uipc_socket.c revision 1.111.2.13 1 /* $NetBSD: uipc_socket.c,v 1.111.2.13 2008/02/27 09:24:06 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.13 2008/02/27 09:24:06 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 static size_t
274 sodopendfree()
275 {
276 size_t rv;
277
278 mutex_enter(&so_pendfree_lock);
279 rv = sodopendfreel();
280 mutex_exit(&so_pendfree_lock);
281
282 return rv;
283 }
284
285 /*
286 * sodopendfreel: free mbufs on "pendfree" list.
287 * unlock and relock so_pendfree_lock when freeing mbufs.
288 *
289 * => called with so_pendfree_lock held.
290 */
291
292 static size_t
293 sodopendfreel()
294 {
295 struct mbuf *m, *next;
296 size_t rv = 0;
297
298 KASSERT(mutex_owned(&so_pendfree_lock));
299
300 while (so_pendfree != NULL) {
301 m = so_pendfree;
302 so_pendfree = NULL;
303 mutex_exit(&so_pendfree_lock);
304
305 for (; m != NULL; m = next) {
306 next = m->m_next;
307 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
308 KASSERT(m->m_ext.ext_refcnt == 0);
309
310 rv += m->m_ext.ext_size;
311 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
312 m->m_ext.ext_size);
313 pool_cache_put(mb_cache, m);
314 }
315
316 mutex_enter(&so_pendfree_lock);
317 }
318
319 return (rv);
320 }
321
322 void
323 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
324 {
325
326 KASSERT(m != NULL);
327
328 /*
329 * postpone freeing mbuf.
330 *
331 * we can't do it in interrupt context
332 * because we need to put kva back to kernel_map.
333 */
334
335 mutex_enter(&so_pendfree_lock);
336 m->m_next = so_pendfree;
337 so_pendfree = m;
338 cv_broadcast(&socurkva_cv);
339 mutex_exit(&so_pendfree_lock);
340 }
341
342 static long
343 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
344 {
345 struct iovec *iov = uio->uio_iov;
346 vaddr_t sva, eva;
347 vsize_t len;
348 vaddr_t lva;
349 int npgs, error;
350 vaddr_t va;
351 int i;
352
353 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
354 return (0);
355
356 if (iov->iov_len < (size_t) space)
357 space = iov->iov_len;
358 if (space > SOCK_LOAN_CHUNK)
359 space = SOCK_LOAN_CHUNK;
360
361 eva = round_page((vaddr_t) iov->iov_base + space);
362 sva = trunc_page((vaddr_t) iov->iov_base);
363 len = eva - sva;
364 npgs = len >> PAGE_SHIFT;
365
366 /* XXX KDASSERT */
367 KASSERT(npgs <= M_EXT_MAXPAGES);
368
369 lva = sokvaalloc(len, so);
370 if (lva == 0)
371 return 0;
372
373 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
374 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
375 if (error) {
376 sokvafree(lva, len);
377 return (0);
378 }
379
380 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
381 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
382 VM_PROT_READ);
383 pmap_update(pmap_kernel());
384
385 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
386
387 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
388 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
389
390 uio->uio_resid -= space;
391 /* uio_offset not updated, not set/used for write(2) */
392 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
393 uio->uio_iov->iov_len -= space;
394 if (uio->uio_iov->iov_len == 0) {
395 uio->uio_iov++;
396 uio->uio_iovcnt--;
397 }
398
399 return (space);
400 }
401
402 static int
403 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
404 {
405
406 KASSERT(ce == &sokva_reclaimerentry);
407 KASSERT(obj == NULL);
408
409 sodopendfree();
410 if (!vm_map_starved_p(kernel_map)) {
411 return CALLBACK_CHAIN_ABORT;
412 }
413 return CALLBACK_CHAIN_CONTINUE;
414 }
415
416 struct mbuf *
417 getsombuf(struct socket *so, int type)
418 {
419 struct mbuf *m;
420
421 m = m_get(M_WAIT, type);
422 MCLAIM(m, so->so_mowner);
423 return m;
424 }
425
426 struct mbuf *
427 m_intopt(struct socket *so, int val)
428 {
429 struct mbuf *m;
430
431 m = getsombuf(so, MT_SOOPTS);
432 m->m_len = sizeof(int);
433 *mtod(m, int *) = val;
434 return m;
435 }
436
437 void
438 soinit(void)
439 {
440
441 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
442 cv_init(&socurkva_cv, "sokva");
443
444 /* Set the initial adjusted socket buffer size. */
445 if (sb_max_set(sb_max))
446 panic("bad initial sb_max value: %lu", sb_max);
447
448 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
449 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
450 }
451
452 /*
453 * Socket operation routines.
454 * These routines are called by the routines in
455 * sys_socket.c or from a system process, and
456 * implement the semantics of socket operations by
457 * switching out to the protocol specific routines.
458 */
459 /*ARGSUSED*/
460 int
461 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
462 {
463 const struct protosw *prp;
464 struct socket *so;
465 uid_t uid;
466 int error, s;
467
468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
469 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
470 KAUTH_ARG(proto));
471 if (error != 0)
472 return error;
473
474 if (proto)
475 prp = pffindproto(dom, proto, type);
476 else
477 prp = pffindtype(dom, type);
478 if (prp == NULL) {
479 /* no support for domain */
480 if (pffinddomain(dom) == 0)
481 return EAFNOSUPPORT;
482 /* no support for socket type */
483 if (proto == 0 && type != 0)
484 return EPROTOTYPE;
485 return EPROTONOSUPPORT;
486 }
487 if (prp->pr_usrreq == NULL)
488 return EPROTONOSUPPORT;
489 if (prp->pr_type != type)
490 return EPROTOTYPE;
491 s = splsoftnet();
492 so = pool_get(&socket_pool, PR_WAITOK);
493 memset(so, 0, sizeof(*so));
494 TAILQ_INIT(&so->so_q0);
495 TAILQ_INIT(&so->so_q);
496 so->so_type = type;
497 so->so_proto = prp;
498 so->so_send = sosend;
499 so->so_receive = soreceive;
500 #ifdef MBUFTRACE
501 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
502 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
503 so->so_mowner = &prp->pr_domain->dom_mowner;
504 #endif
505 selinit(&so->so_rcv.sb_sel);
506 selinit(&so->so_snd.sb_sel);
507 uid = kauth_cred_geteuid(l->l_cred);
508 so->so_uidinfo = uid_find(uid);
509 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
510 (struct mbuf *)(long)proto, NULL, l);
511 if (error != 0) {
512 so->so_state |= SS_NOFDREF;
513 sofree(so);
514 splx(s);
515 return error;
516 }
517 splx(s);
518 *aso = so;
519 return 0;
520 }
521
522 /* On success, write file descriptor to fdout and return zero. On
523 * failure, return non-zero; *fdout will be undefined.
