSED*/
1684 static int
1685 filt_solisten(struct knote *kn, long hint)
1686 {
1687 struct socket *so;
1688
1689 so = (struct socket *)kn->kn_fp->f_data;
1690
1691 /*
1692 * Set kn_data to number of incoming connections, not
1693 * counting partial (incomplete) connections.
1694 */
1695 kn->kn_data = so->so_qlen;
1696 return (kn->kn_data > 0);
1697 }
1698
1699 static const struct filterops solisten_filtops =
1700 { 1, NULL, filt_sordetach, filt_solisten };
1701 static const struct filterops soread_filtops =
1702 { 1, NULL, filt_sordetach, filt_soread };
1703 static const struct filterops sowrite_filtops =
1704 { 1, NULL, filt_sowdetach, filt_sowrite };
1705
1706 int
1707 soo_kqfilter(struct file *fp, struct knote *kn)
1708 {
1709 struct socket *so;
1710 struct sockbuf *sb;
1711
1712 so = (struct socket *)kn->kn_fp->f_data;
1713 switch (kn->kn_filter) {
1714 case EVFILT_READ:
1715 if (so->so_options & SO_ACCEPTCONN)
1716 kn->kn_fop = &solisten_filtops;
1717 else
1718 kn->kn_fop = &soread_filtops;
1719 sb = &so->so_rcv;
1720 break;
1721 case EVFILT_WRITE:
1722 kn->kn_fop = &sowrite_filtops;
1723 sb = &so->so_snd;
1724 break;
1725 default:
1726 return (1);
1727 }
1728 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1729 sb->sb_flags |= SB_KNOTE;
1730 return (0);
1731 }
1732
1733 #include <sys/sysctl.h>
1734
1735 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1736
1737 /*
1738 * sysctl helper routine for kern.somaxkva. ensures that the given
1739 * value is not too small.
1740 * (XXX should we maybe make sure it's not too large as well?)
1741 */
1742 static int
1743 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1744 {
1745 int error, new_somaxkva;
1746 struct sysctlnode node;
1747 int s;
1748
1749 new_somaxkva = somaxkva;
1750 node = *rnode;
1751 node.sysctl_data = &new_somaxkva;
1752 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1753 if (error || newp == NULL)
1754 return (error);
1755
1756 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1757 return (EINVAL);
1758
1759 s = splvm();
1760 simple_lock(&so_pendfree_slock);
1761 somaxkva = new_somaxkva;
1762 wakeup(&socurkva);
1763 simple_unlock(&so_pendfree_slock);
1764 splx(s);
1765
1766 return (error);
1767 }
1768
1769 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1770 {
1771
1772 sysctl_createv(clog, 0, NULL, NULL,
1773 CTLFLAG_PERMANENT,
1774 CTLTYPE_NODE, "kern", NULL,
1775 NULL, 0, NULL, 0,
1776 CTL_KERN, CTL_EOL);
1777
1778 sysctl_createv(clog, 0, NULL, NULL,
1779 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1780 CTLTYPE_INT, "somaxkva", NULL,
1781 sysctl_kern_somaxkva, 0, NULL, 0,
1782 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1783 }
1784