Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.111.2.3
      1 /*	$NetBSD: uipc_socket.c,v 1.111.2.3 2006/06/21 15:09:39 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.3 2006/06/21 15:09:39 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 
     96 #include <uvm/uvm.h>
     97 
     98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
     99 
    100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    102 
    103 extern int	somaxconn;			/* patchable (XXX sysctl) */
    104 int		somaxconn = SOMAXCONN;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #ifdef SOSEND_NO_LOAN
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static int sokvawaiters;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static vsize_t
    154 sokvareserve(struct socket *so, vsize_t len)
    155 {
    156 	int s;
    157 	int error;
    158 
    159 	s = splvm();
    160 	simple_lock(&so_pendfree_slock);
    161 	while (socurkva + len > somaxkva) {
    162 		size_t freed;
    163 
    164 		/*
    165 		 * try to do pendfree.
    166 		 */
    167 
    168 		freed = sodopendfreel();
    169 
    170 		/*
    171 		 * if some kva was freed, try again.
    172 		 */
    173 
    174 		if (freed)
    175 			continue;
    176 
    177 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    178 		sokvawaiters++;
    179 		error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
    180 		    &so_pendfree_slock);
    181 		sokvawaiters--;
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	simple_unlock(&so_pendfree_slock);
    189 	splx(s);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 	int s;
    197 
    198 	s = splvm();
    199 	simple_lock(&so_pendfree_slock);
    200 	socurkva -= len;
    201 	if (sokvawaiters)
    202 		wakeup(&socurkva);
    203 	simple_unlock(&so_pendfree_slock);
    204 	splx(s);
    205 }
    206 
    207 /*
    208  * sokvaalloc: allocate kva for loan.
    209  */
    210 
    211 vaddr_t
    212 sokvaalloc(vsize_t len, struct socket *so)
    213 {
    214 	vaddr_t lva;
    215 
    216 	/*
    217 	 * reserve kva.
    218 	 */
    219 
    220 	if (sokvareserve(so, len) == 0)
    221 		return 0;
    222 
    223 	/*
    224 	 * allocate kva.
    225 	 */
    226 
    227 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    228 	if (lva == 0) {
    229 		sokvaunreserve(len);
    230 		return (0);
    231 	}
    232 
    233 	return lva;
    234 }
    235 
    236 /*
    237  * sokvafree: free kva for loan.
    238  */
    239 
    240 void
    241 sokvafree(vaddr_t sva, vsize_t len)
    242 {
    243 
    244 	/*
    245 	 * free kva.
    246 	 */
    247 
    248 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    249 
    250 	/*
    251 	 * unreserve kva.
    252 	 */
    253 
    254 	sokvaunreserve(len);
    255 }
    256 
    257 static void
    258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size, boolean_t mapped)
    259 {
    260 	vaddr_t sva, eva;
    261 	vsize_t len;
    262 	int npgs;
    263 
    264 	KASSERT(pgs != NULL);
    265 
    266 	eva = round_page((vaddr_t) buf + size);
    267 	sva = trunc_page((vaddr_t) buf);
    268 	len = eva - sva;
    269 	npgs = len >> PAGE_SHIFT;
    270 
    271 	if (mapped) {
    272 		pmap_kremove(sva, len);
    273 		pmap_update(pmap_kernel());
    274 	}
    275 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    276 	sokvafree(sva, len);
    277 }
    278 
    279 static size_t
    280 sodopendfree()
    281 {
    282 	int s;
    283 	size_t rv;
    284 
    285 	s = splvm();
    286 	simple_lock(&so_pendfree_slock);
    287 	rv = sodopendfreel();
    288 	simple_unlock(&so_pendfree_slock);
    289 	splx(s);
    290 
    291 	return rv;
    292 }
    293 
    294 /*
    295  * sodopendfreel: free mbufs on "pendfree" list.
    296  * unlock and relock so_pendfree_slock when freeing mbufs.
    297  *
    298  * => called with so_pendfree_slock held.
    299  * => called at splvm.
    300  */
    301 
    302 static size_t
    303 sodopendfreel()
    304 {
    305 	size_t rv = 0;
    306 
    307 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    308 
    309 	for (;;) {
    310 		struct mbuf *m;
    311 		struct mbuf *next;
    312 
    313 		m = so_pendfree;
    314 		if (m == NULL)
    315 			break;
    316 		so_pendfree = NULL;
    317 		simple_unlock(&so_pendfree_slock);
    318 		/* XXX splx */
    319 
    320 		for (; m != NULL; m = next) {
    321 			next = m->m_next;
    322 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    323 			KASSERT(!MCLISREFERENCED(m));
    324 
    325 			rv += m->m_ext.ext_size;
    326 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    327 			    m->m_ext.ext_size,
    328 			    (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
    329 			pool_cache_put(&mbpool_cache, m);
    330 		}
    331 
    332 		/* XXX splvm */
    333 		simple_lock(&so_pendfree_slock);
    334 	}
    335 
    336 	return (rv);
    337 }
    338 
    339 void
    340 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    341 {
    342 	int s;
    343 
    344 	KASSERT(m != NULL);
    345 
    346 	/*
    347 	 * postpone freeing mbuf.
    348 	 *
    349 	 * we can't do it in interrupt context
    350 	 * because we need to put kva back to kernel_map.
