Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.111.2.12
      1 /*	$NetBSD: uipc_socket.c,v 1.111.2.12 2008/02/11 14:59:58 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.12 2008/02/11 14:59:58 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/domain.h>
     86 #include <sys/kernel.h>
     87 #include <sys/protosw.h>
     88 #include <sys/socket.h>
     89 #include <sys/socketvar.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/resourcevar.h>
     92 #include <sys/pool.h>
     93 #include <sys/event.h>
     94 #include <sys/poll.h>
     95 #include <sys/kauth.h>
     96 #include <sys/mutex.h>
     97 #include <sys/condvar.h>
     98 
     99 #include <uvm/uvm.h>
    100 
    101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    102     IPL_SOFTNET);
    103 
    104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    106 
    107 extern const struct fileops socketops;
    108 
    109 extern int	somaxconn;			/* patchable (XXX sysctl) */
    110 int		somaxconn = SOMAXCONN;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #ifdef SOSEND_NO_LOAN
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 #define	SOCK_LOAN_CHUNK		65536
    155 
    156 static size_t sodopendfree(void);
    157 static size_t sodopendfreel(void);
    158 
    159 static vsize_t
    160 sokvareserve(struct socket *so, vsize_t len)
    161 {
    162 	int error;
    163 
    164 	mutex_enter(&so_pendfree_lock);
    165 	while (socurkva + len > somaxkva) {
    166 		size_t freed;
    167 
    168 		/*
    169 		 * try to do pendfree.
    170 		 */
    171 
    172 		freed = sodopendfreel();
    173 
    174 		/*
    175 		 * if some kva was freed, try again.
    176 		 */
    177 
    178 		if (freed)
    179 			continue;
    180 
    181 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    182 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    183 		if (error) {
    184 			len = 0;
    185 			break;
    186 		}
    187 	}
    188 	socurkva += len;
    189 	mutex_exit(&so_pendfree_lock);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 
    197 	mutex_enter(&so_pendfree_lock);
    198 	socurkva -= len;
    199 	cv_broadcast(&socurkva_cv);
    200 	mutex_exit(&so_pendfree_lock);
    201 }
    202 
    203 /*
    204  * sokvaalloc: allocate kva for loan.
    205  */
    206 
    207 vaddr_t
    208 sokvaalloc(vsize_t len, struct socket *so)
    209 {
    210 	vaddr_t lva;
    211 
    212 	/*
    213 	 * reserve kva.
    214 	 */
    215 
    216 	if (sokvareserve(so, len) == 0)
    217 		return 0;
    218 
    219 	/*
    220 	 * allocate kva.
    221 	 */
    222 
    223 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size, bool mapped)
    255 {
    256 	vaddr_t sva, eva;
    257 	vsize_t len;
    258 	int npgs;
    259 
    260 	KASSERT(pgs != NULL);
    261 
    262 	eva = round_page((vaddr_t) buf + size);
    263 	sva = trunc_page((vaddr_t) buf);
    264 	len = eva - sva;
    265 	npgs = len >> PAGE_SHIFT;
    266 
    267 	if (mapped) {
    268 		pmap_kremove(sva, len);
    269 		pmap_update(pmap_kernel());
    270 	}
    271 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    272 	sokvafree(sva, len);
    273 }
    274 
    275 static size_t
    276 sodopendfree()
    277 {
    278 	size_t rv;
    279 
    280 	mutex_enter(&so_pendfree_lock);
    281 	rv = sodopendfreel();
    282 	mutex_exit(&so_pendfree_lock);
    283 
    284 	return rv;
    285 }
    286 
    287 /*
    288  * sodopendfreel: free mbufs on "pendfree" list.
    289  * unlock and relock so_pendfree_lock when freeing mbufs.
    290  *
    291  * => called with so_pendfree_lock held.
    292  */
    293 
    294 static size_t
    295 sodopendfreel()
    296 {
    297 	struct mbuf *m, *next;
    298 	size_t rv = 0;
    299 
    300 	KASSERT(mutex_owned(&so_pendfree_lock));
    301 
    302 	while (so_pendfree != NULL) {
    303 		m = so_pendfree;
    304 		so_pendfree = NULL;
    305 		mutex_exit(&so_pendfree_lock);
    306 
    307 		for (; m != NULL; m = next) {
    308 			next = m->m_next;
    309 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    310 			KASSERT(m->m_ext.ext_refcnt == 0);
    311 
    312 			rv += m->m_ext.ext_size;
    313 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    314 			    m->m_ext.ext_size,
    315 			    (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
    316 			pool_cache_put(mb_cache, m);
    317 		}
    318 
    319 		mutex_enter(&so_pendfree_lock);
    320 	}
    321 
    322 	return (rv);
    323 }
    324 
    325 void
    326 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    327 {
    328 
    329 	KASSERT(m != NULL);
    330 
    331 	/*
    332 	 * postpone freeing mbuf.
    333 	 *
    334 	 * we can't do it in interrupt context
    335 	 * because we need to put kva back to kernel_map.