524 */
525 int
526 fsocreate(int domain, struct socket **sop, int type, int protocol,
527 struct lwp *l, int *fdout)
528 {
529 struct filedesc *fdp;
530 struct socket *so;
531 struct file *fp;
532 int fd, error;
533
534 fdp = l->l_proc->p_fd;
535 /* falloc() will use the desciptor for us */
536 if ((error = falloc(l, &fp, &fd)) != 0)
537 return (error);
538 fp->f_flag = FREAD|FWRITE;
539 fp->f_type = DTYPE_SOCKET;
540 fp->f_ops = &socketops;
541 error = socreate(domain, &so, type, protocol, l);
542 if (error != 0) {
543 FILE_UNUSE(fp, l);
544 fdremove(fdp, fd);
545 ffree(fp);
546 } else {
547 if (sop != NULL)
548 *sop = so;
549 fp->f_data = so;
550 FILE_SET_MATURE(fp);
551 FILE_UNUSE(fp, l);
552 *fdout = fd;
553 }
554 return error;
555 }
556
557 int
558 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
559 {
560 int s, error;
561
562 s = splsoftnet();
563 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
564 splx(s);
565 return error;
566 }
567
568 int
569 solisten(struct socket *so, int backlog, struct lwp *l)
570 {
571 int s, error;
572
573 s = splsoftnet();
574 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
575 NULL, NULL, l);
576 if (error != 0) {
577 splx(s);
578 return error;
579 }
580 if (TAILQ_EMPTY(&so->so_q))
581 so->so_options |= SO_ACCEPTCONN;
582 if (backlog < 0)
583 backlog = 0;
584 so->so_qlimit = min(backlog, somaxconn);
585 splx(s);
586 return 0;
587 }
588
589 void
590 sofree(struct socket *so)
591 {
592
593 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
594 return;
595 if (so->so_head) {
596 /*
597 * We must not decommission a socket that's on the accept(2)
598 * queue. If we do, then accept(2) may hang after select(2)
599 * indicated that the listening socket was ready.
600 */
601 if (!soqremque(so, 0))
602 return;
603 }
604 if (so->so_rcv.sb_hiwat)
605 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
606 RLIM_INFINITY);
607 if (so->so_snd.sb_hiwat)
608 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
609 RLIM_INFINITY);
610 sbrelease(&so->so_snd, so);
611 sorflush(so);
612 seldestroy(&so->so_rcv.sb_sel);
613 seldestroy(&so->so_snd.sb_sel);
614 pool_put(&socket_pool, so);
615 }
616
617 /*
618 * Close a socket on last file table reference removal.
619 * Initiate disconnect if connected.
620 * Free socket when disconnect complete.
621 */
622 int
623 soclose(struct socket *so)
624 {
625 struct socket *so2;
626 int s, error;
627
628 error = 0;
629 s = splsoftnet(); /* conservative */
630 if (so->so_options & SO_ACCEPTCONN) {
631 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
632 (void) soqremque(so2, 0);
633 (void) soabort(so2);
634 }
635 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
636 (void) soqremque(so2, 1);
637 (void) soabort(so2);
638 }
639 }
640 if (so->so_pcb == 0)
641 goto discard;
642 if (so->so_state & SS_ISCONNECTED) {
643 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
644 error = sodisconnect(so);
645 if (error)
646 goto drop;
647 }
648 if (so->so_options & SO_LINGER) {
649 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
650 goto drop;
651 while (so->so_state & SS_ISCONNECTED) {
652 error = tsleep((void *)&so->so_timeo,
653 PSOCK | PCATCH, netcls,
654 so->so_linger * hz);
655 if (error)
656 break;
657 }
658 }
659 }
660 drop:
661 if (so->so_pcb) {
662 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
663 NULL, NULL, NULL, NULL);
664 if (error == 0)
665 error = error2;
666 }
667 discard:
668 if (so->so_state & SS_NOFDREF)
669 panic("soclose: NOFDREF");
670 so->so_state |= SS_NOFDREF;
671 sofree(so);
672 splx(s);
673 return (error);
674 }
675
676 /*
677 * Must be called at splsoftnet...
678 */
679 int
680 soabort(struct socket *so)
681 {
682 int error;
683
684 KASSERT(so->so_head == NULL);
685 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
686 NULL, NULL, NULL);
687 if (error) {
688 sofree(so);
689 }
690 return error;
691 }
692
693 int
694 soaccept(struct socket *so, struct mbuf *nam)
695 {
696 int s, error;
697
698 error = 0;
699 s = splsoftnet();
700 if ((so->so_state & SS_NOFDREF) == 0)
701 panic("soaccept: !NOFDREF");
702 so->so_state &= ~SS_NOFDREF;
703 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
704 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
705 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
706 NULL, nam, NULL, NULL);
707 else
708 error = ECONNABORTED;
709
710 splx(s);
711 return (error);
712 }
713
714 int
715 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
716 {
717 int s, error;
718
719 if (so->so_options & SO_ACCEPTCONN)
720 return (EOPNOTSUPP);
721 s = splsoftnet();
722 /*
723 * If protocol is connection-based, can only connect once.
