Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.103
      1 /*	$NetBSD: uipc_socket.c,v 1.103 2004/05/25 04:30:32 atatat Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.103 2004/05/25 04:30:32 atatat Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
     98 
     99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 EVCNT_ATTACH_STATIC(sosend_loan_big);
    120 EVCNT_ATTACH_STATIC(sosend_copy_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_small);
    122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    123 #else
    124 
    125 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    126 
    127 #endif /* SOSEND_COUNTERS */
    128 
    129 void
    130 soinit(void)
    131 {
    132 
    133 	/* Set the initial adjusted socket buffer size. */
    134 	if (sb_max_set(sb_max))
    135 		panic("bad initial sb_max value: %lu\n", sb_max);
    136 
    137 }
    138 
    139 #ifdef SOSEND_NO_LOAN
    140 int use_sosend_loan = 0;
    141 #else
    142 int use_sosend_loan = 1;
    143 #endif
    144 
    145 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    146 struct mbuf *so_pendfree;
    147 
    148 #ifndef SOMAXKVA
    149 #define	SOMAXKVA (16 * 1024 * 1024)
    150 #endif
    151 int somaxkva = SOMAXKVA;
    152 int socurkva;
    153 int sokvawaiters;
    154 
    155 #define	SOCK_LOAN_THRESH	4096
    156 #define	SOCK_LOAN_CHUNK		65536
    157 
    158 static size_t sodopendfree(struct socket *);
    159 static size_t sodopendfreel(struct socket *);
    160 static __inline vsize_t sokvareserve(struct socket *, vsize_t);
    161 static __inline void sokvaunreserve(vsize_t);
    162 
    163 static __inline vsize_t
    164 sokvareserve(struct socket *so, vsize_t len)
    165 {
    166 	int s;
    167 	int error;
    168 
    169 	s = splvm();
    170 	simple_lock(&so_pendfree_slock);
    171 	while (socurkva + len > somaxkva) {
    172 		size_t freed;
    173 
    174 		/*
    175 		 * try to do pendfree.
    176 		 */
    177 
    178 		freed = sodopendfreel(so);
    179 
    180 		/*
    181 		 * if some kva was freed, try again.
    182 		 */
    183 
    184 		if (freed)
    185 			continue;
    186 
    187 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    188 		sokvawaiters++;
    189 		error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
    190 		    &so_pendfree_slock);
    191 		sokvawaiters--;
    192 		if (error) {
    193 			len = 0;
    194 			break;
    195 		}
    196 	}
    197 	socurkva += len;
    198 	simple_unlock(&so_pendfree_slock);
    199 	splx(s);
    200 	return len;
    201 }
    202 
    203 static __inline void
    204 sokvaunreserve(vsize_t len)
    205 {
    206 	int s;
    207 
    208 	s = splvm();
    209 	simple_lock(&so_pendfree_slock);
    210 	socurkva -= len;
    211 	if (sokvawaiters)
    212 		wakeup(&socurkva);
    213 	simple_unlock(&so_pendfree_slock);
    214 	splx(s);
    215 }
    216 
    217 /*
    218  * sokvaalloc: allocate kva for loan.
    219  */
    220 
    221 vaddr_t
    222 sokvaalloc(vsize_t len, struct socket *so)
    223 {
    224 	vaddr_t lva;
    225 
    226 	/*
    227 	 * reserve kva.
    228 	 */
    229 
    230 	if (sokvareserve(so, len) == 0)
    231 		return 0;
    232 
    233 	/*
    234 	 * allocate kva.
    235 	 */
    236 
    237 	lva = uvm_km_valloc_wait(kernel_map, len);
    238 	if (lva == 0) {
    239 		sokvaunreserve(len);
    240 		return (0);
    241 	}
    242 
    243 	return lva;
    244 }
    245 
    246 /*
    247  * sokvafree: free kva for loan.
    248  */
    249 
    250 void
    251 sokvafree(vaddr_t sva, vsize_t len)
    252 {
    253 
    254 	/*
    255 	 * free kva.
    256 	 */
    257 
    258 	uvm_km_free(kernel_map, sva, len);
    259 
    260 	/*
    261 	 * unreserve kva.
    262 	 */
    263 
    264 	sokvaunreserve(len);
    265 }
    266 
    267 static void
    268 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
    269 {
    270 	vaddr_t va, sva, eva;
    271 	vsize_t len;
    272 	paddr_t pa;
    273 	int i, npgs;
    274 
    275 	eva = round_page((vaddr_t) buf + size);
    276 	sva = trunc_page((vaddr_t) buf);
    277 	len = eva - sva;
    278 	npgs = len >> PAGE_SHIFT;
    279 
    280 	if (__predict_false(pgs == NULL)) {
    281 		pgs = alloca(npgs * sizeof(*pgs));
    282 
    283 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    284 			if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    285 				panic("sodoloanfree: va 0x%lx not mapped", va);
    286 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    287 		}
    288 	}
    289 
    290 	pmap_kremove(sva, len);
    291 	pmap_update(pmap_kernel());
    292 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    293 	sokvafree(sva, len);
    294 }
    295 
    296 static size_t
    297 sodopendfree(struct socket *so)
    298 {
    299 	int s;
    300 	size_t rv;
    301 
    302 	s = splvm();
    303 	simple_lock(&so_pendfree_slock);
    304 	rv = sodopendfreel(so);
    305 	simple_unlock(&so_pendfree_slock);
    306 	splx(s);
    307 
    308 	return rv;
    309 }
    310 
    311 /*
    312  * sodopendfreel: free mbufs on "pendfree" list.
    313  * unlock and relock so_pendfree_slock when freeing mbufs.
    314  *
    315  * => called with so_pendfree_slock held.
    316  * => called at splvm.
    317  */
    318 
    319 static size_t
    320 sodopendfreel(struct socket *so)
    321 {
    322 	size_t rv = 0;
    323 
    324 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    325 
    326 	for (;;) {
    327 		struct mbuf *m;
    328 		struct mbuf *next;
    329 
    330 		m = so_pendfree;
    331 		if (m == NULL)
    332 			break;
    333 		so_pendfree = NULL;
    334 		simple_unlock(&so_pendfree_slock);
    335 		/* XXX splx */
    336 
    337 		for (; m != NULL; m = next) {
    338 			next = m->m_next;
    339 
    340 			rv += m->m_ext.ext_size;
    341 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    342 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    343 			    m->m_ext.ext_size);
    344 			pool_cache_put(&mbpool_cache, m);
    345 		}
    346 
    347 		/* XXX splvm */
    348 		simple_lock(&so_pendfree_slock);
    349 	}
    350 
    351 	return (rv);
    352 }
    353 
    354 void
    355 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    356 {
    357 	int s;
    358 
    359 	if (m == NULL) {
    360 
    361 		/*
    362 		 * called from MEXTREMOVE.
