uipc_socket.c revision 1.111.2.11 1 /* $NetBSD: uipc_socket.c,v 1.111.2.11 2008/01/21 09:46:30 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.11 2008/01/21 09:46:30 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size, bool mapped)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 if (mapped) {
268 pmap_kremove(sva, len);
269 pmap_update(pmap_kernel());
270 }
271 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
272 sokvafree(sva, len);
273 }
274
275 static size_t
276 sodopendfree()
277 {
278 size_t rv;
279
280 mutex_enter(&so_pendfree_lock);
281 rv = sodopendfreel();
282 mutex_exit(&so_pendfree_lock);
283
284 return rv;
285 }
286
287 /*
288 * sodopendfreel: free mbufs on "pendfree" list.
289 * unlock and relock so_pendfree_lock when freeing mbufs.
290 *
291 * => called with so_pendfree_lock held.
292 */
293
294 static size_t
295 sodopendfreel()
296 {
297 struct mbuf *m, *next;
298 size_t rv = 0;
299
300 KASSERT(mutex_owned(&so_pendfree_lock));
301
302 while (so_pendfree != NULL) {
303 m = so_pendfree;
304 so_pendfree = NULL;
305 mutex_exit(&so_pendfree_lock);
306
307 for (; m != NULL; m = next) {
308 next = m->m_next;
309 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
310 KASSERT(m->m_ext.ext_refcnt == 0);
311
312 rv += m->m_ext.ext_size;
313 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
314 m->m_ext.ext_size,
315 (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
316 pool_cache_put(mb_cache, m);
317 }
318
319 mutex_enter(&so_pendfree_lock);
320 }
321
322 return (rv);
323 }
324
325 void
326 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
327 {
328
329 KASSERT(m != NULL);
330
331 /*
332 * postpone freeing mbuf.
333 *
334 * we can't do it in interrupt context
335 * because we need to put kva back to kernel_map.
336 */
337
338 mutex_enter(&so_pendfree_lock);
339 m->m_next = so_pendfree;
340 so_pendfree = m;
341 cv_broadcast(&socurkva_cv);
342 mutex_exit(&so_pendfree_lock);
343 }
344
345 static long
346 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
347 {
348 struct iovec *iov = uio->uio_iov;
349 vaddr_t sva, eva;
350 vsize_t len;
351 vaddr_t lva;
352 int npgs, error;
353 #if !defined(__HAVE_LAZY_MBUF)
354 vaddr_t va;
355 int i;
356 #endif /* !defined(__HAVE_LAZY_MBUF) */
357
358 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
359 return (0);
360
361 if (iov->iov_len < (size_t) space)
362 space = iov->iov_len;
363 if (space > SOCK_LOAN_CHUNK)
364 space = SOCK_LOAN_CHUNK;
365
366 eva = round_page((vaddr_t) iov->iov_base + space);
367 sva = trunc_page((vaddr_t) iov->iov_base);
368 len = eva - sva;
369 npgs = len >> PAGE_SHIFT;
370
371 /* XXX KDASSERT */
372 KASSERT(npgs <= M_EXT_MAXPAGES);
373
374 lva = sokvaalloc(len, so);
375 if (lva == 0)
376 return 0;
377
378 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
379 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
380 if (error) {
381 sokvafree(lva, len);
382 return (0);
383 }
384
385 #if !defined(__HAVE_LAZY_MBUF)
386 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
387 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
388 VM_PROT_READ);
389 pmap_update(pmap_kernel());
390 #endif /* !defined(__HAVE_LAZY_MBUF) */
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 #if defined(__HAVE_LAZY_MBUF)
398 m->m_flags |= M_EXT_LAZY;
399 m->m_ext.ext_flags |= M_EXT_LAZY;
400 #endif /* defined(__HAVE_LAZY_MBUF) */
401
402 uio->uio_resid -= space;
403 /* uio_offset not updated, not set/used for write(2) */
404 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
405 uio->uio_iov->iov_len -= space;
406 if (uio->uio_iov->iov_len == 0) {
407 uio->uio_iov++;
408 uio->uio_iovcnt--;
409 }
410
411 return (space);
412 }
413
414 static int
415 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
416 {
417
418 KASSERT(ce == &sokva_reclaimerentry);
419 KASSERT(obj == NULL);
420
421 sodopendfree();
422 if (!vm_map_starved_p(kernel_map)) {
423 return CALLBACK_CHAIN_ABORT;
424 }
425 return CALLBACK_CHAIN_CONTINUE;
426 }
427
428 struct mbuf *
429 getsombuf(struct socket *so, int type)
430 {
431 struct mbuf *m;
432
433 m = m_get(M_WAIT, type);
434 MCLAIM(m, so->so_mowner);
435 return m;
436 }
437
438 struct mbuf *
439 m_intopt(struct socket *so, int val)
440 {
441 struct mbuf *m;
442
443 m = getsombuf(so, MT_SOOPTS);
444 m->m_len = sizeof(int);
445 *mtod(m, int *) = val;
446 return m;
447 }
448
449 void
450 soinit(void)
451 {
452
453 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
454 cv_init(&socurkva_cv, "sokva");
455
456 /* Set the initial adjusted socket buffer size. */
457 if (sb_max_set(sb_max))
458 panic("bad initial sb_max value: %lu", sb_max);
459
460 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
461 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
462 }
463
464 /*
465 * Socket operation routines.
466 * These routines are called by the routines in
467 * sys_socket.c or from a system process, and
468 * implement the semantics of socket operations by
469 * switching out to the protocol specific routines.