    351 	 */
    352 
    353 	s = splvm();
    354 	simple_lock(&so_pendfree_slock);
    355 	m->m_next = so_pendfree;
    356 	so_pendfree = m;
    357 	if (sokvawaiters)
    358 		wakeup(&socurkva);
    359 	simple_unlock(&so_pendfree_slock);
    360 	splx(s);
    361 }
    362 
    363 static long
    364 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    365 {
    366 	struct iovec *iov = uio->uio_iov;
    367 	vaddr_t sva, eva;
    368 	vsize_t len;
    369 	vaddr_t lva;
    370 	int npgs, error;
    371 #if !defined(__HAVE_LAZY_MBUF)
    372 	vaddr_t va;
    373 	int i;
    374 #endif /* !defined(__HAVE_LAZY_MBUF) */
    375 
    376 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    377 		return (0);
    378 
    379 	if (iov->iov_len < (size_t) space)
    380 		space = iov->iov_len;
    381 	if (space > SOCK_LOAN_CHUNK)
    382 		space = SOCK_LOAN_CHUNK;
    383 
    384 	eva = round_page((vaddr_t) iov->iov_base + space);
    385 	sva = trunc_page((vaddr_t) iov->iov_base);
    386 	len = eva - sva;
    387 	npgs = len >> PAGE_SHIFT;
    388 
    389 	/* XXX KDASSERT */
    390 	KASSERT(npgs <= M_EXT_MAXPAGES);
    391 
    392 	lva = sokvaalloc(len, so);
    393 	if (lva == 0)
    394 		return 0;
    395 
    396 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    397 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    398 	if (error) {
    399 		sokvafree(lva, len);
    400 		return (0);
    401 	}
    402 
    403 #if !defined(__HAVE_LAZY_MBUF)
    404 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    405 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    406 		    VM_PROT_READ);
    407 	pmap_update(pmap_kernel());
    408 #endif /* !defined(__HAVE_LAZY_MBUF) */
    409 
    410 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    411 
    412 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    413 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    414 
    415 #if defined(__HAVE_LAZY_MBUF)
    416 	m->m_flags |= M_EXT_LAZY;
    417 	m->m_ext.ext_flags |= M_EXT_LAZY;
    418 #endif /* defined(__HAVE_LAZY_MBUF) */
    419 
    420 	uio->uio_resid -= space;
    421 	/* uio_offset not updated, not set/used for write(2) */
    422 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    423 	uio->uio_iov->iov_len -= space;
    424 	if (uio->uio_iov->iov_len == 0) {
    425 		uio->uio_iov++;
    426 		uio->uio_iovcnt--;
    427 	}
    428 
    429 	return (space);
    430 }
    431 
    432 static int
    433 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    434 {
    435 
    436 	KASSERT(ce == &sokva_reclaimerentry);
    437 	KASSERT(obj == NULL);
    438 
    439 	sodopendfree();
    440 	if (!vm_map_starved_p(kernel_map)) {
    441 		return CALLBACK_CHAIN_ABORT;
    442 	}
    443 	return CALLBACK_CHAIN_CONTINUE;
    444 }
    445 
    446 void
    447 soinit(void)
    448 {
    449 
    450 	/* Set the initial adjusted socket buffer size. */
    451 	if (sb_max_set(sb_max))
    452 		panic("bad initial sb_max value: %lu", sb_max);
    453 
    454 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    455 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    456 }
    457 
    458 /*
    459  * Socket operation routines.
    460  * These routines are called by the routines in
    461  * sys_socket.c or from a system process, and
    462  * implement the semantics of socket operations by
    463  * switching out to the protocol specific routines.
    464  */
    465 /*ARGSUSED*/
    466 int
    467 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    468 {
    469 	const struct protosw	*prp;
    470 	struct socket	*so;
    471 	uid_t		uid;
    472 	int		error, s;
    473 
    474 	if (proto)
    475 		prp = pffindproto(dom, proto, type);
    476 	else
    477 		prp = pffindtype(dom, type);
    478 	if (prp == 0) {
    479 		/* no support for domain */
    480 		if (pffinddomain(dom) == 0)
    481 			return (EAFNOSUPPORT);
    482 		/* no support for socket type */
    483 		if (proto == 0 && type != 0)
    484 			return (EPROTOTYPE);
    485 		return (EPROTONOSUPPORT);
    486 	}
    487 	if (prp->pr_usrreq == 0)
    488 		return (EPROTONOSUPPORT);
    489 	if (prp->pr_type != type)
    490 		return (EPROTOTYPE);
    491 	s = splsoftnet();
    492 	so = pool_get(&socket_pool, PR_WAITOK);
    493 	memset((caddr_t)so, 0, sizeof(*so));
    494 	TAILQ_INIT(&so->so_q0);
    495 	TAILQ_INIT(&so->so_q);
    496 	so->so_type = type;
    497 	so->so_proto = prp;
    498 	so->so_send = sosend;
    499 	so->so_receive = soreceive;
    500 #ifdef MBUFTRACE
    501 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    502 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    503 	so->so_mowner = &prp->pr_domain->dom_mowner;
    504 #endif
    505 	if (l != NULL) {
    506 		uid = kauth_cred_geteuid(l->l_proc->p_cred);
    507 	} else {
    508 		uid = 0;
    509 	}
    510 	so->so_uidinfo = uid_find(uid);
    511 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    512 	    (struct mbuf *)(long)proto, (struct mbuf *)0, l);
    513 	if (error) {
    514 		so->so_state |= SS_NOFDREF;
    515 		sofree(so);
    516 		splx(s);
    517 		return (error);
    518 	}
    519 	splx(s);
    520 	*aso = so;
    521 	return (0);
    522 }
    523 
    524 int
    525 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    526 {
    527 	int	s, error;
    528 
    529 	s = splsoftnet();
    530 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    531 	    nam, (struct mbuf *)0, l);
    532 	splx(s);
    533 	return (error);
    534 }
    535 
    536 int
    537 solisten(struct socket *so, int backlog)
    538 {
    539 	int	s, error;
    540 
    541 	s = splsoftnet();
    542 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    543 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    544 	if (error) {
    545 		splx(s);
    546 		return (error);
    547 	}
    548 	if (TAILQ_EMPTY(&so->so_q))
    549 		so->so_options |= SO_ACCEPTCONN;
    550 	if (backlog < 0)
    551 		backlog = 0;
    552 	so->so_qlimit = min(backlog, somaxconn);
    553 	splx(s);
    554 	return (0);
    555 }
    556 
    557 void
    558 sofree(struct socket *so)
    559 {
    560 
    561 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    562 		return;
    563 	if (so->so_head) {
    564 		/*
    565 		 * We must not decommission a socket that's on the accept(2)
    566 		 * queue.  If we do, then accept(2) may hang after select(2)
    567 		 * indicated that the listening socket was ready.