    363 		 */
    364 
    365 		sodoloanfree(NULL, buf, size);
    366 		return;
    367 	}
    368 
    369 	/*
    370 	 * postpone freeing mbuf.
    371 	 *
    372 	 * we can't do it in interrupt context
    373 	 * because we need to put kva back to kernel_map.
    374 	 */
    375 
    376 	s = splvm();
    377 	simple_lock(&so_pendfree_slock);
    378 	m->m_next = so_pendfree;
    379 	so_pendfree = m;
    380 	if (sokvawaiters)
    381 		wakeup(&socurkva);
    382 	simple_unlock(&so_pendfree_slock);
    383 	splx(s);
    384 }
    385 
    386 static long
    387 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    388 {
    389 	struct iovec *iov = uio->uio_iov;
    390 	vaddr_t sva, eva;
    391 	vsize_t len;
    392 	vaddr_t lva, va;
    393 	int npgs, i, error;
    394 
    395 	if (uio->uio_segflg != UIO_USERSPACE)
    396 		return (0);
    397 
    398 	if (iov->iov_len < (size_t) space)
    399 		space = iov->iov_len;
    400 	if (space > SOCK_LOAN_CHUNK)
    401 		space = SOCK_LOAN_CHUNK;
    402 
    403 	eva = round_page((vaddr_t) iov->iov_base + space);
    404 	sva = trunc_page((vaddr_t) iov->iov_base);
    405 	len = eva - sva;
    406 	npgs = len >> PAGE_SHIFT;
    407 
    408 	/* XXX KDASSERT */
    409 	KASSERT(npgs <= M_EXT_MAXPAGES);
    410 	KASSERT(uio->uio_procp != NULL);
    411 
    412 	lva = sokvaalloc(len, so);
    413 	if (lva == 0)
    414 		return 0;
    415 
    416 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
    417 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    418 	if (error) {
    419 		sokvafree(lva, len);
    420 		return (0);
    421 	}
    422 
    423 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    424 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    425 		    VM_PROT_READ);
    426 	pmap_update(pmap_kernel());
    427 
    428 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    429 
    430 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    431 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    432 
    433 	uio->uio_resid -= space;
    434 	/* uio_offset not updated, not set/used for write(2) */
    435 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    436 	uio->uio_iov->iov_len -= space;
    437 	if (uio->uio_iov->iov_len == 0) {
    438 		uio->uio_iov++;
    439 		uio->uio_iovcnt--;
    440 	}
    441 
    442 	return (space);
    443 }
    444 
    445 /*
    446  * Socket operation routines.
    447  * These routines are called by the routines in
    448  * sys_socket.c or from a system process, and
    449  * implement the semantics of socket operations by
    450  * switching out to the protocol specific routines.
    451  */
    452 /*ARGSUSED*/
    453 int
    454 socreate(int dom, struct socket **aso, int type, int proto, struct proc *p)
    455 {
    456 	const struct protosw	*prp;
    457 	struct socket	*so;
    458 	int		error, s;
    459 
    460 	if (proto)
    461 		prp = pffindproto(dom, proto, type);
    462 	else
    463 		prp = pffindtype(dom, type);
    464 	if (prp == 0 || prp->pr_usrreq == 0)
    465 		return (EPROTONOSUPPORT);
    466 	if (prp->pr_type != type)
    467 		return (EPROTOTYPE);
    468 	s = splsoftnet();
    469 	so = pool_get(&socket_pool, PR_WAITOK);
    470 	memset((caddr_t)so, 0, sizeof(*so));
    471 	TAILQ_INIT(&so->so_q0);
    472 	TAILQ_INIT(&so->so_q);
    473 	so->so_type = type;
    474 	so->so_proto = prp;
    475 	so->so_send = sosend;
    476 	so->so_receive = soreceive;
    477 #ifdef MBUFTRACE
    478 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    479 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    480 	so->so_mowner = &prp->pr_domain->dom_mowner;
    481 #endif
    482 	if (p != 0)
    483 		so->so_uid = p->p_ucred->cr_uid;
    484 	else
    485 		so->so_uid = UID_MAX;
    486 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    487 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
    488 	if (error) {
    489 		so->so_state |= SS_NOFDREF;
    490 		sofree(so);
    491 		splx(s);
    492 		return (error);
    493 	}
    494 	splx(s);
    495 	*aso = so;
    496 	return (0);
    497 }
    498 
    499 int
    500 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
    501 {
    502 	int	s, error;
    503 
    504 	s = splsoftnet();
    505 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    506 	    nam, (struct mbuf *)0, p);
    507 	splx(s);
    508 	return (error);
    509 }
    510 
    511 int
    512 solisten(struct socket *so, int backlog)
    513 {
    514 	int	s, error;
    515 
    516 	s = splsoftnet();
    517 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    518 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    519 	if (error) {
    520 		splx(s);
    521 		return (error);
    522 	}
    523 	if (TAILQ_EMPTY(&so->so_q))
    524 		so->so_options |= SO_ACCEPTCONN;
    525 	if (backlog < 0)
    526 		backlog = 0;
    527 	so->so_qlimit = min(backlog, somaxconn);
    528 	splx(s);
    529 	return (0);
    530 }
    531 
    532 void
    533 sofree(struct socket *so)
    534 {
    535 
    536 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    537 		return;
    538 	if (so->so_head) {
    539 		/*
    540 		 * We must not decommission a socket that's on the accept(2)
    541 		 * queue.  If we do, then accept(2) may hang after select(2)
    542 		 * indicated that the listening socket was ready.
    543 		 */
    544 		if (!soqremque(so, 0))
    545 			return;
    546 	}
    547 	if (so->so_rcv.sb_hiwat)
    548 		(void)chgsbsize(so->so_uid, &so->so_rcv.sb_hiwat, 0,
    549 		    RLIM_INFINITY);
    550 	if (so->so_snd.sb_hiwat)
    551 		(void)chgsbsize(so->so_uid, &so->so_snd.sb_hiwat, 0,
    552 		    RLIM_INFINITY);
    553 	sbrelease(&so->so_snd, so);
    554 	sorflush(so);
    555 	pool_put(&socket_pool, so);
    556 }
    557 
    558 /*
    559  * Close a socket on last file table reference removal.
    560  * Initiate disconnect if connected.
    561  * Free socket when disconnect complete.