724 * Otherwise, if connected, try to disconnect first.
725 * This allows user to disconnect by connecting to, e.g.,
726 * a null address.
727 */
728 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
729 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
730 (error = sodisconnect(so))))
731 error = EISCONN;
732 else
733 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
734 NULL, nam, NULL, l);
735 splx(s);
736 return (error);
737 }
738
739 int
740 soconnect2(struct socket *so1, struct socket *so2)
741 {
742 int s, error;
743
744 s = splsoftnet();
745 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
746 NULL, (struct mbuf *)so2, NULL, NULL);
747 splx(s);
748 return (error);
749 }
750
751 int
752 sodisconnect(struct socket *so)
753 {
754 int s, error;
755
756 s = splsoftnet();
757 if ((so->so_state & SS_ISCONNECTED) == 0) {
758 error = ENOTCONN;
759 goto bad;
760 }
761 if (so->so_state & SS_ISDISCONNECTING) {
762 error = EALREADY;
763 goto bad;
764 }
765 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
766 NULL, NULL, NULL, NULL);
767 bad:
768 splx(s);
769 sodopendfree();
770 return (error);
771 }
772
773 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
774 /*
775 * Send on a socket.
776 * If send must go all at once and message is larger than
777 * send buffering, then hard error.
778 * Lock against other senders.
779 * If must go all at once and not enough room now, then
780 * inform user that this would block and do nothing.
781 * Otherwise, if nonblocking, send as much as possible.
782 * The data to be sent is described by "uio" if nonzero,
783 * otherwise by the mbuf chain "top" (which must be null
784 * if uio is not). Data provided in mbuf chain must be small
785 * enough to send all at once.
786 *
787 * Returns nonzero on error, timeout or signal; callers
788 * must check for short counts if EINTR/ERESTART are returned.
789 * Data and control buffers are freed on return.
790 */
791 int
792 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
793 struct mbuf *control, int flags, struct lwp *l)
794 {
795 struct mbuf **mp, *m;
796 struct proc *p;
797 long space, len, resid, clen, mlen;
798 int error, s, dontroute, atomic;
799
800 p = l->l_proc;
801 sodopendfree();
802
803 clen = 0;
804 atomic = sosendallatonce(so) || top;
805 if (uio)
806 resid = uio->uio_resid;
807 else
808 resid = top->m_pkthdr.len;
809 /*
810 * In theory resid should be unsigned.
811 * However, space must be signed, as it might be less than 0
812 * if we over-committed, and we must use a signed comparison
813 * of space and resid. On the other hand, a negative resid
814 * causes us to loop sending 0-length segments to the protocol.
815 */
816 if (resid < 0) {
817 error = EINVAL;
818 goto out;
819 }
820 dontroute =
821 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
822 (so->so_proto->pr_flags & PR_ATOMIC);
823 if (p)
824 p->p_stats->p_ru.ru_msgsnd++;
825 if (control)
826 clen = control->m_len;
827 #define snderr(errno) { error = errno; splx(s); goto release; }
828
829 restart:
830 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
831 goto out;
832 do {
833 s = splsoftnet();
834 if (so->so_state & SS_CANTSENDMORE)
835 snderr(EPIPE);
836 if (so->so_error) {
837 error = so->so_error;
838 so->so_error = 0;
839 splx(s);
840 goto release;
841 }
842 if ((so->so_state & SS_ISCONNECTED) == 0) {
843 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
844 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
845 !(resid == 0 && clen != 0))
846 snderr(ENOTCONN);
847 } else if (addr == 0)
848 snderr(EDESTADDRREQ);
849 }
850 space = sbspace(&so->so_snd);
851 if (flags & MSG_OOB)
852 space += 1024;
853 if ((atomic && resid > so->so_snd.sb_hiwat) ||
854 clen > so->so_snd.sb_hiwat)
855 snderr(EMSGSIZE);
856 if (space < resid + clen &&
857 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
858 if (so->so_nbio)
859 snderr(EWOULDBLOCK);
860 sbunlock(&so->so_snd);
861 error = sbwait(&so->so_snd);
862 splx(s);
863 if (error)
864 goto out;
865 goto restart;
866 }
867 splx(s);
868 mp = ⊤
869 space -= clen;
870 do {
871 if (uio == NULL) {
872 /*
873 * Data is prepackaged in "top".
874 */
875 resid = 0;
876 if (flags & MSG_EOR)
877 top->m_flags |= M_EOR;
878 } else do {
879 if (top == NULL) {
880 m = m_gethdr(M_WAIT, MT_DATA);
881 mlen = MHLEN;
882 m->m_pkthdr.len = 0;
883 m->m_pkthdr.rcvif = NULL;
884 } else {
885 m = m_get(M_WAIT, MT_DATA);
886 mlen = MLEN;
887 }
888 MCLAIM(m, so->so_snd.sb_mowner);
889 if (sock_loan_thresh >= 0 &&
890 uio->uio_iov->iov_len >= sock_loan_thresh &&
891 space >= sock_loan_thresh &&
892 (len = sosend_loan(so, uio, m,
893 space)) != 0) {
894 SOSEND_COUNTER_INCR(&sosend_loan_big);
895 space -= len;
896 goto have_data;
897 }
898 if (resid >= MINCLSIZE && space >= MCLBYTES) {
899 SOSEND_COUNTER_INCR(&sosend_copy_big);
900 m_clget(m, M_WAIT);
901 if ((m->m_flags & M_EXT) == 0)
902 goto nopages;
903 mlen = MCLBYTES;
904 if (atomic && top == 0) {
905 len = lmin(MCLBYTES - max_hdr,
906 resid);
907 m->m_data += max_hdr;
908 } else
909 len = lmin(MCLBYTES, resid);
910 space -= len;
911 } else {
912 nopages:
913 SOSEND_COUNTER_INCR(&sosend_copy_small);
914 len = lmin(lmin(mlen, resid), space);
915 space -= len;
916 /*
917 * For datagram protocols, leave room
918 * for protocol headers in first mbuf.
