uipc_socket.c revision 1.108.2.2 1 /* $NetBSD: uipc_socket.c,v 1.108.2.2 2006/10/25 07:53:19 ghen Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.108.2.2 2006/10/25 07:53:19 ghen Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 void
130 soinit(void)
131 {
132
133 /* Set the initial adjusted socket buffer size. */
134 if (sb_max_set(sb_max))
135 panic("bad initial sb_max value: %lu\n", sb_max);
136
137 }
138
139 #ifdef SOSEND_NO_LOAN
140 int use_sosend_loan = 0;
141 #else
142 int use_sosend_loan = 1;
143 #endif
144
145 struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
146 struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 int socurkva;
153 int sokvawaiters;
154
155 #define SOCK_LOAN_THRESH 4096
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(struct socket *);
159 static size_t sodopendfreel(struct socket *);
160 static __inline vsize_t sokvareserve(struct socket *, vsize_t);
161 static __inline void sokvaunreserve(vsize_t);
162
163 static __inline vsize_t
164 sokvareserve(struct socket *so, vsize_t len)
165 {
166 int s;
167 int error;
168
169 s = splvm();
170 simple_lock(&so_pendfree_slock);
171 while (socurkva + len > somaxkva) {
172 size_t freed;
173
174 /*
175 * try to do pendfree.
176 */
177
178 freed = sodopendfreel(so);
179
180 /*
181 * if some kva was freed, try again.
182 */
183
184 if (freed)
185 continue;
186
187 SOSEND_COUNTER_INCR(&sosend_kvalimit);
188 sokvawaiters++;
189 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
190 &so_pendfree_slock);
191 sokvawaiters--;
192 if (error) {
193 len = 0;
194 break;
195 }
196 }
197 socurkva += len;
198 simple_unlock(&so_pendfree_slock);
199 splx(s);
200 return len;
201 }
202
203 static __inline void
204 sokvaunreserve(vsize_t len)
205 {
206 int s;
207
208 s = splvm();
209 simple_lock(&so_pendfree_slock);
210 socurkva -= len;
211 if (sokvawaiters)
212 wakeup(&socurkva);
213 simple_unlock(&so_pendfree_slock);
214 splx(s);
215 }
216
217 /*
218 * sokvaalloc: allocate kva for loan.
219 */
220
221 vaddr_t
222 sokvaalloc(vsize_t len, struct socket *so)
223 {
224 vaddr_t lva;
225
226 /*
227 * reserve kva.
228 */
229
230 if (sokvareserve(so, len) == 0)
231 return 0;
232
233 /*
234 * allocate kva.
235 */
236
237 lva = uvm_km_valloc_wait(kernel_map, len);
238 if (lva == 0) {
239 sokvaunreserve(len);
240 return (0);
241 }
242
243 return lva;
244 }
245
246 /*
247 * sokvafree: free kva for loan.
248 */
249
250 void
251 sokvafree(vaddr_t sva, vsize_t len)
252 {
253
254 /*
255 * free kva.
256 */
257
258 uvm_km_free(kernel_map, sva, len);
259
260 /*
261 * unreserve kva.
262 */
263
264 sokvaunreserve(len);
265 }
266
267 static void
268 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
269 {
270 vaddr_t va, sva, eva;
271 vsize_t len;
272 paddr_t pa;
273 int i, npgs;
274
275 eva = round_page((vaddr_t) buf + size);
276 sva = trunc_page((vaddr_t) buf);
277 len = eva - sva;
278 npgs = len >> PAGE_SHIFT;
279
280 if (__predict_false(pgs == NULL)) {
281 pgs = alloca(npgs * sizeof(*pgs));
282
283 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
284 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
285 panic("sodoloanfree: va 0x%lx not mapped", va);
286 pgs[i] = PHYS_TO_VM_PAGE(pa);
287 }
288 }
289
290 pmap_kremove(sva, len);
291 pmap_update(pmap_kernel());
292 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
293 sokvafree(sva, len);
294 }
295
296 static size_t
297 sodopendfree(struct socket *so)
298 {
299 int s;
300 size_t rv;
301
302 s = splvm();
303 simple_lock(&so_pendfree_slock);
304 rv = sodopendfreel(so);
305 simple_unlock(&so_pendfree_slock);
306 splx(s);
307
308 return rv;
309 }
310
311 /*
312 * sodopendfreel: free mbufs on "pendfree" list.
313 * unlock and relock so_pendfree_slock when freeing mbufs.
314 *
315 * => called with so_pendfree_slock held.
316 * => called at splvm.
317 */
318
319 static size_t
320 sodopendfreel(struct socket *so)
321 {
322 size_t rv = 0;
323
324 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
325
326 for (;;) {
327 struct mbuf *m;
328 struct mbuf *next;
329
330 m = so_pendfree;
331 if (m == NULL)
332 break;
333 so_pendfree = NULL;
334 simple_unlock(&so_pendfree_slock);
335 /* XXX splx */
336
337 for (; m != NULL; m = next) {
338 next = m->m_next;
339
340 rv += m->m_ext.ext_size;
341 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
342 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
343 m->m_ext.ext_size);
344 pool_cache_put(&mbpool_cache, m);
345 }
346
347 /* XXX splvm */
348 simple_lock(&so_pendfree_slock);
349 }
350
351 return (rv);
352 }
353
354 void
355 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
356 {
357 int s;
358
359 if (m == NULL) {
360
361 /*
362 * called from MEXTREMOVE.
363 */
364
365 sodoloanfree(NULL, buf, size);
366 return;
367 }
368
369 /*
370 * postpone freeing mbuf.
371 *
372 * we can't do it in interrupt context
373 * because we need to put kva back to kernel_map.