    336 	 */
    337 
    338 	mutex_enter(&so_pendfree_lock);
    339 	m->m_next = so_pendfree;
    340 	so_pendfree = m;
    341 	cv_broadcast(&socurkva_cv);
    342 	mutex_exit(&so_pendfree_lock);
    343 }
    344 
    345 static long
    346 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    347 {
    348 	struct iovec *iov = uio->uio_iov;
    349 	vaddr_t sva, eva;
    350 	vsize_t len;
    351 	vaddr_t lva;
    352 	int npgs, error;
    353 #if !defined(__HAVE_LAZY_MBUF)
    354 	vaddr_t va;
    355 	int i;
    356 #endif /* !defined(__HAVE_LAZY_MBUF) */
    357 
    358 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    359 		return (0);
    360 
    361 	if (iov->iov_len < (size_t) space)
    362 		space = iov->iov_len;
    363 	if (space > SOCK_LOAN_CHUNK)
    364 		space = SOCK_LOAN_CHUNK;
    365 
    366 	eva = round_page((vaddr_t) iov->iov_base + space);
    367 	sva = trunc_page((vaddr_t) iov->iov_base);
    368 	len = eva - sva;
    369 	npgs = len >> PAGE_SHIFT;
    370 
    371 	/* XXX KDASSERT */
    372 	KASSERT(npgs <= M_EXT_MAXPAGES);
    373 
    374 	lva = sokvaalloc(len, so);
    375 	if (lva == 0)
    376 		return 0;
    377 
    378 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    379 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    380 	if (error) {
    381 		sokvafree(lva, len);
    382 		return (0);
    383 	}
    384 
    385 #if !defined(__HAVE_LAZY_MBUF)
    386 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    387 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    388 		    VM_PROT_READ);
    389 	pmap_update(pmap_kernel());
    390 #endif /* !defined(__HAVE_LAZY_MBUF) */
    391 
    392 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    393 
    394 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    395 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    396 
    397 #if defined(__HAVE_LAZY_MBUF)
    398 	m->m_flags |= M_EXT_LAZY;
    399 	m->m_ext.ext_flags |= M_EXT_LAZY;
    400 #endif /* defined(__HAVE_LAZY_MBUF) */
    401 
    402 	uio->uio_resid -= space;
    403 	/* uio_offset not updated, not set/used for write(2) */
    404 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    405 	uio->uio_iov->iov_len -= space;
    406 	if (uio->uio_iov->iov_len == 0) {
    407 		uio->uio_iov++;
    408 		uio->uio_iovcnt--;
    409 	}
    410 
    411 	return (space);
    412 }
    413 
    414 static int
    415 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    416 {
    417 
    418 	KASSERT(ce == &sokva_reclaimerentry);
    419 	KASSERT(obj == NULL);
    420 
    421 	sodopendfree();
    422 	if (!vm_map_starved_p(kernel_map)) {
    423 		return CALLBACK_CHAIN_ABORT;
    424 	}
    425 	return CALLBACK_CHAIN_CONTINUE;
    426 }
    427 
    428 struct mbuf *
    429 getsombuf(struct socket *so, int type)
    430 {
    431 	struct mbuf *m;
    432 
    433 	m = m_get(M_WAIT, type);
    434 	MCLAIM(m, so->so_mowner);
    435 	return m;
    436 }
    437 
    438 struct mbuf *
    439 m_intopt(struct socket *so, int val)
    440 {
    441 	struct mbuf *m;
    442 
    443 	m = getsombuf(so, MT_SOOPTS);
    444 	m->m_len = sizeof(int);
    445 	*mtod(m, int *) = val;
    446 	return m;
    447 }
    448 
    449 void
    450 soinit(void)
    451 {
    452 
    453 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    454 	cv_init(&socurkva_cv, "sokva");
    455 
    456 	/* Set the initial adjusted socket buffer size. */
    457 	if (sb_max_set(sb_max))
    458 		panic("bad initial sb_max value: %lu", sb_max);
    459 
    460 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    461 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    462 }
    463 
    464 /*
    465  * Socket operation routines.
    466  * These routines are called by the routines in
    467  * sys_socket.c or from a system process, and
    468  * implement the semantics of socket operations by
    469  * switching out to the protocol specific routines.
    470  */
    471 /*ARGSUSED*/
    472 int
    473 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    474 {
    475 	const struct protosw	*prp;
    476 	struct socket	*so;
    477 	uid_t		uid;
    478 	int		error, s;
    479 
    480 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    481 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    482 	    KAUTH_ARG(proto));
    483 	if (error != 0)
    484 		return error;
    485 
    486 	if (proto)
    487 		prp = pffindproto(dom, proto, type);
    488 	else
    489 		prp = pffindtype(dom, type);
    490 	if (prp == NULL) {
    491 		/* no support for domain */
    492 		if (pffinddomain(dom) == 0)
    493 			return EAFNOSUPPORT;
    494 		/* no support for socket type */
    495 		if (proto == 0 && type != 0)
    496 			return EPROTOTYPE;
    497 		return EPROTONOSUPPORT;
    498 	}
    499 	if (prp->pr_usrreq == NULL)
    500 		return EPROTONOSUPPORT;
    501 	if (prp->pr_type != type)
    502 		return EPROTOTYPE;
    503 	s = splsoftnet();
    504 	so = pool_get(&socket_pool, PR_WAITOK);
    505 	memset(so, 0, sizeof(*so));
    506 	TAILQ_INIT(&so->so_q0);
    507 	TAILQ_INIT(&so->so_q);
    508 	so->so_type = type;
    509 	so->so_proto = prp;
    510 	so->so_send = sosend;
    511 	so->so_receive = soreceive;
    512 #ifdef MBUFTRACE
    513 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    514 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    515 	so->so_mowner = &prp->pr_domain->dom_mowner;
    516 #endif
    517 	selinit(&so->so_rcv.sb_sel);
    518 	selinit(&so->so_snd.sb_sel);
    519 	uid = kauth_cred_geteuid(l->l_cred);
    520 	so->so_uidinfo = uid_find(uid);
    521 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    522 	    (struct mbuf *)(long)proto, NULL, l);
    523 	if (error != 0) {
    524 		so->so_state |= SS_NOFDREF;
    525 		sofree(so);
    526 		splx(s);
    527 		return error;
    528 	}
    529 	splx(s);
    530 	*aso = so;
    531 	return 0;
    532 }
    533 
    534 /* On success, write file descriptor to fdout and return zero.  On
    535  * failure, return non-zero; *fdout will be undefined.
    536  */
    537 int
    538 fsocreate(int domain, struct socket **sop, int type, int protocol,
    539     struct lwp *l, int *fdout)
    540 {
    541 	struct filedesc	*fdp;
    542 	struct socket	*so;
    543 	struct file	*fp;
    544 	int		fd, error;
    545 
    546 	fdp = l->l_proc->p_fd;
    547 	/* falloc() will use the desciptor for us */
    548 	if ((error = falloc(l, &fp, &fd)) != 0)
    549 		return (error);
    550 	fp->f_flag = FREAD|FWRITE;
    551 	fp->f_type = DTYPE_SOCKET;
    552 	fp->f_ops = &socketops;
    553 	error = socreate(domain, &so, type, protocol, l);
    554 	if (error != 0) {
    555 		FILE_UNUSE(fp, l);
    556 		fdremove(fdp, fd);
    557 		ffree(fp);
    558 	} else {
    559 		if (sop != NULL)
    560 			*sop = so;
    561 		fp->f_data = so;
    562 		FILE_SET_MATURE(fp);
    563 		FILE_UNUSE(fp, l);
    564 		*fdout = fd;
    565 	}
    566 	return error;
    567 }
    568 
    569 int
    570 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    571 {
    572 	int	s, error;
    573 
    574 	s = splsoftnet();
    575 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    576 	splx(s);
    577 	return error;
    578 }
    579 
    580 int
    581 solisten(struct socket *so, int backlog, struct lwp *l)
    582 {
    583 	int	s, error;
    584 
    585 	s = splsoftnet();
    586 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    587 	    NULL, NULL, l);
    588 	if (error != 0) {
    589 		splx(s);
    590 		return error;
    591 	}
    592 	if (TAILQ_EMPTY(&so->so_q))
    593 		so->so_options |= SO_ACCEPTCONN;
    594 	if (backlog < 0)
    595 		backlog = 0;
    596 	so->so_qlimit = min(backlog, somaxconn);
    597 	splx(s);
    598 	return 0;
    599 }
    600 
    601 void
    602 sofree(struct socket *so)
    603 {
    604 
    605 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    606 		return;
    607 	if (so->so_head) {
    608 		/*
    609 		 * We must not decommission a socket that's on the accept(2)
    610 		 * queue.  If we do, then accept(2) may hang after select(2)
    611 		 * indicated that the listening socket was ready.