919 */
920 if (atomic && top == 0 && len < mlen)
921 MH_ALIGN(m, len);
922 }
923 error = uiomove(mtod(m, void *), (int)len, uio);
924 have_data:
925 resid = uio->uio_resid;
926 m->m_len = len;
927 *mp = m;
928 top->m_pkthdr.len += len;
929 if (error != 0)
930 goto release;
931 mp = &m->m_next;
932 if (resid <= 0) {
933 if (flags & MSG_EOR)
934 top->m_flags |= M_EOR;
935 break;
936 }
937 } while (space > 0 && atomic);
938
939 s = splsoftnet();
940
941 if (so->so_state & SS_CANTSENDMORE)
942 snderr(EPIPE);
943
944 if (dontroute)
945 so->so_options |= SO_DONTROUTE;
946 if (resid > 0)
947 so->so_state |= SS_MORETOCOME;
948 error = (*so->so_proto->pr_usrreq)(so,
949 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
950 top, addr, control, curlwp); /* XXX */
951 if (dontroute)
952 so->so_options &= ~SO_DONTROUTE;
953 if (resid > 0)
954 so->so_state &= ~SS_MORETOCOME;
955 splx(s);
956
957 clen = 0;
958 control = NULL;
959 top = NULL;
960 mp = ⊤
961 if (error != 0)
962 goto release;
963 } while (resid && space > 0);
964 } while (resid);
965
966 release:
967 sbunlock(&so->so_snd);
968 out:
969 if (top)
970 m_freem(top);
971 if (control)
972 m_freem(control);
973 return (error);
974 }
975
976 /*
977 * Implement receive operations on a socket.
978 * We depend on the way that records are added to the sockbuf
979 * by sbappend*. In particular, each record (mbufs linked through m_next)
980 * must begin with an address if the protocol so specifies,
981 * followed by an optional mbuf or mbufs containing ancillary data,
982 * and then zero or more mbufs of data.
983 * In order to avoid blocking network interrupts for the entire time here,
984 * we splx() while doing the actual copy to user space.
985 * Although the sockbuf is locked, new data may still be appended,
986 * and thus we must maintain consistency of the sockbuf during that time.
987 *
988 * The caller may receive the data as a single mbuf chain by supplying
989 * an mbuf **mp0 for use in returning the chain. The uio is then used
990 * only for the count in uio_resid.
991 */
992 int
993 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
994 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
995 {
996 struct lwp *l = curlwp;
997 struct mbuf *m, **mp;
998 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
999 const struct protosw *pr;
1000 struct mbuf *nextrecord;
1001 int mbuf_removed = 0;
1002 const struct domain *dom;
1003
1004 pr = so->so_proto;
1005 atomic = pr->pr_flags & PR_ATOMIC;
1006 dom = pr->pr_domain;
1007 mp = mp0;
1008 type = 0;
1009 orig_resid = uio->uio_resid;
1010
1011 if (paddr != NULL)
1012 *paddr = NULL;
1013 if (controlp != NULL)
1014 *controlp = NULL;
1015 if (flagsp != NULL)
1016 flags = *flagsp &~ MSG_EOR;
1017 else
1018 flags = 0;
1019
1020 if ((flags & MSG_DONTWAIT) == 0)
1021 sodopendfree();
1022
1023 if (flags & MSG_OOB) {
1024 m = m_get(M_WAIT, MT_DATA);
1025 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1026 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1027 if (error)
1028 goto bad;
1029 do {
1030 error = uiomove(mtod(m, void *),
1031 (int) min(uio->uio_resid, m->m_len), uio);
1032 m = m_free(m);
1033 } while (uio->uio_resid > 0 && error == 0 && m);
1034 bad:
1035 if (m != NULL)
1036 m_freem(m);
1037 return error;
1038 }
1039 if (mp != NULL)
1040 *mp = NULL;
1041 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1042 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1043
1044 restart:
1045 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1046 return error;
1047 s = splsoftnet();
1048
1049 m = so->so_rcv.sb_mb;
1050 /*
1051 * If we have less data than requested, block awaiting more
1052 * (subject to any timeout) if:
1053 * 1. the current count is less than the low water mark,
1054 * 2. MSG_WAITALL is set, and it is possible to do the entire
1055 * receive operation at once if we block (resid <= hiwat), or
1056 * 3. MSG_DONTWAIT is not set.
1057 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1058 * we have to do the receive in sections, and thus risk returning
1059 * a short count if a timeout or signal occurs after we start.
1060 */
1061 if (m == NULL ||
1062 ((flags & MSG_DONTWAIT) == 0 &&
1063 so->so_rcv.sb_cc < uio->uio_resid &&
1064 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1065 ((flags & MSG_WAITALL) &&
1066 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1067 m->m_nextpkt == NULL && !atomic)) {
1068 #ifdef DIAGNOSTIC
1069 if (m == NULL && so->so_rcv.sb_cc)
1070 panic("receive 1");
1071 #endif
1072 if (so->so_error) {
1073 if (m != NULL)
1074 goto dontblock;
1075 error = so->so_error;
1076 if ((flags & MSG_PEEK) == 0)
1077 so->so_error = 0;
1078 goto release;
1079 }
1080 if (so->so_state & SS_CANTRCVMORE) {
1081 if (m != NULL)
1082 goto dontblock;
1083 else
1084 goto release;
1085 }
1086 for (; m != NULL; m = m->m_next)
1087 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1088 m = so->so_rcv.sb_mb;
1089 goto dontblock;
1090 }
1091 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1092 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1093 error = ENOTCONN;
1094 goto release;
1095 }
1096 if (uio->uio_resid == 0)
1097 goto release;
1098 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1099 error = EWOULDBLOCK;
1100 goto release;
1101 }
1102 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1103 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1104 sbunlock(&so->so_rcv);
1105 error = sbwait(&so->so_rcv);
1106 splx(s);
1107 if (error != 0)
1108 return error;
1109 goto restart;
1110 }
1111 dontblock:
1112 /*
1113 * On entry here, m points to the first record of the socket buffer.