374 */
375
376 s = splvm();
377 simple_lock(&so_pendfree_slock);
378 m->m_next = so_pendfree;
379 so_pendfree = m;
380 if (sokvawaiters)
381 wakeup(&socurkva);
382 simple_unlock(&so_pendfree_slock);
383 splx(s);
384 }
385
386 static long
387 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
388 {
389 struct iovec *iov = uio->uio_iov;
390 vaddr_t sva, eva;
391 vsize_t len;
392 vaddr_t lva, va;
393 int npgs, i, error;
394
395 if (uio->uio_segflg != UIO_USERSPACE)
396 return (0);
397
398 if (iov->iov_len < (size_t) space)
399 space = iov->iov_len;
400 if (space > SOCK_LOAN_CHUNK)
401 space = SOCK_LOAN_CHUNK;
402
403 eva = round_page((vaddr_t) iov->iov_base + space);
404 sva = trunc_page((vaddr_t) iov->iov_base);
405 len = eva - sva;
406 npgs = len >> PAGE_SHIFT;
407
408 /* XXX KDASSERT */
409 KASSERT(npgs <= M_EXT_MAXPAGES);
410 KASSERT(uio->uio_procp != NULL);
411
412 lva = sokvaalloc(len, so);
413 if (lva == 0)
414 return 0;
415
416 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
417 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
418 if (error) {
419 sokvafree(lva, len);
420 return (0);
421 }
422
423 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
424 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
425 VM_PROT_READ);
426 pmap_update(pmap_kernel());
427
428 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
429
430 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
431 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
432
433 uio->uio_resid -= space;
434 /* uio_offset not updated, not set/used for write(2) */
435 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
436 uio->uio_iov->iov_len -= space;
437 if (uio->uio_iov->iov_len == 0) {
438 uio->uio_iov++;
439 uio->uio_iovcnt--;
440 }
441
442 return (space);
443 }
444
445 /*
446 * Socket operation routines.
447 * These routines are called by the routines in
448 * sys_socket.c or from a system process, and
449 * implement the semantics of socket operations by
450 * switching out to the protocol specific routines.
451 */
452 /*ARGSUSED*/
453 int
454 socreate(int dom, struct socket **aso, int type, int proto, struct proc *p)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 int error, s;
459
460 if (proto)
461 prp = pffindproto(dom, proto, type);
462 else
463 prp = pffindtype(dom, type);
464 if (prp == 0) {
465 /* no support for domain */
466 if (pffinddomain(dom) == 0)
467 return (EAFNOSUPPORT);
468 /* no support for socket type */
469 if (proto == 0 && type != 0)
470 return (EPROTOTYPE);
471 return (EPROTONOSUPPORT);
472 }
473 if (prp->pr_usrreq == 0)
474 return (EPROTONOSUPPORT);
475 if (prp->pr_type != type)
476 return (EPROTOTYPE);
477 s = splsoftnet();
478 so = pool_get(&socket_pool, PR_WAITOK);
479 memset((caddr_t)so, 0, sizeof(*so));
480 TAILQ_INIT(&so->so_q0);
481 TAILQ_INIT(&so->so_q);
482 so->so_type = type;
483 so->so_proto = prp;
484 so->so_send = sosend;
485 so->so_receive = soreceive;
486 #ifdef MBUFTRACE
487 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
488 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
489 so->so_mowner = &prp->pr_domain->dom_mowner;
490 #endif
491 if (p != 0)
492 so->so_uid = p->p_ucred->cr_uid;
493 else
494 so->so_uid = UID_MAX;
495 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
496 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
497 if (error) {
498 so->so_state |= SS_NOFDREF;
499 sofree(so);
500 splx(s);
501 return (error);
502 }
503 splx(s);
504 *aso = so;
505 return (0);
506 }
507
508 int
509 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
510 {
511 int s, error;
512
513 s = splsoftnet();
514 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
515 nam, (struct mbuf *)0, p);
516 splx(s);
517 return (error);
518 }
519
520 int
521 solisten(struct socket *so, int backlog)
522 {
523 int s, error;
524
525 s = splsoftnet();
526 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
527 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
528 if (error) {
529 splx(s);
530 return (error);
531 }
532 if (TAILQ_EMPTY(&so->so_q))
533 so->so_options |= SO_ACCEPTCONN;
534 if (backlog < 0)
535 backlog = 0;
536 so->so_qlimit = min(backlog, somaxconn);
537 splx(s);
538 return (0);
539 }
540
541 void
542 sofree(struct socket *so)
543 {
544
545 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
546 return;
547 if (so->so_head) {
548 /*
549 * We must not decommission a socket that's on the accept(2)
550 * queue. If we do, then accept(2) may hang after select(2)
551 * indicated that the listening socket was ready.
552 */
553 if (!soqremque(so, 0))
554 return;
555 }
556 if (so->so_rcv.sb_hiwat)
557 (void)chgsbsize(so->so_uid, &so->so_rcv.sb_hiwat, 0,
558 RLIM_INFINITY);
559 if (so->so_snd.sb_hiwat)
560 (void)chgsbsize(so->so_uid, &so->so_snd.sb_hiwat, 0,
561 RLIM_INFINITY);
562 sbrelease(&so->so_snd, so);
563 sorflush(so);
564 pool_put(&socket_pool, so);
565 }
566
567 /*
568 * Close a socket on last file table reference removal.
569 * Initiate disconnect if connected.
570 * Free socket when disconnect complete.
571 */
572 int
573 soclose(struct socket *so)
574 {
575 struct socket *so2;
576 int s, error;
577
578 error = 0;
579 s = splsoftnet(); /* conservative */
580 if (so->so_options & SO_ACCEPTCONN) {
581 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
582 (void) soqremque(so2, 0);
583 (void) soabort(so2);
584 }
585 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
586 (void) soqremque(so2, 1);
587 (void) soabort(so2);
588 }
589 }
590 if (so->so_pcb == 0)
591 goto discard;
592 if (so->so_state & SS_ISCONNECTED) {
593 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
594 error = sodisconnect(so);
595 if (error)
596 goto drop;
597 }
598 if (so->so_options & SO_LINGER) {
599 if ((so->so_state & SS_ISDISCONNECTING) &&
600 (so->so_state & SS_NBIO))
601 goto drop;
602 while (so->so_state & SS_ISCONNECTED) {
603 error = tsleep((caddr_t)&so->so_timeo,
604 PSOCK | PCATCH, netcls,
605 so->so_linger * hz);
606 if (error)
607 break;
608 }
609 }
610 }
611 drop:
612 if (so->so_pcb) {
613 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
614 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
615 (struct proc *)0);
616 if (error == 0)
617 error = error2;
618 }
619 discard:
620 if (so->so_state & SS_NOFDREF)
621 panic("soclose: NOFDREF");
622 so->so_state |= SS_NOFDREF;
623 sofree(so);
624 splx(s);
625 return (error);
626 }
627
628 /*
629 * Must be called at splsoftnet...