    612 		 */
    613 		if (!soqremque(so, 0))
    614 			return;
    615 	}
    616 	if (so->so_rcv.sb_hiwat)
    617 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    618 		    RLIM_INFINITY);
    619 	if (so->so_snd.sb_hiwat)
    620 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    621 		    RLIM_INFINITY);
    622 	sbrelease(&so->so_snd, so);
    623 	sorflush(so);
    624 	seldestroy(&so->so_rcv.sb_sel);
    625 	seldestroy(&so->so_snd.sb_sel);
    626 	pool_put(&socket_pool, so);
    627 }
    628 
    629 /*
    630  * Close a socket on last file table reference removal.
    631  * Initiate disconnect if connected.
    632  * Free socket when disconnect complete.
    633  */
    634 int
    635 soclose(struct socket *so)
    636 {
    637 	struct socket	*so2;
    638 	int		s, error;
    639 
    640 	error = 0;
    641 	s = splsoftnet();		/* conservative */
    642 	if (so->so_options & SO_ACCEPTCONN) {
    643 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    644 			(void) soqremque(so2, 0);
    645 			(void) soabort(so2);
    646 		}
    647 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    648 			(void) soqremque(so2, 1);
    649 			(void) soabort(so2);
    650 		}
    651 	}
    652 	if (so->so_pcb == 0)
    653 		goto discard;
    654 	if (so->so_state & SS_ISCONNECTED) {
    655 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    656 			error = sodisconnect(so);
    657 			if (error)
    658 				goto drop;
    659 		}
    660 		if (so->so_options & SO_LINGER) {
    661 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    662 				goto drop;
    663 			while (so->so_state & SS_ISCONNECTED) {
    664 				error = tsleep((void *)&so->so_timeo,
    665 					       PSOCK | PCATCH, netcls,
    666 					       so->so_linger * hz);
    667 				if (error)
    668 					break;
    669 			}
    670 		}
    671 	}
    672  drop:
    673 	if (so->so_pcb) {
    674 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    675 		    NULL, NULL, NULL, NULL);
    676 		if (error == 0)
    677 			error = error2;
    678 	}
    679  discard:
    680 	if (so->so_state & SS_NOFDREF)
    681 		panic("soclose: NOFDREF");
    682 	so->so_state |= SS_NOFDREF;
    683 	sofree(so);
    684 	splx(s);
    685 	return (error);
    686 }
    687 
    688 /*
    689  * Must be called at splsoftnet...
    690  */
    691 int
    692 soabort(struct socket *so)
    693 {
    694 	int error;
    695 
    696 	KASSERT(so->so_head == NULL);
    697 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    698 	    NULL, NULL, NULL);
    699 	if (error) {
    700 		sofree(so);
    701 	}
    702 	return error;
    703 }
    704 
    705 int
    706 soaccept(struct socket *so, struct mbuf *nam)
    707 {
    708 	int	s, error;
    709 
    710 	error = 0;
    711 	s = splsoftnet();
    712 	if ((so->so_state & SS_NOFDREF) == 0)
    713 		panic("soaccept: !NOFDREF");
    714 	so->so_state &= ~SS_NOFDREF;
    715 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    716 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    717 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    718 		    NULL, nam, NULL, NULL);
    719 	else
    720 		error = ECONNABORTED;
    721 
    722 	splx(s);
    723 	return (error);
    724 }
    725 
    726 int
    727 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    728 {
    729 	int		s, error;
    730 
    731 	if (so->so_options & SO_ACCEPTCONN)
    732 		return (EOPNOTSUPP);
    733 	s = splsoftnet();
    734 	/*
    735 	 * If protocol is connection-based, can only connect once.
    736 	 * Otherwise, if connected, try to disconnect first.
    737 	 * This allows user to disconnect by connecting to, e.g.,
    738 	 * a null address.
    739 	 */
    740 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    741 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    742 	    (error = sodisconnect(so))))
    743 		error = EISCONN;
    744 	else
    745 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    746 		    NULL, nam, NULL, l);
    747 	splx(s);
    748 	return (error);
    749 }
    750 
    751 int
    752 soconnect2(struct socket *so1, struct socket *so2)
    753 {
    754 	int	s, error;
    755 
    756 	s = splsoftnet();
    757 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    758 	    NULL, (struct mbuf *)so2, NULL, NULL);
    759 	splx(s);
    760 	return (error);
    761 }
    762 
    763 int
    764 sodisconnect(struct socket *so)
    765 {
    766 	int	s, error;
    767 
    768 	s = splsoftnet();
    769 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    770 		error = ENOTCONN;
    771 		goto bad;
    772 	}
    773 	if (so->so_state & SS_ISDISCONNECTING) {
    774 		error = EALREADY;
    775 		goto bad;
    776 	}
    777 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    778 	    NULL, NULL, NULL, NULL);
    779  bad:
    780 	splx(s);
    781 	sodopendfree();
    782 	return (error);
    783 }
    784 
    785 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    786 /*
    787  * Send on a socket.
    788  * If send must go all at once and message is larger than
    789  * send buffering, then hard error.
    790  * Lock against other senders.
    791  * If must go all at once and not enough room now, then
    792  * inform user that this would block and do nothing.
    793  * Otherwise, if nonblocking, send as much as possible.
    794  * The data to be sent is described by "uio" if nonzero,
    795  * otherwise by the mbuf chain "top" (which must be null
    796  * if uio is not).  Data provided in mbuf chain must be small
    797  * enough to send all at once.
    798  *
    799  * Returns nonzero on error, timeout or signal; callers
    800  * must check for short counts if EINTR/ERESTART are returned.
    801  * Data and control buffers are freed on return.
    802  */
    803 int
    804 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    805 	struct mbuf *control, int flags, struct lwp *l)
    806 {
    807 	struct mbuf	**mp, *m;
    808 	struct proc	*p;
    809 	long		space, len, resid, clen, mlen;
    810 	int		error, s, dontroute, atomic;
    811 
    812 	p = l->l_proc;
    813 	sodopendfree();
    814 
    815 	clen = 0;
    816 	atomic = sosendallatonce(so) || top;
    817 	if (uio)
    818 		resid = uio->uio_resid;
    819 	else
    820 		resid = top->m_pkthdr.len;
    821 	/*
    822 	 * In theory resid should be unsigned.
    823 	 * However, space must be signed, as it might be less than 0
    824 	 * if we over-committed, and we must use a signed comparison
    825 	 * of space and resid.  On the other hand, a negative resid
    826 	 * causes us to loop sending 0-length segments to the protocol.