470 */
471 /*ARGSUSED*/
472 int
473 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
474 {
475 const struct protosw *prp;
476 struct socket *so;
477 uid_t uid;
478 int error, s;
479
480 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
481 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
482 KAUTH_ARG(proto));
483 if (error != 0)
484 return error;
485
486 if (proto)
487 prp = pffindproto(dom, proto, type);
488 else
489 prp = pffindtype(dom, type);
490 if (prp == NULL) {
491 /* no support for domain */
492 if (pffinddomain(dom) == 0)
493 return EAFNOSUPPORT;
494 /* no support for socket type */
495 if (proto == 0 && type != 0)
496 return EPROTOTYPE;
497 return EPROTONOSUPPORT;
498 }
499 if (prp->pr_usrreq == NULL)
500 return EPROTONOSUPPORT;
501 if (prp->pr_type != type)
502 return EPROTOTYPE;
503 s = splsoftnet();
504 so = pool_get(&socket_pool, PR_WAITOK);
505 memset(so, 0, sizeof(*so));
506 TAILQ_INIT(&so->so_q0);
507 TAILQ_INIT(&so->so_q);
508 so->so_type = type;
509 so->so_proto = prp;
510 so->so_send = sosend;
511 so->so_receive = soreceive;
512 #ifdef MBUFTRACE
513 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
514 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
515 so->so_mowner = &prp->pr_domain->dom_mowner;
516 #endif
517 selinit(&so->so_rcv.sb_sel);
518 selinit(&so->so_snd.sb_sel);
519 uid = kauth_cred_geteuid(l->l_cred);
520 so->so_uidinfo = uid_find(uid);
521 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
522 (struct mbuf *)(long)proto, NULL, l);
523 if (error != 0) {
524 so->so_state |= SS_NOFDREF;
525 sofree(so);
526 splx(s);
527 return error;
528 }
529 splx(s);
530 *aso = so;
531 return 0;
532 }
533
534 /* On success, write file descriptor to fdout and return zero. On
535 * failure, return non-zero; *fdout will be undefined.
536 */
537 int
538 fsocreate(int domain, struct socket **sop, int type, int protocol,
539 struct lwp *l, int *fdout)
540 {
541 struct filedesc *fdp;
542 struct socket *so;
543 struct file *fp;
544 int fd, error;
545
546 fdp = l->l_proc->p_fd;
547 /* falloc() will use the desciptor for us */
548 if ((error = falloc(l, &fp, &fd)) != 0)
549 return (error);
550 fp->f_flag = FREAD|FWRITE;
551 fp->f_type = DTYPE_SOCKET;
552 fp->f_ops = &socketops;
553 error = socreate(domain, &so, type, protocol, l);
554 if (error != 0) {
555 FILE_UNUSE(fp, l);
556 fdremove(fdp, fd);
557 ffree(fp);
558 } else {
559 if (sop != NULL)
560 *sop = so;
561 fp->f_data = so;
562 FILE_SET_MATURE(fp);
563 FILE_UNUSE(fp, l);
564 *fdout = fd;
565 }
566 return error;
567 }
568
569 int
570 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
571 {
572 int s, error;
573
574 s = splsoftnet();
575 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
576 splx(s);
577 return error;
578 }
579
580 int
581 solisten(struct socket *so, int backlog, struct lwp *l)
582 {
583 int s, error;
584
585 s = splsoftnet();
586 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
587 NULL, NULL, l);
588 if (error != 0) {
589 splx(s);
590 return error;
591 }
592 if (TAILQ_EMPTY(&so->so_q))
593 so->so_options |= SO_ACCEPTCONN;
594 if (backlog < 0)
595 backlog = 0;
596 so->so_qlimit = min(backlog, somaxconn);
597 splx(s);
598 return 0;
599 }
600
601 void
602 sofree(struct socket *so)
603 {
604
605 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
606 return;
607 if (so->so_head) {
608 /*
609 * We must not decommission a socket that's on the accept(2)
610 * queue. If we do, then accept(2) may hang after select(2)
611 * indicated that the listening socket was ready.
612 */
613 if (!soqremque(so, 0))
614 return;
615 }
616 if (so->so_rcv.sb_hiwat)
617 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
618 RLIM_INFINITY);
619 if (so->so_snd.sb_hiwat)
620 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
621 RLIM_INFINITY);
622 sbrelease(&so->so_snd, so);
623 sorflush(so);
624 seldestroy(&so->so_rcv.sb_sel);
625 seldestroy(&so->so_snd.sb_sel);
626 pool_put(&socket_pool, so);
627 }
628
629 /*
630 * Close a socket on last file table reference removal.
631 * Initiate disconnect if connected.
632 * Free socket when disconnect complete.
633 */
634 int
635 soclose(struct socket *so)
636 {
637 struct socket *so2;
638 int s, error;
639
640 error = 0;
641 s = splsoftnet(); /* conservative */
642 if (so->so_options & SO_ACCEPTCONN) {
643 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
644 (void) soqremque(so2, 0);
645 (void) soabort(so2);
646 }
647 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
648 (void) soqremque(so2, 1);
649 (void) soabort(so2);
650 }
651 }
652 if (so->so_pcb == 0)
653 goto discard;
654 if (so->so_state & SS_ISCONNECTED) {
655 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
656 error = sodisconnect(so);
657 if (error)
658 goto drop;
659 }
660 if (so->so_options & SO_LINGER) {
661 if ((so->so_state & SS_ISDISCONNECTING) &&
662 (so->so_state & SS_NBIO))
663 goto drop;
664 while (so->so_state & SS_ISCONNECTED) {
665 error = tsleep((void *)&so->so_timeo,
666 PSOCK | PCATCH, netcls,
667 so->so_linger * hz);
668 if (error)
669 break;
670 }
671 }
672 }
673 drop:
674 if (so->so_pcb) {
675 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
676 NULL, NULL, NULL, NULL);
677 if (error == 0)
678 error = error2;
679 }
680 discard:
681 if (so->so_state & SS_NOFDREF)
682 panic("soclose: NOFDREF");
683 so->so_state |= SS_NOFDREF;
684 sofree(so);
685 splx(s);
686 return (error);
687 }
688
689 /*
690 * Must be called at splsoftnet...