630 */
631 int
632 soabort(struct socket *so)
633 {
634
635 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
636 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
637 }
638
639 int
640 soaccept(struct socket *so, struct mbuf *nam)
641 {
642 int s, error;
643
644 error = 0;
645 s = splsoftnet();
646 if ((so->so_state & SS_NOFDREF) == 0)
647 panic("soaccept: !NOFDREF");
648 so->so_state &= ~SS_NOFDREF;
649 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
650 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
651 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
652 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
653 else
654 error = ECONNABORTED;
655
656 splx(s);
657 return (error);
658 }
659
660 int
661 soconnect(struct socket *so, struct mbuf *nam, struct proc *p)
662 {
663 int s, error;
664
665 if (so->so_options & SO_ACCEPTCONN)
666 return (EOPNOTSUPP);
667 s = splsoftnet();
668 /*
669 * If protocol is connection-based, can only connect once.
670 * Otherwise, if connected, try to disconnect first.
671 * This allows user to disconnect by connecting to, e.g.,
672 * a null address.
673 */
674 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
675 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
676 (error = sodisconnect(so))))
677 error = EISCONN;
678 else
679 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
680 (struct mbuf *)0, nam, (struct mbuf *)0, p);
681 splx(s);
682 return (error);
683 }
684
685 int
686 soconnect2(struct socket *so1, struct socket *so2)
687 {
688 int s, error;
689
690 s = splsoftnet();
691 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
692 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
693 (struct proc *)0);
694 splx(s);
695 return (error);
696 }
697
698 int
699 sodisconnect(struct socket *so)
700 {
701 int s, error;
702
703 s = splsoftnet();
704 if ((so->so_state & SS_ISCONNECTED) == 0) {
705 error = ENOTCONN;
706 goto bad;
707 }
708 if (so->so_state & SS_ISDISCONNECTING) {
709 error = EALREADY;
710 goto bad;
711 }
712 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
713 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
714 (struct proc *)0);
715 bad:
716 splx(s);
717 sodopendfree(so);
718 return (error);
719 }
720
721 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
722 /*
723 * Send on a socket.
724 * If send must go all at once and message is larger than
725 * send buffering, then hard error.
726 * Lock against other senders.
727 * If must go all at once and not enough room now, then
728 * inform user that this would block and do nothing.
729 * Otherwise, if nonblocking, send as much as possible.
730 * The data to be sent is described by "uio" if nonzero,
731 * otherwise by the mbuf chain "top" (which must be null
732 * if uio is not). Data provided in mbuf chain must be small
733 * enough to send all at once.
734 *
735 * Returns nonzero on error, timeout or signal; callers
736 * must check for short counts if EINTR/ERESTART are returned.
737 * Data and control buffers are freed on return.
738 */
739 int
740 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
741 struct mbuf *control, int flags, struct proc *p)
742 {
743 struct mbuf **mp, *m;
744 long space, len, resid, clen, mlen;
745 int error, s, dontroute, atomic;
746
747 sodopendfree(so);
748
749 clen = 0;
750 atomic = sosendallatonce(so) || top;
751 if (uio)
752 resid = uio->uio_resid;
753 else
754 resid = top->m_pkthdr.len;
755 /*
756 * In theory resid should be unsigned.
757 * However, space must be signed, as it might be less than 0
758 * if we over-committed, and we must use a signed comparison
759 * of space and resid. On the other hand, a negative resid
760 * causes us to loop sending 0-length segments to the protocol.
761 */
762 if (resid < 0) {
763 error = EINVAL;
764 goto out;
765 }
766 dontroute =
767 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
768 (so->so_proto->pr_flags & PR_ATOMIC);
769 if (p)
770 p->p_stats->p_ru.ru_msgsnd++;
771 if (control)
772 clen = control->m_len;
773 #define snderr(errno) { error = errno; splx(s); goto release; }
774
775 restart:
776 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
777 goto out;
778 do {
779 s = splsoftnet();
780 if (so->so_state & SS_CANTSENDMORE)
781 snderr(EPIPE);
782 if (so->so_error) {
783 error = so->so_error;
784 so->so_error = 0;
785 splx(s);
786 goto release;
787 }
788 if ((so->so_state & SS_ISCONNECTED) == 0) {
789 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
790 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
791 !(resid == 0 && clen != 0))
792 snderr(ENOTCONN);
793 } else if (addr == 0)
794 snderr(EDESTADDRREQ);
795 }
796 space = sbspace(&so->so_snd);
797 if (flags & MSG_OOB)
798 space += 1024;
799 if ((atomic && resid > so->so_snd.sb_hiwat) ||
800 clen > so->so_snd.sb_hiwat)
801 snderr(EMSGSIZE);
802 if (space < resid + clen &&
803 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
804 if (so->so_state & SS_NBIO)
805 snderr(EWOULDBLOCK);
806 sbunlock(&so->so_snd);
807 error = sbwait(&so->so_snd);
808 splx(s);
809 if (error)
810 goto out;
811 goto restart;
812 }
813 splx(s);
814 mp = ⊤
815 space -= clen;
816 do {
817 if (uio == NULL) {
818 /*
819 * Data is prepackaged in "top".