    827 	 */
    828 	if (resid < 0) {
    829 		error = EINVAL;
    830 		goto out;
    831 	}
    832 	dontroute =
    833 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    834 	    (so->so_proto->pr_flags & PR_ATOMIC);
    835 	if (p)
    836 		p->p_stats->p_ru.ru_msgsnd++;
    837 	if (control)
    838 		clen = control->m_len;
    839 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    840 
    841  restart:
    842 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    843 		goto out;
    844 	do {
    845 		s = splsoftnet();
    846 		if (so->so_state & SS_CANTSENDMORE)
    847 			snderr(EPIPE);
    848 		if (so->so_error) {
    849 			error = so->so_error;
    850 			so->so_error = 0;
    851 			splx(s);
    852 			goto release;
    853 		}
    854 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    855 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    856 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    857 				    !(resid == 0 && clen != 0))
    858 					snderr(ENOTCONN);
    859 			} else if (addr == 0)
    860 				snderr(EDESTADDRREQ);
    861 		}
    862 		space = sbspace(&so->so_snd);
    863 		if (flags & MSG_OOB)
    864 			space += 1024;
    865 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    866 		    clen > so->so_snd.sb_hiwat)
    867 			snderr(EMSGSIZE);
    868 		if (space < resid + clen &&
    869 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    870 			if (so->so_nbio)
    871 				snderr(EWOULDBLOCK);
    872 			sbunlock(&so->so_snd);
    873 			error = sbwait(&so->so_snd);
    874 			splx(s);
    875 			if (error)
    876 				goto out;
    877 			goto restart;
    878 		}
    879 		splx(s);
    880 		mp = &top;
    881 		space -= clen;
    882 		do {
    883 			if (uio == NULL) {
    884 				/*
    885 				 * Data is prepackaged in "top".
    886 				 */
    887 				resid = 0;
    888 				if (flags & MSG_EOR)
    889 					top->m_flags |= M_EOR;
    890 			} else do {
    891 				if (top == NULL) {
    892 					m = m_gethdr(M_WAIT, MT_DATA);
    893 					mlen = MHLEN;
    894 					m->m_pkthdr.len = 0;
    895 					m->m_pkthdr.rcvif = NULL;
    896 				} else {
    897 					m = m_get(M_WAIT, MT_DATA);
    898 					mlen = MLEN;
    899 				}
    900 				MCLAIM(m, so->so_snd.sb_mowner);
    901 				if (sock_loan_thresh >= 0 &&
    902 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    903 				    space >= sock_loan_thresh &&
    904 				    (len = sosend_loan(so, uio, m,
    905 						       space)) != 0) {
    906 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    907 					space -= len;
    908 					goto have_data;
    909 				}
    910 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    911 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    912 					m_clget(m, M_WAIT);
    913 					if ((m->m_flags & M_EXT) == 0)
    914 						goto nopages;
    915 					mlen = MCLBYTES;
    916 					if (atomic && top == 0) {
    917 						len = lmin(MCLBYTES - max_hdr,
    918 						    resid);
    919 						m->m_data += max_hdr;
    920 					} else
    921 						len = lmin(MCLBYTES, resid);
    922 					space -= len;
    923 				} else {
    924  nopages:
    925 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    926 					len = lmin(lmin(mlen, resid), space);
    927 					space -= len;
    928 					/*
    929 					 * For datagram protocols, leave room
    930 					 * for protocol headers in first mbuf.
    931 					 */
    932 					if (atomic && top == 0 && len < mlen)
    933 						MH_ALIGN(m, len);
    934 				}
    935 				error = uiomove(mtod(m, void *), (int)len, uio);
    936  have_data:
    937 				resid = uio->uio_resid;
    938 				m->m_len = len;
    939 				*mp = m;
    940 				top->m_pkthdr.len += len;
    941 				if (error != 0)
    942 					goto release;
    943 				mp = &m->m_next;
    944 				if (resid <= 0) {
    945 					if (flags & MSG_EOR)
    946 						top->m_flags |= M_EOR;
    947 					break;
    948 				}
    949 			} while (space > 0 && atomic);
    950 
    951 			s = splsoftnet();
    952 
    953 			if (so->so_state & SS_CANTSENDMORE)
    954 				snderr(EPIPE);
    955 
    956 			if (dontroute)
    957 				so->so_options |= SO_DONTROUTE;
    958 			if (resid > 0)
    959 				so->so_state |= SS_MORETOCOME;
    960 			error = (*so->so_proto->pr_usrreq)(so,
    961 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    962 			    top, addr, control, curlwp);	/* XXX */
    963 			if (dontroute)
    964 				so->so_options &= ~SO_DONTROUTE;
    965 			if (resid > 0)
    966 				so->so_state &= ~SS_MORETOCOME;
    967 			splx(s);
    968 
    969 			clen = 0;
    970 			control = NULL;
    971 			top = NULL;
    972 			mp = &top;
    973 			if (error != 0)
    974 				goto release;
    975 		} while (resid && space > 0);
    976 	} while (resid);
    977 
    978  release:
    979 	sbunlock(&so->so_snd);
    980  out:
    981 	if (top)
    982 		m_freem(top);
    983 	if (control)
    984 		m_freem(control);
    985 	return (error);
    986 }
    987 
    988 /*
    989  * Implement receive operations on a socket.
    990  * We depend on the way that records are added to the sockbuf
    991  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    992  * must begin with an address if the protocol so specifies,
    993  * followed by an optional mbuf or mbufs containing ancillary data,
    994  * and then zero or more mbufs of data.
    995  * In order to avoid blocking network interrupts for the entire time here,
    996  * we splx() while doing the actual copy to user space.
    997  * Although the sockbuf is locked, new data may still be appended,
    998  * and thus we must maintain consistency of the sockbuf during that time.
    999  *
   1000  * The caller may receive the data as a single mbuf chain by supplying
   1001  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1002  * only for the count in uio_resid.
   1003  */
   1004 int
   1005 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1006 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1007 {
   1008 	struct lwp *l = curlwp;
   1009 	struct mbuf	*m, **mp;
   1010 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1011 	const struct protosw	*pr;
   1012 	struct mbuf	*nextrecord;
   1013 	int		mbuf_removed = 0;
   1014 	const struct domain *dom;
   1015 
   1016 	pr = so->so_proto;
   1017 	atomic = pr->pr_flags & PR_ATOMIC;
   1018 	dom = pr->pr_domain;
   1019 	mp = mp0;
   1020 	type = 0;
   1021 	orig_resid = uio->uio_resid;
   1022 
   1023 	if (paddr != NULL)
   1024 		*paddr = NULL;
   1025 	if (controlp != NULL)
   1026 		*controlp = NULL;
   1027 	if (flagsp != NULL)
   1028 		flags = *flagsp &~ MSG_EOR;
   1029 	else
   1030 		flags = 0;
   1031 
   1032 	if ((flags & MSG_DONTWAIT) == 0)
   1033 		sodopendfree();
   1034 
   1035 	if (flags & MSG_OOB) {
   1036 		m = m_get(M_WAIT, MT_DATA);
   1037 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1038 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1039 		if (error)
   1040 			goto bad;
   1041 		do {
   1042 			error = uiomove(mtod(m, void *),
   1043 			    (int) min(uio->uio_resid, m->m_len), uio);
   1044 			m = m_free(m);
   1045 		} while (uio->uio_resid > 0 && error == 0 && m);
   1046  bad:
   1047 		if (m != NULL)
   1048 			m_freem(m);
   1049 		return error;
   1050 	}
   1051 	if (mp != NULL)
   1052 		*mp = NULL;
   1053 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1054 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1055 
   1056  restart:
   1057 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1058 		return error;
   1059 	s = splsoftnet();
   1060 
   1061 	m = so->so_rcv.sb_mb;
   1062 	/*
   1063 	 * If we have less data than requested, block awaiting more
   1064 	 * (subject to any timeout) if:
   1065 	 *   1. the current count is less than the low water mark,
   1066 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1067 	 *	receive operation at once if we block (resid <= hiwat), or
   1068 	 *   3. MSG_DONTWAIT is not set.