    562  */
    563 int
    564 soclose(struct socket *so)
    565 {
    566 	struct socket	*so2;
    567 	int		s, error;
    568 
    569 	error = 0;
    570 	s = splsoftnet();		/* conservative */
    571 	if (so->so_options & SO_ACCEPTCONN) {
    572 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    573 			(void) soqremque(so2, 0);
    574 			(void) soabort(so2);
    575 		}
    576 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    577 			(void) soqremque(so2, 1);
    578 			(void) soabort(so2);
    579 		}
    580 	}
    581 	if (so->so_pcb == 0)
    582 		goto discard;
    583 	if (so->so_state & SS_ISCONNECTED) {
    584 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    585 			error = sodisconnect(so);
    586 			if (error)
    587 				goto drop;
    588 		}
    589 		if (so->so_options & SO_LINGER) {
    590 			if ((so->so_state & SS_ISDISCONNECTING) &&
    591 			    (so->so_state & SS_NBIO))
    592 				goto drop;
    593 			while (so->so_state & SS_ISCONNECTED) {
    594 				error = tsleep((caddr_t)&so->so_timeo,
    595 					       PSOCK | PCATCH, netcls,
    596 					       so->so_linger * hz);
    597 				if (error)
    598 					break;
    599 			}
    600 		}
    601 	}
    602  drop:
    603 	if (so->so_pcb) {
    604 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    605 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    606 		    (struct proc *)0);
    607 		if (error == 0)
    608 			error = error2;
    609 	}
    610  discard:
    611 	if (so->so_state & SS_NOFDREF)
    612 		panic("soclose: NOFDREF");
    613 	so->so_state |= SS_NOFDREF;
    614 	sofree(so);
    615 	splx(s);
    616 	return (error);
    617 }
    618 
    619 /*
    620  * Must be called at splsoftnet...
    621  */
    622 int
    623 soabort(struct socket *so)
    624 {
    625 
    626 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    627 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
    628 }
    629 
    630 int
    631 soaccept(struct socket *so, struct mbuf *nam)
    632 {
    633 	int	s, error;
    634 
    635 	error = 0;
    636 	s = splsoftnet();
    637 	if ((so->so_state & SS_NOFDREF) == 0)
    638 		panic("soaccept: !NOFDREF");
    639 	so->so_state &= ~SS_NOFDREF;
    640 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    641 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    642 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    643 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
    644 	else
    645 		error = ECONNABORTED;
    646 
    647 	splx(s);
    648 	return (error);
    649 }
    650 
    651 int
    652 soconnect(struct socket *so, struct mbuf *nam, struct proc *p)
    653 {
    654 	int		s, error;
    655 
    656 	if (so->so_options & SO_ACCEPTCONN)
    657 		return (EOPNOTSUPP);
    658 	s = splsoftnet();
    659 	/*
    660 	 * If protocol is connection-based, can only connect once.
    661 	 * Otherwise, if connected, try to disconnect first.
    662 	 * This allows user to disconnect by connecting to, e.g.,
    663 	 * a null address.
    664 	 */
    665 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    666 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    667 	    (error = sodisconnect(so))))
    668 		error = EISCONN;
    669 	else
    670 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    671 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
    672 	splx(s);
    673 	return (error);
    674 }
    675 
    676 int
    677 soconnect2(struct socket *so1, struct socket *so2)
    678 {
    679 	int	s, error;
    680 
    681 	s = splsoftnet();
    682 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    683 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    684 	    (struct proc *)0);
    685 	splx(s);
    686 	return (error);
    687 }
    688 
    689 int
    690 sodisconnect(struct socket *so)
    691 {
    692 	int	s, error;
    693 
    694 	s = splsoftnet();
    695 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    696 		error = ENOTCONN;
    697 		goto bad;
    698 	}
    699 	if (so->so_state & SS_ISDISCONNECTING) {
    700 		error = EALREADY;
    701 		goto bad;
    702 	}
    703 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    704 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    705 	    (struct proc *)0);
    706  bad:
    707 	splx(s);
    708 	sodopendfree(so);
    709 	return (error);
    710 }
    711 
    712 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    713 /*
    714  * Send on a socket.
    715  * If send must go all at once and message is larger than
    716  * send buffering, then hard error.
    717  * Lock against other senders.
    718  * If must go all at once and not enough room now, then
    719  * inform user that this would block and do nothing.
    720  * Otherwise, if nonblocking, send as much as possible.
    721  * The data to be sent is described by "uio" if nonzero,
    722  * otherwise by the mbuf chain "top" (which must be null
    723  * if uio is not).  Data provided in mbuf chain must be small
    724  * enough to send all at once.
    725  *
    726  * Returns nonzero on error, timeout or signal; callers
    727  * must check for short counts if EINTR/ERESTART are returned.
    728  * Data and control buffers are freed on return.
    729  */
    730 int
    731 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    732 	struct mbuf *control, int flags, struct proc *p)
    733 {
    734 	struct mbuf	**mp, *m;
    735 	long		space, len, resid, clen, mlen;
    736 	int		error, s, dontroute, atomic;
    737 
    738 	sodopendfree(so);
    739 
    740 	clen = 0;
    741 	atomic = sosendallatonce(so) || top;
    742 	if (uio)
    743 		resid = uio->uio_resid;
    744 	else
    745 		resid = top->m_pkthdr.len;
    746 	/*
    747 	 * In theory resid should be unsigned.
    748 	 * However, space must be signed, as it might be less than 0
    749 	 * if we over-committed, and we must use a signed comparison
    750 	 * of space and resid.  On the other hand, a negative resid
    751 	 * causes us to loop sending 0-length segments to the protocol.
    752 	 */
    753 	if (resid < 0) {
    754 		error = EINVAL;
    755 		goto out;
    756 	}
    757 	dontroute =
    758 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    759 	    (so->so_proto->pr_flags & PR_ATOMIC);
    760 	if (p)
    761 		p->p_stats->p_ru.ru_msgsnd++;
    762 	if (control)
    763 		clen = control->m_len;
    764 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    765 
    766  restart:
    767 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    768 		goto out;
    769 	do {
    770 		s = splsoftnet();
    771 		if (so->so_state & SS_CANTSENDMORE)
    772 			snderr(EPIPE);
    773 		if (so->so_error) {
    774 			error = so->so_error;
    775 			so->so_error = 0;
    776 			splx(s);
    777 			goto release;
    778 		}
    779 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    780 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    781 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    782 				    !(resid == 0 && clen != 0))
    783 					snderr(ENOTCONN);
    784 			} else if (addr == 0)
    785 				snderr(EDESTADDRREQ);
    786 		}
    787 		space = sbspace(&so->so_snd);
    788 		if (flags & MSG_OOB)
    789 			space += 1024;
    790 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    791 		    clen > so->so_snd.sb_hiwat)
    792 			snderr(EMSGSIZE);
    793 		if (space < resid + clen &&
    794 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    795 			if (so->so_state & SS_NBIO)
    796 				snderr(EWOULDBLOCK);
    797 			sbunlock(&so->so_snd);
    798 			error = sbwait(&so->so_snd);
    799 			splx(s);
    800 			if (error)
    801 				goto out;
    802 			goto restart;
    803 		}
    804 		splx(s);
    805 		mp = &top;
    806 		space -= clen;
    807 		do {
    808 			if (uio == NULL) {
    809 				/*
    810 				 * Data is prepackaged in "top".