820 */
821 resid = 0;
822 if (flags & MSG_EOR)
823 top->m_flags |= M_EOR;
824 } else do {
825 if (top == 0) {
826 m = m_gethdr(M_WAIT, MT_DATA);
827 mlen = MHLEN;
828 m->m_pkthdr.len = 0;
829 m->m_pkthdr.rcvif = (struct ifnet *)0;
830 } else {
831 m = m_get(M_WAIT, MT_DATA);
832 mlen = MLEN;
833 }
834 MCLAIM(m, so->so_snd.sb_mowner);
835 if (use_sosend_loan &&
836 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
837 space >= SOCK_LOAN_THRESH &&
838 (len = sosend_loan(so, uio, m,
839 space)) != 0) {
840 SOSEND_COUNTER_INCR(&sosend_loan_big);
841 space -= len;
842 goto have_data;
843 }
844 if (resid >= MINCLSIZE && space >= MCLBYTES) {
845 SOSEND_COUNTER_INCR(&sosend_copy_big);
846 m_clget(m, M_WAIT);
847 if ((m->m_flags & M_EXT) == 0)
848 goto nopages;
849 mlen = MCLBYTES;
850 if (atomic && top == 0) {
851 len = lmin(MCLBYTES - max_hdr,
852 resid);
853 m->m_data += max_hdr;
854 } else
855 len = lmin(MCLBYTES, resid);
856 space -= len;
857 } else {
858 nopages:
859 SOSEND_COUNTER_INCR(&sosend_copy_small);
860 len = lmin(lmin(mlen, resid), space);
861 space -= len;
862 /*
863 * For datagram protocols, leave room
864 * for protocol headers in first mbuf.
865 */
866 if (atomic && top == 0 && len < mlen)
867 MH_ALIGN(m, len);
868 }
869 error = uiomove(mtod(m, caddr_t), (int)len,
870 uio);
871 have_data:
872 resid = uio->uio_resid;
873 m->m_len = len;
874 *mp = m;
875 top->m_pkthdr.len += len;
876 if (error)
877 goto release;
878 mp = &m->m_next;
879 if (resid <= 0) {
880 if (flags & MSG_EOR)
881 top->m_flags |= M_EOR;
882 break;
883 }
884 } while (space > 0 && atomic);
885
886 s = splsoftnet();
887
888 if (so->so_state & SS_CANTSENDMORE)
889 snderr(EPIPE);
890
891 if (dontroute)
892 so->so_options |= SO_DONTROUTE;
893 if (resid > 0)
894 so->so_state |= SS_MORETOCOME;
895 error = (*so->so_proto->pr_usrreq)(so,
896 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
897 top, addr, control, p);
898 if (dontroute)
899 so->so_options &= ~SO_DONTROUTE;
900 if (resid > 0)
901 so->so_state &= ~SS_MORETOCOME;
902 splx(s);
903
904 clen = 0;
905 control = 0;
906 top = 0;
907 mp = ⊤
908 if (error)
909 goto release;
910 } while (resid && space > 0);
911 } while (resid);
912
913 release:
914 sbunlock(&so->so_snd);
915 out:
916 if (top)
917 m_freem(top);
918 if (control)
919 m_freem(control);
920 return (error);
921 }
922
923 /*
924 * Implement receive operations on a socket.
925 * We depend on the way that records are added to the sockbuf
926 * by sbappend*. In particular, each record (mbufs linked through m_next)
927 * must begin with an address if the protocol so specifies,
928 * followed by an optional mbuf or mbufs containing ancillary data,
929 * and then zero or more mbufs of data.
930 * In order to avoid blocking network interrupts for the entire time here,
931 * we splx() while doing the actual copy to user space.
932 * Although the sockbuf is locked, new data may still be appended,
933 * and thus we must maintain consistency of the sockbuf during that time.
934 *
935 * The caller may receive the data as a single mbuf chain by supplying
936 * an mbuf **mp0 for use in returning the chain. The uio is then used
937 * only for the count in uio_resid.
938 */
939 int
940 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
941 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
942 {
943 struct proc * p;
944 struct mbuf *m, **mp;
945 int flags, len, error, s, offset, moff, type, orig_resid;
946 const struct protosw *pr;
947 struct mbuf *nextrecord;
948 int mbuf_removed = 0;
949
950 pr = so->so_proto;
951 mp = mp0;
952 type = 0;
953 orig_resid = uio->uio_resid;
954 p = uio->uio_procp;
955
956 if (paddr)
957 *paddr = 0;
958 if (controlp)
959 *controlp = 0;
960 if (flagsp)
961 flags = *flagsp &~ MSG_EOR;
962 else
963 flags = 0;
964
965 if ((flags & MSG_DONTWAIT) == 0)
966 sodopendfree(so);
967
968 if (flags & MSG_OOB) {
969 m = m_get(M_WAIT, MT_DATA);
970 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
971 (struct mbuf *)(long)(flags & MSG_PEEK),
972 (struct mbuf *)0, p);
973 if (error)
974 goto bad;
975 do {
976 error = uiomove(mtod(m, caddr_t),
977 (int) min(uio->uio_resid, m->m_len), uio);
978 m = m_free(m);
979 } while (uio->uio_resid && error == 0 && m);
980 bad:
981 if (m)
982 m_freem(m);
983 return (error);
984 }
985 if (mp)
986 *mp = (struct mbuf *)0;
987 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
988 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
989 (struct mbuf *)0, (struct mbuf *)0, p);
990
991 restart:
992 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
993 return (error);
994 s = splsoftnet();
995
996 m = so->so_rcv.sb_mb;
997 /*
998 * If we have less data than requested, block awaiting more
999 * (subject to any timeout) if:
1000 * 1. the current count is less than the low water mark,
1001 * 2. MSG_WAITALL is set, and it is possible to do the entire
1002 * receive operation at once if we block (resid <= hiwat), or
1003 * 3. MSG_DONTWAIT is not set.
1004 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1005 * we have to do the receive in sections, and thus risk returning
1006 * a short count if a timeout or signal occurs after we start.
1007 */
1008 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1009 so->so_rcv.sb_cc < uio->uio_resid) &&
1010 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1011 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1012 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1013 #ifdef DIAGNOSTIC
1014 if (m == 0 && so->so_rcv.sb_cc)
1015 panic("receive 1");
1016 #endif
1017 if (so->so_error) {
1018 if (m)
1019 goto dontblock;
1020 error = so->so_error;
1021 if ((flags & MSG_PEEK) == 0)
1022 so->so_error = 0;
1023 goto release;
1024 }
1025 if (so->so_state & SS_CANTRCVMORE) {
1026 if (m)
1027 goto dontblock;
1028 else
1029 goto release;
1030 }
1031 for (; m; m = m->m_next)
1032 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1033 m = so->so_rcv.sb_mb;
1034 goto dontblock;
1035 }
1036 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1037 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1038 error = ENOTCONN;
1039 goto release;
1040 }
1041 if (uio->uio_resid == 0)
1042 goto release;
1043 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1044 error = EWOULDBLOCK;
1045 goto release;
1046 }
1047 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1048 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1049 sbunlock(&so->so_rcv);
1050 error = sbwait(&so->so_rcv);
1051 splx(s);
1052 if (error)
1053 return (error);
1054 goto restart;
1055 }
1056 dontblock:
1057 /*
1058 * On entry here, m points to the first record of the socket buffer.