   1069 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1070 	 * we have to do the receive in sections, and thus risk returning
   1071 	 * a short count if a timeout or signal occurs after we start.
   1072 	 */
   1073 	if (m == NULL ||
   1074 	    ((flags & MSG_DONTWAIT) == 0 &&
   1075 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1076 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1077 	      ((flags & MSG_WAITALL) &&
   1078 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1079 	     m->m_nextpkt == NULL && !atomic)) {
   1080 #ifdef DIAGNOSTIC
   1081 		if (m == NULL && so->so_rcv.sb_cc)
   1082 			panic("receive 1");
   1083 #endif
   1084 		if (so->so_error) {
   1085 			if (m != NULL)
   1086 				goto dontblock;
   1087 			error = so->so_error;
   1088 			if ((flags & MSG_PEEK) == 0)
   1089 				so->so_error = 0;
   1090 			goto release;
   1091 		}
   1092 		if (so->so_state & SS_CANTRCVMORE) {
   1093 			if (m != NULL)
   1094 				goto dontblock;
   1095 			else
   1096 				goto release;
   1097 		}
   1098 		for (; m != NULL; m = m->m_next)
   1099 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1100 				m = so->so_rcv.sb_mb;
   1101 				goto dontblock;
   1102 			}
   1103 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1104 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1105 			error = ENOTCONN;
   1106 			goto release;
   1107 		}
   1108 		if (uio->uio_resid == 0)
   1109 			goto release;
   1110 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1111 			error = EWOULDBLOCK;
   1112 			goto release;
   1113 		}
   1114 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1115 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1116 		sbunlock(&so->so_rcv);
   1117 		error = sbwait(&so->so_rcv);
   1118 		splx(s);
   1119 		if (error != 0)
   1120 			return error;
   1121 		goto restart;
   1122 	}
   1123  dontblock:
   1124 	/*
   1125 	 * On entry here, m points to the first record of the socket buffer.
   1126 	 * While we process the initial mbufs containing address and control
   1127 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1128 	 */
   1129 	if (l != NULL)
   1130 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1131 	KASSERT(m == so->so_rcv.sb_mb);
   1132 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1133 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1134 	nextrecord = m->m_nextpkt;
   1135 	if (pr->pr_flags & PR_ADDR) {
   1136 #ifdef DIAGNOSTIC
   1137 		if (m->m_type != MT_SONAME)
   1138 			panic("receive 1a");
   1139 #endif
   1140 		orig_resid = 0;
   1141 		if (flags & MSG_PEEK) {
   1142 			if (paddr)
   1143 				*paddr = m_copy(m, 0, m->m_len);
   1144 			m = m->m_next;
   1145 		} else {
   1146 			sbfree(&so->so_rcv, m);
   1147 			mbuf_removed = 1;
   1148 			if (paddr != NULL) {
   1149 				*paddr = m;
   1150 				so->so_rcv.sb_mb = m->m_next;
   1151 				m->m_next = NULL;
   1152 				m = so->so_rcv.sb_mb;
   1153 			} else {
   1154 				MFREE(m, so->so_rcv.sb_mb);
   1155 				m = so->so_rcv.sb_mb;
   1156 			}
   1157 		}
   1158 	}
   1159 	while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
   1160 		if (flags & MSG_PEEK) {
   1161 			if (controlp != NULL)
   1162 				*controlp = m_copy(m, 0, m->m_len);
   1163 			m = m->m_next;
   1164 		} else {
   1165 			sbfree(&so->so_rcv, m);
   1166 			mbuf_removed = 1;
   1167 			if (controlp != NULL) {
   1168 				if (dom->dom_externalize && l &&
   1169 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1170 				    SCM_RIGHTS)
   1171 					error = (*dom->dom_externalize)(m, l);
   1172 				*controlp = m;
   1173 				so->so_rcv.sb_mb = m->m_next;
   1174 				m->m_next = NULL;
   1175 				m = so->so_rcv.sb_mb;
   1176 			} else {
   1177 				/*
   1178 				 * Dispose of any SCM_RIGHTS message that went
   1179 				 * through the read path rather than recv.
   1180 				 */
   1181 				if (dom->dom_dispose &&
   1182 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1183 					(*dom->dom_dispose)(m);
   1184 				MFREE(m, so->so_rcv.sb_mb);
   1185 				m = so->so_rcv.sb_mb;
   1186 			}
   1187 		}
   1188 		if (controlp != NULL) {
   1189 			orig_resid = 0;
   1190 			controlp = &(*controlp)->m_next;
   1191 		}
   1192 	}
   1193 
   1194 	/*
   1195 	 * If m is non-NULL, we have some data to read.  From now on,
   1196 	 * make sure to keep sb_lastrecord consistent when working on
   1197 	 * the last packet on the chain (nextrecord == NULL) and we
   1198 	 * change m->m_nextpkt.
   1199 	 */
   1200 	if (m != NULL) {
   1201 		if ((flags & MSG_PEEK) == 0) {
   1202 			m->m_nextpkt = nextrecord;
   1203 			/*
   1204 			 * If nextrecord == NULL (this is a single chain),
   1205 			 * then sb_lastrecord may not be valid here if m
   1206 			 * was changed earlier.
   1207 			 */
   1208 			if (nextrecord == NULL) {
   1209 				KASSERT(so->so_rcv.sb_mb == m);
   1210 				so->so_rcv.sb_lastrecord = m;
   1211 			}
   1212 		}
   1213 		type = m->m_type;
   1214 		if (type == MT_OOBDATA)
   1215 			flags |= MSG_OOB;
   1216 	} else {
   1217 		if ((flags & MSG_PEEK) == 0) {
   1218 			KASSERT(so->so_rcv.sb_mb == m);
   1219 			so->so_rcv.sb_mb = nextrecord;
   1220 			SB_EMPTY_FIXUP(&so->so_rcv);
   1221 		}
   1222 	}
   1223 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1224 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1225 
   1226 	moff = 0;
   1227 	offset = 0;
   1228 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1229 		if (m->m_type == MT_OOBDATA) {
   1230 			if (type != MT_OOBDATA)
   1231 				break;
   1232 		} else if (type == MT_OOBDATA)
   1233 			break;
   1234 #ifdef DIAGNOSTIC
   1235 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1236 			panic("receive 3");
   1237 #endif
   1238 		so->so_state &= ~SS_RCVATMARK;
   1239 		len = uio->uio_resid;
   1240 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1241 			len = so->so_oobmark - offset;
   1242 		if (len > m->m_len - moff)
   1243 			len = m->m_len - moff;
   1244 		/*
   1245 		 * If mp is set, just pass back the mbufs.