    568 		 */
    569 		if (!soqremque(so, 0))
    570 			return;
    571 	}
    572 	if (so->so_rcv.sb_hiwat)
    573 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    574 		    RLIM_INFINITY);
    575 	if (so->so_snd.sb_hiwat)
    576 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    577 		    RLIM_INFINITY);
    578 	sbrelease(&so->so_snd, so);
    579 	sorflush(so);
    580 	pool_put(&socket_pool, so);
    581 }
    582 
    583 /*
    584  * Close a socket on last file table reference removal.
    585  * Initiate disconnect if connected.
    586  * Free socket when disconnect complete.
    587  */
    588 int
    589 soclose(struct socket *so)
    590 {
    591 	struct socket	*so2;
    592 	int		s, error;
    593 
    594 	error = 0;
    595 	s = splsoftnet();		/* conservative */
    596 	if (so->so_options & SO_ACCEPTCONN) {
    597 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    598 			(void) soqremque(so2, 0);
    599 			(void) soabort(so2);
    600 		}
    601 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    602 			(void) soqremque(so2, 1);
    603 			(void) soabort(so2);
    604 		}
    605 	}
    606 	if (so->so_pcb == 0)
    607 		goto discard;
    608 	if (so->so_state & SS_ISCONNECTED) {
    609 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    610 			error = sodisconnect(so);
    611 			if (error)
    612 				goto drop;
    613 		}
    614 		if (so->so_options & SO_LINGER) {
    615 			if ((so->so_state & SS_ISDISCONNECTING) &&
    616 			    (so->so_state & SS_NBIO))
    617 				goto drop;
    618 			while (so->so_state & SS_ISCONNECTED) {
    619 				error = tsleep((caddr_t)&so->so_timeo,
    620 					       PSOCK | PCATCH, netcls,
    621 					       so->so_linger * hz);
    622 				if (error)
    623 					break;
    624 			}
    625 		}
    626 	}
    627  drop:
    628 	if (so->so_pcb) {
    629 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    630 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    631 		    (struct lwp *)0);
    632 		if (error == 0)
    633 			error = error2;
    634 	}
    635  discard:
    636 	if (so->so_state & SS_NOFDREF)
    637 		panic("soclose: NOFDREF");
    638 	so->so_state |= SS_NOFDREF;
    639 	sofree(so);
    640 	splx(s);
    641 	return (error);
    642 }
    643 
    644 /*
    645  * Must be called at splsoftnet...
    646  */
    647 int
    648 soabort(struct socket *so)
    649 {
    650 
    651 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    652 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    653 }
    654 
    655 int
    656 soaccept(struct socket *so, struct mbuf *nam)
    657 {
    658 	int	s, error;
    659 
    660 	error = 0;
    661 	s = splsoftnet();
    662 	if ((so->so_state & SS_NOFDREF) == 0)
    663 		panic("soaccept: !NOFDREF");
    664 	so->so_state &= ~SS_NOFDREF;
    665 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    666 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    667 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    668 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
    669 	else
    670 		error = ECONNABORTED;
    671 
    672 	splx(s);
    673 	return (error);
    674 }
    675 
    676 int
    677 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    678 {
    679 	int		s, error;
    680 
    681 	if (so->so_options & SO_ACCEPTCONN)
    682 		return (EOPNOTSUPP);
    683 	s = splsoftnet();
    684 	/*
    685 	 * If protocol is connection-based, can only connect once.
    686 	 * Otherwise, if connected, try to disconnect first.
    687 	 * This allows user to disconnect by connecting to, e.g.,
    688 	 * a null address.
    689 	 */
    690 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    691 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    692 	    (error = sodisconnect(so))))
    693 		error = EISCONN;
    694 	else
    695 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    696 		    (struct mbuf *)0, nam, (struct mbuf *)0, l);
    697 	splx(s);
    698 	return (error);
    699 }
    700 
    701 int
    702 soconnect2(struct socket *so1, struct socket *so2)
    703 {
    704 	int	s, error;
    705 
    706 	s = splsoftnet();
    707 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    708 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    709 	    (struct lwp *)0);
    710 	splx(s);
    711 	return (error);
    712 }
    713 
    714 int
    715 sodisconnect(struct socket *so)
    716 {
    717 	int	s, error;
    718 
    719 	s = splsoftnet();
    720 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    721 		error = ENOTCONN;
    722 		goto bad;
    723 	}
    724 	if (so->so_state & SS_ISDISCONNECTING) {
    725 		error = EALREADY;
    726 		goto bad;
    727 	}
    728 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    729 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    730 	    (struct lwp *)0);
    731  bad:
    732 	splx(s);
    733 	sodopendfree();
    734 	return (error);
    735 }
    736 
    737 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    738 /*
    739  * Send on a socket.
    740  * If send must go all at once and message is larger than
    741  * send buffering, then hard error.
    742  * Lock against other senders.
    743  * If must go all at once and not enough room now, then
    744  * inform user that this would block and do nothing.
    745  * Otherwise, if nonblocking, send as much as possible.