691 */
692 int
693 soabort(struct socket *so)
694 {
695 int error;
696
697 KASSERT(so->so_head == NULL);
698 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
699 NULL, NULL, NULL);
700 if (error) {
701 sofree(so);
702 }
703 return error;
704 }
705
706 int
707 soaccept(struct socket *so, struct mbuf *nam)
708 {
709 int s, error;
710
711 error = 0;
712 s = splsoftnet();
713 if ((so->so_state & SS_NOFDREF) == 0)
714 panic("soaccept: !NOFDREF");
715 so->so_state &= ~SS_NOFDREF;
716 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
717 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
718 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
719 NULL, nam, NULL, NULL);
720 else
721 error = ECONNABORTED;
722
723 splx(s);
724 return (error);
725 }
726
727 int
728 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
729 {
730 int s, error;
731
732 if (so->so_options & SO_ACCEPTCONN)
733 return (EOPNOTSUPP);
734 s = splsoftnet();
735 /*
736 * If protocol is connection-based, can only connect once.
737 * Otherwise, if connected, try to disconnect first.
738 * This allows user to disconnect by connecting to, e.g.,
739 * a null address.
740 */
741 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
742 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
743 (error = sodisconnect(so))))
744 error = EISCONN;
745 else
746 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
747 NULL, nam, NULL, l);
748 splx(s);
749 return (error);
750 }
751
752 int
753 soconnect2(struct socket *so1, struct socket *so2)
754 {
755 int s, error;
756
757 s = splsoftnet();
758 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
759 NULL, (struct mbuf *)so2, NULL, NULL);
760 splx(s);
761 return (error);
762 }
763
764 int
765 sodisconnect(struct socket *so)
766 {
767 int s, error;
768
769 s = splsoftnet();
770 if ((so->so_state & SS_ISCONNECTED) == 0) {
771 error = ENOTCONN;
772 goto bad;
773 }
774 if (so->so_state & SS_ISDISCONNECTING) {
775 error = EALREADY;
776 goto bad;
777 }
778 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
779 NULL, NULL, NULL, NULL);
780 bad:
781 splx(s);
782 sodopendfree();
783 return (error);
784 }
785
786 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
787 /*
788 * Send on a socket.
789 * If send must go all at once and message is larger than
790 * send buffering, then hard error.
791 * Lock against other senders.
792 * If must go all at once and not enough room now, then
793 * inform user that this would block and do nothing.
794 * Otherwise, if nonblocking, send as much as possible.
795 * The data to be sent is described by "uio" if nonzero,
796 * otherwise by the mbuf chain "top" (which must be null
797 * if uio is not). Data provided in mbuf chain must be small
798 * enough to send all at once.
799 *
800 * Returns nonzero on error, timeout or signal; callers
801 * must check for short counts if EINTR/ERESTART are returned.
802 * Data and control buffers are freed on return.
803 */
804 int
805 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
806 struct mbuf *control, int flags, struct lwp *l)
807 {
808 struct mbuf **mp, *m;
809 struct proc *p;
810 long space, len, resid, clen, mlen;
811 int error, s, dontroute, atomic;
812
813 p = l->l_proc;
814 sodopendfree();
815
816 clen = 0;
817 atomic = sosendallatonce(so) || top;
818 if (uio)
819 resid = uio->uio_resid;
820 else
821 resid = top->m_pkthdr.len;
822 /*
823 * In theory resid should be unsigned.
824 * However, space must be signed, as it might be less than 0
825 * if we over-committed, and we must use a signed comparison
826 * of space and resid. On the other hand, a negative resid
827 * causes us to loop sending 0-length segments to the protocol.
828 */
829 if (resid < 0) {
830 error = EINVAL;
831 goto out;
832 }
833 dontroute =
834 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
835 (so->so_proto->pr_flags & PR_ATOMIC);
836 if (p)
837 p->p_stats->p_ru.ru_msgsnd++;
838 if (control)
839 clen = control->m_len;
840 #define snderr(errno) { error = errno; splx(s); goto release; }
841
842 restart:
843 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
844 goto out;
845 do {
846 s = splsoftnet();
847 if (so->so_state & SS_CANTSENDMORE)
848 snderr(EPIPE);
849 if (so->so_error) {
850 error = so->so_error;
851 so->so_error = 0;
852 splx(s);
853 goto release;
854 }
855 if ((so->so_state & SS_ISCONNECTED) == 0) {
856 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
857 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
858 !(resid == 0 && clen != 0))
859 snderr(ENOTCONN);
860 } else if (addr == 0)
861 snderr(EDESTADDRREQ);
862 }
863 space = sbspace(&so->so_snd);
864 if (flags & MSG_OOB)
865 space += 1024;
866 if ((atomic && resid > so->so_snd.sb_hiwat) ||
867 clen > so->so_snd.sb_hiwat)
868 snderr(EMSGSIZE);
869 if (space < resid + clen &&
870 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
871 if (so->so_state & SS_NBIO)
872 snderr(EWOULDBLOCK);
873 sbunlock(&so->so_snd);
874 error = sbwait(&so->so_snd);
875 splx(s);
876 if (error)
877 goto out;
878 goto restart;
879 }
880 splx(s);
881 mp = ⊤
882 space -= clen;
883 do {
884 if (uio == NULL) {
885 /*
886 * Data is prepackaged in "top".
887 */
888 resid = 0;
889 if (flags & MSG_EOR)
890 top->m_flags |= M_EOR;
891 } else do {
892 if (top == NULL) {
893 m = m_gethdr(M_WAIT, MT_DATA);
894 mlen = MHLEN;
895 m->m_pkthdr.len = 0;
896 m->m_pkthdr.rcvif = NULL;
897 } else {
898 m = m_get(M_WAIT, MT_DATA);
899 mlen = MLEN;
900 }
901 MCLAIM(m, so->so_snd.sb_mowner);
902 if (sock_loan_thresh >= 0 &&
903 uio->uio_iov->iov_len >= sock_loan_thresh &&
904 space >= sock_loan_thresh &&
905 (len = sosend_loan(so, uio, m,
906 space)) != 0) {
907 SOSEND_COUNTER_INCR(&sosend_loan_big);
908 space -= len;
909 goto have_data;
910 }
911 if (resid >= MINCLSIZE && space >= MCLBYTES) {
912 SOSEND_COUNTER_INCR(&sosend_copy_big);
913 m_clget(m, M_WAIT);
914 if ((m->m_flags & M_EXT) == 0)
915 goto nopages;
916 mlen = MCLBYTES;
917 if (atomic && top == 0) {
918 len = lmin(MCLBYTES - max_hdr,
919 resid);
920 m->m_data += max_hdr;
921 } else
922 len = lmin(MCLBYTES, resid);
923 space -= len;
924 } else {
925 nopages:
926 SOSEND_COUNTER_INCR(&sosend_copy_small);
927 len = lmin(lmin(mlen, resid), space);
928 space -= len;
929 /*
930 * For datagram protocols, leave room
931 * for protocol headers in first mbuf.