   1246 		 * Otherwise copy them out via the uio, then free.
   1247 		 * Sockbuf must be consistent here (points to current mbuf,
   1248 		 * it points to next record) when we drop priority;
   1249 		 * we must note any additions to the sockbuf when we
   1250 		 * block interrupts again.
   1251 		 */
   1252 		if (mp == NULL) {
   1253 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1254 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1255 			splx(s);
   1256 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1257 			s = splsoftnet();
   1258 			if (error != 0) {
   1259 				/*
   1260 				 * If any part of the record has been removed
   1261 				 * (such as the MT_SONAME mbuf, which will
   1262 				 * happen when PR_ADDR, and thus also
   1263 				 * PR_ATOMIC, is set), then drop the entire
   1264 				 * record to maintain the atomicity of the
   1265 				 * receive operation.
   1266 				 *
   1267 				 * This avoids a later panic("receive 1a")
   1268 				 * when compiled with DIAGNOSTIC.
   1269 				 */
   1270 				if (m && mbuf_removed && atomic)
   1271 					(void) sbdroprecord(&so->so_rcv);
   1272 
   1273 				goto release;
   1274 			}
   1275 		} else
   1276 			uio->uio_resid -= len;
   1277 		if (len == m->m_len - moff) {
   1278 			if (m->m_flags & M_EOR)
   1279 				flags |= MSG_EOR;
   1280 			if (flags & MSG_PEEK) {
   1281 				m = m->m_next;
   1282 				moff = 0;
   1283 			} else {
   1284 				nextrecord = m->m_nextpkt;
   1285 				sbfree(&so->so_rcv, m);
   1286 				if (mp) {
   1287 					*mp = m;
   1288 					mp = &m->m_next;
   1289 					so->so_rcv.sb_mb = m = m->m_next;
   1290 					*mp = NULL;
   1291 				} else {
   1292 					MFREE(m, so->so_rcv.sb_mb);
   1293 					m = so->so_rcv.sb_mb;
   1294 				}
   1295 				/*
   1296 				 * If m != NULL, we also know that
   1297 				 * so->so_rcv.sb_mb != NULL.
   1298 				 */
   1299 				KASSERT(so->so_rcv.sb_mb == m);
   1300 				if (m) {
   1301 					m->m_nextpkt = nextrecord;
   1302 					if (nextrecord == NULL)
   1303 						so->so_rcv.sb_lastrecord = m;
   1304 				} else {
   1305 					so->so_rcv.sb_mb = nextrecord;
   1306 					SB_EMPTY_FIXUP(&so->so_rcv);
   1307 				}
   1308 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1309 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1310 			}
   1311 		} else if (flags & MSG_PEEK)
   1312 			moff += len;
   1313 		else {
   1314 			if (mp != NULL)
   1315 				*mp = m_copym(m, 0, len, M_WAIT);
   1316 			m->m_data += len;
   1317 			m->m_len -= len;
   1318 			so->so_rcv.sb_cc -= len;
   1319 		}
   1320 		if (so->so_oobmark) {
   1321 			if ((flags & MSG_PEEK) == 0) {
   1322 				so->so_oobmark -= len;
   1323 				if (so->so_oobmark == 0) {
   1324 					so->so_state |= SS_RCVATMARK;
   1325 					break;
   1326 				}
   1327 			} else {
   1328 				offset += len;
   1329 				if (offset == so->so_oobmark)
   1330 					break;
   1331 			}
   1332 		}
   1333 		if (flags & MSG_EOR)
   1334 			break;
   1335 		/*
   1336 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1337 		 * we must not quit until "uio->uio_resid == 0" or an error
   1338 		 * termination.  If a signal/timeout occurs, return
   1339 		 * with a short count but without error.
   1340 		 * Keep sockbuf locked against other readers.
   1341 		 */
   1342 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1343 		    !sosendallatonce(so) && !nextrecord) {
   1344 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1345 				break;
   1346 			/*
   1347 			 * If we are peeking and the socket receive buffer is
   1348 			 * full, stop since we can't get more data to peek at.
   1349 			 */
   1350 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1351 				break;
   1352 			/*
   1353 			 * If we've drained the socket buffer, tell the
   1354 			 * protocol in case it needs to do something to
   1355 			 * get it filled again.
   1356 			 */
   1357 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1358 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1359 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1360 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1361 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1362 			error = sbwait(&so->so_rcv);
   1363 			if (error != 0) {
   1364 				sbunlock(&so->so_rcv);
   1365 				splx(s);
   1366 				return 0;
   1367 			}
   1368 			if ((m = so->so_rcv.sb_mb) != NULL)
   1369 				nextrecord = m->m_nextpkt;
   1370 		}
   1371 	}
   1372 
   1373 	if (m && atomic) {
   1374 		flags |= MSG_TRUNC;
   1375 		if ((flags & MSG_PEEK) == 0)
   1376 			(void) sbdroprecord(&so->so_rcv);
   1377 	}
   1378 	if ((flags & MSG_PEEK) == 0) {
   1379 		if (m == NULL) {
   1380 			/*
   1381 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1382 			 * part makes sure sb_lastrecord is up-to-date if
   1383 			 * there is still data in the socket buffer.
   1384 			 */
   1385 			so->so_rcv.sb_mb = nextrecord;
   1386 			if (so->so_rcv.sb_mb == NULL) {
   1387 				so->so_rcv.sb_mbtail = NULL;
   1388 				so->so_rcv.sb_lastrecord = NULL;
   1389 			} else if (nextrecord->m_nextpkt == NULL)
   1390 				so->so_rcv.sb_lastrecord = nextrecord;
   1391 		}
   1392 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1393 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1394 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1395 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1396 			    (struct mbuf *)(long)flags, NULL, l);
   1397 	}
   1398 	if (orig_resid == uio->uio_resid && orig_resid &&
   1399 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1400 		sbunlock(&so->so_rcv);
   1401 		splx(s);
   1402 		goto restart;
   1403 	}
   1404 
   1405 	if (flagsp != NULL)
   1406 		*flagsp |= flags;
   1407  release:
   1408 	sbunlock(&so->so_rcv);
   1409 	splx(s);
   1410 	return error;
   1411 }
   1412 
   1413 int
   1414 soshutdown(struct socket *so, int how)
   1415 {
   1416 	const struct protosw	*pr;
   1417 
   1418 	pr = so->so_proto;
   1419 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1420 		return (EINVAL);
   1421 
   1422 	if (how == SHUT_RD || how == SHUT_RDWR)
   1423 		sorflush(so);
   1424 	if (how == SHUT_WR || how == SHUT_RDWR)
   1425 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1426 		    NULL, NULL, NULL);
   1427 	return 0;
   1428 }
   1429 
   1430 void
   1431 sorflush(struct socket *so)
   1432 {
   1433 	struct sockbuf	*sb, asb;
   1434 	const struct protosw	*pr;
   1435 	int		s;
   1436 
   1437 	sb = &so->so_rcv;
   1438 	pr = so->so_proto;
   1439 	sb->sb_flags |= SB_NOINTR;
   1440 	(void) sblock(sb, M_WAITOK);
   1441 	s = splnet();
   1442 	socantrcvmore(so);
   1443 	sbunlock(sb);
   1444 	asb = *sb;
   1445 	/*
   1446 	 * Clear most of the sockbuf structure, but leave some of the
   1447 	 * fields valid.
