uipc_socket.c revision 1.104 1 /* $NetBSD: uipc_socket.c,v 1.104 2004/07/01 12:42:57 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.104 2004/07/01 12:42:57 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 void
130 soinit(void)
131 {
132
133 /* Set the initial adjusted socket buffer size. */
134 if (sb_max_set(sb_max))
135 panic("bad initial sb_max value: %lu\n", sb_max);
136
137 }
138
139 #ifdef SOSEND_NO_LOAN
140 int use_sosend_loan = 0;
141 #else
142 int use_sosend_loan = 1;
143 #endif
144
145 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
146 struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 int socurkva;
153 int sokvawaiters;
154
155 #define SOCK_LOAN_THRESH 4096
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(struct socket *);
159 static size_t sodopendfreel(struct socket *);
160 static __inline vsize_t sokvareserve(struct socket *, vsize_t);
161 static __inline void sokvaunreserve(vsize_t);
162
163 static __inline vsize_t
164 sokvareserve(struct socket *so, vsize_t len)
165 {
166 int s;
167 int error;
168
169 s = splvm();
170 simple_lock(&so_pendfree_slock);
171 while (socurkva + len > somaxkva) {
172 size_t freed;
173
174 /*
175 * try to do pendfree.
176 */
177
178 freed = sodopendfreel(so);
179
180 /*
181 * if some kva was freed, try again.
182 */
183
184 if (freed)
185 continue;
186
187 SOSEND_COUNTER_INCR(&sosend_kvalimit);
188 sokvawaiters++;
189 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
190 &so_pendfree_slock);
191 sokvawaiters--;
192 if (error) {
193 len = 0;
194 break;
195 }
196 }
197 socurkva += len;
198 simple_unlock(&so_pendfree_slock);
199 splx(s);
200 return len;
201 }
202
203 static __inline void
204 sokvaunreserve(vsize_t len)
205 {
206 int s;
207
208 s = splvm();
209 simple_lock(&so_pendfree_slock);
210 socurkva -= len;
211 if (sokvawaiters)
212 wakeup(&socurkva);
213 simple_unlock(&so_pendfree_slock);
214 splx(s);
215 }
216
217 /*
218 * sokvaalloc: allocate kva for loan.
219 */
220
221 vaddr_t
222 sokvaalloc(vsize_t len, struct socket *so)
223 {
224 vaddr_t lva;
225
226 /*
227 * reserve kva.
228 */
229
230 if (sokvareserve(so, len) == 0)
231 return 0;
232
233 /*
234 * allocate kva.
235 */
236
237 lva = uvm_km_valloc_wait(kernel_map, len);
238 if (lva == 0) {
239 sokvaunreserve(len);
240 return (0);
241 }
242
243 return lva;
244 }
245
246 /*
247 * sokvafree: free kva for loan.
248 */
249
250 void
251 sokvafree(vaddr_t sva, vsize_t len)
252 {
253
254 /*
255 * free kva.
256 */
257
258 uvm_km_free(kernel_map, sva, len);
259
260 /*
261 * unreserve kva.
262 */
263
264 sokvaunreserve(len);
265 }
266
267 static void
268 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
269 {
270 vaddr_t va, sva, eva;
271 vsize_t len;
272 paddr_t pa;
273 int i, npgs;
274
275 eva = round_page((vaddr_t) buf + size);
276 sva = trunc_page((vaddr_t) buf);
277 len = eva - sva;
278 npgs = len >> PAGE_SHIFT;
279
280 if (__predict_false(pgs == NULL)) {
281 pgs = alloca(npgs * sizeof(*pgs));
282
283 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
284 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
285 panic("sodoloanfree: va 0x%lx not mapped", va);
286 pgs[i] = PHYS_TO_VM_PAGE(pa);
287 }
288 }
289
290 pmap_kremove(sva, len);
291 pmap_update(pmap_kernel());
292 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
293 sokvafree(sva, len);
294 }
295
296 static size_t
297 sodopendfree(struct socket *so)
298 {
299 int s;
300 size_t rv;
301
302 s = splvm();
303 simple_lock(&so_pendfree_slock);
304 rv = sodopendfreel(so);
305 simple_unlock(&so_pendfree_slock);
306 splx(s);
307
308 return rv;
309 }
310
311 /*
312 * sodopendfreel: free mbufs on "pendfree" list.
313 * unlock and relock so_pendfree_slock when freeing mbufs.
314 *
315 * => called with so_pendfree_slock held.
316 * => called at splvm.
317 */
318
319 static size_t
320 sodopendfreel(struct socket *so)
321 {
322 size_t rv = 0;
323
324 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
325
326 for (;;) {
327 struct mbuf *m;
328 struct mbuf *next;
329
330 m = so_pendfree;
331 if (m == NULL)
332 break;
333 so_pendfree = NULL;
334 simple_unlock(&so_pendfree_slock);
335 /* XXX splx */
336
337 for (; m != NULL; m = next) {
338 next = m->m_next;
339
340 rv += m->m_ext.ext_size;
341 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
342 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
343 m->m_ext.ext_size);
344 pool_cache_put(&mbpool_cache, m);
345 }
346
347 /* XXX splvm */
348 simple_lock(&so_pendfree_slock);
349 }
350
351 return (rv);
352 }
353
354 void
355 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
356 {
357 int s;
358
359 if (m == NULL) {
360
361 /*
362 * called from MEXTREMOVE.
363 */
364
365 sodoloanfree(NULL, buf, size);
366 return;
367 }
368
369 /*
370 * postpone freeing mbuf.
371 *
372 * we can't do it in interrupt context
373 * because we need to put kva back to kernel_map.