1114 * While we process the initial mbufs containing address and control
1115 * info, we save a copy of m->m_nextpkt into nextrecord.
1116 */
1117 if (l != NULL)
1118 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1119 KASSERT(m == so->so_rcv.sb_mb);
1120 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1121 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1122 nextrecord = m->m_nextpkt;
1123 if (pr->pr_flags & PR_ADDR) {
1124 #ifdef DIAGNOSTIC
1125 if (m->m_type != MT_SONAME)
1126 panic("receive 1a");
1127 #endif
1128 orig_resid = 0;
1129 if (flags & MSG_PEEK) {
1130 if (paddr)
1131 *paddr = m_copy(m, 0, m->m_len);
1132 m = m->m_next;
1133 } else {
1134 sbfree(&so->so_rcv, m);
1135 mbuf_removed = 1;
1136 if (paddr != NULL) {
1137 *paddr = m;
1138 so->so_rcv.sb_mb = m->m_next;
1139 m->m_next = NULL;
1140 m = so->so_rcv.sb_mb;
1141 } else {
1142 MFREE(m, so->so_rcv.sb_mb);
1143 m = so->so_rcv.sb_mb;
1144 }
1145 }
1146 }
1147 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1148 if (flags & MSG_PEEK) {
1149 if (controlp != NULL)
1150 *controlp = m_copy(m, 0, m->m_len);
1151 m = m->m_next;
1152 } else {
1153 sbfree(&so->so_rcv, m);
1154 mbuf_removed = 1;
1155 if (controlp != NULL) {
1156 if (dom->dom_externalize && l &&
1157 mtod(m, struct cmsghdr *)->cmsg_type ==
1158 SCM_RIGHTS)
1159 error = (*dom->dom_externalize)(m, l);
1160 *controlp = m;
1161 so->so_rcv.sb_mb = m->m_next;
1162 m->m_next = NULL;
1163 m = so->so_rcv.sb_mb;
1164 } else {
1165 /*
1166 * Dispose of any SCM_RIGHTS message that went
1167 * through the read path rather than recv.
1168 */
1169 if (dom->dom_dispose &&
1170 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1171 (*dom->dom_dispose)(m);
1172 MFREE(m, so->so_rcv.sb_mb);
1173 m = so->so_rcv.sb_mb;
1174 }
1175 }
1176 if (controlp != NULL) {
1177 orig_resid = 0;
1178 controlp = &(*controlp)->m_next;
1179 }
1180 }
1181
1182 /*
1183 * If m is non-NULL, we have some data to read. From now on,
1184 * make sure to keep sb_lastrecord consistent when working on
1185 * the last packet on the chain (nextrecord == NULL) and we
1186 * change m->m_nextpkt.
1187 */
1188 if (m != NULL) {
1189 if ((flags & MSG_PEEK) == 0) {
1190 m->m_nextpkt = nextrecord;
1191 /*
1192 * If nextrecord == NULL (this is a single chain),
1193 * then sb_lastrecord may not be valid here if m
1194 * was changed earlier.
1195 */
1196 if (nextrecord == NULL) {
1197 KASSERT(so->so_rcv.sb_mb == m);
1198 so->so_rcv.sb_lastrecord = m;
1199 }
1200 }
1201 type = m->m_type;
1202 if (type == MT_OOBDATA)
1203 flags |= MSG_OOB;
1204 } else {
1205 if ((flags & MSG_PEEK) == 0) {
1206 KASSERT(so->so_rcv.sb_mb == m);
1207 so->so_rcv.sb_mb = nextrecord;
1208 SB_EMPTY_FIXUP(&so->so_rcv);
1209 }
1210 }
1211 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1212 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1213
1214 moff = 0;
1215 offset = 0;
1216 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1217 if (m->m_type == MT_OOBDATA) {
1218 if (type != MT_OOBDATA)
1219 break;
1220 } else if (type == MT_OOBDATA)
1221 break;
1222 #ifdef DIAGNOSTIC
1223 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1224 panic("receive 3");
1225 #endif
1226 so->so_state &= ~SS_RCVATMARK;
1227 len = uio->uio_resid;
1228 if (so->so_oobmark && len > so->so_oobmark - offset)
1229 len = so->so_oobmark - offset;
1230 if (len > m->m_len - moff)
1231 len = m->m_len - moff;
1232 /*
1233 * If mp is set, just pass back the mbufs.
1234 * Otherwise copy them out via the uio, then free.
1235 * Sockbuf must be consistent here (points to current mbuf,
1236 * it points to next record) when we drop priority;
1237 * we must note any additions to the sockbuf when we
1238 * block interrupts again.
1239 */
1240 if (mp == NULL) {
1241 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1242 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1243 splx(s);
1244 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1245 s = splsoftnet();
1246 if (error != 0) {
1247 /*
1248 * If any part of the record has been removed
1249 * (such as the MT_SONAME mbuf, which will
1250 * happen when PR_ADDR, and thus also
1251 * PR_ATOMIC, is set), then drop the entire
1252 * record to maintain the atomicity of the
1253 * receive operation.
1254 *
1255 * This avoids a later panic("receive 1a")
1256 * when compiled with DIAGNOSTIC.
1257 */
1258 if (m && mbuf_removed && atomic)
1259 (void) sbdroprecord(&so->so_rcv);
1260
1261 goto release;
1262 }
1263 } else
1264 uio->uio_resid -= len;
1265 if (len == m->m_len - moff) {
1266 if (m->m_flags & M_EOR)
1267 flags |= MSG_EOR;
1268 if (flags & MSG_PEEK) {
1269 m = m->m_next;
1270 moff = 0;
1271 } else {
1272 nextrecord = m->m_nextpkt;
1273 sbfree(&so->so_rcv, m);
1274 if (mp) {
1275 *mp = m;
1276 mp = &m->m_next;
1277 so->so_rcv.sb_mb = m = m->m_next;
1278 *mp = NULL;
1279 } else {
1280 MFREE(m, so->so_rcv.sb_mb);
1281 m = so->so_rcv.sb_mb;
1282 }
1283 /*
1284 * If m != NULL, we also know that
1285 * so->so_rcv.sb_mb != NULL.