1059 * While we process the initial mbufs containing address and control
1060 * info, we save a copy of m->m_nextpkt into nextrecord.
1061 */
1062 if (p)
1063 p->p_stats->p_ru.ru_msgrcv++;
1064 KASSERT(m == so->so_rcv.sb_mb);
1065 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1066 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1067 nextrecord = m->m_nextpkt;
1068 if (pr->pr_flags & PR_ADDR) {
1069 #ifdef DIAGNOSTIC
1070 if (m->m_type != MT_SONAME)
1071 panic("receive 1a");
1072 #endif
1073 orig_resid = 0;
1074 if (flags & MSG_PEEK) {
1075 if (paddr)
1076 *paddr = m_copy(m, 0, m->m_len);
1077 m = m->m_next;
1078 } else {
1079 sbfree(&so->so_rcv, m);
1080 mbuf_removed = 1;
1081 if (paddr) {
1082 *paddr = m;
1083 so->so_rcv.sb_mb = m->m_next;
1084 m->m_next = 0;
1085 m = so->so_rcv.sb_mb;
1086 } else {
1087 MFREE(m, so->so_rcv.sb_mb);
1088 m = so->so_rcv.sb_mb;
1089 }
1090 }
1091 }
1092 while (m && m->m_type == MT_CONTROL && error == 0) {
1093 if (flags & MSG_PEEK) {
1094 if (controlp)
1095 *controlp = m_copy(m, 0, m->m_len);
1096 m = m->m_next;
1097 } else {
1098 sbfree(&so->so_rcv, m);
1099 mbuf_removed = 1;
1100 if (controlp) {
1101 struct domain *dom = pr->pr_domain;
1102 if (dom->dom_externalize && p &&
1103 mtod(m, struct cmsghdr *)->cmsg_type ==
1104 SCM_RIGHTS)
1105 error = (*dom->dom_externalize)(m, p);
1106 *controlp = m;
1107 so->so_rcv.sb_mb = m->m_next;
1108 m->m_next = 0;
1109 m = so->so_rcv.sb_mb;
1110 } else {
1111 /*
1112 * Dispose of any SCM_RIGHTS message that went
1113 * through the read path rather than recv.
1114 */
1115 if (pr->pr_domain->dom_dispose &&
1116 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1117 (*pr->pr_domain->dom_dispose)(m);
1118 MFREE(m, so->so_rcv.sb_mb);
1119 m = so->so_rcv.sb_mb;
1120 }
1121 }
1122 if (controlp) {
1123 orig_resid = 0;
1124 controlp = &(*controlp)->m_next;
1125 }
1126 }
1127
1128 /*
1129 * If m is non-NULL, we have some data to read. From now on,
1130 * make sure to keep sb_lastrecord consistent when working on
1131 * the last packet on the chain (nextrecord == NULL) and we
1132 * change m->m_nextpkt.
1133 */
1134 if (m) {
1135 if ((flags & MSG_PEEK) == 0) {
1136 m->m_nextpkt = nextrecord;
1137 /*
1138 * If nextrecord == NULL (this is a single chain),
1139 * then sb_lastrecord may not be valid here if m
1140 * was changed earlier.
1141 */
1142 if (nextrecord == NULL) {
1143 KASSERT(so->so_rcv.sb_mb == m);
1144 so->so_rcv.sb_lastrecord = m;
1145 }
1146 }
1147 type = m->m_type;
1148 if (type == MT_OOBDATA)
1149 flags |= MSG_OOB;
1150 } else {
1151 if ((flags & MSG_PEEK) == 0) {
1152 KASSERT(so->so_rcv.sb_mb == m);
1153 so->so_rcv.sb_mb = nextrecord;
1154 SB_EMPTY_FIXUP(&so->so_rcv);
1155 }
1156 }
1157 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1158 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1159
1160 moff = 0;
1161 offset = 0;
1162 while (m && uio->uio_resid > 0 && error == 0) {
1163 if (m->m_type == MT_OOBDATA) {
1164 if (type != MT_OOBDATA)
1165 break;
1166 } else if (type == MT_OOBDATA)
1167 break;
1168 #ifdef DIAGNOSTIC
1169 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1170 panic("receive 3");
1171 #endif
1172 so->so_state &= ~SS_RCVATMARK;
1173 len = uio->uio_resid;
1174 if (so->so_oobmark && len > so->so_oobmark - offset)
1175 len = so->so_oobmark - offset;
1176 if (len > m->m_len - moff)
1177 len = m->m_len - moff;
1178 /*
1179 * If mp is set, just pass back the mbufs.
1180 * Otherwise copy them out via the uio, then free.
1181 * Sockbuf must be consistent here (points to current mbuf,
1182 * it points to next record) when we drop priority;
1183 * we must note any additions to the sockbuf when we
1184 * block interrupts again.
1185 */
1186 if (mp == 0) {
1187 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1188 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1189 splx(s);
1190 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1191 s = splsoftnet();
1192 if (error) {
1193 /*
1194 * If any part of the record has been removed
1195 * (such as the MT_SONAME mbuf, which will
1196 * happen when PR_ADDR, and thus also
1197 * PR_ATOMIC, is set), then drop the entire
1198 * record to maintain the atomicity of the
1199 * receive operation.
1200 *
1201 * This avoids a later panic("receive 1a")
1202 * when compiled with DIAGNOSTIC.