374 */
375
376 s = splvm();
377 simple_lock(&so_pendfree_slock);
378 m->m_next = so_pendfree;
379 so_pendfree = m;
380 if (sokvawaiters)
381 wakeup(&socurkva);
382 simple_unlock(&so_pendfree_slock);
383 splx(s);
384 }
385
386 static long
387 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
388 {
389 struct iovec *iov = uio->uio_iov;
390 vaddr_t sva, eva;
391 vsize_t len;
392 vaddr_t lva, va;
393 int npgs, i, error;
394
395 if (uio->uio_segflg != UIO_USERSPACE)
396 return (0);
397
398 if (iov->iov_len < (size_t) space)
399 space = iov->iov_len;
400 if (space > SOCK_LOAN_CHUNK)
401 space = SOCK_LOAN_CHUNK;
402
403 eva = round_page((vaddr_t) iov->iov_base + space);
404 sva = trunc_page((vaddr_t) iov->iov_base);
405 len = eva - sva;
406 npgs = len >> PAGE_SHIFT;
407
408 /* XXX KDASSERT */
409 KASSERT(npgs <= M_EXT_MAXPAGES);
410 KASSERT(uio->uio_procp != NULL);
411
412 lva = sokvaalloc(len, so);
413 if (lva == 0)
414 return 0;
415
416 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
417 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
418 if (error) {
419 sokvafree(lva, len);
420 return (0);
421 }
422
423 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
424 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
425 VM_PROT_READ);
426 pmap_update(pmap_kernel());
427
428 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
429
430 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
431 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
432
433 uio->uio_resid -= space;
434 /* uio_offset not updated, not set/used for write(2) */
435 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
436 uio->uio_iov->iov_len -= space;
437 if (uio->uio_iov->iov_len == 0) {
438 uio->uio_iov++;
439 uio->uio_iovcnt--;
440 }
441
442 return (space);
443 }
444
445 /*
446 * Socket operation routines.
447 * These routines are called by the routines in
448 * sys_socket.c or from a system process, and
449 * implement the semantics of socket operations by
450 * switching out to the protocol specific routines.
451 */
452 /*ARGSUSED*/
453 int
454 socreate(int dom, struct socket **aso, int type, int proto, struct proc *p)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 int error, s;
459
460 if (proto)
461 prp = pffindproto(dom, proto, type);
462 else
463 prp = pffindtype(dom, type);
464 if (prp == 0 || prp->pr_usrreq == 0)
465 return (EPROTONOSUPPORT);
466 if (prp->pr_type != type)
467 return (EPROTOTYPE);
468 s = splsoftnet();
469 so = pool_get(&socket_pool, PR_WAITOK);
470 memset((caddr_t)so, 0, sizeof(*so));
471 TAILQ_INIT(&so->so_q0);
472 TAILQ_INIT(&so->so_q);
473 so->so_type = type;
474 so->so_proto = prp;
475 so->so_send = sosend;
476 so->so_receive = soreceive;
477 #ifdef MBUFTRACE
478 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
479 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
480 so->so_mowner = &prp->pr_domain->dom_mowner;
481 #endif
482 if (p != 0)
483 so->so_uid = p->p_ucred->cr_uid;
484 else
485 so->so_uid = UID_MAX;
486 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
487 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
488 if (error) {
489 so->so_state |= SS_NOFDREF;
490 sofree(so);
491 splx(s);
492 return (error);
493 }
494 splx(s);
495 *aso = so;
496 return (0);
497 }
498
499 int
500 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
501 {
502 int s, error;
503
504 s = splsoftnet();
505 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
506 nam, (struct mbuf *)0, p);
507 splx(s);
508 return (error);
509 }
510
511 int
512 solisten(struct socket *so, int backlog)
513 {
514 int s, error;
515
516 s = splsoftnet();
517 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
518 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
519 if (error) {
520 splx(s);
521 return (error);
522 }
523 if (TAILQ_EMPTY(&so->so_q))
524 so->so_options |= SO_ACCEPTCONN;
525 if (backlog < 0)
526 backlog = 0;
527 so->so_qlimit = min(backlog, somaxconn);
528 splx(s);
529 return (0);
530 }
531
532 void
533 sofree(struct socket *so)
534 {
535
536 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
537 return;
538 if (so->so_head) {
539 /*
540 * We must not decommission a socket that's on the accept(2)
541 * queue. If we do, then accept(2) may hang after select(2)
542 * indicated that the listening socket was ready.
543 */
544 if (!soqremque(so, 0))
545 return;
546 }
547 if (so->so_rcv.sb_hiwat)
548 (void)chgsbsize(so->so_uid, &so->so_rcv.sb_hiwat, 0,
549 RLIM_INFINITY);
550 if (so->so_snd.sb_hiwat)
551 (void)chgsbsize(so->so_uid, &so->so_snd.sb_hiwat, 0,
552 RLIM_INFINITY);
553 sbrelease(&so->so_snd, so);
554 sorflush(so);
555 pool_put(&socket_pool, so);
556 }
557
558 /*
559 * Close a socket on last file table reference removal.
560 * Initiate disconnect if connected.
561 * Free socket when disconnect complete.
562 */
563 int
564 soclose(struct socket *so)
565 {
566 struct socket *so2;
567 int s, error;
568
569 error = 0;
570 s = splsoftnet(); /* conservative */
571 if (so->so_options & SO_ACCEPTCONN) {
572 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
573 (void) soqremque(so2, 0);
574 (void) soabort(so2);
575 }
576 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
577 (void) soqremque(so2, 1);
578 (void) soabort(so2);
579 }
580 }
581 if (so->so_pcb == 0)
582 goto discard;
583 if (so->so_state & SS_ISCONNECTED) {
584 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
585 error = sodisconnect(so);
586 if (error)
587 goto drop;
588 }
589 if (so->so_options & SO_LINGER) {
590 if ((so->so_state & SS_ISDISCONNECTING) &&
591 (so->so_state & SS_NBIO))
592 goto drop;
593 while (so->so_state & SS_ISCONNECTED) {
594 error = tsleep((caddr_t)&so->so_timeo,
595 PSOCK | PCATCH, netcls,
596 so->so_linger * hz);
597 if (error)
598 break;
599 }
600 }
601 }
602 drop:
603 if (so->so_pcb) {
604 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
605 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
606 (struct proc *)0);
607 if (error == 0)
608 error = error2;
609 }
610 discard:
611 if (so->so_state & SS_NOFDREF)
612 panic("soclose: NOFDREF");
613 so->so_state |= SS_NOFDREF;
614 sofree(so);
615 splx(s);
616 return (error);
617 }
618
619 /*
620 * Must be called at splsoftnet...