    746  * The data to be sent is described by "uio" if nonzero,
    747  * otherwise by the mbuf chain "top" (which must be null
    748  * if uio is not).  Data provided in mbuf chain must be small
    749  * enough to send all at once.
    750  *
    751  * Returns nonzero on error, timeout or signal; callers
    752  * must check for short counts if EINTR/ERESTART are returned.
    753  * Data and control buffers are freed on return.
    754  */
    755 int
    756 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    757 	struct mbuf *control, int flags, struct lwp *l)
    758 {
    759 	struct mbuf	**mp, *m;
    760 	struct proc	*p;
    761 	long		space, len, resid, clen, mlen;
    762 	int		error, s, dontroute, atomic;
    763 
    764 	p = l->l_proc;
    765 	sodopendfree();
    766 
    767 	clen = 0;
    768 	atomic = sosendallatonce(so) || top;
    769 	if (uio)
    770 		resid = uio->uio_resid;
    771 	else
    772 		resid = top->m_pkthdr.len;
    773 	/*
    774 	 * In theory resid should be unsigned.
    775 	 * However, space must be signed, as it might be less than 0
    776 	 * if we over-committed, and we must use a signed comparison
    777 	 * of space and resid.  On the other hand, a negative resid
    778 	 * causes us to loop sending 0-length segments to the protocol.
    779 	 */
    780 	if (resid < 0) {
    781 		error = EINVAL;
    782 		goto out;
    783 	}
    784 	dontroute =
    785 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    786 	    (so->so_proto->pr_flags & PR_ATOMIC);
    787 	if (p)
    788 		p->p_stats->p_ru.ru_msgsnd++;
    789 	if (control)
    790 		clen = control->m_len;
    791 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    792 
    793  restart:
    794 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    795 		goto out;
    796 	do {
    797 		s = splsoftnet();
    798 		if (so->so_state & SS_CANTSENDMORE)
    799 			snderr(EPIPE);
    800 		if (so->so_error) {
    801 			error = so->so_error;
    802 			so->so_error = 0;
    803 			splx(s);
    804 			goto release;
    805 		}
    806 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    807 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    808 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    809 				    !(resid == 0 && clen != 0))
    810 					snderr(ENOTCONN);
    811 			} else if (addr == 0)
    812 				snderr(EDESTADDRREQ);
    813 		}
    814 		space = sbspace(&so->so_snd);
    815 		if (flags & MSG_OOB)
    816 			space += 1024;
    817 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    818 		    clen > so->so_snd.sb_hiwat)
    819 			snderr(EMSGSIZE);
    820 		if (space < resid + clen &&
    821 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    822 			if (so->so_state & SS_NBIO)
    823 				snderr(EWOULDBLOCK);
    824 			sbunlock(&so->so_snd);
    825 			error = sbwait(&so->so_snd);
    826 			splx(s);
    827 			if (error)
    828 				goto out;
    829 			goto restart;
    830 		}
    831 		splx(s);
    832 		mp = &top;
    833 		space -= clen;
    834 		do {
    835 			if (uio == NULL) {
    836 				/*
    837 				 * Data is prepackaged in "top".
    838 				 */
    839 				resid = 0;
    840 				if (flags & MSG_EOR)
    841 					top->m_flags |= M_EOR;
    842 			} else do {
    843 				if (top == 0) {
    844 					m = m_gethdr(M_WAIT, MT_DATA);
    845 					mlen = MHLEN;
    846 					m->m_pkthdr.len = 0;
    847 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    848 				} else {
    849 					m = m_get(M_WAIT, MT_DATA);
    850 					mlen = MLEN;
    851 				}
    852 				MCLAIM(m, so->so_snd.sb_mowner);
    853 				if (sock_loan_thresh >= 0 &&
    854 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    855 				    space >= sock_loan_thresh &&
    856 				    (len = sosend_loan(so, uio, m,
    857 						       space)) != 0) {
    858 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    859 					space -= len;
    860 					goto have_data;
    861 				}
    862 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    863 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    864 					m_clget(m, M_WAIT);
    865 					if ((m->m_flags & M_EXT) == 0)
    866 						goto nopages;
    867 					mlen = MCLBYTES;
    868 					if (atomic && top == 0) {
    869 						len = lmin(MCLBYTES - max_hdr,
    870 						    resid);
    871 						m->m_data += max_hdr;
    872 					} else
    873 						len = lmin(MCLBYTES, resid);
    874 					space -= len;
    875 				} else {
    876  nopages:
    877 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    878 					len = lmin(lmin(mlen, resid), space);
    879 					space -= len;
    880 					/*
    881 					 * For datagram protocols, leave room
    882 					 * for protocol headers in first mbuf.
    883 					 */
    884 					if (atomic && top == 0 && len < mlen)
    885 						MH_ALIGN(m, len);
    886 				}
    887 				error = uiomove(mtod(m, caddr_t), (int)len,
    888 				    uio);
    889  have_data:
    890 				resid = uio->uio_resid;
    891 				m->m_len = len;
    892 				*mp = m;
    893 				top->m_pkthdr.len += len;
    894 				if (error)
    895 					goto release;
    896 				mp = &m->m_next;
    897 				if (resid <= 0) {
    898 					if (flags & MSG_EOR)
    899 						top->m_flags |= M_EOR;
    900 					break;
    901 				}
    902 			} while (space > 0 && atomic);
    903 
    904 			s = splsoftnet();
    905 
    906 			if (so->so_state & SS_CANTSENDMORE)
    907 				snderr(EPIPE);
    908 
    909 			if (dontroute)
    910 				so->so_options |= SO_DONTROUTE;
    911 			if (resid > 0)
    912 				so->so_state |= SS_MORETOCOME;
    913 			error = (*so->so_proto->pr_usrreq)(so,
    914 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    915 			    top, addr, control, curlwp);	/* XXX */
    916 			if (dontroute)
    917 				so->so_options &= ~SO_DONTROUTE;
    918 			if (resid > 0)
    919 				so->so_state &= ~SS_MORETOCOME;
    920 			splx(s);
    921 
    922 			clen = 0;
    923 			control = 0;
    924 			top = 0;
    925 			mp = &top;
    926 			if (error)
    927 				goto release;
    928 		} while (resid && space > 0);
    929 	} while (resid);
    930 
    931  release:
    932 	sbunlock(&so->so_snd);
    933  out:
    934 	if (top)
    935 		m_freem(top);
    936 	if (control)
    937 		m_freem(control);
    938 	return (error);
    939 }
    940 
    941 /*
    942  * Implement receive operations on a socket.