932 */
933 if (atomic && top == 0 && len < mlen)
934 MH_ALIGN(m, len);
935 }
936 error = uiomove(mtod(m, void *), (int)len, uio);
937 have_data:
938 resid = uio->uio_resid;
939 m->m_len = len;
940 *mp = m;
941 top->m_pkthdr.len += len;
942 if (error != 0)
943 goto release;
944 mp = &m->m_next;
945 if (resid <= 0) {
946 if (flags & MSG_EOR)
947 top->m_flags |= M_EOR;
948 break;
949 }
950 } while (space > 0 && atomic);
951
952 s = splsoftnet();
953
954 if (so->so_state & SS_CANTSENDMORE)
955 snderr(EPIPE);
956
957 if (dontroute)
958 so->so_options |= SO_DONTROUTE;
959 if (resid > 0)
960 so->so_state |= SS_MORETOCOME;
961 error = (*so->so_proto->pr_usrreq)(so,
962 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
963 top, addr, control, curlwp); /* XXX */
964 if (dontroute)
965 so->so_options &= ~SO_DONTROUTE;
966 if (resid > 0)
967 so->so_state &= ~SS_MORETOCOME;
968 splx(s);
969
970 clen = 0;
971 control = NULL;
972 top = NULL;
973 mp = ⊤
974 if (error != 0)
975 goto release;
976 } while (resid && space > 0);
977 } while (resid);
978
979 release:
980 sbunlock(&so->so_snd);
981 out:
982 if (top)
983 m_freem(top);
984 if (control)
985 m_freem(control);
986 return (error);
987 }
988
989 /*
990 * Implement receive operations on a socket.
991 * We depend on the way that records are added to the sockbuf
992 * by sbappend*. In particular, each record (mbufs linked through m_next)
993 * must begin with an address if the protocol so specifies,
994 * followed by an optional mbuf or mbufs containing ancillary data,
995 * and then zero or more mbufs of data.
996 * In order to avoid blocking network interrupts for the entire time here,
997 * we splx() while doing the actual copy to user space.
998 * Although the sockbuf is locked, new data may still be appended,
999 * and thus we must maintain consistency of the sockbuf during that time.
1000 *
1001 * The caller may receive the data as a single mbuf chain by supplying
1002 * an mbuf **mp0 for use in returning the chain. The uio is then used
1003 * only for the count in uio_resid.
1004 */
1005 int
1006 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1007 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1008 {
1009 struct lwp *l = curlwp;
1010 struct mbuf *m, **mp;
1011 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1012 const struct protosw *pr;
1013 struct mbuf *nextrecord;
1014 int mbuf_removed = 0;
1015 const struct domain *dom;
1016
1017 pr = so->so_proto;
1018 atomic = pr->pr_flags & PR_ATOMIC;
1019 dom = pr->pr_domain;
1020 mp = mp0;
1021 type = 0;
1022 orig_resid = uio->uio_resid;
1023
1024 if (paddr != NULL)
1025 *paddr = NULL;
1026 if (controlp != NULL)
1027 *controlp = NULL;
1028 if (flagsp != NULL)
1029 flags = *flagsp &~ MSG_EOR;
1030 else
1031 flags = 0;
1032
1033 if ((flags & MSG_DONTWAIT) == 0)
1034 sodopendfree();
1035
1036 if (flags & MSG_OOB) {
1037 m = m_get(M_WAIT, MT_DATA);
1038 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1039 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1040 if (error)
1041 goto bad;
1042 do {
1043 error = uiomove(mtod(m, void *),
1044 (int) min(uio->uio_resid, m->m_len), uio);
1045 m = m_free(m);
1046 } while (uio->uio_resid > 0 && error == 0 && m);
1047 bad:
1048 if (m != NULL)
1049 m_freem(m);
1050 return error;
1051 }
1052 if (mp != NULL)
1053 *mp = NULL;
1054 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1055 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1056
1057 restart:
1058 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1059 return error;
1060 s = splsoftnet();
1061
1062 m = so->so_rcv.sb_mb;
1063 /*
1064 * If we have less data than requested, block awaiting more
1065 * (subject to any timeout) if:
1066 * 1. the current count is less than the low water mark,
1067 * 2. MSG_WAITALL is set, and it is possible to do the entire
1068 * receive operation at once if we block (resid <= hiwat), or
1069 * 3. MSG_DONTWAIT is not set.
1070 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1071 * we have to do the receive in sections, and thus risk returning
1072 * a short count if a timeout or signal occurs after we start.
1073 */
1074 if (m == NULL ||
1075 ((flags & MSG_DONTWAIT) == 0 &&
1076 so->so_rcv.sb_cc < uio->uio_resid &&
1077 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1078 ((flags & MSG_WAITALL) &&
1079 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1080 m->m_nextpkt == NULL && !atomic)) {
1081 #ifdef DIAGNOSTIC
1082 if (m == NULL && so->so_rcv.sb_cc)
1083 panic("receive 1");
1084 #endif
1085 if (so->so_error) {
1086 if (m != NULL)
1087 goto dontblock;
1088 error = so->so_error;
1089 if ((flags & MSG_PEEK) == 0)
1090 so->so_error = 0;
1091 goto release;
1092 }
1093 if (so->so_state & SS_CANTRCVMORE) {
1094 if (m != NULL)
1095 goto dontblock;
1096 else
1097 goto release;
1098 }
1099 for (; m != NULL; m = m->m_next)
1100 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1101 m = so->so_rcv.sb_mb;
1102 goto dontblock;
1103 }
1104 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1105 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1106 error = ENOTCONN;
1107 goto release;
1108 }
1109 if (uio->uio_resid == 0)
1110 goto release;
1111 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1112 error = EWOULDBLOCK;
1113 goto release;
1114 }
1115 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1116 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1117 sbunlock(&so->so_rcv);
1118 error = sbwait(&so->so_rcv);
1119 splx(s);
1120 if (error != 0)
1121 return error;
1122 goto restart;
1123 }
1124 dontblock:
1125 /*
1126 * On entry here, m points to the first record of the socket buffer.