621 */
622 int
623 soabort(struct socket *so)
624 {
625
626 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
627 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
628 }
629
630 int
631 soaccept(struct socket *so, struct mbuf *nam)
632 {
633 int s, error;
634
635 error = 0;
636 s = splsoftnet();
637 if ((so->so_state & SS_NOFDREF) == 0)
638 panic("soaccept: !NOFDREF");
639 so->so_state &= ~SS_NOFDREF;
640 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
641 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
642 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
643 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
644 else
645 error = ECONNABORTED;
646
647 splx(s);
648 return (error);
649 }
650
651 int
652 soconnect(struct socket *so, struct mbuf *nam, struct proc *p)
653 {
654 int s, error;
655
656 if (so->so_options & SO_ACCEPTCONN)
657 return (EOPNOTSUPP);
658 s = splsoftnet();
659 /*
660 * If protocol is connection-based, can only connect once.
661 * Otherwise, if connected, try to disconnect first.
662 * This allows user to disconnect by connecting to, e.g.,
663 * a null address.
664 */
665 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
666 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
667 (error = sodisconnect(so))))
668 error = EISCONN;
669 else
670 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
671 (struct mbuf *)0, nam, (struct mbuf *)0, p);
672 splx(s);
673 return (error);
674 }
675
676 int
677 soconnect2(struct socket *so1, struct socket *so2)
678 {
679 int s, error;
680
681 s = splsoftnet();
682 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
683 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
684 (struct proc *)0);
685 splx(s);
686 return (error);
687 }
688
689 int
690 sodisconnect(struct socket *so)
691 {
692 int s, error;
693
694 s = splsoftnet();
695 if ((so->so_state & SS_ISCONNECTED) == 0) {
696 error = ENOTCONN;
697 goto bad;
698 }
699 if (so->so_state & SS_ISDISCONNECTING) {
700 error = EALREADY;
701 goto bad;
702 }
703 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
704 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
705 (struct proc *)0);
706 bad:
707 splx(s);
708 sodopendfree(so);
709 return (error);
710 }
711
712 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
713 /*
714 * Send on a socket.
715 * If send must go all at once and message is larger than
716 * send buffering, then hard error.
717 * Lock against other senders.
718 * If must go all at once and not enough room now, then
719 * inform user that this would block and do nothing.
720 * Otherwise, if nonblocking, send as much as possible.
721 * The data to be sent is described by "uio" if nonzero,
722 * otherwise by the mbuf chain "top" (which must be null
723 * if uio is not). Data provided in mbuf chain must be small
724 * enough to send all at once.
725 *
726 * Returns nonzero on error, timeout or signal; callers
727 * must check for short counts if EINTR/ERESTART are returned.
728 * Data and control buffers are freed on return.
729 */
730 int
731 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
732 struct mbuf *control, int flags, struct proc *p)
733 {
734 struct mbuf **mp, *m;
735 long space, len, resid, clen, mlen;
736 int error, s, dontroute, atomic;
737
738 sodopendfree(so);
739
740 clen = 0;
741 atomic = sosendallatonce(so) || top;
742 if (uio)
743 resid = uio->uio_resid;
744 else
745 resid = top->m_pkthdr.len;
746 /*
747 * In theory resid should be unsigned.
748 * However, space must be signed, as it might be less than 0
749 * if we over-committed, and we must use a signed comparison
750 * of space and resid. On the other hand, a negative resid
751 * causes us to loop sending 0-length segments to the protocol.
752 */
753 if (resid < 0) {
754 error = EINVAL;
755 goto out;
756 }
757 dontroute =
758 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
759 (so->so_proto->pr_flags & PR_ATOMIC);
760 if (p)
761 p->p_stats->p_ru.ru_msgsnd++;
762 if (control)
763 clen = control->m_len;
764 #define snderr(errno) { error = errno; splx(s); goto release; }
765
766 restart:
767 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
768 goto out;
769 do {
770 s = splsoftnet();
771 if (so->so_state & SS_CANTSENDMORE)
772 snderr(EPIPE);
773 if (so->so_error) {
774 error = so->so_error;
775 so->so_error = 0;
776 splx(s);
777 goto release;
778 }
779 if ((so->so_state & SS_ISCONNECTED) == 0) {
780 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
781 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
782 !(resid == 0 && clen != 0))
783 snderr(ENOTCONN);
784 } else if (addr == 0)
785 snderr(EDESTADDRREQ);
786 }
787 space = sbspace(&so->so_snd);
788 if (flags & MSG_OOB)
789 space += 1024;
790 if ((atomic && resid > so->so_snd.sb_hiwat) ||
791 clen > so->so_snd.sb_hiwat)
792 snderr(EMSGSIZE);
793 if (space < resid + clen &&
794 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
795 if (so->so_state & SS_NBIO)
796 snderr(EWOULDBLOCK);
797 sbunlock(&so->so_snd);
798 error = sbwait(&so->so_snd);
799 splx(s);
800 if (error)
801 goto out;
802 goto restart;
803 }
804 splx(s);
805 mp = ⊤
806 space -= clen;
807 do {
808 if (uio == NULL) {
809 /*
810 * Data is prepackaged in "top".