    811 				 */
    812 				resid = 0;
    813 				if (flags & MSG_EOR)
    814 					top->m_flags |= M_EOR;
    815 			} else do {
    816 				if (top == 0) {
    817 					m = m_gethdr(M_WAIT, MT_DATA);
    818 					mlen = MHLEN;
    819 					m->m_pkthdr.len = 0;
    820 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    821 				} else {
    822 					m = m_get(M_WAIT, MT_DATA);
    823 					mlen = MLEN;
    824 				}
    825 				MCLAIM(m, so->so_snd.sb_mowner);
    826 				if (use_sosend_loan &&
    827 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
    828 				    space >= SOCK_LOAN_THRESH &&
    829 				    (len = sosend_loan(so, uio, m,
    830 						       space)) != 0) {
    831 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    832 					space -= len;
    833 					goto have_data;
    834 				}
    835 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    836 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    837 					m_clget(m, M_WAIT);
    838 					if ((m->m_flags & M_EXT) == 0)
    839 						goto nopages;
    840 					mlen = MCLBYTES;
    841 					if (atomic && top == 0) {
    842 						len = lmin(MCLBYTES - max_hdr,
    843 						    resid);
    844 						m->m_data += max_hdr;
    845 					} else
    846 						len = lmin(MCLBYTES, resid);
    847 					space -= len;
    848 				} else {
    849  nopages:
    850 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    851 					len = lmin(lmin(mlen, resid), space);
    852 					space -= len;
    853 					/*
    854 					 * For datagram protocols, leave room
    855 					 * for protocol headers in first mbuf.
    856 					 */
    857 					if (atomic && top == 0 && len < mlen)
    858 						MH_ALIGN(m, len);
    859 				}
    860 				error = uiomove(mtod(m, caddr_t), (int)len,
    861 				    uio);
    862  have_data:
    863 				resid = uio->uio_resid;
    864 				m->m_len = len;
    865 				*mp = m;
    866 				top->m_pkthdr.len += len;
    867 				if (error)
    868 					goto release;
    869 				mp = &m->m_next;
    870 				if (resid <= 0) {
    871 					if (flags & MSG_EOR)
    872 						top->m_flags |= M_EOR;
    873 					break;
    874 				}
    875 			} while (space > 0 && atomic);
    876 
    877 			s = splsoftnet();
    878 
    879 			if (so->so_state & SS_CANTSENDMORE)
    880 				snderr(EPIPE);
    881 
    882 			if (dontroute)
    883 				so->so_options |= SO_DONTROUTE;
    884 			if (resid > 0)
    885 				so->so_state |= SS_MORETOCOME;
    886 			error = (*so->so_proto->pr_usrreq)(so,
    887 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    888 			    top, addr, control, p);
    889 			if (dontroute)
    890 				so->so_options &= ~SO_DONTROUTE;
    891 			if (resid > 0)
    892 				so->so_state &= ~SS_MORETOCOME;
    893 			splx(s);
    894 
    895 			clen = 0;
    896 			control = 0;
    897 			top = 0;
    898 			mp = &top;
    899 			if (error)
    900 				goto release;
    901 		} while (resid && space > 0);
    902 	} while (resid);
    903 
    904  release:
    905 	sbunlock(&so->so_snd);
    906  out:
    907 	if (top)
    908 		m_freem(top);
    909 	if (control)
    910 		m_freem(control);
    911 	return (error);
    912 }
    913 
    914 /*
    915  * Implement receive operations on a socket.
    916  * We depend on the way that records are added to the sockbuf
    917  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    918  * must begin with an address if the protocol so specifies,
    919  * followed by an optional mbuf or mbufs containing ancillary data,
    920  * and then zero or more mbufs of data.
    921  * In order to avoid blocking network interrupts for the entire time here,
    922  * we splx() while doing the actual copy to user space.
    923  * Although the sockbuf is locked, new data may still be appended,
    924  * and thus we must maintain consistency of the sockbuf during that time.
    925  *
    926  * The caller may receive the data as a single mbuf chain by supplying
    927  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    928  * only for the count in uio_resid.
    929  */
    930 int
    931 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    932 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    933 {
    934 	struct proc * p;
    935 	struct mbuf	*m, **mp;
    936 	int		flags, len, error, s, offset, moff, type, orig_resid;
    937 	const struct protosw	*pr;
    938 	struct mbuf	*nextrecord;
    939 	int		mbuf_removed = 0;
    940 
    941 	pr = so->so_proto;
    942 	mp = mp0;
    943 	type = 0;
    944 	orig_resid = uio->uio_resid;
    945 	p = uio->uio_procp;
    946 
    947 	if (paddr)
    948 		*paddr = 0;
    949 	if (controlp)
    950 		*controlp = 0;
    951 	if (flagsp)
    952 		flags = *flagsp &~ MSG_EOR;
    953 	else
    954 		flags = 0;
    955 
    956 	if ((flags & MSG_DONTWAIT) == 0)
    957 		sodopendfree(so);
    958 
    959 	if (flags & MSG_OOB) {
    960 		m = m_get(M_WAIT, MT_DATA);
    961 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    962 		    (struct mbuf *)(long)(flags & MSG_PEEK),
    963 		    (struct mbuf *)0, p);
    964 		if (error)
    965 			goto bad;
    966 		do {
    967 			error = uiomove(mtod(m, caddr_t),
    968 			    (int) min(uio->uio_resid, m->m_len), uio);
    969 			m = m_free(m);
    970 		} while (uio->uio_resid && error == 0 && m);
    971  bad:
    972 		if (m)
    973 			m_freem(m);
    974 		return (error);
    975 	}
    976 	if (mp)
    977 		*mp = (struct mbuf *)0;
    978 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    979 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
    980 		    (struct mbuf *)0, (struct mbuf *)0, p);
    981 
    982  restart:
    983 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    984 		return (error);
    985 	s = splsoftnet();
    986 
    987 	m = so->so_rcv.sb_mb;
    988 	/*
    989 	 * If we have less data than requested, block awaiting more
    990 	 * (subject to any timeout) if:
    991 	 *   1. the current count is less than the low water mark,
    992 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
    993 	 *	receive operation at once if we block (resid <= hiwat), or
    994 	 *   3. MSG_DONTWAIT is not set.
    995 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
    996 	 * we have to do the receive in sections, and thus risk returning
    997 	 * a short count if a timeout or signal occurs after we start.