1127 * While we process the initial mbufs containing address and control
1128 * info, we save a copy of m->m_nextpkt into nextrecord.
1129 */
1130 if (l != NULL)
1131 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1132 KASSERT(m == so->so_rcv.sb_mb);
1133 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1134 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1135 nextrecord = m->m_nextpkt;
1136 if (pr->pr_flags & PR_ADDR) {
1137 #ifdef DIAGNOSTIC
1138 if (m->m_type != MT_SONAME)
1139 panic("receive 1a");
1140 #endif
1141 orig_resid = 0;
1142 if (flags & MSG_PEEK) {
1143 if (paddr)
1144 *paddr = m_copy(m, 0, m->m_len);
1145 m = m->m_next;
1146 } else {
1147 sbfree(&so->so_rcv, m);
1148 mbuf_removed = 1;
1149 if (paddr != NULL) {
1150 *paddr = m;
1151 so->so_rcv.sb_mb = m->m_next;
1152 m->m_next = NULL;
1153 m = so->so_rcv.sb_mb;
1154 } else {
1155 MFREE(m, so->so_rcv.sb_mb);
1156 m = so->so_rcv.sb_mb;
1157 }
1158 }
1159 }
1160 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1161 if (flags & MSG_PEEK) {
1162 if (controlp != NULL)
1163 *controlp = m_copy(m, 0, m->m_len);
1164 m = m->m_next;
1165 } else {
1166 sbfree(&so->so_rcv, m);
1167 mbuf_removed = 1;
1168 if (controlp != NULL) {
1169 if (dom->dom_externalize && l &&
1170 mtod(m, struct cmsghdr *)->cmsg_type ==
1171 SCM_RIGHTS)
1172 error = (*dom->dom_externalize)(m, l);
1173 *controlp = m;
1174 so->so_rcv.sb_mb = m->m_next;
1175 m->m_next = NULL;
1176 m = so->so_rcv.sb_mb;
1177 } else {
1178 /*
1179 * Dispose of any SCM_RIGHTS message that went
1180 * through the read path rather than recv.
1181 */
1182 if (dom->dom_dispose &&
1183 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1184 (*dom->dom_dispose)(m);
1185 MFREE(m, so->so_rcv.sb_mb);
1186 m = so->so_rcv.sb_mb;
1187 }
1188 }
1189 if (controlp != NULL) {
1190 orig_resid = 0;
1191 controlp = &(*controlp)->m_next;
1192 }
1193 }
1194
1195 /*
1196 * If m is non-NULL, we have some data to read. From now on,
1197 * make sure to keep sb_lastrecord consistent when working on
1198 * the last packet on the chain (nextrecord == NULL) and we
1199 * change m->m_nextpkt.
1200 */
1201 if (m != NULL) {
1202 if ((flags & MSG_PEEK) == 0) {
1203 m->m_nextpkt = nextrecord;
1204 /*
1205 * If nextrecord == NULL (this is a single chain),
1206 * then sb_lastrecord may not be valid here if m
1207 * was changed earlier.
1208 */
1209 if (nextrecord == NULL) {
1210 KASSERT(so->so_rcv.sb_mb == m);
1211 so->so_rcv.sb_lastrecord = m;
1212 }
1213 }
1214 type = m->m_type;
1215 if (type == MT_OOBDATA)
1216 flags |= MSG_OOB;
1217 } else {
1218 if ((flags & MSG_PEEK) == 0) {
1219 KASSERT(so->so_rcv.sb_mb == m);
1220 so->so_rcv.sb_mb = nextrecord;
1221 SB_EMPTY_FIXUP(&so->so_rcv);
1222 }
1223 }
1224 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1225 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1226
1227 moff = 0;
1228 offset = 0;
1229 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1230 if (m->m_type == MT_OOBDATA) {
1231 if (type != MT_OOBDATA)
1232 break;
1233 } else if (type == MT_OOBDATA)
1234 break;
1235 #ifdef DIAGNOSTIC
1236 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1237 panic("receive 3");
1238 #endif
1239 so->so_state &= ~SS_RCVATMARK;
1240 len = uio->uio_resid;
1241 if (so->so_oobmark && len > so->so_oobmark - offset)
1242 len = so->so_oobmark - offset;
1243 if (len > m->m_len - moff)
1244 len = m->m_len - moff;
1245 /*
1246 * If mp is set, just pass back the mbufs.
1247 * Otherwise copy them out via the uio, then free.
1248 * Sockbuf must be consistent here (points to current mbuf,
1249 * it points to next record) when we drop priority;
1250 * we must note any additions to the sockbuf when we
1251 * block interrupts again.
1252 */
1253 if (mp == NULL) {
1254 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1255 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1256 splx(s);
1257 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1258 s = splsoftnet();
1259 if (error != 0) {
1260 /*
1261 * If any part of the record has been removed
1262 * (such as the MT_SONAME mbuf, which will
1263 * happen when PR_ADDR, and thus also
1264 * PR_ATOMIC, is set), then drop the entire
1265 * record to maintain the atomicity of the
1266 * receive operation.
1267 *
1268 * This avoids a later panic("receive 1a")
1269 * when compiled with DIAGNOSTIC.