811 */
812 resid = 0;
813 if (flags & MSG_EOR)
814 top->m_flags |= M_EOR;
815 } else do {
816 if (top == 0) {
817 m = m_gethdr(M_WAIT, MT_DATA);
818 mlen = MHLEN;
819 m->m_pkthdr.len = 0;
820 m->m_pkthdr.rcvif = (struct ifnet *)0;
821 } else {
822 m = m_get(M_WAIT, MT_DATA);
823 mlen = MLEN;
824 }
825 MCLAIM(m, so->so_snd.sb_mowner);
826 if (use_sosend_loan &&
827 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
828 space >= SOCK_LOAN_THRESH &&
829 (len = sosend_loan(so, uio, m,
830 space)) != 0) {
831 SOSEND_COUNTER_INCR(&sosend_loan_big);
832 space -= len;
833 goto have_data;
834 }
835 if (resid >= MINCLSIZE && space >= MCLBYTES) {
836 SOSEND_COUNTER_INCR(&sosend_copy_big);
837 m_clget(m, M_WAIT);
838 if ((m->m_flags & M_EXT) == 0)
839 goto nopages;
840 mlen = MCLBYTES;
841 if (atomic && top == 0) {
842 len = lmin(MCLBYTES - max_hdr,
843 resid);
844 m->m_data += max_hdr;
845 } else
846 len = lmin(MCLBYTES, resid);
847 space -= len;
848 } else {
849 nopages:
850 SOSEND_COUNTER_INCR(&sosend_copy_small);
851 len = lmin(lmin(mlen, resid), space);
852 space -= len;
853 /*
854 * For datagram protocols, leave room
855 * for protocol headers in first mbuf.
856 */
857 if (atomic && top == 0 && len < mlen)
858 MH_ALIGN(m, len);
859 }
860 error = uiomove(mtod(m, caddr_t), (int)len,
861 uio);
862 have_data:
863 resid = uio->uio_resid;
864 m->m_len = len;
865 *mp = m;
866 top->m_pkthdr.len += len;
867 if (error)
868 goto release;
869 mp = &m->m_next;
870 if (resid <= 0) {
871 if (flags & MSG_EOR)
872 top->m_flags |= M_EOR;
873 break;
874 }
875 } while (space > 0 && atomic);
876
877 s = splsoftnet();
878
879 if (so->so_state & SS_CANTSENDMORE)
880 snderr(EPIPE);
881
882 if (dontroute)
883 so->so_options |= SO_DONTROUTE;
884 if (resid > 0)
885 so->so_state |= SS_MORETOCOME;
886 error = (*so->so_proto->pr_usrreq)(so,
887 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
888 top, addr, control, p);
889 if (dontroute)
890 so->so_options &= ~SO_DONTROUTE;
891 if (resid > 0)
892 so->so_state &= ~SS_MORETOCOME;
893 splx(s);
894
895 clen = 0;
896 control = 0;
897 top = 0;
898 mp = ⊤
899 if (error)
900 goto release;
901 } while (resid && space > 0);
902 } while (resid);
903
904 release:
905 sbunlock(&so->so_snd);
906 out:
907 if (top)
908 m_freem(top);
909 if (control)
910 m_freem(control);
911 return (error);
912 }
913
914 /*
915 * Implement receive operations on a socket.
916 * We depend on the way that records are added to the sockbuf
917 * by sbappend*. In particular, each record (mbufs linked through m_next)
918 * must begin with an address if the protocol so specifies,
919 * followed by an optional mbuf or mbufs containing ancillary data,
920 * and then zero or more mbufs of data.
921 * In order to avoid blocking network interrupts for the entire time here,
922 * we splx() while doing the actual copy to user space.
923 * Although the sockbuf is locked, new data may still be appended,
924 * and thus we must maintain consistency of the sockbuf during that time.
925 *
926 * The caller may receive the data as a single mbuf chain by supplying
927 * an mbuf **mp0 for use in returning the chain. The uio is then used
928 * only for the count in uio_resid.
929 */
930 int
931 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
932 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
933 {
934 struct proc * p;
935 struct mbuf *m, **mp;
936 int flags, len, error, s, offset, moff, type, orig_resid;
937 const struct protosw *pr;
938 struct mbuf *nextrecord;
939 int mbuf_removed = 0;
940
941 pr = so->so_proto;
942 mp = mp0;
943 type = 0;
944 orig_resid = uio->uio_resid;
945 p = uio->uio_procp;
946
947 if (paddr)
948 *paddr = 0;
949 if (controlp)
950 *controlp = 0;
951 if (flagsp)
952 flags = *flagsp &~ MSG_EOR;
953 else
954 flags = 0;
955
956 if ((flags & MSG_DONTWAIT) == 0)
957 sodopendfree(so);
958
959 if (flags & MSG_OOB) {
960 m = m_get(M_WAIT, MT_DATA);
961 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
962 (struct mbuf *)(long)(flags & MSG_PEEK),
963 (struct mbuf *)0, p);
964 if (error)
965 goto bad;
966 do {
967 error = uiomove(mtod(m, caddr_t),
968 (int) min(uio->uio_resid, m->m_len), uio);
969 m = m_free(m);
970 } while (uio->uio_resid && error == 0 && m);
971 bad:
972 if (m)
973 m_freem(m);
974 return (error);
975 }
976 if (mp)
977 *mp = (struct mbuf *)0;
978 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
979 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
980 (struct mbuf *)0, (struct mbuf *)0, p);
981
982 restart:
983 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
984 return (error);
985 s = splsoftnet();
986
987 m = so->so_rcv.sb_mb;
988 /*
989 * If we have less data than requested, block awaiting more
990 * (subject to any timeout) if:
991 * 1. the current count is less than the low water mark,
992 * 2. MSG_WAITALL is set, and it is possible to do the entire
993 * receive operation at once if we block (resid <= hiwat), or
994 * 3. MSG_DONTWAIT is not set.
995 * If MSG_WAITALL is set but resid is larger than the receive buffer,
996 * we have to do the receive in sections, and thus risk returning
997 * a short count if a timeout or signal occurs after we start.
998 */
999 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1000 so->so_rcv.sb_cc < uio->uio_resid) &&
1001 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1002 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1003 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1004 #ifdef DIAGNOSTIC
1005 if (m == 0 && so->so_rcv.sb_cc)
1006 panic("receive 1");
1007 #endif
1008 if (so->so_error) {
1009 if (m)
1010 goto dontblock;
1011 error = so->so_error;
1012 if ((flags & MSG_PEEK) == 0)
1013 so->so_error = 0;
1014 goto release;
1015 }
1016 if (so->so_state & SS_CANTRCVMORE) {
1017 if (m)
1018 goto dontblock;
1019 else
1020 goto release;
1021 }
1022 for (; m; m = m->m_next)
1023 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1024 m = so->so_rcv.sb_mb;
1025 goto dontblock;
1026 }
1027 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1028 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1029 error = ENOTCONN;
1030 goto release;
1031 }
1032 if (uio->uio_resid == 0)
1033 goto release;
1034 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1035 error = EWOULDBLOCK;
1036 goto release;
1037 }
1038 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1039 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1040 sbunlock(&so->so_rcv);
1041 error = sbwait(&so->so_rcv);
1042 splx(s);
1043 if (error)
1044 return (error);
1045 goto restart;
1046 }
1047 dontblock:
1048 /*
1049 * On entry here, m points to the first record of the socket buffer.