   1448 	 */
   1449 	memset(&sb->sb_startzero, 0,
   1450 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1451 	splx(s);
   1452 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1453 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1454 	sbrelease(&asb, so);
   1455 }
   1456 
   1457 static int
   1458 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1459 {
   1460 	int optval, val;
   1461 	struct linger	*l;
   1462 	struct sockbuf	*sb;
   1463 	struct timeval *tv;
   1464 
   1465 	switch (optname) {
   1466 
   1467 	case SO_LINGER:
   1468 		if (m == NULL || m->m_len != sizeof(struct linger))
   1469 			return EINVAL;
   1470 		l = mtod(m, struct linger *);
   1471 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1472 		    l->l_linger > (INT_MAX / hz))
   1473 			return EDOM;
   1474 		so->so_linger = l->l_linger;
   1475 		if (l->l_onoff)
   1476 			so->so_options |= SO_LINGER;
   1477 		else
   1478 			so->so_options &= ~SO_LINGER;
   1479 		break;
   1480 
   1481 	case SO_DEBUG:
   1482 	case SO_KEEPALIVE:
   1483 	case SO_DONTROUTE:
   1484 	case SO_USELOOPBACK:
   1485 	case SO_BROADCAST:
   1486 	case SO_REUSEADDR:
   1487 	case SO_REUSEPORT:
   1488 	case SO_OOBINLINE:
   1489 	case SO_TIMESTAMP:
   1490 		if (m == NULL || m->m_len < sizeof(int))
   1491 			return EINVAL;
   1492 		if (*mtod(m, int *))
   1493 			so->so_options |= optname;
   1494 		else
   1495 			so->so_options &= ~optname;
   1496 		break;
   1497 
   1498 	case SO_SNDBUF:
   1499 	case SO_RCVBUF:
   1500 	case SO_SNDLOWAT:
   1501 	case SO_RCVLOWAT:
   1502 		if (m == NULL || m->m_len < sizeof(int))
   1503 			return EINVAL;
   1504 
   1505 		/*
   1506 		 * Values < 1 make no sense for any of these
   1507 		 * options, so disallow them.
   1508 		 */
   1509 		optval = *mtod(m, int *);
   1510 		if (optval < 1)
   1511 			return EINVAL;
   1512 
   1513 		switch (optname) {
   1514 
   1515 		case SO_SNDBUF:
   1516 		case SO_RCVBUF:
   1517 			sb = (optname == SO_SNDBUF) ?
   1518 			    &so->so_snd : &so->so_rcv;
   1519 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1520 				return ENOBUFS;
   1521 			sb->sb_flags &= ~SB_AUTOSIZE;
   1522 			break;
   1523 
   1524 		/*
   1525 		 * Make sure the low-water is never greater than
   1526 		 * the high-water.
   1527 		 */
   1528 		case SO_SNDLOWAT:
   1529 			so->so_snd.sb_lowat =
   1530 			    (optval > so->so_snd.sb_hiwat) ?
   1531 			    so->so_snd.sb_hiwat : optval;
   1532 			break;
   1533 		case SO_RCVLOWAT:
   1534 			so->so_rcv.sb_lowat =
   1535 			    (optval > so->so_rcv.sb_hiwat) ?
   1536 			    so->so_rcv.sb_hiwat : optval;
   1537 			break;
   1538 		}
   1539 		break;
   1540 
   1541 	case SO_SNDTIMEO:
   1542 	case SO_RCVTIMEO:
   1543 		if (m == NULL || m->m_len < sizeof(*tv))
   1544 			return EINVAL;
   1545 		tv = mtod(m, struct timeval *);
   1546 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1547 			return EDOM;
   1548 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1549 		if (val == 0 && tv->tv_usec != 0)
   1550 			val = 1;
   1551 
   1552 		switch (optname) {
   1553 
   1554 		case SO_SNDTIMEO:
   1555 			so->so_snd.sb_timeo = val;
   1556 			break;
   1557 		case SO_RCVTIMEO:
   1558 			so->so_rcv.sb_timeo = val;
   1559 			break;
   1560 		}
   1561 		break;
   1562 
   1563 	default:
   1564 		return ENOPROTOOPT;
   1565 	}
   1566 	return 0;
   1567 }
   1568 
   1569 int
   1570 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1571 {
   1572 	int error, prerr;
   1573 
   1574 	if (level == SOL_SOCKET)
   1575 		error = sosetopt1(so, level, optname, m);
   1576 	else
   1577 		error = ENOPROTOOPT;
   1578 
   1579 	if ((error == 0 || error == ENOPROTOOPT) &&
   1580 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1581 		/* give the protocol stack a shot */
   1582 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1583 		    optname, &m);
   1584 		if (prerr == 0)
   1585 			error = 0;
   1586 		else if (prerr != ENOPROTOOPT)
   1587 			error = prerr;
   1588 	} else if (m != NULL)
   1589 		(void)m_free(m);
   1590 	return error;
   1591 }
   1592 
   1593 int
   1594 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1595 {
   1596 	struct mbuf	*m;
   1597 
   1598 	if (level != SOL_SOCKET) {
   1599 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1600 			return ((*so->so_proto->pr_ctloutput)
   1601 				  (PRCO_GETOPT, so, level, optname, mp));
   1602 		} else
   1603 			return (ENOPROTOOPT);
   1604 	} else {
   1605 		m = m_get(M_WAIT, MT_SOOPTS);
   1606 		m->m_len = sizeof(int);
   1607 
   1608 		switch (optname) {
   1609 
   1610 		case SO_LINGER:
   1611 			m->m_len = sizeof(struct linger);
   1612 			mtod(m, struct linger *)->l_onoff =
   1613 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1614 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1615 			break;
   1616 
   1617 		case SO_USELOOPBACK:
   1618 		case SO_DONTROUTE:
   1619 		case SO_DEBUG:
   1620 		case SO_KEEPALIVE:
   1621 		case SO_REUSEADDR:
   1622 		case SO_REUSEPORT:
   1623 		case SO_BROADCAST:
   1624 		case SO_OOBINLINE:
   1625 		case SO_TIMESTAMP:
   1626 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1627 			break;
   1628 
   1629 		case SO_TYPE:
   1630 			*mtod(m, int *) = so->so_type;
   1631 			break;
   1632 
   1633 		case SO_ERROR:
   1634 			*mtod(m, int *) = so->so_error;
   1635 			so->so_error = 0;
   1636 			break;
   1637 
   1638 		case SO_SNDBUF:
   1639 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1640 			break;
   1641 
   1642 		case SO_RCVBUF:
   1643 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1644 			break;
   1645 
   1646 		case SO_SNDLOWAT:
   1647 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1648 			break;
   1649 
   1650 		case SO_RCVLOWAT:
   1651 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1652 			break;
   1653 
   1654 		case SO_SNDTIMEO:
   1655 		case SO_RCVTIMEO:
   1656 		    {
   1657 			int val = (optname == SO_SNDTIMEO ?