    943  * We depend on the way that records are added to the sockbuf
    944  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    945  * must begin with an address if the protocol so specifies,
    946  * followed by an optional mbuf or mbufs containing ancillary data,
    947  * and then zero or more mbufs of data.
    948  * In order to avoid blocking network interrupts for the entire time here,
    949  * we splx() while doing the actual copy to user space.
    950  * Although the sockbuf is locked, new data may still be appended,
    951  * and thus we must maintain consistency of the sockbuf during that time.
    952  *
    953  * The caller may receive the data as a single mbuf chain by supplying
    954  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    955  * only for the count in uio_resid.
    956  */
    957 int
    958 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    959 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    960 {
    961 	struct lwp *l = curlwp;
    962 	struct mbuf	*m, **mp;
    963 	int		flags, len, error, s, offset, moff, type, orig_resid;
    964 	const struct protosw	*pr;
    965 	struct mbuf	*nextrecord;
    966 	int		mbuf_removed = 0;
    967 
    968 	pr = so->so_proto;
    969 	mp = mp0;
    970 	type = 0;
    971 	orig_resid = uio->uio_resid;
    972 
    973 	if (paddr)
    974 		*paddr = 0;
    975 	if (controlp)
    976 		*controlp = 0;
    977 	if (flagsp)
    978 		flags = *flagsp &~ MSG_EOR;
    979 	else
    980 		flags = 0;
    981 
    982 	if ((flags & MSG_DONTWAIT) == 0)
    983 		sodopendfree();
    984 
    985 	if (flags & MSG_OOB) {
    986 		m = m_get(M_WAIT, MT_DATA);
    987 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    988 		    (struct mbuf *)(long)(flags & MSG_PEEK),
    989 		    (struct mbuf *)0, l);
    990 		if (error)
    991 			goto bad;
    992 		do {
    993 			error = uiomove(mtod(m, caddr_t),
    994 			    (int) min(uio->uio_resid, m->m_len), uio);
    995 			m = m_free(m);
    996 		} while (uio->uio_resid && error == 0 && m);
    997  bad:
    998 		if (m)
    999 			m_freem(m);
   1000 		return (error);
   1001 	}
   1002 	if (mp)
   1003 		*mp = (struct mbuf *)0;
   1004 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1005 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1006 		    (struct mbuf *)0, (struct mbuf *)0, l);
   1007 
   1008  restart:
   1009 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1010 		return (error);
   1011 	s = splsoftnet();
   1012 
   1013 	m = so->so_rcv.sb_mb;
   1014 	/*
   1015 	 * If we have less data than requested, block awaiting more
   1016 	 * (subject to any timeout) if:
   1017 	 *   1. the current count is less than the low water mark,
   1018 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1019 	 *	receive operation at once if we block (resid <= hiwat), or
   1020 	 *   3. MSG_DONTWAIT is not set.
   1021 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1022 	 * we have to do the receive in sections, and thus risk returning
   1023 	 * a short count if a timeout or signal occurs after we start.
   1024 	 */
   1025 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1026 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1027 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1028 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1029 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1030 #ifdef DIAGNOSTIC
   1031 		if (m == 0 && so->so_rcv.sb_cc)
   1032 			panic("receive 1");
   1033 #endif
   1034 		if (so->so_error) {
   1035 			if (m)
   1036 				goto dontblock;
   1037 			error = so->so_error;
   1038 			if ((flags & MSG_PEEK) == 0)
   1039 				so->so_error = 0;
   1040 			goto release;
   1041 		}
   1042 		if (so->so_state & SS_CANTRCVMORE) {
   1043 			if (m)
   1044 				goto dontblock;
   1045 			else
   1046 				goto release;
   1047 		}
   1048 		for (; m; m = m->m_next)
   1049 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1050 				m = so->so_rcv.sb_mb;
   1051 				goto dontblock;
   1052 			}
   1053 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1054 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1055 			error = ENOTCONN;
   1056 			goto release;
   1057 		}
   1058 		if (uio->uio_resid == 0)
   1059 			goto release;
   1060 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1061 			error = EWOULDBLOCK;
   1062 			goto release;
   1063 		}
   1064 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1065 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1066 		sbunlock(&so->so_rcv);
   1067 		error = sbwait(&so->so_rcv);
   1068 		splx(s);
   1069 		if (error)
   1070 			return (error);
   1071 		goto restart;
   1072 	}
   1073  dontblock:
   1074 	/*
   1075 	 * On entry here, m points to the first record of the socket buffer.