1050 * While we process the initial mbufs containing address and control
1051 * info, we save a copy of m->m_nextpkt into nextrecord.
1052 */
1053 #ifdef notyet /* XXXX */
1054 if (p)
1055 p->p_stats->p_ru.ru_msgrcv++;
1056 #endif
1057 KASSERT(m == so->so_rcv.sb_mb);
1058 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1059 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1060 nextrecord = m->m_nextpkt;
1061 if (pr->pr_flags & PR_ADDR) {
1062 #ifdef DIAGNOSTIC
1063 if (m->m_type != MT_SONAME)
1064 panic("receive 1a");
1065 #endif
1066 orig_resid = 0;
1067 if (flags & MSG_PEEK) {
1068 if (paddr)
1069 *paddr = m_copy(m, 0, m->m_len);
1070 m = m->m_next;
1071 } else {
1072 sbfree(&so->so_rcv, m);
1073 mbuf_removed = 1;
1074 if (paddr) {
1075 *paddr = m;
1076 so->so_rcv.sb_mb = m->m_next;
1077 m->m_next = 0;
1078 m = so->so_rcv.sb_mb;
1079 } else {
1080 MFREE(m, so->so_rcv.sb_mb);
1081 m = so->so_rcv.sb_mb;
1082 }
1083 }
1084 }
1085 while (m && m->m_type == MT_CONTROL && error == 0) {
1086 if (flags & MSG_PEEK) {
1087 if (controlp)
1088 *controlp = m_copy(m, 0, m->m_len);
1089 m = m->m_next;
1090 } else {
1091 sbfree(&so->so_rcv, m);
1092 mbuf_removed = 1;
1093 if (controlp) {
1094 struct domain *dom = pr->pr_domain;
1095 if (dom->dom_externalize && p &&
1096 mtod(m, struct cmsghdr *)->cmsg_type ==
1097 SCM_RIGHTS)
1098 error = (*dom->dom_externalize)(m, p);
1099 *controlp = m;
1100 so->so_rcv.sb_mb = m->m_next;
1101 m->m_next = 0;
1102 m = so->so_rcv.sb_mb;
1103 } else {
1104 MFREE(m, so->so_rcv.sb_mb);
1105 m = so->so_rcv.sb_mb;
1106 }
1107 }
1108 if (controlp) {
1109 orig_resid = 0;
1110 controlp = &(*controlp)->m_next;
1111 }
1112 }
1113
1114 /*
1115 * If m is non-NULL, we have some data to read. From now on,
1116 * make sure to keep sb_lastrecord consistent when working on
1117 * the last packet on the chain (nextrecord == NULL) and we
1118 * change m->m_nextpkt.
1119 */
1120 if (m) {
1121 if ((flags & MSG_PEEK) == 0) {
1122 m->m_nextpkt = nextrecord;
1123 /*
1124 * If nextrecord == NULL (this is a single chain),
1125 * then sb_lastrecord may not be valid here if m
1126 * was changed earlier.
1127 */
1128 if (nextrecord == NULL) {
1129 KASSERT(so->so_rcv.sb_mb == m);
1130 so->so_rcv.sb_lastrecord = m;
1131 }
1132 }
1133 type = m->m_type;
1134 if (type == MT_OOBDATA)
1135 flags |= MSG_OOB;
1136 } else {
1137 if ((flags & MSG_PEEK) == 0) {
1138 KASSERT(so->so_rcv.sb_mb == m);
1139 so->so_rcv.sb_mb = nextrecord;
1140 SB_EMPTY_FIXUP(&so->so_rcv);
1141 }
1142 }
1143 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1144 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1145
1146 moff = 0;
1147 offset = 0;
1148 while (m && uio->uio_resid > 0 && error == 0) {
1149 if (m->m_type == MT_OOBDATA) {
1150 if (type != MT_OOBDATA)
1151 break;
1152 } else if (type == MT_OOBDATA)
1153 break;
1154 #ifdef DIAGNOSTIC
1155 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1156 panic("receive 3");
1157 #endif
1158 so->so_state &= ~SS_RCVATMARK;
1159 len = uio->uio_resid;
1160 if (so->so_oobmark && len > so->so_oobmark - offset)
1161 len = so->so_oobmark - offset;
1162 if (len > m->m_len - moff)
1163 len = m->m_len - moff;
1164 /*
1165 * If mp is set, just pass back the mbufs.
1166 * Otherwise copy them out via the uio, then free.
1167 * Sockbuf must be consistent here (points to current mbuf,
1168 * it points to next record) when we drop priority;
1169 * we must note any additions to the sockbuf when we
1170 * block interrupts again.
1171 */
1172 if (mp == 0) {
1173 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1174 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1175 splx(s);
1176 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1177 s = splsoftnet();
1178 if (error) {
1179 /*
1180 * If any part of the record has been removed
1181 * (such as the MT_SONAME mbuf, which will
1182 * happen when PR_ADDR, and thus also
1183 * PR_ATOMIC, is set), then drop the entire
1184 * record to maintain the atomicity of the
1185 * receive operation.
1186 *
1187 * This avoids a later panic("receive 1a")
1188 * when compiled with DIAGNOSTIC.