1270 */
1271 if (m && mbuf_removed && atomic)
1272 (void) sbdroprecord(&so->so_rcv);
1273
1274 goto release;
1275 }
1276 } else
1277 uio->uio_resid -= len;
1278 if (len == m->m_len - moff) {
1279 if (m->m_flags & M_EOR)
1280 flags |= MSG_EOR;
1281 if (flags & MSG_PEEK) {
1282 m = m->m_next;
1283 moff = 0;
1284 } else {
1285 nextrecord = m->m_nextpkt;
1286 sbfree(&so->so_rcv, m);
1287 if (mp) {
1288 *mp = m;
1289 mp = &m->m_next;
1290 so->so_rcv.sb_mb = m = m->m_next;
1291 *mp = NULL;
1292 } else {
1293 MFREE(m, so->so_rcv.sb_mb);
1294 m = so->so_rcv.sb_mb;
1295 }
1296 /*
1297 * If m != NULL, we also know that
1298 * so->so_rcv.sb_mb != NULL.
1299 */
1300 KASSERT(so->so_rcv.sb_mb == m);
1301 if (m) {
1302 m->m_nextpkt = nextrecord;
1303 if (nextrecord == NULL)
1304 so->so_rcv.sb_lastrecord = m;
1305 } else {
1306 so->so_rcv.sb_mb = nextrecord;
1307 SB_EMPTY_FIXUP(&so->so_rcv);
1308 }
1309 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1310 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1311 }
1312 } else if (flags & MSG_PEEK)
1313 moff += len;
1314 else {
1315 if (mp != NULL)
1316 *mp = m_copym(m, 0, len, M_WAIT);
1317 m->m_data += len;
1318 m->m_len -= len;
1319 so->so_rcv.sb_cc -= len;
1320 }
1321 if (so->so_oobmark) {
1322 if ((flags & MSG_PEEK) == 0) {
1323 so->so_oobmark -= len;
1324 if (so->so_oobmark == 0) {
1325 so->so_state |= SS_RCVATMARK;
1326 break;
1327 }
1328 } else {
1329 offset += len;
1330 if (offset == so->so_oobmark)
1331 break;
1332 }
1333 }
1334 if (flags & MSG_EOR)
1335 break;
1336 /*
1337 * If the MSG_WAITALL flag is set (for non-atomic socket),
1338 * we must not quit until "uio->uio_resid == 0" or an error
1339 * termination. If a signal/timeout occurs, return
1340 * with a short count but without error.
1341 * Keep sockbuf locked against other readers.
1342 */
1343 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1344 !sosendallatonce(so) && !nextrecord) {
1345 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1346 break;
1347 /*
1348 * If we are peeking and the socket receive buffer is
1349 * full, stop since we can't get more data to peek at.
1350 */
1351 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1352 break;
1353 /*
1354 * If we've drained the socket buffer, tell the
1355 * protocol in case it needs to do something to
1356 * get it filled again.
1357 */
1358 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1359 (*pr->pr_usrreq)(so, PRU_RCVD,
1360 NULL, (struct mbuf *)(long)flags, NULL, l);
1361 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1362 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1363 error = sbwait(&so->so_rcv);
1364 if (error != 0) {
1365 sbunlock(&so->so_rcv);
1366 splx(s);
1367 return 0;
1368 }
1369 if ((m = so->so_rcv.sb_mb) != NULL)
1370 nextrecord = m->m_nextpkt;
1371 }
1372 }
1373
1374 if (m && atomic) {
1375 flags |= MSG_TRUNC;
1376 if ((flags & MSG_PEEK) == 0)
1377 (void) sbdroprecord(&so->so_rcv);
1378 }
1379 if ((flags & MSG_PEEK) == 0) {
1380 if (m == NULL) {
1381 /*
1382 * First part is an inline SB_EMPTY_FIXUP(). Second
1383 * part makes sure sb_lastrecord is up-to-date if
1384 * there is still data in the socket buffer.
1385 */
1386 so->so_rcv.sb_mb = nextrecord;
1387 if (so->so_rcv.sb_mb == NULL) {
1388 so->so_rcv.sb_mbtail = NULL;
1389 so->so_rcv.sb_lastrecord = NULL;
1390 } else if (nextrecord->m_nextpkt == NULL)
1391 so->so_rcv.sb_lastrecord = nextrecord;
1392 }
1393 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1394 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1395 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1396 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1397 (struct mbuf *)(long)flags, NULL, l);
1398 }
1399 if (orig_resid == uio->uio_resid && orig_resid &&
1400 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1401 sbunlock(&so->so_rcv);
1402 splx(s);
1403 goto restart;
1404 }
1405
1406 if (flagsp != NULL)
1407 *flagsp |= flags;
1408 release:
1409 sbunlock(&so->so_rcv);
1410 splx(s);
1411 return error;
1412 }
1413
1414 int
1415 soshutdown(struct socket *so, int how)
1416 {
1417 const struct protosw *pr;
1418
1419 pr = so->so_proto;
1420 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1421 return (EINVAL);
1422
1423 if (how == SHUT_RD || how == SHUT_RDWR)
1424 sorflush(so);
1425 if (how == SHUT_WR || how == SHUT_RDWR)
1426 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1427 NULL, NULL, NULL);
1428 return 0;
1429 }
1430
1431 void
1432 sorflush(struct socket *so)
1433 {
1434 struct sockbuf *sb, asb;
1435 const struct protosw *pr;
1436 int s;
1437
1438 sb = &so->so_rcv;
1439 pr = so->so_proto;
1440 sb->sb_flags |= SB_NOINTR;
1441 (void) sblock(sb, M_WAITOK);
1442 s = splnet();
1443 socantrcvmore(so);
1444 sbunlock(sb);
1445 asb = *sb;
1446 /*
1447 * Clear most of the sockbuf structure, but leave some of the
1448 * fields valid.