   1076 	 * While we process the initial mbufs containing address and control
   1077 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1078 	 */
   1079 	if (l)
   1080 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1081 	KASSERT(m == so->so_rcv.sb_mb);
   1082 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1083 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1084 	nextrecord = m->m_nextpkt;
   1085 	if (pr->pr_flags & PR_ADDR) {
   1086 #ifdef DIAGNOSTIC
   1087 		if (m->m_type != MT_SONAME)
   1088 			panic("receive 1a");
   1089 #endif
   1090 		orig_resid = 0;
   1091 		if (flags & MSG_PEEK) {
   1092 			if (paddr)
   1093 				*paddr = m_copy(m, 0, m->m_len);
   1094 			m = m->m_next;
   1095 		} else {
   1096 			sbfree(&so->so_rcv, m);
   1097 			mbuf_removed = 1;
   1098 			if (paddr) {
   1099 				*paddr = m;
   1100 				so->so_rcv.sb_mb = m->m_next;
   1101 				m->m_next = 0;
   1102 				m = so->so_rcv.sb_mb;
   1103 			} else {
   1104 				MFREE(m, so->so_rcv.sb_mb);
   1105 				m = so->so_rcv.sb_mb;
   1106 			}
   1107 		}
   1108 	}
   1109 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1110 		if (flags & MSG_PEEK) {
   1111 			if (controlp)
   1112 				*controlp = m_copy(m, 0, m->m_len);
   1113 			m = m->m_next;
   1114 		} else {
   1115 			sbfree(&so->so_rcv, m);
   1116 			mbuf_removed = 1;
   1117 			if (controlp) {
   1118 				struct domain *dom = pr->pr_domain;
   1119 				if (dom->dom_externalize && l &&
   1120 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1121 				    SCM_RIGHTS)
   1122 					error = (*dom->dom_externalize)(m, l);
   1123 				*controlp = m;
   1124 				so->so_rcv.sb_mb = m->m_next;
   1125 				m->m_next = 0;
   1126 				m = so->so_rcv.sb_mb;
   1127 			} else {
   1128 				/*
   1129 				 * Dispose of any SCM_RIGHTS message that went
   1130 				 * through the read path rather than recv.
   1131 				 */
   1132 				if (pr->pr_domain->dom_dispose &&
   1133 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1134 					(*pr->pr_domain->dom_dispose)(m);
   1135 				MFREE(m, so->so_rcv.sb_mb);
   1136 				m = so->so_rcv.sb_mb;
   1137 			}
   1138 		}
   1139 		if (controlp) {
   1140 			orig_resid = 0;
   1141 			controlp = &(*controlp)->m_next;
   1142 		}
   1143 	}
   1144 
   1145 	/*
   1146 	 * If m is non-NULL, we have some data to read.  From now on,
   1147 	 * make sure to keep sb_lastrecord consistent when working on
   1148 	 * the last packet on the chain (nextrecord == NULL) and we
   1149 	 * change m->m_nextpkt.
   1150 	 */
   1151 	if (m) {
   1152 		if ((flags & MSG_PEEK) == 0) {
   1153 			m->m_nextpkt = nextrecord;
   1154 			/*
   1155 			 * If nextrecord == NULL (this is a single chain),
   1156 			 * then sb_lastrecord may not be valid here if m
   1157 			 * was changed earlier.
   1158 			 */
   1159 			if (nextrecord == NULL) {
   1160 				KASSERT(so->so_rcv.sb_mb == m);
   1161 				so->so_rcv.sb_lastrecord = m;
   1162 			}
   1163 		}
   1164 		type = m->m_type;
   1165 		if (type == MT_OOBDATA)
   1166 			flags |= MSG_OOB;
   1167 	} else {
   1168 		if ((flags & MSG_PEEK) == 0) {
   1169 			KASSERT(so->so_rcv.sb_mb == m);
   1170 			so->so_rcv.sb_mb = nextrecord;
   1171 			SB_EMPTY_FIXUP(&so->so_rcv);
   1172 		}
   1173 	}
   1174 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1175 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1176 
   1177 	moff = 0;
   1178 	offset = 0;
   1179 	while (m && uio->uio_resid > 0 && error == 0) {
   1180 		if (m->m_type == MT_OOBDATA) {
   1181 			if (type != MT_OOBDATA)
   1182 				break;
   1183 		} else if (type == MT_OOBDATA)
   1184 			break;
   1185 #ifdef DIAGNOSTIC
   1186 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1187 			panic("receive 3");
   1188 #endif
   1189 		so->so_state &= ~SS_RCVATMARK;
   1190 		len = uio->uio_resid;
   1191 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1192 			len = so->so_oobmark - offset;
   1193 		if (len > m->m_len - moff)
   1194 			len = m->m_len - moff;
   1195 		/*
   1196 		 * If mp is set, just pass back the mbufs.
   1197 		 * Otherwise copy them out via the uio, then free.
   1198 		 * Sockbuf must be consistent here (points to current mbuf,
   1199 		 * it points to next record) when we drop priority;
   1200 		 * we must note any additions to the sockbuf when we
   1201 		 * block interrupts again.
   1202 		 */
   1203 		if (mp == 0) {
   1204 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1205 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1206 			splx(s);
   1207 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1208 			s = splsoftnet();
   1209 			if (error) {
   1210 				/*
   1211 				 * If any part of the record has been removed
   1212 				 * (such as the MT_SONAME mbuf, which will
   1213 				 * happen when PR_ADDR, and thus also
   1214 				 * PR_ATOMIC, is set), then drop the entire
   1215 				 * record to maintain the atomicity of the
   1216 				 * receive operation.
   1217 				 *
   1218 				 * This avoids a later panic("receive 1a")
   1219 				 * when compiled with DIAGNOSTIC.