1189 */
1190 if (m && mbuf_removed
1191 && (pr->pr_flags & PR_ATOMIC))
1192 (void) sbdroprecord(&so->so_rcv);
1193
1194 goto release;
1195 }
1196 } else
1197 uio->uio_resid -= len;
1198 if (len == m->m_len - moff) {
1199 if (m->m_flags & M_EOR)
1200 flags |= MSG_EOR;
1201 if (flags & MSG_PEEK) {
1202 m = m->m_next;
1203 moff = 0;
1204 } else {
1205 nextrecord = m->m_nextpkt;
1206 sbfree(&so->so_rcv, m);
1207 if (mp) {
1208 *mp = m;
1209 mp = &m->m_next;
1210 so->so_rcv.sb_mb = m = m->m_next;
1211 *mp = (struct mbuf *)0;
1212 } else {
1213 MFREE(m, so->so_rcv.sb_mb);
1214 m = so->so_rcv.sb_mb;
1215 }
1216 /*
1217 * If m != NULL, we also know that
1218 * so->so_rcv.sb_mb != NULL.
1219 */
1220 KASSERT(so->so_rcv.sb_mb == m);
1221 if (m) {
1222 m->m_nextpkt = nextrecord;
1223 if (nextrecord == NULL)
1224 so->so_rcv.sb_lastrecord = m;
1225 } else {
1226 so->so_rcv.sb_mb = nextrecord;
1227 SB_EMPTY_FIXUP(&so->so_rcv);
1228 }
1229 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1230 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1231 }
1232 } else {
1233 if (flags & MSG_PEEK)
1234 moff += len;
1235 else {
1236 if (mp)
1237 *mp = m_copym(m, 0, len, M_WAIT);
1238 m->m_data += len;
1239 m->m_len -= len;
1240 so->so_rcv.sb_cc -= len;
1241 }
1242 }
1243 if (so->so_oobmark) {
1244 if ((flags & MSG_PEEK) == 0) {
1245 so->so_oobmark -= len;
1246 if (so->so_oobmark == 0) {
1247 so->so_state |= SS_RCVATMARK;
1248 break;
1249 }
1250 } else {
1251 offset += len;
1252 if (offset == so->so_oobmark)
1253 break;
1254 }
1255 }
1256 if (flags & MSG_EOR)
1257 break;
1258 /*
1259 * If the MSG_WAITALL flag is set (for non-atomic socket),
1260 * we must not quit until "uio->uio_resid == 0" or an error
1261 * termination. If a signal/timeout occurs, return
1262 * with a short count but without error.
1263 * Keep sockbuf locked against other readers.
1264 */
1265 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1266 !sosendallatonce(so) && !nextrecord) {
1267 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1268 break;
1269 /*
1270 * If we are peeking and the socket receive buffer is
1271 * full, stop since we can't get more data to peek at.
1272 */
1273 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1274 break;
1275 /*
1276 * If we've drained the socket buffer, tell the
1277 * protocol in case it needs to do something to
1278 * get it filled again.
1279 */
1280 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1281 (*pr->pr_usrreq)(so, PRU_RCVD,
1282 (struct mbuf *)0,
1283 (struct mbuf *)(long)flags,
1284 (struct mbuf *)0, p);
1285 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1286 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1287 error = sbwait(&so->so_rcv);
1288 if (error) {
1289 sbunlock(&so->so_rcv);
1290 splx(s);
1291 return (0);
1292 }
1293 if ((m = so->so_rcv.sb_mb) != NULL)
1294 nextrecord = m->m_nextpkt;
1295 }
1296 }
1297
1298 if (m && pr->pr_flags & PR_ATOMIC) {
1299 flags |= MSG_TRUNC;
1300 if ((flags & MSG_PEEK) == 0)
1301 (void) sbdroprecord(&so->so_rcv);
1302 }
1303 if ((flags & MSG_PEEK) == 0) {
1304 if (m == 0) {
1305 /*
1306 * First part is an inline SB_EMPTY_FIXUP(). Second
1307 * part makes sure sb_lastrecord is up-to-date if
1308 * there is still data in the socket buffer.
1309 */
1310 so->so_rcv.sb_mb = nextrecord;
1311 if (so->so_rcv.sb_mb == NULL) {
1312 so->so_rcv.sb_mbtail = NULL;
1313 so->so_rcv.sb_lastrecord = NULL;
1314 } else if (nextrecord->m_nextpkt == NULL)
1315 so->so_rcv.sb_lastrecord = nextrecord;
1316 }
1317 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1318 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1319 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1320 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1321 (struct mbuf *)(long)flags, (struct mbuf *)0, p);
1322 }
1323 if (orig_resid == uio->uio_resid && orig_resid &&
1324 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1325 sbunlock(&so->so_rcv);
1326 splx(s);
1327 goto restart;
1328 }
1329
1330 if (flagsp)
1331 *flagsp |= flags;
1332 release:
1333 sbunlock(&so->so_rcv);
1334 splx(s);
1335 return (error);
1336 }
1337
1338 int
1339 soshutdown(struct socket *so, int how)
1340 {
1341 const struct protosw *pr;
1342
1343 pr = so->so_proto;
1344 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1345 return (EINVAL);
1346
1347 if (how == SHUT_RD || how == SHUT_RDWR)
1348 sorflush(so);
1349 if (how == SHUT_WR || how == SHUT_RDWR)
1350 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1351 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1352 return (0);
1353 }
1354
1355 void
1356 sorflush(struct socket *so)
1357 {
1358 struct sockbuf *sb, asb;
1359 const struct protosw *pr;
1360 int s;
1361
1362 sb = &so->so_rcv;
1363 pr = so->so_proto;
1364 sb->sb_flags |= SB_NOINTR;
1365 (void) sblock(sb, M_WAITOK);
1366 s = splnet();
1367 socantrcvmore(so);
1368 sbunlock(sb);
1369 asb = *sb;
1370 /*
1371 * Clear most of the sockbuf structure, but leave some of the
1372 * fields valid.