1286 */
1287 KASSERT(so->so_rcv.sb_mb == m);
1288 if (m) {
1289 m->m_nextpkt = nextrecord;
1290 if (nextrecord == NULL)
1291 so->so_rcv.sb_lastrecord = m;
1292 } else {
1293 so->so_rcv.sb_mb = nextrecord;
1294 SB_EMPTY_FIXUP(&so->so_rcv);
1295 }
1296 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1297 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1298 }
1299 } else if (flags & MSG_PEEK)
1300 moff += len;
1301 else {
1302 if (mp != NULL)
1303 *mp = m_copym(m, 0, len, M_WAIT);
1304 m->m_data += len;
1305 m->m_len -= len;
1306 so->so_rcv.sb_cc -= len;
1307 }
1308 if (so->so_oobmark) {
1309 if ((flags & MSG_PEEK) == 0) {
1310 so->so_oobmark -= len;
1311 if (so->so_oobmark == 0) {
1312 so->so_state |= SS_RCVATMARK;
1313 break;
1314 }
1315 } else {
1316 offset += len;
1317 if (offset == so->so_oobmark)
1318 break;
1319 }
1320 }
1321 if (flags & MSG_EOR)
1322 break;
1323 /*
1324 * If the MSG_WAITALL flag is set (for non-atomic socket),
1325 * we must not quit until "uio->uio_resid == 0" or an error
1326 * termination. If a signal/timeout occurs, return
1327 * with a short count but without error.
1328 * Keep sockbuf locked against other readers.
1329 */
1330 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1331 !sosendallatonce(so) && !nextrecord) {
1332 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1333 break;
1334 /*
1335 * If we are peeking and the socket receive buffer is
1336 * full, stop since we can't get more data to peek at.
1337 */
1338 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1339 break;
1340 /*
1341 * If we've drained the socket buffer, tell the
1342 * protocol in case it needs to do something to
1343 * get it filled again.
1344 */
1345 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1346 (*pr->pr_usrreq)(so, PRU_RCVD,
1347 NULL, (struct mbuf *)(long)flags, NULL, l);
1348 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1349 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1350 error = sbwait(&so->so_rcv);
1351 if (error != 0) {
1352 sbunlock(&so->so_rcv);
1353 splx(s);
1354 return 0;
1355 }
1356 if ((m = so->so_rcv.sb_mb) != NULL)
1357 nextrecord = m->m_nextpkt;
1358 }
1359 }
1360
1361 if (m && atomic) {
1362 flags |= MSG_TRUNC;
1363 if ((flags & MSG_PEEK) == 0)
1364 (void) sbdroprecord(&so->so_rcv);
1365 }
1366 if ((flags & MSG_PEEK) == 0) {
1367 if (m == NULL) {
1368 /*
1369 * First part is an inline SB_EMPTY_FIXUP(). Second
1370 * part makes sure sb_lastrecord is up-to-date if
1371 * there is still data in the socket buffer.
1372 */
1373 so->so_rcv.sb_mb = nextrecord;
1374 if (so->so_rcv.sb_mb == NULL) {
1375 so->so_rcv.sb_mbtail = NULL;
1376 so->so_rcv.sb_lastrecord = NULL;
1377 } else if (nextrecord->m_nextpkt == NULL)
1378 so->so_rcv.sb_lastrecord = nextrecord;
1379 }
1380 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1381 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1382 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1383 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1384 (struct mbuf *)(long)flags, NULL, l);
1385 }
1386 if (orig_resid == uio->uio_resid && orig_resid &&
1387 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1388 sbunlock(&so->so_rcv);
1389 splx(s);
1390 goto restart;
1391 }
1392
1393 if (flagsp != NULL)
1394 *flagsp |= flags;
1395 release:
1396 sbunlock(&so->so_rcv);
1397 splx(s);
1398 return error;
1399 }
1400
1401 int
1402 soshutdown(struct socket *so, int how)
1403 {
1404 const struct protosw *pr;
1405
1406 pr = so->so_proto;
1407 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1408 return (EINVAL);
1409
1410 if (how == SHUT_RD || how == SHUT_RDWR)
1411 sorflush(so);
1412 if (how == SHUT_WR || how == SHUT_RDWR)
1413 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1414 NULL, NULL, NULL);
1415 return 0;
1416 }
1417
1418 void
1419 sorflush(struct socket *so)
1420 {
1421 struct sockbuf *sb, asb;
1422 const struct protosw *pr;
1423 int s;
1424
1425 sb = &so->so_rcv;
1426 pr = so->so_proto;
1427 sb->sb_flags |= SB_NOINTR;
1428 (void) sblock(sb, M_WAITOK);
1429 s = splnet();
1430 socantrcvmore(so);
1431 sbunlock(sb);
1432 asb = *sb;
1433 /*
1434 * Clear most of the sockbuf structure, but leave some of the
1435 * fields valid.