    998 	 */
    999 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1000 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1001 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1002 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1003 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1004 #ifdef DIAGNOSTIC
   1005 		if (m == 0 && so->so_rcv.sb_cc)
   1006 			panic("receive 1");
   1007 #endif
   1008 		if (so->so_error) {
   1009 			if (m)
   1010 				goto dontblock;
   1011 			error = so->so_error;
   1012 			if ((flags & MSG_PEEK) == 0)
   1013 				so->so_error = 0;
   1014 			goto release;
   1015 		}
   1016 		if (so->so_state & SS_CANTRCVMORE) {
   1017 			if (m)
   1018 				goto dontblock;
   1019 			else
   1020 				goto release;
   1021 		}
   1022 		for (; m; m = m->m_next)
   1023 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1024 				m = so->so_rcv.sb_mb;
   1025 				goto dontblock;
   1026 			}
   1027 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1028 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1029 			error = ENOTCONN;
   1030 			goto release;
   1031 		}
   1032 		if (uio->uio_resid == 0)
   1033 			goto release;
   1034 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1035 			error = EWOULDBLOCK;
   1036 			goto release;
   1037 		}
   1038 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1039 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1040 		sbunlock(&so->so_rcv);
   1041 		error = sbwait(&so->so_rcv);
   1042 		splx(s);
   1043 		if (error)
   1044 			return (error);
   1045 		goto restart;
   1046 	}
   1047  dontblock:
   1048 	/*
   1049 	 * On entry here, m points to the first record of the socket buffer.
   1050 	 * While we process the initial mbufs containing address and control
   1051 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1052 	 */
   1053 #ifdef notyet /* XXXX */
   1054 	if (p)
   1055 		p->p_stats->p_ru.ru_msgrcv++;
   1056 #endif
   1057 	KASSERT(m == so->so_rcv.sb_mb);
   1058 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1059 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1060 	nextrecord = m->m_nextpkt;
   1061 	if (pr->pr_flags & PR_ADDR) {
   1062 #ifdef DIAGNOSTIC
   1063 		if (m->m_type != MT_SONAME)
   1064 			panic("receive 1a");
   1065 #endif
   1066 		orig_resid = 0;
   1067 		if (flags & MSG_PEEK) {
   1068 			if (paddr)
   1069 				*paddr = m_copy(m, 0, m->m_len);
   1070 			m = m->m_next;
   1071 		} else {
   1072 			sbfree(&so->so_rcv, m);
   1073 			mbuf_removed = 1;
   1074 			if (paddr) {
   1075 				*paddr = m;
   1076 				so->so_rcv.sb_mb = m->m_next;
   1077 				m->m_next = 0;
   1078 				m = so->so_rcv.sb_mb;
   1079 			} else {
   1080 				MFREE(m, so->so_rcv.sb_mb);
   1081 				m = so->so_rcv.sb_mb;
   1082 			}
   1083 		}
   1084 	}
   1085 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1086 		if (flags & MSG_PEEK) {
   1087 			if (controlp)
   1088 				*controlp = m_copy(m, 0, m->m_len);
   1089 			m = m->m_next;
   1090 		} else {
   1091 			sbfree(&so->so_rcv, m);
   1092 			mbuf_removed = 1;
   1093 			if (controlp) {
   1094 				struct domain *dom = pr->pr_domain;
   1095 				if (dom->dom_externalize && p &&
   1096 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1097 				    SCM_RIGHTS)
   1098 					error = (*dom->dom_externalize)(m, p);
   1099 				*controlp = m;
   1100 				so->so_rcv.sb_mb = m->m_next;
   1101 				m->m_next = 0;
   1102 				m = so->so_rcv.sb_mb;
   1103 			} else {
   1104 				MFREE(m, so->so_rcv.sb_mb);
   1105 				m = so->so_rcv.sb_mb;
   1106 			}
   1107 		}
   1108 		if (controlp) {
   1109 			orig_resid = 0;
   1110 			controlp = &(*controlp)->m_next;
   1111 		}
   1112 	}
   1113 
   1114 	/*
   1115 	 * If m is non-NULL, we have some data to read.  From now on,
   1116 	 * make sure to keep sb_lastrecord consistent when working on
   1117 	 * the last packet on the chain (nextrecord == NULL) and we
   1118 	 * change m->m_nextpkt.
   1119 	 */
   1120 	if (m) {
   1121 		if ((flags & MSG_PEEK) == 0) {
   1122 			m->m_nextpkt = nextrecord;
   1123 			/*
   1124 			 * If nextrecord == NULL (this is a single chain),
   1125 			 * then sb_lastrecord may not be valid here if m
   1126 			 * was changed earlier.
   1127 			 */
   1128 			if (nextrecord == NULL) {
   1129 				KASSERT(so->so_rcv.sb_mb == m);
   1130 				so->so_rcv.sb_lastrecord = m;
   1131 			}
   1132 		}
   1133 		type = m->m_type;
   1134 		if (type == MT_OOBDATA)
   1135 			flags |= MSG_OOB;
   1136 	} else {
   1137 		if ((flags & MSG_PEEK) == 0) {
   1138 			KASSERT(so->so_rcv.sb_mb == m);
   1139 			so->so_rcv.sb_mb = nextrecord;
   1140 			SB_EMPTY_FIXUP(&so->so_rcv);
   1141 		}
   1142 	}
   1143 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1144 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1145 
   1146 	moff = 0;
   1147 	offset = 0;
   1148 	while (m && uio->uio_resid > 0 && error == 0) {
   1149 		if (m->m_type == MT_OOBDATA) {
   1150 			if (type != MT_OOBDATA)
   1151 				break;
   1152 		} else if (type == MT_OOBDATA)
   1153 			break;
   1154 #ifdef DIAGNOSTIC
   1155 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1156 			panic("receive 3");
   1157 #endif
   1158 		so->so_state &= ~SS_RCVATMARK;
   1159 		len = uio->uio_resid;
   1160 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1161 			len = so->so_oobmark - offset;
   1162 		if (len > m->m_len - moff)
   1163 			len = m->m_len - moff;
   1164 		/*
   1165 		 * If mp is set, just pass back the mbufs.
   1166 		 * Otherwise copy them out via the uio, then free.
   1167 		 * Sockbuf must be consistent here (points to current mbuf,
   1168 		 * it points to next record) when we drop priority;
   1169 		 * we must note any additions to the sockbuf when we
   1170 		 * block interrupts again.
   1171 		 */
   1172 		if (mp == 0) {
   1173 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1174 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1175 			splx(s);
   1176 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1177 			s = splsoftnet();
   1178 			if (error) {
   1179 				/*
   1180 				 * If any part of the record has been removed
   1181 				 * (such as the MT_SONAME mbuf, which will
   1182 				 * happen when PR_ADDR, and thus also
   1183 				 * PR_ATOMIC, is set), then drop the entire
   1184 				 * record to maintain the atomicity of the
   1185 				 * receive operation.