1449 */
1450 memset(&sb->sb_startzero, 0,
1451 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1452 splx(s);
1453 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1454 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1455 sbrelease(&asb, so);
1456 }
1457
1458 static int
1459 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1460 {
1461 int optval, val;
1462 struct linger *l;
1463 struct sockbuf *sb;
1464 struct timeval *tv;
1465
1466 switch (optname) {
1467
1468 case SO_LINGER:
1469 if (m == NULL || m->m_len != sizeof(struct linger))
1470 return EINVAL;
1471 l = mtod(m, struct linger *);
1472 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1473 l->l_linger > (INT_MAX / hz))
1474 return EDOM;
1475 so->so_linger = l->l_linger;
1476 if (l->l_onoff)
1477 so->so_options |= SO_LINGER;
1478 else
1479 so->so_options &= ~SO_LINGER;
1480 break;
1481
1482 case SO_DEBUG:
1483 case SO_KEEPALIVE:
1484 case SO_DONTROUTE:
1485 case SO_USELOOPBACK:
1486 case SO_BROADCAST:
1487 case SO_REUSEADDR:
1488 case SO_REUSEPORT:
1489 case SO_OOBINLINE:
1490 case SO_TIMESTAMP:
1491 if (m == NULL || m->m_len < sizeof(int))
1492 return EINVAL;
1493 if (*mtod(m, int *))
1494 so->so_options |= optname;
1495 else
1496 so->so_options &= ~optname;
1497 break;
1498
1499 case SO_SNDBUF:
1500 case SO_RCVBUF:
1501 case SO_SNDLOWAT:
1502 case SO_RCVLOWAT:
1503 if (m == NULL || m->m_len < sizeof(int))
1504 return EINVAL;
1505
1506 /*
1507 * Values < 1 make no sense for any of these
1508 * options, so disallow them.
1509 */
1510 optval = *mtod(m, int *);
1511 if (optval < 1)
1512 return EINVAL;
1513
1514 switch (optname) {
1515
1516 case SO_SNDBUF:
1517 case SO_RCVBUF:
1518 sb = (optname == SO_SNDBUF) ?
1519 &so->so_snd : &so->so_rcv;
1520 if (sbreserve(sb, (u_long)optval, so) == 0)
1521 return ENOBUFS;
1522 sb->sb_flags &= ~SB_AUTOSIZE;
1523 break;
1524
1525 /*
1526 * Make sure the low-water is never greater than
1527 * the high-water.
1528 */
1529 case SO_SNDLOWAT:
1530 so->so_snd.sb_lowat =
1531 (optval > so->so_snd.sb_hiwat) ?
1532 so->so_snd.sb_hiwat : optval;
1533 break;
1534 case SO_RCVLOWAT:
1535 so->so_rcv.sb_lowat =
1536 (optval > so->so_rcv.sb_hiwat) ?
1537 so->so_rcv.sb_hiwat : optval;
1538 break;
1539 }
1540 break;
1541
1542 case SO_SNDTIMEO:
1543 case SO_RCVTIMEO:
1544 if (m == NULL || m->m_len < sizeof(*tv))
1545 return EINVAL;
1546 tv = mtod(m, struct timeval *);
1547 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1548 return EDOM;
1549 val = tv->tv_sec * hz + tv->tv_usec / tick;
1550 if (val == 0 && tv->tv_usec != 0)
1551 val = 1;
1552
1553 switch (optname) {
1554
1555 case SO_SNDTIMEO:
1556 so->so_snd.sb_timeo = val;
1557 break;
1558 case SO_RCVTIMEO:
1559 so->so_rcv.sb_timeo = val;
1560 break;
1561 }
1562 break;
1563
1564 default:
1565 return ENOPROTOOPT;
1566 }
1567 return 0;
1568 }
1569
1570 int
1571 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1572 {
1573 int error, prerr;
1574
1575 if (level == SOL_SOCKET)
1576 error = sosetopt1(so, level, optname, m);
1577 else
1578 error = ENOPROTOOPT;
1579
1580 if ((error == 0 || error == ENOPROTOOPT) &&
1581 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1582 /* give the protocol stack a shot */
1583 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1584 optname, &m);
1585 if (prerr == 0)
1586 error = 0;
1587 else if (prerr != ENOPROTOOPT)
1588 error = prerr;
1589 } else if (m != NULL)
1590 (void)m_free(m);
1591 return error;
1592 }
1593
1594 int
1595 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1596 {
1597 struct mbuf *m;
1598
1599 if (level != SOL_SOCKET) {
1600 if (so->so_proto && so->so_proto->pr_ctloutput) {
1601 return ((*so->so_proto->pr_ctloutput)
1602 (PRCO_GETOPT, so, level, optname, mp));
1603 } else
1604 return (ENOPROTOOPT);
1605 } else {
1606 m = m_get(M_WAIT, MT_SOOPTS);
1607 m->m_len = sizeof(int);
1608
1609 switch (optname) {
1610
1611 case SO_LINGER:
1612 m->m_len = sizeof(struct linger);
1613 mtod(m, struct linger *)->l_onoff =
1614 (so->so_options & SO_LINGER) ? 1 : 0;
1615 mtod(m, struct linger *)->l_linger = so->so_linger;
1616 break;
1617
1618 case SO_USELOOPBACK:
1619 case SO_DONTROUTE:
1620 case SO_DEBUG:
1621 case SO_KEEPALIVE:
1622 case SO_REUSEADDR:
1623 case SO_REUSEPORT:
1624 case SO_BROADCAST:
1625 case SO_OOBINLINE:
1626 case SO_TIMESTAMP:
1627 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1628 break;
1629
1630 case SO_TYPE:
1631 *mtod(m, int *) = so->so_type;
1632 break;
1633
1634 case SO_ERROR:
1635 *mtod(m, int *) = so->so_error;
1636 so->so_error = 0;
1637 break;
1638
1639 case SO_SNDBUF:
1640 *mtod(m, int *) = so->so_snd.sb_hiwat;
1641 break;
1642
1643 case SO_RCVBUF:
1644 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1645 break;
1646
1647 case SO_SNDLOWAT:
1648 *mtod(m, int *) = so->so_snd.sb_lowat;
1649 break;
1650
1651 case SO_RCVLOWAT:
1652 *mtod(m, int *) = so->so_rcv.sb_lowat;
1653 break;
1654
1655 case SO_SNDTIMEO:
1656 case SO_RCVTIMEO:
1657 {
1658 int val = (optname == SO_SNDTIMEO ?