1436 */
1437 memset(&sb->sb_startzero, 0,
1438 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1439 splx(s);
1440 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1441 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1442 sbrelease(&asb, so);
1443 }
1444
1445 static int
1446 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1447 {
1448 int optval, val;
1449 struct linger *l;
1450 struct sockbuf *sb;
1451 struct timeval *tv;
1452
1453 switch (optname) {
1454
1455 case SO_LINGER:
1456 if (m == NULL || m->m_len != sizeof(struct linger))
1457 return EINVAL;
1458 l = mtod(m, struct linger *);
1459 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1460 l->l_linger > (INT_MAX / hz))
1461 return EDOM;
1462 so->so_linger = l->l_linger;
1463 if (l->l_onoff)
1464 so->so_options |= SO_LINGER;
1465 else
1466 so->so_options &= ~SO_LINGER;
1467 break;
1468
1469 case SO_DEBUG:
1470 case SO_KEEPALIVE:
1471 case SO_DONTROUTE:
1472 case SO_USELOOPBACK:
1473 case SO_BROADCAST:
1474 case SO_REUSEADDR:
1475 case SO_REUSEPORT:
1476 case SO_OOBINLINE:
1477 case SO_TIMESTAMP:
1478 if (m == NULL || m->m_len < sizeof(int))
1479 return EINVAL;
1480 if (*mtod(m, int *))
1481 so->so_options |= optname;
1482 else
1483 so->so_options &= ~optname;
1484 break;
1485
1486 case SO_SNDBUF:
1487 case SO_RCVBUF:
1488 case SO_SNDLOWAT:
1489 case SO_RCVLOWAT:
1490 if (m == NULL || m->m_len < sizeof(int))
1491 return EINVAL;
1492
1493 /*
1494 * Values < 1 make no sense for any of these
1495 * options, so disallow them.
1496 */
1497 optval = *mtod(m, int *);
1498 if (optval < 1)
1499 return EINVAL;
1500
1501 switch (optname) {
1502
1503 case SO_SNDBUF:
1504 case SO_RCVBUF:
1505 sb = (optname == SO_SNDBUF) ?
1506 &so->so_snd : &so->so_rcv;
1507 if (sbreserve(sb, (u_long)optval, so) == 0)
1508 return ENOBUFS;
1509 sb->sb_flags &= ~SB_AUTOSIZE;
1510 break;
1511
1512 /*
1513 * Make sure the low-water is never greater than
1514 * the high-water.
1515 */
1516 case SO_SNDLOWAT:
1517 so->so_snd.sb_lowat =
1518 (optval > so->so_snd.sb_hiwat) ?
1519 so->so_snd.sb_hiwat : optval;
1520 break;
1521 case SO_RCVLOWAT:
1522 so->so_rcv.sb_lowat =
1523 (optval > so->so_rcv.sb_hiwat) ?
1524 so->so_rcv.sb_hiwat : optval;
1525 break;
1526 }
1527 break;
1528
1529 case SO_SNDTIMEO:
1530 case SO_RCVTIMEO:
1531 if (m == NULL || m->m_len < sizeof(*tv))
1532 return EINVAL;
1533 tv = mtod(m, struct timeval *);
1534 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1535 return EDOM;
1536 val = tv->tv_sec * hz + tv->tv_usec / tick;
1537 if (val == 0 && tv->tv_usec != 0)
1538 val = 1;
1539
1540 switch (optname) {
1541
1542 case SO_SNDTIMEO:
1543 so->so_snd.sb_timeo = val;
1544 break;
1545 case SO_RCVTIMEO:
1546 so->so_rcv.sb_timeo = val;
1547 break;
1548 }
1549 break;
1550
1551 default:
1552 return ENOPROTOOPT;
1553 }
1554 return 0;
1555 }
1556
1557 int
1558 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1559 {
1560 int error, prerr;
1561
1562 if (level == SOL_SOCKET)
1563 error = sosetopt1(so, level, optname, m);
1564 else
1565 error = ENOPROTOOPT;
1566
1567 if ((error == 0 || error == ENOPROTOOPT) &&
1568 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1569 /* give the protocol stack a shot */
1570 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1571 optname, &m);
1572 if (prerr == 0)
1573 error = 0;
1574 else if (prerr != ENOPROTOOPT)
1575 error = prerr;
1576 } else if (m != NULL)
1577 (void)m_free(m);
1578 return error;
1579 }
1580
1581 int
1582 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1583 {
1584 struct mbuf *m;
1585
1586 if (level != SOL_SOCKET) {
1587 if (so->so_proto && so->so_proto->pr_ctloutput) {
1588 return ((*so->so_proto->pr_ctloutput)
1589 (PRCO_GETOPT, so, level, optname, mp));
1590 } else
1591 return (ENOPROTOOPT);
1592 } else {
1593 m = m_get(M_WAIT, MT_SOOPTS);
1594 m->m_len = sizeof(int);
1595
1596 switch (optname) {
1597
1598 case SO_LINGER:
1599 m->m_len = sizeof(struct linger);
1600 mtod(m, struct linger *)->l_onoff =
1601 (so->so_options & SO_LINGER) ? 1 : 0;
1602 mtod(m, struct linger *)->l_linger = so->so_linger;
1603 break;
1604
1605 case SO_USELOOPBACK:
1606 case SO_DONTROUTE:
1607 case SO_DEBUG:
1608 case SO_KEEPALIVE:
1609 case SO_REUSEADDR:
1610 case SO_REUSEPORT:
1611 case SO_BROADCAST:
1612 case SO_OOBINLINE:
1613 case SO_TIMESTAMP:
1614 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1615 break;
1616
1617 case SO_TYPE:
1618 *mtod(m, int *) = so->so_type;
1619 break;
1620
1621 case SO_ERROR:
1622 *mtod(m, int *) = so->so_error;
1623 so->so_error = 0;
1624 break;
1625
1626 case SO_SNDBUF:
1627 *mtod(m, int *) = so->so_snd.sb_hiwat;
1628 break;
1629
1630 case SO_RCVBUF:
1631 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1632 break;
1633
1634 case SO_SNDLOWAT:
1635 *mtod(m, int *) = so->so_snd.sb_lowat;
1636 break;
1637
1638 case SO_RCVLOWAT:
1639 *mtod(m, int *) = so->so_rcv.sb_lowat;
1640 break;
1641
1642 case SO_SNDTIMEO:
1643 case SO_RCVTIMEO:
1644 {
1645 int val = (optname == SO_SNDTIMEO ?