1373 */
1374 memset(&sb->sb_startzero, 0,
1375 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1376 splx(s);
1377 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1378 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1379 sbrelease(&asb, so);
1380 }
1381
1382 int
1383 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1384 {
1385 int error;
1386 struct mbuf *m;
1387
1388 error = 0;
1389 m = m0;
1390 if (level != SOL_SOCKET) {
1391 if (so->so_proto && so->so_proto->pr_ctloutput)
1392 return ((*so->so_proto->pr_ctloutput)
1393 (PRCO_SETOPT, so, level, optname, &m0));
1394 error = ENOPROTOOPT;
1395 } else {
1396 switch (optname) {
1397
1398 case SO_LINGER:
1399 if (m == NULL || m->m_len != sizeof(struct linger)) {
1400 error = EINVAL;
1401 goto bad;
1402 }
1403 so->so_linger = mtod(m, struct linger *)->l_linger;
1404 /* fall thru... */
1405
1406 case SO_DEBUG:
1407 case SO_KEEPALIVE:
1408 case SO_DONTROUTE:
1409 case SO_USELOOPBACK:
1410 case SO_BROADCAST:
1411 case SO_REUSEADDR:
1412 case SO_REUSEPORT:
1413 case SO_OOBINLINE:
1414 case SO_TIMESTAMP:
1415 if (m == NULL || m->m_len < sizeof(int)) {
1416 error = EINVAL;
1417 goto bad;
1418 }
1419 if (*mtod(m, int *))
1420 so->so_options |= optname;
1421 else
1422 so->so_options &= ~optname;
1423 break;
1424
1425 case SO_SNDBUF:
1426 case SO_RCVBUF:
1427 case SO_SNDLOWAT:
1428 case SO_RCVLOWAT:
1429 {
1430 int optval;
1431
1432 if (m == NULL || m->m_len < sizeof(int)) {
1433 error = EINVAL;
1434 goto bad;
1435 }
1436
1437 /*
1438 * Values < 1 make no sense for any of these
1439 * options, so disallow them.
1440 */
1441 optval = *mtod(m, int *);
1442 if (optval < 1) {
1443 error = EINVAL;
1444 goto bad;
1445 }
1446
1447 switch (optname) {
1448
1449 case SO_SNDBUF:
1450 case SO_RCVBUF:
1451 if (sbreserve(optname == SO_SNDBUF ?
1452 &so->so_snd : &so->so_rcv,
1453 (u_long) optval, so) == 0) {
1454 error = ENOBUFS;
1455 goto bad;
1456 }
1457 break;
1458
1459 /*
1460 * Make sure the low-water is never greater than
1461 * the high-water.
1462 */
1463 case SO_SNDLOWAT:
1464 so->so_snd.sb_lowat =
1465 (optval > so->so_snd.sb_hiwat) ?
1466 so->so_snd.sb_hiwat : optval;
1467 break;
1468 case SO_RCVLOWAT:
1469 so->so_rcv.sb_lowat =
1470 (optval > so->so_rcv.sb_hiwat) ?
1471 so->so_rcv.sb_hiwat : optval;
1472 break;
1473 }
1474 break;
1475 }
1476
1477 case SO_SNDTIMEO:
1478 case SO_RCVTIMEO:
1479 {
1480 struct timeval *tv;
1481 int val;
1482
1483 if (m == NULL || m->m_len < sizeof(*tv)) {
1484 error = EINVAL;
1485 goto bad;
1486 }
1487 tv = mtod(m, struct timeval *);
1488 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1489 error = EDOM;
1490 goto bad;
1491 }
1492 val = tv->tv_sec * hz + tv->tv_usec / tick;
1493 if (val == 0 && tv->tv_usec != 0)
1494 val = 1;
1495
1496 switch (optname) {
1497
1498 case SO_SNDTIMEO:
1499 so->so_snd.sb_timeo = val;
1500 break;
1501 case SO_RCVTIMEO:
1502 so->so_rcv.sb_timeo = val;
1503 break;
1504 }
1505 break;
1506 }
1507
1508 default:
1509 error = ENOPROTOOPT;
1510 break;
1511 }
1512 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1513 (void) ((*so->so_proto->pr_ctloutput)
1514 (PRCO_SETOPT, so, level, optname, &m0));
1515 m = NULL; /* freed by protocol */
1516 }
1517 }
1518 bad:
1519 if (m)
1520 (void) m_free(m);
1521 return (error);
1522 }
1523
1524 int
1525 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1526 {
1527 struct mbuf *m;
1528
1529 if (level != SOL_SOCKET) {
1530 if (so->so_proto && so->so_proto->pr_ctloutput) {
1531 return ((*so->so_proto->pr_ctloutput)
1532 (PRCO_GETOPT, so, level, optname, mp));
1533 } else
1534 return (ENOPROTOOPT);
1535 } else {
1536 m = m_get(M_WAIT, MT_SOOPTS);
1537 m->m_len = sizeof(int);
1538
1539 switch (optname) {
1540
1541 case SO_LINGER:
1542 m->m_len = sizeof(struct linger);
1543 mtod(m, struct linger *)->l_onoff =
1544 so->so_options & SO_LINGER;
1545 mtod(m, struct linger *)->l_linger = so->so_linger;
1546 break;
1547
1548 case SO_USELOOPBACK:
1549 case SO_DONTROUTE:
1550 case SO_DEBUG:
1551 case SO_KEEPALIVE:
1552 case SO_REUSEADDR:
1553 case SO_REUSEPORT:
1554 case SO_BROADCAST:
1555 case SO_OOBINLINE:
1556 case SO_TIMESTAMP:
1557 *mtod(m, int *) = so->so_options & optname;
1558 break;
1559
1560 case SO_TYPE:
1561 *mtod(m, int *) = so->so_type;
1562 break;
1563
1564 case SO_ERROR:
1565 *mtod(m, int *) = so->so_error;
1566 so->so_error = 0;
1567 break;
1568
1569 case SO_SNDBUF:
1570 *mtod(m, int *) = so->so_snd.sb_hiwat;
1571 break;
1572
1573 case SO_RCVBUF:
1574 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1575 break;
1576
1577 case SO_SNDLOWAT:
1578 *mtod(m, int *) = so->so_snd.sb_lowat;
1579 break;
1580
1581 case SO_RCVLOWAT:
1582 *mtod(m, int *) = so->so_rcv.sb_lowat;
1583 break;
1584
1585 case SO_SNDTIMEO:
1586 case SO_RCVTIMEO:
1587 {
1588 int val = (optname == SO_SNDTIMEO ?