   1186 				 *
   1187 				 * This avoids a later panic("receive 1a")
   1188 				 * when compiled with DIAGNOSTIC.
   1189 				 */
   1190 				if (m && mbuf_removed
   1191 				    && (pr->pr_flags & PR_ATOMIC))
   1192 					(void) sbdroprecord(&so->so_rcv);
   1193 
   1194 				goto release;
   1195 			}
   1196 		} else
   1197 			uio->uio_resid -= len;
   1198 		if (len == m->m_len - moff) {
   1199 			if (m->m_flags & M_EOR)
   1200 				flags |= MSG_EOR;
   1201 			if (flags & MSG_PEEK) {
   1202 				m = m->m_next;
   1203 				moff = 0;
   1204 			} else {
   1205 				nextrecord = m->m_nextpkt;
   1206 				sbfree(&so->so_rcv, m);
   1207 				if (mp) {
   1208 					*mp = m;
   1209 					mp = &m->m_next;
   1210 					so->so_rcv.sb_mb = m = m->m_next;
   1211 					*mp = (struct mbuf *)0;
   1212 				} else {
   1213 					MFREE(m, so->so_rcv.sb_mb);
   1214 					m = so->so_rcv.sb_mb;
   1215 				}
   1216 				/*
   1217 				 * If m != NULL, we also know that
   1218 				 * so->so_rcv.sb_mb != NULL.
   1219 				 */
   1220 				KASSERT(so->so_rcv.sb_mb == m);
   1221 				if (m) {
   1222 					m->m_nextpkt = nextrecord;
   1223 					if (nextrecord == NULL)
   1224 						so->so_rcv.sb_lastrecord = m;
   1225 				} else {
   1226 					so->so_rcv.sb_mb = nextrecord;
   1227 					SB_EMPTY_FIXUP(&so->so_rcv);
   1228 				}
   1229 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1230 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1231 			}
   1232 		} else {
   1233 			if (flags & MSG_PEEK)
   1234 				moff += len;
   1235 			else {
   1236 				if (mp)
   1237 					*mp = m_copym(m, 0, len, M_WAIT);
   1238 				m->m_data += len;
   1239 				m->m_len -= len;
   1240 				so->so_rcv.sb_cc -= len;
   1241 			}
   1242 		}
   1243 		if (so->so_oobmark) {
   1244 			if ((flags & MSG_PEEK) == 0) {
   1245 				so->so_oobmark -= len;
   1246 				if (so->so_oobmark == 0) {
   1247 					so->so_state |= SS_RCVATMARK;
   1248 					break;
   1249 				}
   1250 			} else {
   1251 				offset += len;
   1252 				if (offset == so->so_oobmark)
   1253 					break;
   1254 			}
   1255 		}
   1256 		if (flags & MSG_EOR)
   1257 			break;
   1258 		/*
   1259 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1260 		 * we must not quit until "uio->uio_resid == 0" or an error
   1261 		 * termination.  If a signal/timeout occurs, return
   1262 		 * with a short count but without error.
   1263 		 * Keep sockbuf locked against other readers.
   1264 		 */
   1265 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1266 		    !sosendallatonce(so) && !nextrecord) {
   1267 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1268 				break;
   1269 			/*
   1270 			 * If we are peeking and the socket receive buffer is
   1271 			 * full, stop since we can't get more data to peek at.
   1272 			 */
   1273 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1274 				break;
   1275 			/*
   1276 			 * If we've drained the socket buffer, tell the
   1277 			 * protocol in case it needs to do something to
   1278 			 * get it filled again.
   1279 			 */
   1280 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1281 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1282 				    (struct mbuf *)0,
   1283 				    (struct mbuf *)(long)flags,
   1284 				    (struct mbuf *)0, p);
   1285 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1286 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1287 			error = sbwait(&so->so_rcv);
   1288 			if (error) {
   1289 				sbunlock(&so->so_rcv);
   1290 				splx(s);
   1291 				return (0);
   1292 			}
   1293 			if ((m = so->so_rcv.sb_mb) != NULL)
   1294 				nextrecord = m->m_nextpkt;
   1295 		}
   1296 	}
   1297 
   1298 	if (m && pr->pr_flags & PR_ATOMIC) {
   1299 		flags |= MSG_TRUNC;
   1300 		if ((flags & MSG_PEEK) == 0)
   1301 			(void) sbdroprecord(&so->so_rcv);
   1302 	}
   1303 	if ((flags & MSG_PEEK) == 0) {
   1304 		if (m == 0) {
   1305 			/*
   1306 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1307 			 * part makes sure sb_lastrecord is up-to-date if
   1308 			 * there is still data in the socket buffer.
   1309 			 */
   1310 			so->so_rcv.sb_mb = nextrecord;
   1311 			if (so->so_rcv.sb_mb == NULL) {
   1312 				so->so_rcv.sb_mbtail = NULL;
   1313 				so->so_rcv.sb_lastrecord = NULL;
   1314 			} else if (nextrecord->m_nextpkt == NULL)
   1315 				so->so_rcv.sb_lastrecord = nextrecord;
   1316 		}
   1317 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1318 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1319 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1320 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1321 			    (struct mbuf *)(long)flags, (struct mbuf *)0, p);
   1322 	}
   1323 	if (orig_resid == uio->uio_resid && orig_resid &&
   1324 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1325 		sbunlock(&so->so_rcv);
   1326 		splx(s);
   1327 		goto restart;
   1328 	}
   1329 
   1330 	if (flagsp)
   1331 		*flagsp |= flags;
   1332  release:
   1333 	sbunlock(&so->so_rcv);
   1334 	splx(s);
   1335 	return (error);
   1336 }
   1337 
   1338 int
   1339 soshutdown(struct socket *so, int how)
   1340 {
   1341 	const struct protosw	*pr;
   1342 
   1343 	pr = so->so_proto;
   1344 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1345 		return (EINVAL);
   1346 
   1347 	if (how == SHUT_RD || how == SHUT_RDWR)
   1348 		sorflush(so);
   1349 	if (how == SHUT_WR || how == SHUT_RDWR)
   1350 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1351 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
   1352 	return (0);
   1353 }
   1354 
   1355 void
   1356 sorflush(struct socket *so)
   1357 {
   1358 	struct sockbuf	*sb, asb;
   1359 	const struct protosw	*pr;
   1360 	int		s;
   1361 
   1362 	sb = &so->so_rcv;
   1363 	pr = so->so_proto;
   1364 	sb->sb_flags |= SB_NOINTR;
   1365 	(void) sblock(sb, M_WAITOK);
   1366 	s = splnet();
   1367 	socantrcvmore(so);
   1368 	sbunlock(sb);
   1369 	asb = *sb;
   1370 	/*
   1371 	 * Clear most of the sockbuf structure, but leave some of the
   1372 	 * fields valid.