1646 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1647
1648 m->m_len = sizeof(struct timeval);
1649 mtod(m, struct timeval *)->tv_sec = val / hz;
1650 mtod(m, struct timeval *)->tv_usec =
1651 (val % hz) * tick;
1652 break;
1653 }
1654
1655 case SO_OVERFLOWED:
1656 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1657 break;
1658
1659 default:
1660 (void)m_free(m);
1661 return (ENOPROTOOPT);
1662 }
1663 *mp = m;
1664 return (0);
1665 }
1666 }
1667
1668 void
1669 sohasoutofband(struct socket *so)
1670 {
1671 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1672 selwakeup(&so->so_rcv.sb_sel);
1673 }
1674
1675 static void
1676 filt_sordetach(struct knote *kn)
1677 {
1678 struct socket *so;
1679
1680 so = (struct socket *)kn->kn_fp->f_data;
1681 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1682 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1683 so->so_rcv.sb_flags &= ~SB_KNOTE;
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
1688 filt_soread(struct knote *kn, long hint)
1689 {
1690 struct socket *so;
1691
1692 so = (struct socket *)kn->kn_fp->f_data;
1693 kn->kn_data = so->so_rcv.sb_cc;
1694 if (so->so_state & SS_CANTRCVMORE) {
1695 kn->kn_flags |= EV_EOF;
1696 kn->kn_fflags = so->so_error;
1697 return (1);
1698 }
1699 if (so->so_error) /* temporary udp error */
1700 return (1);
1701 if (kn->kn_sfflags & NOTE_LOWAT)
1702 return (kn->kn_data >= kn->kn_sdata);
1703 return (kn->kn_data >= so->so_rcv.sb_lowat);
1704 }
1705
1706 static void
1707 filt_sowdetach(struct knote *kn)
1708 {
1709 struct socket *so;
1710
1711 so = (struct socket *)kn->kn_fp->f_data;
1712 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1713 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1714 so->so_snd.sb_flags &= ~SB_KNOTE;
1715 }
1716
1717 /*ARGSUSED*/
1718 static int
1719 filt_sowrite(struct knote *kn, long hint)
1720 {
1721 struct socket *so;
1722
1723 so = (struct socket *)kn->kn_fp->f_data;
1724 kn->kn_data = sbspace(&so->so_snd);
1725 if (so->so_state & SS_CANTSENDMORE) {
1726 kn->kn_flags |= EV_EOF;
1727 kn->kn_fflags = so->so_error;
1728 return (1);
1729 }
1730 if (so->so_error) /* temporary udp error */
1731 return (1);
1732 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1733 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1734 return (0);
1735 if (kn->kn_sfflags & NOTE_LOWAT)
1736 return (kn->kn_data >= kn->kn_sdata);
1737 return (kn->kn_data >= so->so_snd.sb_lowat);
1738 }
1739
1740 /*ARGSUSED*/
1741 static int
1742 filt_solisten(struct knote *kn, long hint)
1743 {
1744 struct socket *so;
1745
1746 so = (struct socket *)kn->kn_fp->f_data;
1747
1748 /*
1749 * Set kn_data to number of incoming connections, not
1750 * counting partial (incomplete) connections.
1751 */
1752 kn->kn_data = so->so_qlen;
1753 return (kn->kn_data > 0);
1754 }
1755
1756 static const struct filterops solisten_filtops =
1757 { 1, NULL, filt_sordetach, filt_solisten };
1758 static const struct filterops soread_filtops =
1759 { 1, NULL, filt_sordetach, filt_soread };
1760 static const struct filterops sowrite_filtops =
1761 { 1, NULL, filt_sowdetach, filt_sowrite };
1762
1763 int
1764 soo_kqfilter(struct file *fp, struct knote *kn)
1765 {
1766 struct socket *so;
1767 struct sockbuf *sb;
1768
1769 so = (struct socket *)kn->kn_fp->f_data;
1770 switch (kn->kn_filter) {
1771 case EVFILT_READ:
1772 if (so->so_options & SO_ACCEPTCONN)
1773 kn->kn_fop = &solisten_filtops;
1774 else
1775 kn->kn_fop = &soread_filtops;
1776 sb = &so->so_rcv;
1777 break;
1778 case EVFILT_WRITE:
1779 kn->kn_fop = &sowrite_filtops;
1780 sb = &so->so_snd;
1781 break;
1782 default:
1783 return (EINVAL);
1784 }
1785 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1786 sb->sb_flags |= SB_KNOTE;
1787 return (0);
1788 }
1789
1790 #include <sys/sysctl.h>
1791
1792 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1793
1794 /*
1795 * sysctl helper routine for kern.somaxkva. ensures that the given
1796 * value is not too small.
1797 * (XXX should we maybe make sure it's not too large as well?)
1798 */
1799 static int
1800 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1801 {
1802 int error, new_somaxkva;
1803 struct sysctlnode node;
1804
1805 new_somaxkva = somaxkva;
1806 node = *rnode;
1807 node.sysctl_data = &new_somaxkva;
1808 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1809 if (error || newp == NULL)
1810 return (error);
1811
1812 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1813 return (EINVAL);
1814
1815 mutex_enter(&so_pendfree_lock);
1816 somaxkva = new_somaxkva;
1817 cv_broadcast(&socurkva_cv);
1818 mutex_exit(&so_pendfree_lock);
1819
1820 return (error);
1821 }
1822
1823 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1824 {
1825
1826 sysctl_createv(clog, 0, NULL, NULL,
1827 CTLFLAG_PERMANENT,
1828 CTLTYPE_NODE, "kern", NULL,
1829 NULL, 0, NULL, 0,
1830 CTL_KERN, CTL_EOL);
1831
1832 sysctl_createv(clog, 0, NULL, NULL,
1833 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1834 CTLTYPE_INT, "somaxkva",
1835 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1836 "used for socket buffers"),
1837 sysctl_kern_somaxkva, 0, NULL, 0,
1838 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1839 }
1840