   1658 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1659 
   1660 			m->m_len = sizeof(struct timeval);
   1661 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1662 			mtod(m, struct timeval *)->tv_usec =
   1663 			    (val % hz) * tick;
   1664 			break;
   1665 		    }
   1666 
   1667 		case SO_OVERFLOWED:
   1668 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1669 			break;
   1670 
   1671 		default:
   1672 			(void)m_free(m);
   1673 			return (ENOPROTOOPT);
   1674 		}
   1675 		*mp = m;
   1676 		return (0);
   1677 	}
   1678 }
   1679 
   1680 void
   1681 sohasoutofband(struct socket *so)
   1682 {
   1683 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1684 	selwakeup(&so->so_rcv.sb_sel);
   1685 }
   1686 
   1687 static void
   1688 filt_sordetach(struct knote *kn)
   1689 {
   1690 	struct socket	*so;
   1691 
   1692 	so = (struct socket *)kn->kn_fp->f_data;
   1693 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1694 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1695 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1696 }
   1697 
   1698 /*ARGSUSED*/
   1699 static int
   1700 filt_soread(struct knote *kn, long hint)
   1701 {
   1702 	struct socket	*so;
   1703 
   1704 	so = (struct socket *)kn->kn_fp->f_data;
   1705 	kn->kn_data = so->so_rcv.sb_cc;
   1706 	if (so->so_state & SS_CANTRCVMORE) {
   1707 		kn->kn_flags |= EV_EOF;
   1708 		kn->kn_fflags = so->so_error;
   1709 		return (1);
   1710 	}
   1711 	if (so->so_error)	/* temporary udp error */
   1712 		return (1);
   1713 	if (kn->kn_sfflags & NOTE_LOWAT)
   1714 		return (kn->kn_data >= kn->kn_sdata);
   1715 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1716 }
   1717 
   1718 static void
   1719 filt_sowdetach(struct knote *kn)
   1720 {
   1721 	struct socket	*so;
   1722 
   1723 	so = (struct socket *)kn->kn_fp->f_data;
   1724 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1725 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1726 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1727 }
   1728 
   1729 /*ARGSUSED*/
   1730 static int
   1731 filt_sowrite(struct knote *kn, long hint)
   1732 {
   1733 	struct socket	*so;
   1734 
   1735 	so = (struct socket *)kn->kn_fp->f_data;
   1736 	kn->kn_data = sbspace(&so->so_snd);
   1737 	if (so->so_state & SS_CANTSENDMORE) {
   1738 		kn->kn_flags |= EV_EOF;
   1739 		kn->kn_fflags = so->so_error;
   1740 		return (1);
   1741 	}
   1742 	if (so->so_error)	/* temporary udp error */
   1743 		return (1);
   1744 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1745 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1746 		return (0);
   1747 	if (kn->kn_sfflags & NOTE_LOWAT)
   1748 		return (kn->kn_data >= kn->kn_sdata);
   1749 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1750 }
   1751 
   1752 /*ARGSUSED*/
   1753 static int
   1754 filt_solisten(struct knote *kn, long hint)
   1755 {
   1756 	struct socket	*so;
   1757 
   1758 	so = (struct socket *)kn->kn_fp->f_data;
   1759 
   1760 	/*
   1761 	 * Set kn_data to number of incoming connections, not
   1762 	 * counting partial (incomplete) connections.
   1763 	 */
   1764 	kn->kn_data = so->so_qlen;
   1765 	return (kn->kn_data > 0);
   1766 }
   1767 
   1768 static const struct filterops solisten_filtops =
   1769 	{ 1, NULL, filt_sordetach, filt_solisten };
   1770 static const struct filterops soread_filtops =
   1771 	{ 1, NULL, filt_sordetach, filt_soread };
   1772 static const struct filterops sowrite_filtops =
   1773 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1774 
   1775 int
   1776 soo_kqfilter(struct file *fp, struct knote *kn)
   1777 {
   1778 	struct socket	*so;
   1779 	struct sockbuf	*sb;
   1780 
   1781 	so = (struct socket *)kn->kn_fp->f_data;
   1782 	switch (kn->kn_filter) {
   1783 	case EVFILT_READ:
   1784 		if (so->so_options & SO_ACCEPTCONN)
   1785 			kn->kn_fop = &solisten_filtops;
   1786 		else
   1787 			kn->kn_fop = &soread_filtops;
   1788 		sb = &so->so_rcv;
   1789 		break;
   1790 	case EVFILT_WRITE:
   1791 		kn->kn_fop = &sowrite_filtops;
   1792 		sb = &so->so_snd;
   1793 		break;
   1794 	default:
   1795 		return (EINVAL);
   1796 	}
   1797 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1798 	sb->sb_flags |= SB_KNOTE;
   1799 	return (0);
   1800 }
   1801 
   1802 #include <sys/sysctl.h>
   1803 
   1804 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1805 
   1806 /*
   1807  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1808  * value is not too small.
   1809  * (XXX should we maybe make sure it's not too large as well?)
   1810  */
   1811 static int
   1812 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1813 {
   1814 	int error, new_somaxkva;
   1815 	struct sysctlnode node;
   1816 
   1817 	new_somaxkva = somaxkva;
   1818 	node = *rnode;
   1819 	node.sysctl_data = &new_somaxkva;
   1820 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1821 	if (error || newp == NULL)
   1822 		return (error);
   1823 
   1824 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1825 		return (EINVAL);
   1826 
   1827 	mutex_enter(&so_pendfree_lock);
   1828 	somaxkva = new_somaxkva;
   1829 	cv_broadcast(&socurkva_cv);
   1830 	mutex_exit(&so_pendfree_lock);
   1831 
   1832 	return (error);
   1833 }
   1834 
   1835 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1836 {
   1837 
   1838 	sysctl_createv(clog, 0, NULL, NULL,
   1839 		       CTLFLAG_PERMANENT,
   1840 		       CTLTYPE_NODE, "kern", NULL,
   1841 		       NULL, 0, NULL, 0,
   1842 		       CTL_KERN, CTL_EOL);
   1843 
   1844 	sysctl_createv(clog, 0, NULL, NULL,
   1845 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1846 		       CTLTYPE_INT, "somaxkva",
   1847 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1848 				    "used for socket buffers"),
   1849 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1850 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1851 }
   1852