   1220 				 */
   1221 				if (m && mbuf_removed
   1222 				    && (pr->pr_flags & PR_ATOMIC))
   1223 					(void) sbdroprecord(&so->so_rcv);
   1224 
   1225 				goto release;
   1226 			}
   1227 		} else
   1228 			uio->uio_resid -= len;
   1229 		if (len == m->m_len - moff) {
   1230 			if (m->m_flags & M_EOR)
   1231 				flags |= MSG_EOR;
   1232 			if (flags & MSG_PEEK) {
   1233 				m = m->m_next;
   1234 				moff = 0;
   1235 			} else {
   1236 				nextrecord = m->m_nextpkt;
   1237 				sbfree(&so->so_rcv, m);
   1238 				if (mp) {
   1239 					*mp = m;
   1240 					mp = &m->m_next;
   1241 					so->so_rcv.sb_mb = m = m->m_next;
   1242 					*mp = (struct mbuf *)0;
   1243 				} else {
   1244 					MFREE(m, so->so_rcv.sb_mb);
   1245 					m = so->so_rcv.sb_mb;
   1246 				}
   1247 				/*
   1248 				 * If m != NULL, we also know that
   1249 				 * so->so_rcv.sb_mb != NULL.
   1250 				 */
   1251 				KASSERT(so->so_rcv.sb_mb == m);
   1252 				if (m) {
   1253 					m->m_nextpkt = nextrecord;
   1254 					if (nextrecord == NULL)
   1255 						so->so_rcv.sb_lastrecord = m;
   1256 				} else {
   1257 					so->so_rcv.sb_mb = nextrecord;
   1258 					SB_EMPTY_FIXUP(&so->so_rcv);
   1259 				}
   1260 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1261 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1262 			}
   1263 		} else {
   1264 			if (flags & MSG_PEEK)
   1265 				moff += len;
   1266 			else {
   1267 				if (mp)
   1268 					*mp = m_copym(m, 0, len, M_WAIT);
   1269 				m->m_data += len;
   1270 				m->m_len -= len;
   1271 				so->so_rcv.sb_cc -= len;
   1272 			}
   1273 		}
   1274 		if (so->so_oobmark) {
   1275 			if ((flags & MSG_PEEK) == 0) {
   1276 				so->so_oobmark -= len;
   1277 				if (so->so_oobmark == 0) {
   1278 					so->so_state |= SS_RCVATMARK;
   1279 					break;
   1280 				}
   1281 			} else {
   1282 				offset += len;
   1283 				if (offset == so->so_oobmark)
   1284 					break;
   1285 			}
   1286 		}
   1287 		if (flags & MSG_EOR)
   1288 			break;
   1289 		/*
   1290 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1291 		 * we must not quit until "uio->uio_resid == 0" or an error
   1292 		 * termination.  If a signal/timeout occurs, return
   1293 		 * with a short count but without error.
   1294 		 * Keep sockbuf locked against other readers.
   1295 		 */
   1296 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1297 		    !sosendallatonce(so) && !nextrecord) {
   1298 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1299 				break;
   1300 			/*
   1301 			 * If we are peeking and the socket receive buffer is
   1302 			 * full, stop since we can't get more data to peek at.
   1303 			 */
   1304 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1305 				break;
   1306 			/*
   1307 			 * If we've drained the socket buffer, tell the
   1308 			 * protocol in case it needs to do something to
   1309 			 * get it filled again.
   1310 			 */
   1311 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1312 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1313 				    (struct mbuf *)0,
   1314 				    (struct mbuf *)(long)flags,
   1315 				    (struct mbuf *)0, l);
   1316 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1317 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1318 			error = sbwait(&so->so_rcv);
   1319 			if (error) {
   1320 				sbunlock(&so->so_rcv);
   1321 				splx(s);
   1322 				return (0);
   1323 			}
   1324 			if ((m = so->so_rcv.sb_mb) != NULL)
   1325 				nextrecord = m->m_nextpkt;
   1326 		}
   1327 	}
   1328 
   1329 	if (m && pr->pr_flags & PR_ATOMIC) {
   1330 		flags |= MSG_TRUNC;
   1331 		if ((flags & MSG_PEEK) == 0)
   1332 			(void) sbdroprecord(&so->so_rcv);
   1333 	}
   1334 	if ((flags & MSG_PEEK) == 0) {
   1335 		if (m == 0) {
   1336 			/*
   1337 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1338 			 * part makes sure sb_lastrecord is up-to-date if
   1339 			 * there is still data in the socket buffer.
   1340 			 */
   1341 			so->so_rcv.sb_mb = nextrecord;
   1342 			if (so->so_rcv.sb_mb == NULL) {
   1343 				so->so_rcv.sb_mbtail = NULL;
   1344 				so->so_rcv.sb_lastrecord = NULL;
   1345 			} else if (nextrecord->m_nextpkt == NULL)
   1346 				so->so_rcv.sb_lastrecord = nextrecord;
   1347 		}
   1348 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1349 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1350 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1351 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1352 			    (struct mbuf *)(long)flags, (struct mbuf *)0, l);
   1353 	}
   1354 	if (orig_resid == uio->uio_resid && orig_resid &&
   1355 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1356 		sbunlock(&so->so_rcv);
   1357 		splx(s);
   1358 		goto restart;
   1359 	}
   1360 
   1361 	if (flagsp)
   1362 		*flagsp |= flags;
   1363  release:
   1364 	sbunlock(&so->so_rcv);
   1365 	splx(s);
   1366 	return (error);
   1367 }
   1368 
   1369 int
   1370 soshutdown(struct socket *so, int how)
   1371 {
   1372 	const struct protosw	*pr;
   1373 
   1374 	pr = so->so_proto;
   1375 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1376 		return (EINVAL);
   1377 
   1378 	if (how == SHUT_RD || how == SHUT_RDWR)
   1379 		sorflush(so);
   1380 	if (how == SHUT_WR || how == SHUT_RDWR)
   1381 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1382 		    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
   1383 	return (0);
   1384 }
   1385 
   1386 void
   1387 sorflush(struct socket *so)
   1388 {
   1389 	struct sockbuf	*sb, asb;
   1390 	const struct protosw	*pr;
   1391 	int		s;
   1392 
   1393 	sb = &so->so_rcv;
   1394 	pr = so->so_proto;
   1395 	sb->sb_flags |= SB_NOINTR;
   1396 	(void) sblock(sb, M_WAITOK);
   1397 	s = splnet();
   1398 	socantrcvmore(so);
   1399 	sbunlock(sb);
   1400 	asb = *sb;
   1401 	/*
   1402 	 * Clear most of the sockbuf structure, but leave some of the
   1403 	 * fields valid.