   1373 	 */
   1374 	memset(&sb->sb_startzero, 0,
   1375 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1376 	splx(s);
   1377 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1378 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1379 	sbrelease(&asb, so);
   1380 }
   1381 
   1382 int
   1383 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1384 {
   1385 	int		error;
   1386 	struct mbuf	*m;
   1387 
   1388 	error = 0;
   1389 	m = m0;
   1390 	if (level != SOL_SOCKET) {
   1391 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1392 			return ((*so->so_proto->pr_ctloutput)
   1393 				  (PRCO_SETOPT, so, level, optname, &m0));
   1394 		error = ENOPROTOOPT;
   1395 	} else {
   1396 		switch (optname) {
   1397 
   1398 		case SO_LINGER:
   1399 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1400 				error = EINVAL;
   1401 				goto bad;
   1402 			}
   1403 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1404 			/* fall thru... */
   1405 
   1406 		case SO_DEBUG:
   1407 		case SO_KEEPALIVE:
   1408 		case SO_DONTROUTE:
   1409 		case SO_USELOOPBACK:
   1410 		case SO_BROADCAST:
   1411 		case SO_REUSEADDR:
   1412 		case SO_REUSEPORT:
   1413 		case SO_OOBINLINE:
   1414 		case SO_TIMESTAMP:
   1415 			if (m == NULL || m->m_len < sizeof(int)) {
   1416 				error = EINVAL;
   1417 				goto bad;
   1418 			}
   1419 			if (*mtod(m, int *))
   1420 				so->so_options |= optname;
   1421 			else
   1422 				so->so_options &= ~optname;
   1423 			break;
   1424 
   1425 		case SO_SNDBUF:
   1426 		case SO_RCVBUF:
   1427 		case SO_SNDLOWAT:
   1428 		case SO_RCVLOWAT:
   1429 		    {
   1430 			int optval;
   1431 
   1432 			if (m == NULL || m->m_len < sizeof(int)) {
   1433 				error = EINVAL;
   1434 				goto bad;
   1435 			}
   1436 
   1437 			/*
   1438 			 * Values < 1 make no sense for any of these
   1439 			 * options, so disallow them.
   1440 			 */
   1441 			optval = *mtod(m, int *);
   1442 			if (optval < 1) {
   1443 				error = EINVAL;
   1444 				goto bad;
   1445 			}
   1446 
   1447 			switch (optname) {
   1448 
   1449 			case SO_SNDBUF:
   1450 			case SO_RCVBUF:
   1451 				if (sbreserve(optname == SO_SNDBUF ?
   1452 				    &so->so_snd : &so->so_rcv,
   1453 				    (u_long) optval, so) == 0) {
   1454 					error = ENOBUFS;
   1455 					goto bad;
   1456 				}
   1457 				break;
   1458 
   1459 			/*
   1460 			 * Make sure the low-water is never greater than
   1461 			 * the high-water.
   1462 			 */
   1463 			case SO_SNDLOWAT:
   1464 				so->so_snd.sb_lowat =
   1465 				    (optval > so->so_snd.sb_hiwat) ?
   1466 				    so->so_snd.sb_hiwat : optval;
   1467 				break;
   1468 			case SO_RCVLOWAT:
   1469 				so->so_rcv.sb_lowat =
   1470 				    (optval > so->so_rcv.sb_hiwat) ?
   1471 				    so->so_rcv.sb_hiwat : optval;
   1472 				break;
   1473 			}
   1474 			break;
   1475 		    }
   1476 
   1477 		case SO_SNDTIMEO:
   1478 		case SO_RCVTIMEO:
   1479 		    {
   1480 			struct timeval *tv;
   1481 			short val;
   1482 
   1483 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1484 				error = EINVAL;
   1485 				goto bad;
   1486 			}
   1487 			tv = mtod(m, struct timeval *);
   1488 			if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) {
   1489 				error = EDOM;
   1490 				goto bad;
   1491 			}
   1492 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1493 			if (val == 0 && tv->tv_usec != 0)
   1494 				val = 1;
   1495 
   1496 			switch (optname) {
   1497 
   1498 			case SO_SNDTIMEO:
   1499 				so->so_snd.sb_timeo = val;
   1500 				break;
   1501 			case SO_RCVTIMEO:
   1502 				so->so_rcv.sb_timeo = val;
   1503 				break;
   1504 			}
   1505 			break;
   1506 		    }
   1507 
   1508 		default:
   1509 			error = ENOPROTOOPT;
   1510 			break;
   1511 		}
   1512 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1513 			(void) ((*so->so_proto->pr_ctloutput)
   1514 				  (PRCO_SETOPT, so, level, optname, &m0));
   1515 			m = NULL;	/* freed by protocol */
   1516 		}
   1517 	}
   1518  bad:
   1519 	if (m)
   1520 		(void) m_free(m);
   1521 	return (error);
   1522 }
   1523 
   1524 int
   1525 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1526 {
   1527 	struct mbuf	*m;
   1528 
   1529 	if (level != SOL_SOCKET) {
   1530 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1531 			return ((*so->so_proto->pr_ctloutput)
   1532 				  (PRCO_GETOPT, so, level, optname, mp));
   1533 		} else
   1534 			return (ENOPROTOOPT);
   1535 	} else {
   1536 		m = m_get(M_WAIT, MT_SOOPTS);
   1537 		m->m_len = sizeof(int);
   1538 
   1539 		switch (optname) {
   1540 
   1541 		case SO_LINGER:
   1542 			m->m_len = sizeof(struct linger);
   1543 			mtod(m, struct linger *)->l_onoff =
   1544 				so->so_options & SO_LINGER;
   1545 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1546 			break;
   1547 
   1548 		case SO_USELOOPBACK:
   1549 		case SO_DONTROUTE:
   1550 		case SO_DEBUG:
   1551 		case SO_KEEPALIVE:
   1552 		case SO_REUSEADDR:
   1553 		case SO_REUSEPORT:
   1554 		case SO_BROADCAST:
   1555 		case SO_OOBINLINE:
   1556 		case SO_TIMESTAMP:
   1557 			*mtod(m, int *) = so->so_options & optname;
   1558 			break;
   1559 
   1560 		case SO_TYPE:
   1561 			*mtod(m, int *) = so->so_type;
   1562 			break;
   1563 
   1564 		case SO_ERROR:
   1565 			*mtod(m, int *) = so->so_error;
   1566 			so->so_error = 0;
   1567 			break;
   1568 
   1569 		case SO_SNDBUF:
   1570 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1571 			break;
   1572 
   1573 		case SO_RCVBUF:
   1574 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1575 			break;
   1576 
   1577 		case SO_SNDLOWAT:
   1578 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1579 			break;
   1580 
   1581 		case SO_RCVLOWAT:
   1582 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1583 			break;
   1584 
   1585 		case SO_SNDTIMEO:
   1586 		case SO_RCVTIMEO:
   1587 		    {
   1588 			int val = (optname == SO_SNDTIMEO ?