1659 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1660
1661 m->m_len = sizeof(struct timeval);
1662 mtod(m, struct timeval *)->tv_sec = val / hz;
1663 mtod(m, struct timeval *)->tv_usec =
1664 (val % hz) * tick;
1665 break;
1666 }
1667
1668 case SO_OVERFLOWED:
1669 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1670 break;
1671
1672 default:
1673 (void)m_free(m);
1674 return (ENOPROTOOPT);
1675 }
1676 *mp = m;
1677 return (0);
1678 }
1679 }
1680
1681 void
1682 sohasoutofband(struct socket *so)
1683 {
1684 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1685 selwakeup(&so->so_rcv.sb_sel);
1686 }
1687
1688 static void
1689 filt_sordetach(struct knote *kn)
1690 {
1691 struct socket *so;
1692
1693 so = (struct socket *)kn->kn_fp->f_data;
1694 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1695 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1696 so->so_rcv.sb_flags &= ~SB_KNOTE;
1697 }
1698
1699 /*ARGSUSED*/
1700 static int
1701 filt_soread(struct knote *kn, long hint)
1702 {
1703 struct socket *so;
1704
1705 so = (struct socket *)kn->kn_fp->f_data;
1706 kn->kn_data = so->so_rcv.sb_cc;
1707 if (so->so_state & SS_CANTRCVMORE) {
1708 kn->kn_flags |= EV_EOF;
1709 kn->kn_fflags = so->so_error;
1710 return (1);
1711 }
1712 if (so->so_error) /* temporary udp error */
1713 return (1);
1714 if (kn->kn_sfflags & NOTE_LOWAT)
1715 return (kn->kn_data >= kn->kn_sdata);
1716 return (kn->kn_data >= so->so_rcv.sb_lowat);
1717 }
1718
1719 static void
1720 filt_sowdetach(struct knote *kn)
1721 {
1722 struct socket *so;
1723
1724 so = (struct socket *)kn->kn_fp->f_data;
1725 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1726 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1727 so->so_snd.sb_flags &= ~SB_KNOTE;
1728 }
1729
1730 /*ARGSUSED*/
1731 static int
1732 filt_sowrite(struct knote *kn, long hint)
1733 {
1734 struct socket *so;
1735
1736 so = (struct socket *)kn->kn_fp->f_data;
1737 kn->kn_data = sbspace(&so->so_snd);
1738 if (so->so_state & SS_CANTSENDMORE) {
1739 kn->kn_flags |= EV_EOF;
1740 kn->kn_fflags = so->so_error;
1741 return (1);
1742 }
1743 if (so->so_error) /* temporary udp error */
1744 return (1);
1745 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1746 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1747 return (0);
1748 if (kn->kn_sfflags & NOTE_LOWAT)
1749 return (kn->kn_data >= kn->kn_sdata);
1750 return (kn->kn_data >= so->so_snd.sb_lowat);
1751 }
1752
1753 /*ARGSUSED*/
1754 static int
1755 filt_solisten(struct knote *kn, long hint)
1756 {
1757 struct socket *so;
1758
1759 so = (struct socket *)kn->kn_fp->f_data;
1760
1761 /*
1762 * Set kn_data to number of incoming connections, not
1763 * counting partial (incomplete) connections.
1764 */
1765 kn->kn_data = so->so_qlen;
1766 return (kn->kn_data > 0);
1767 }
1768
1769 static const struct filterops solisten_filtops =
1770 { 1, NULL, filt_sordetach, filt_solisten };
1771 static const struct filterops soread_filtops =
1772 { 1, NULL, filt_sordetach, filt_soread };
1773 static const struct filterops sowrite_filtops =
1774 { 1, NULL, filt_sowdetach, filt_sowrite };
1775
1776 int
1777 soo_kqfilter(struct file *fp, struct knote *kn)
1778 {
1779 struct socket *so;
1780 struct sockbuf *sb;
1781
1782 so = (struct socket *)kn->kn_fp->f_data;
1783 switch (kn->kn_filter) {
1784 case EVFILT_READ:
1785 if (so->so_options & SO_ACCEPTCONN)
1786 kn->kn_fop = &solisten_filtops;
1787 else
1788 kn->kn_fop = &soread_filtops;
1789 sb = &so->so_rcv;
1790 break;
1791 case EVFILT_WRITE:
1792 kn->kn_fop = &sowrite_filtops;
1793 sb = &so->so_snd;
1794 break;
1795 default:
1796 return (EINVAL);
1797 }
1798 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1799 sb->sb_flags |= SB_KNOTE;
1800 return (0);
1801 }
1802
1803 #include <sys/sysctl.h>
1804
1805 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1806
1807 /*
1808 * sysctl helper routine for kern.somaxkva. ensures that the given
1809 * value is not too small.
1810 * (XXX should we maybe make sure it's not too large as well?)
1811 */
1812 static int
1813 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1814 {
1815 int error, new_somaxkva;
1816 struct sysctlnode node;
1817
1818 new_somaxkva = somaxkva;
1819 node = *rnode;
1820 node.sysctl_data = &new_somaxkva;
1821 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1822 if (error || newp == NULL)
1823 return (error);
1824
1825 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1826 return (EINVAL);
1827
1828 mutex_enter(&so_pendfree_lock);
1829 somaxkva = new_somaxkva;
1830 cv_broadcast(&socurkva_cv);
1831 mutex_exit(&so_pendfree_lock);
1832
1833 return (error);
1834 }
1835
1836 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1837 {
1838
1839 sysctl_createv(clog, 0, NULL, NULL,
1840 CTLFLAG_PERMANENT,
1841 CTLTYPE_NODE, "kern", NULL,
1842 NULL, 0, NULL, 0,
1843 CTL_KERN, CTL_EOL);
1844
1845 sysctl_createv(clog, 0, NULL, NULL,
1846 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1847 CTLTYPE_INT, "somaxkva",
1848 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1849 "used for socket buffers"),
1850 sysctl_kern_somaxkva, 0, NULL, 0,
1851 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1852 }
1853