1203 */
1204 if (m && mbuf_removed
1205 && (pr->pr_flags & PR_ATOMIC))
1206 (void) sbdroprecord(&so->so_rcv);
1207
1208 goto release;
1209 }
1210 } else
1211 uio->uio_resid -= len;
1212 if (len == m->m_len - moff) {
1213 if (m->m_flags & M_EOR)
1214 flags |= MSG_EOR;
1215 if (flags & MSG_PEEK) {
1216 m = m->m_next;
1217 moff = 0;
1218 } else {
1219 nextrecord = m->m_nextpkt;
1220 sbfree(&so->so_rcv, m);
1221 if (mp) {
1222 *mp = m;
1223 mp = &m->m_next;
1224 so->so_rcv.sb_mb = m = m->m_next;
1225 *mp = (struct mbuf *)0;
1226 } else {
1227 MFREE(m, so->so_rcv.sb_mb);
1228 m = so->so_rcv.sb_mb;
1229 }
1230 /*
1231 * If m != NULL, we also know that
1232 * so->so_rcv.sb_mb != NULL.
1233 */
1234 KASSERT(so->so_rcv.sb_mb == m);
1235 if (m) {
1236 m->m_nextpkt = nextrecord;
1237 if (nextrecord == NULL)
1238 so->so_rcv.sb_lastrecord = m;
1239 } else {
1240 so->so_rcv.sb_mb = nextrecord;
1241 SB_EMPTY_FIXUP(&so->so_rcv);
1242 }
1243 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1244 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1245 }
1246 } else {
1247 if (flags & MSG_PEEK)
1248 moff += len;
1249 else {
1250 if (mp)
1251 *mp = m_copym(m, 0, len, M_WAIT);
1252 m->m_data += len;
1253 m->m_len -= len;
1254 so->so_rcv.sb_cc -= len;
1255 }
1256 }
1257 if (so->so_oobmark) {
1258 if ((flags & MSG_PEEK) == 0) {
1259 so->so_oobmark -= len;
1260 if (so->so_oobmark == 0) {
1261 so->so_state |= SS_RCVATMARK;
1262 break;
1263 }
1264 } else {
1265 offset += len;
1266 if (offset == so->so_oobmark)
1267 break;
1268 }
1269 }
1270 if (flags & MSG_EOR)
1271 break;
1272 /*
1273 * If the MSG_WAITALL flag is set (for non-atomic socket),
1274 * we must not quit until "uio->uio_resid == 0" or an error
1275 * termination. If a signal/timeout occurs, return
1276 * with a short count but without error.
1277 * Keep sockbuf locked against other readers.
1278 */
1279 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1280 !sosendallatonce(so) && !nextrecord) {
1281 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1282 break;
1283 /*
1284 * If we are peeking and the socket receive buffer is
1285 * full, stop since we can't get more data to peek at.
1286 */
1287 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1288 break;
1289 /*
1290 * If we've drained the socket buffer, tell the
1291 * protocol in case it needs to do something to
1292 * get it filled again.
1293 */
1294 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1295 (*pr->pr_usrreq)(so, PRU_RCVD,
1296 (struct mbuf *)0,
1297 (struct mbuf *)(long)flags,
1298 (struct mbuf *)0, p);
1299 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1300 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1301 error = sbwait(&so->so_rcv);
1302 if (error) {
1303 sbunlock(&so->so_rcv);
1304 splx(s);
1305 return (0);
1306 }
1307 if ((m = so->so_rcv.sb_mb) != NULL)
1308 nextrecord = m->m_nextpkt;
1309 }
1310 }
1311
1312 if (m && pr->pr_flags & PR_ATOMIC) {
1313 flags |= MSG_TRUNC;
1314 if ((flags & MSG_PEEK) == 0)
1315 (void) sbdroprecord(&so->so_rcv);
1316 }
1317 if ((flags & MSG_PEEK) == 0) {
1318 if (m == 0) {
1319 /*
1320 * First part is an inline SB_EMPTY_FIXUP(). Second
1321 * part makes sure sb_lastrecord is up-to-date if
1322 * there is still data in the socket buffer.
1323 */
1324 so->so_rcv.sb_mb = nextrecord;
1325 if (so->so_rcv.sb_mb == NULL) {
1326 so->so_rcv.sb_mbtail = NULL;
1327 so->so_rcv.sb_lastrecord = NULL;
1328 } else if (nextrecord->m_nextpkt == NULL)
1329 so->so_rcv.sb_lastrecord = nextrecord;
1330 }
1331 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1332 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1333 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1334 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1335 (struct mbuf *)(long)flags, (struct mbuf *)0, p);
1336 }
1337 if (orig_resid == uio->uio_resid && orig_resid &&
1338 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1339 sbunlock(&so->so_rcv);
1340 splx(s);
1341 goto restart;
1342 }
1343
1344 if (flagsp)
1345 *flagsp |= flags;
1346 release:
1347 sbunlock(&so->so_rcv);
1348 splx(s);
1349 return (error);
1350 }
1351
1352 int
1353 soshutdown(struct socket *so, int how)
1354 {
1355 const struct protosw *pr;
1356
1357 pr = so->so_proto;
1358 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1359 return (EINVAL);
1360
1361 if (how == SHUT_RD || how == SHUT_RDWR)
1362 sorflush(so);
1363 if (how == SHUT_WR || how == SHUT_RDWR)
1364 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1365 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1366 return (0);
1367 }
1368
1369 void
1370 sorflush(struct socket *so)
1371 {
1372 struct sockbuf *sb, asb;
1373 const struct protosw *pr;
1374 int s;
1375
1376 sb = &so->so_rcv;
1377 pr = so->so_proto;
1378 sb->sb_flags |= SB_NOINTR;
1379 (void) sblock(sb, M_WAITOK);
1380 s = splnet();
1381 socantrcvmore(so);
1382 sbunlock(sb);
1383 asb = *sb;
1384 /*
1385 * Clear most of the sockbuf structure, but leave some of the
1386 * fields valid.