1589 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1590
1591 m->m_len = sizeof(struct timeval);
1592 mtod(m, struct timeval *)->tv_sec = val / hz;
1593 mtod(m, struct timeval *)->tv_usec =
1594 (val % hz) * tick;
1595 break;
1596 }
1597
1598 default:
1599 (void)m_free(m);
1600 return (ENOPROTOOPT);
1601 }
1602 *mp = m;
1603 return (0);
1604 }
1605 }
1606
1607 void
1608 sohasoutofband(struct socket *so)
1609 {
1610 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1611 selwakeup(&so->so_rcv.sb_sel);
1612 }
1613
1614 static void
1615 filt_sordetach(struct knote *kn)
1616 {
1617 struct socket *so;
1618
1619 so = (struct socket *)kn->kn_fp->f_data;
1620 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1621 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1622 so->so_rcv.sb_flags &= ~SB_KNOTE;
1623 }
1624
1625 /*ARGSUSED*/
1626 static int
1627 filt_soread(struct knote *kn, long hint)
1628 {
1629 struct socket *so;
1630
1631 so = (struct socket *)kn->kn_fp->f_data;
1632 kn->kn_data = so->so_rcv.sb_cc;
1633 if (so->so_state & SS_CANTRCVMORE) {
1634 kn->kn_flags |= EV_EOF;
1635 kn->kn_fflags = so->so_error;
1636 return (1);
1637 }
1638 if (so->so_error) /* temporary udp error */
1639 return (1);
1640 if (kn->kn_sfflags & NOTE_LOWAT)
1641 return (kn->kn_data >= kn->kn_sdata);
1642 return (kn->kn_data >= so->so_rcv.sb_lowat);
1643 }
1644
1645 static void
1646 filt_sowdetach(struct knote *kn)
1647 {
1648 struct socket *so;
1649
1650 so = (struct socket *)kn->kn_fp->f_data;
1651 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1652 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1653 so->so_snd.sb_flags &= ~SB_KNOTE;
1654 }
1655
1656 /*ARGSUSED*/
1657 static int
1658 filt_sowrite(struct knote *kn, long hint)
1659 {
1660 struct socket *so;
1661
1662 so = (struct socket *)kn->kn_fp->f_data;
1663 kn->kn_data = sbspace(&so->so_snd);
1664 if (so->so_state & SS_CANTSENDMORE) {
1665 kn->kn_flags |= EV_EOF;
1666 kn->kn_fflags = so->so_error;
1667 return (1);
1668 }
1669 if (so->so_error) /* temporary udp error */
1670 return (1);
1671 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1672 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1673 return (0);
1674 if (kn->kn_sfflags & NOTE_LOWAT)
1675 return (kn->kn_data >= kn->kn_sdata);
1676 return (kn->kn_data >= so->so_snd.sb_lowat);
1677 }
1678
1679 /*ARGSUSED*/
1680 static int
1681 filt_solisten(struct knote *kn, long hint)
1682 {
1683 struct socket *so;
1684
1685 so = (struct socket *)kn->kn_fp->f_data;
1686
1687 /*
1688 * Set kn_data to number of incoming connections, not
1689 * counting partial (incomplete) connections.
1690 */
1691 kn->kn_data = so->so_qlen;
1692 return (kn->kn_data > 0);
1693 }
1694
1695 static const struct filterops solisten_filtops =
1696 { 1, NULL, filt_sordetach, filt_solisten };
1697 static const struct filterops soread_filtops =
1698 { 1, NULL, filt_sordetach, filt_soread };
1699 static const struct filterops sowrite_filtops =
1700 { 1, NULL, filt_sowdetach, filt_sowrite };
1701
1702 int
1703 soo_kqfilter(struct file *fp, struct knote *kn)
1704 {
1705 struct socket *so;
1706 struct sockbuf *sb;
1707
1708 so = (struct socket *)kn->kn_fp->f_data;
1709 switch (kn->kn_filter) {
1710 case EVFILT_READ:
1711 if (so->so_options & SO_ACCEPTCONN)
1712 kn->kn_fop = &solisten_filtops;
1713 else
1714 kn->kn_fop = &soread_filtops;
1715 sb = &so->so_rcv;
1716 break;
1717 case EVFILT_WRITE:
1718 kn->kn_fop = &sowrite_filtops;
1719 sb = &so->so_snd;
1720 break;
1721 default:
1722 return (1);
1723 }
1724 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1725 sb->sb_flags |= SB_KNOTE;
1726 return (0);
1727 }
1728
1729 #include <sys/sysctl.h>
1730
1731 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1732
1733 /*
1734 * sysctl helper routine for kern.somaxkva. ensures that the given
1735 * value is not too small.
1736 * (XXX should we maybe make sure it's not too large as well?)
1737 */
1738 static int
1739 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1740 {
1741 int error, new_somaxkva;
1742 struct sysctlnode node;
1743 int s;
1744
1745 new_somaxkva = somaxkva;
1746 node = *rnode;
1747 node.sysctl_data = &new_somaxkva;
1748 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1749 if (error || newp == NULL)
1750 return (error);
1751
1752 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1753 return (EINVAL);
1754
1755 s = splvm();
1756 simple_lock(&so_pendfree_slock);
1757 somaxkva = new_somaxkva;
1758 wakeup(&socurkva);
1759 simple_unlock(&so_pendfree_slock);
1760 splx(s);
1761
1762 return (error);
1763 }
1764
1765 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1766 {
1767
1768 sysctl_createv(clog, 0, NULL, NULL,
1769 CTLFLAG_PERMANENT,
1770 CTLTYPE_NODE, "kern", NULL,
1771 NULL, 0, NULL, 0,
1772 CTL_KERN, CTL_EOL);
1773
1774 sysctl_createv(clog, 0, NULL, NULL,
1775 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1776 CTLTYPE_INT, "somaxkva",
1777 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1778 "used for socket buffers"),
1779 sysctl_kern_somaxkva, 0, NULL, 0,
1780 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1781 }
1782