   1589 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1590 
   1591 			m->m_len = sizeof(struct timeval);
   1592 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1593 			mtod(m, struct timeval *)->tv_usec =
   1594 			    (val % hz) * tick;
   1595 			break;
   1596 		    }
   1597 
   1598 		default:
   1599 			(void)m_free(m);
   1600 			return (ENOPROTOOPT);
   1601 		}
   1602 		*mp = m;
   1603 		return (0);
   1604 	}
   1605 }
   1606 
   1607 void
   1608 sohasoutofband(struct socket *so)
   1609 {
   1610 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1611 	selwakeup(&so->so_rcv.sb_sel);
   1612 }
   1613 
   1614 static void
   1615 filt_sordetach(struct knote *kn)
   1616 {
   1617 	struct socket	*so;
   1618 
   1619 	so = (struct socket *)kn->kn_fp->f_data;
   1620 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1621 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1622 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1623 }
   1624 
   1625 /*ARGSUSED*/
   1626 static int
   1627 filt_soread(struct knote *kn, long hint)
   1628 {
   1629 	struct socket	*so;
   1630 
   1631 	so = (struct socket *)kn->kn_fp->f_data;
   1632 	kn->kn_data = so->so_rcv.sb_cc;
   1633 	if (so->so_state & SS_CANTRCVMORE) {
   1634 		kn->kn_flags |= EV_EOF;
   1635 		kn->kn_fflags = so->so_error;
   1636 		return (1);
   1637 	}
   1638 	if (so->so_error)	/* temporary udp error */
   1639 		return (1);
   1640 	if (kn->kn_sfflags & NOTE_LOWAT)
   1641 		return (kn->kn_data >= kn->kn_sdata);
   1642 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1643 }
   1644 
   1645 static void
   1646 filt_sowdetach(struct knote *kn)
   1647 {
   1648 	struct socket	*so;
   1649 
   1650 	so = (struct socket *)kn->kn_fp->f_data;
   1651 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1652 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1653 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1654 }
   1655 
   1656 /*ARGSUSED*/
   1657 static int
   1658 filt_sowrite(struct knote *kn, long hint)
   1659 {
   1660 	struct socket	*so;
   1661 
   1662 	so = (struct socket *)kn->kn_fp->f_data;
   1663 	kn->kn_data = sbspace(&so->so_snd);
   1664 	if (so->so_state & SS_CANTSENDMORE) {
   1665 		kn->kn_flags |= EV_EOF;
   1666 		kn->kn_fflags = so->so_error;
   1667 		return (1);
   1668 	}
   1669 	if (so->so_error)	/* temporary udp error */
   1670 		return (1);
   1671 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1672 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1673 		return (0);
   1674 	if (kn->kn_sfflags & NOTE_LOWAT)
   1675 		return (kn->kn_data >= kn->kn_sdata);
   1676 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1677 }
   1678 
   1679 /*ARGSUSED*/
   1680 static int
   1681 filt_solisten(struct knote *kn, long hint)
   1682 {
   1683 	struct socket	*so;
   1684 
   1685 	so = (struct socket *)kn->kn_fp->f_data;
   1686 
   1687 	/*
   1688 	 * Set kn_data to number of incoming connections, not
   1689 	 * counting partial (incomplete) connections.
   1690 	 */
   1691 	kn->kn_data = so->so_qlen;
   1692 	return (kn->kn_data > 0);
   1693 }
   1694 
   1695 static const struct filterops solisten_filtops =
   1696 	{ 1, NULL, filt_sordetach, filt_solisten };
   1697 static const struct filterops soread_filtops =
   1698 	{ 1, NULL, filt_sordetach, filt_soread };
   1699 static const struct filterops sowrite_filtops =
   1700 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1701 
   1702 int
   1703 soo_kqfilter(struct file *fp, struct knote *kn)
   1704 {
   1705 	struct socket	*so;
   1706 	struct sockbuf	*sb;
   1707 
   1708 	so = (struct socket *)kn->kn_fp->f_data;
   1709 	switch (kn->kn_filter) {
   1710 	case EVFILT_READ:
   1711 		if (so->so_options & SO_ACCEPTCONN)
   1712 			kn->kn_fop = &solisten_filtops;
   1713 		else
   1714 			kn->kn_fop = &soread_filtops;
   1715 		sb = &so->so_rcv;
   1716 		break;
   1717 	case EVFILT_WRITE:
   1718 		kn->kn_fop = &sowrite_filtops;
   1719 		sb = &so->so_snd;
   1720 		break;
   1721 	default:
   1722 		return (1);
   1723 	}
   1724 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1725 	sb->sb_flags |= SB_KNOTE;
   1726 	return (0);
   1727 }
   1728 
   1729 #include <sys/sysctl.h>
   1730 
   1731 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1732 
   1733 /*
   1734  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1735  * value is not too small.
   1736  * (XXX should we maybe make sure it's not too large as well?)
   1737  */
   1738 static int
   1739 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1740 {
   1741 	int error, new_somaxkva;
   1742 	struct sysctlnode node;
   1743 	int s;
   1744 
   1745 	new_somaxkva = somaxkva;
   1746 	node = *rnode;
   1747 	node.sysctl_data = &new_somaxkva;
   1748 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1749 	if (error || newp == NULL)
   1750 		return (error);
   1751 
   1752 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1753 		return (EINVAL);
   1754 
   1755 	s = splvm();
   1756 	simple_lock(&so_pendfree_slock);
   1757 	somaxkva = new_somaxkva;
   1758 	wakeup(&socurkva);
   1759 	simple_unlock(&so_pendfree_slock);
   1760 	splx(s);
   1761 
   1762 	return (error);
   1763 }
   1764 
   1765 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1766 {
   1767 
   1768 	sysctl_createv(clog, 0, NULL, NULL,
   1769 		       CTLFLAG_PERMANENT,
   1770 		       CTLTYPE_NODE, "kern", NULL,
   1771 		       NULL, 0, NULL, 0,
   1772 		       CTL_KERN, CTL_EOL);
   1773 
   1774 	sysctl_createv(clog, 0, NULL, NULL,
   1775 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1776 		       CTLTYPE_INT, "somaxkva",
   1777 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1778 				    "used for socket buffers"),
   1779 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1780 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1781 }
   1782