1387 */
1388 memset(&sb->sb_startzero, 0,
1389 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1390 splx(s);
1391 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1392 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1393 sbrelease(&asb, so);
1394 }
1395
1396 int
1397 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1398 {
1399 int error;
1400 struct mbuf *m;
1401
1402 error = 0;
1403 m = m0;
1404 if (level != SOL_SOCKET) {
1405 if (so->so_proto && so->so_proto->pr_ctloutput)
1406 return ((*so->so_proto->pr_ctloutput)
1407 (PRCO_SETOPT, so, level, optname, &m0));
1408 error = ENOPROTOOPT;
1409 } else {
1410 switch (optname) {
1411
1412 case SO_LINGER:
1413 if (m == NULL || m->m_len != sizeof(struct linger)) {
1414 error = EINVAL;
1415 goto bad;
1416 }
1417 if (mtod(m, struct linger *)->l_linger < 0 ||
1418 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1419 error = EDOM;
1420 goto bad;
1421 }
1422 so->so_linger = mtod(m, struct linger *)->l_linger;
1423 /* fall thru... */
1424
1425 case SO_DEBUG:
1426 case SO_KEEPALIVE:
1427 case SO_DONTROUTE:
1428 case SO_USELOOPBACK:
1429 case SO_BROADCAST:
1430 case SO_REUSEADDR:
1431 case SO_REUSEPORT:
1432 case SO_OOBINLINE:
1433 case SO_TIMESTAMP:
1434 if (m == NULL || m->m_len < sizeof(int)) {
1435 error = EINVAL;
1436 goto bad;
1437 }
1438 if (*mtod(m, int *))
1439 so->so_options |= optname;
1440 else
1441 so->so_options &= ~optname;
1442 break;
1443
1444 case SO_SNDBUF:
1445 case SO_RCVBUF:
1446 case SO_SNDLOWAT:
1447 case SO_RCVLOWAT:
1448 {
1449 int optval;
1450
1451 if (m == NULL || m->m_len < sizeof(int)) {
1452 error = EINVAL;
1453 goto bad;
1454 }
1455
1456 /*
1457 * Values < 1 make no sense for any of these
1458 * options, so disallow them.
1459 */
1460 optval = *mtod(m, int *);
1461 if (optval < 1) {
1462 error = EINVAL;
1463 goto bad;
1464 }
1465
1466 switch (optname) {
1467
1468 case SO_SNDBUF:
1469 case SO_RCVBUF:
1470 if (sbreserve(optname == SO_SNDBUF ?
1471 &so->so_snd : &so->so_rcv,
1472 (u_long) optval, so) == 0) {
1473 error = ENOBUFS;
1474 goto bad;
1475 }
1476 break;
1477
1478 /*
1479 * Make sure the low-water is never greater than
1480 * the high-water.
1481 */
1482 case SO_SNDLOWAT:
1483 so->so_snd.sb_lowat =
1484 (optval > so->so_snd.sb_hiwat) ?
1485 so->so_snd.sb_hiwat : optval;
1486 break;
1487 case SO_RCVLOWAT:
1488 so->so_rcv.sb_lowat =
1489 (optval > so->so_rcv.sb_hiwat) ?
1490 so->so_rcv.sb_hiwat : optval;
1491 break;
1492 }
1493 break;
1494 }
1495
1496 case SO_SNDTIMEO:
1497 case SO_RCVTIMEO:
1498 {
1499 struct timeval *tv;
1500 int val;
1501
1502 if (m == NULL || m->m_len < sizeof(*tv)) {
1503 error = EINVAL;
1504 goto bad;
1505 }
1506 tv = mtod(m, struct timeval *);
1507 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1508 error = EDOM;
1509 goto bad;
1510 }
1511 val = tv->tv_sec * hz + tv->tv_usec / tick;
1512 if (val == 0 && tv->tv_usec != 0)
1513 val = 1;
1514
1515 switch (optname) {
1516
1517 case SO_SNDTIMEO:
1518 so->so_snd.sb_timeo = val;
1519 break;
1520 case SO_RCVTIMEO:
1521 so->so_rcv.sb_timeo = val;
1522 break;
1523 }
1524 break;
1525 }
1526
1527 default:
1528 error = ENOPROTOOPT;
1529 break;
1530 }
1531 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1532 (void) ((*so->so_proto->pr_ctloutput)
1533 (PRCO_SETOPT, so, level, optname, &m0));
1534 m = NULL; /* freed by protocol */
1535 }
1536 }
1537 bad:
1538 if (m)
1539 (void) m_free(m);
1540 return (error);
1541 }
1542
1543 int
1544 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1545 {
1546 struct mbuf *m;
1547
1548 if (level != SOL_SOCKET) {
1549 if (so->so_proto && so->so_proto->pr_ctloutput) {
1550 return ((*so->so_proto->pr_ctloutput)
1551 (PRCO_GETOPT, so, level, optname, mp));
1552 } else
1553 return (ENOPROTOOPT);
1554 } else {
1555 m = m_get(M_WAIT, MT_SOOPTS);
1556 m->m_len = sizeof(int);
1557
1558 switch (optname) {
1559
1560 case SO_LINGER:
1561 m->m_len = sizeof(struct linger);
1562 mtod(m, struct linger *)->l_onoff =
1563 so->so_options & SO_LINGER;
1564 mtod(m, struct linger *)->l_linger = so->so_linger;
1565 break;
1566
1567 case SO_USELOOPBACK:
1568 case SO_DONTROUTE:
1569 case SO_DEBUG:
1570 case SO_KEEPALIVE:
1571 case SO_REUSEADDR:
1572 case SO_REUSEPORT:
1573 case SO_BROADCAST:
1574 case SO_OOBINLINE:
1575 case SO_TIMESTAMP:
1576 *mtod(m, int *) = so->so_options & optname;
1577 break;
1578
1579 case SO_TYPE:
1580 *mtod(m, int *) = so->so_type;
1581 break;
1582
1583 case SO_ERROR:
1584 *mtod(m, int *) = so->so_error;
1585 so->so_error = 0;
1586 break;
1587
1588 case SO_SNDBUF:
1589 *mtod(m, int *) = so->so_snd.sb_hiwat;
1590 break;
1591
1592 case SO_RCVBUF:
1593 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1594 break;
1595
1596 case SO_SNDLOWAT:
1597 *mtod(m, int *) = so->so_snd.sb_lowat;
1598 break;
1599
1600 case SO_RCVLOWAT:
1601 *mtod(m, int *) = so->so_rcv.sb_lowat;
1602 break;
1603
1604 case SO_SNDTIMEO:
1605 case SO_RCVTIMEO:
1606 {
1607 int val = (optname == SO_SNDTIMEO ?
1608 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1609
1610 m->m_len = sizeof(struct timeval);
1611 mtod(m, struct timeval *)->tv_sec = val / hz;
1612 mtod(m, struct timeval *)->tv_usec =
1613 (val % hz) * tick;
1614 break;
1615 }
1616
1617 case SO_OVERFLOWED:
1618 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1619 break;
1620
1621 default:
1622 (void)m_free(m);
1623 return (ENOPROTOOPT);
1624 }
1625 *mp = m;
1626 return (0);
1627 }
1628 }
1629
1630 void
1631 sohasoutofband(struct socket *so)
1632 {
1633 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1634 selwakeup(&so->so_rcv.sb_sel);
1635 }
1636
1637 static void
1638 filt_sordetach(struct knote *kn)
1639 {
1640 struct socket *so;
1641
1642 so = (struct socket *)kn->kn_fp->f_data;
1643 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1644 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1645 so->so_rcv.sb_flags &= ~SB_KNOTE;
1646 }
1647
1648 /*ARGSUSED*/
1649 static int
1650 filt_soread(struct knote *kn, long hint)
1651 {
1652 struct socket *so;
1653
1654 so = (struct socket *)kn->kn_fp->f_data;
1655 kn->kn_data = so->so_rcv.sb_cc;
1656 if (so->so_state & SS_CANTRCVMORE) {
1657 kn->kn_flags |= EV_EOF;
1658 kn->kn_fflags = so->so_error;
1659 return (1);
1660 }
1661 if (so->so_error) /* temporary udp error */
1662 return (1);
1663 if (kn->kn_sfflags & NOTE_LOWAT)
1664 return (kn->kn_data >= kn->kn_sdata);
1665 return (kn->kn_data >= so->so_rcv.sb_lowat);
1666 }
1667
1668 static void
1669 filt_sowdetach(struct knote *kn)
1670 {
1671 struct socket *so;
1672
1673 so = (struct socket *)kn->kn_fp->f_data;
1674 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1675 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1676 so->so_snd.sb_flags &= ~SB_KNOTE;
1677 }
1678
1679 /*ARGSUSED*/
1680 static int
1681 filt_sowrite(struct knote *kn, long hint)
1682 {
1683 struct socket *so;
1684
1685 so = (struct socket *)kn->kn_fp->f_data;
1686 kn->kn_data = sbspace(&so->so_snd);
1687 if (so->so_state & SS_CANTSENDMORE) {
1688 kn->kn_flags |= EV_EOF;
1689 kn->kn_fflags = so->so_error;
1690 return (1);
1691 }
1692 if (so->so_error) /* temporary udp error */
1693 return (1);
1694 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1695 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1696 return (0);
1697 if (kn->kn_sfflags & NOTE_LOWAT)
1698 return (kn->kn_data >= kn->kn_sdata);
1699 return (kn->kn_data >= so->so_snd.sb_lowat);
1700 }
1701
1702 /*ARGSUSED*/
1703 static int
1704 filt_solisten(struct knote *kn, long hint)
1705 {
1706 struct socket *so;
1707
1708 so = (struct socket *)kn->kn_fp->f_data;
1709
1710 /*
1711 * Set kn_data to number of incoming connections, not
1712 * counting partial (incomplete) connections.
1713 */
1714 kn->kn_data = so->so_qlen;
1715 return (kn->kn_data > 0);
1716 }
1717
1718 static const struct filterops solisten_filtops =
1719 { 1, NULL, filt_sordetach, filt_solisten };
1720 static const struct filterops soread_filtops =
1721 { 1, NULL, filt_sordetach, filt_soread };
1722 static const struct filterops sowrite_filtops =
1723 { 1, NULL, filt_sowdetach, filt_sowrite };
1724
1725 int
1726 soo_kqfilter(struct file *fp, struct knote *kn)
1727 {
1728 struct socket *so;
1729 struct sockbuf *sb;
1730
1731 so = (struct socket *)kn->kn_fp->f_data;
1732 switch (kn->kn_filter) {
1733 case EVFILT_READ:
1734 if (so->so_options & SO_ACCEPTCONN)
1735 kn->kn_fop = &solisten_filtops;
1736 else
1737 kn->kn_fop = &soread_filtops;
1738 sb = &so->so_rcv;
1739 break;
1740 case EVFILT_WRITE:
1741 kn->kn_fop = &sowrite_filtops;
1742 sb = &so->so_snd;
1743 break;
1744 default:
1745 return (1);
1746 }
1747 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1748 sb->sb_flags |= SB_KNOTE;
1749 return (0);
1750 }
1751
1752 #include <sys/sysctl.h>
1753
1754 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1755
1756 /*
1757 * sysctl helper routine for kern.somaxkva. ensures that the given
1758 * value is not too small.
1759 * (XXX should we maybe make sure it's not too large as well?)
1760 */
1761 static int
1762 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1763 {
1764 int error, new_somaxkva;
1765 struct sysctlnode node;
1766 int s;
1767
1768 new_somaxkva = somaxkva;
1769 node = *rnode;
1770 node.sysctl_data = &new_somaxkva;
1771 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1772 if (error || newp == NULL)
1773 return (error);
1774
1775 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1776 return (EINVAL);
1777
1778 s = splvm();
1779 simple_lock(&so_pendfree_slock);
1780 somaxkva = new_somaxkva;
1781 wakeup(&socurkva);
1782 simple_unlock(&so_pendfree_slock);
1783 splx(s);
1784
1785 return (error);
1786 }
1787
1788 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1789 {
1790
1791 sysctl_createv(clog, 0, NULL, NULL,
1792 CTLFLAG_PERMANENT,
1793 CTLTYPE_NODE, "kern", NULL,
1794 NULL, 0, NULL, 0,
1795 CTL_KERN, CTL_EOL);
1796
1797 sysctl_createv(clog, 0, NULL, NULL,
1798 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1799 CTLTYPE_INT, "somaxkva",
1800 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1801 "used for socket buffers"),
1802 sysctl_kern_somaxkva, 0, NULL, 0,
1803 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1804 }
1805