   1404 	 */
   1405 	memset(&sb->sb_startzero, 0,
   1406 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1407 	splx(s);
   1408 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1409 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1410 	sbrelease(&asb, so);
   1411 }
   1412 
   1413 int
   1414 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1415 {
   1416 	int		error;
   1417 	struct mbuf	*m;
   1418 
   1419 	error = 0;
   1420 	m = m0;
   1421 	if (level != SOL_SOCKET) {
   1422 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1423 			return ((*so->so_proto->pr_ctloutput)
   1424 				  (PRCO_SETOPT, so, level, optname, &m0));
   1425 		error = ENOPROTOOPT;
   1426 	} else {
   1427 		switch (optname) {
   1428 
   1429 		case SO_LINGER:
   1430 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1431 				error = EINVAL;
   1432 				goto bad;
   1433 			}
   1434 			if (mtod(m, struct linger *)->l_linger < 0 ||
   1435 			    mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
   1436 				error = EDOM;
   1437 				goto bad;
   1438 			}
   1439 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1440 			/* fall thru... */
   1441 
   1442 		case SO_DEBUG:
   1443 		case SO_KEEPALIVE:
   1444 		case SO_DONTROUTE:
   1445 		case SO_USELOOPBACK:
   1446 		case SO_BROADCAST:
   1447 		case SO_REUSEADDR:
   1448 		case SO_REUSEPORT:
   1449 		case SO_OOBINLINE:
   1450 		case SO_TIMESTAMP:
   1451 			if (m == NULL || m->m_len < sizeof(int)) {
   1452 				error = EINVAL;
   1453 				goto bad;
   1454 			}
   1455 			if (*mtod(m, int *))
   1456 				so->so_options |= optname;
   1457 			else
   1458 				so->so_options &= ~optname;
   1459 			break;
   1460 
   1461 		case SO_SNDBUF:
   1462 		case SO_RCVBUF:
   1463 		case SO_SNDLOWAT:
   1464 		case SO_RCVLOWAT:
   1465 		    {
   1466 			int optval;
   1467 
   1468 			if (m == NULL || m->m_len < sizeof(int)) {
   1469 				error = EINVAL;
   1470 				goto bad;
   1471 			}
   1472 
   1473 			/*
   1474 			 * Values < 1 make no sense for any of these
   1475 			 * options, so disallow them.
   1476 			 */
   1477 			optval = *mtod(m, int *);
   1478 			if (optval < 1) {
   1479 				error = EINVAL;
   1480 				goto bad;
   1481 			}
   1482 
   1483 			switch (optname) {
   1484 
   1485 			case SO_SNDBUF:
   1486 			case SO_RCVBUF:
   1487 				if (sbreserve(optname == SO_SNDBUF ?
   1488 				    &so->so_snd : &so->so_rcv,
   1489 				    (u_long) optval, so) == 0) {
   1490 					error = ENOBUFS;
   1491 					goto bad;
   1492 				}
   1493 				break;
   1494 
   1495 			/*
   1496 			 * Make sure the low-water is never greater than
   1497 			 * the high-water.
   1498 			 */
   1499 			case SO_SNDLOWAT:
   1500 				so->so_snd.sb_lowat =
   1501 				    (optval > so->so_snd.sb_hiwat) ?
   1502 				    so->so_snd.sb_hiwat : optval;
   1503 				break;
   1504 			case SO_RCVLOWAT:
   1505 				so->so_rcv.sb_lowat =
   1506 				    (optval > so->so_rcv.sb_hiwat) ?
   1507 				    so->so_rcv.sb_hiwat : optval;
   1508 				break;
   1509 			}
   1510 			break;
   1511 		    }
   1512 
   1513 		case SO_SNDTIMEO:
   1514 		case SO_RCVTIMEO:
   1515 		    {
   1516 			struct timeval *tv;
   1517 			int val;
   1518 
   1519 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1520 				error = EINVAL;
   1521 				goto bad;
   1522 			}
   1523 			tv = mtod(m, struct timeval *);
   1524 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1525 				error = EDOM;
   1526 				goto bad;
   1527 			}
   1528 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1529 			if (val == 0 && tv->tv_usec != 0)
   1530 				val = 1;
   1531 
   1532 			switch (optname) {
   1533 
   1534 			case SO_SNDTIMEO:
   1535 				so->so_snd.sb_timeo = val;
   1536 				break;
   1537 			case SO_RCVTIMEO:
   1538 				so->so_rcv.sb_timeo = val;
   1539 				break;
   1540 			}
   1541 			break;
   1542 		    }
   1543 
   1544 		default:
   1545 			error = ENOPROTOOPT;
   1546 			break;
   1547 		}
   1548 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1549 			(void) ((*so->so_proto->pr_ctloutput)
   1550 				  (PRCO_SETOPT, so, level, optname, &m0));
   1551 			m = NULL;	/* freed by protocol */
   1552 		}
   1553 	}
   1554  bad:
   1555 	if (m)
   1556 		(void) m_free(m);
   1557 	return (error);
   1558 }
   1559 
   1560 int
   1561 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1562 {
   1563 	struct mbuf	*m;
   1564 
   1565 	if (level != SOL_SOCKET) {
   1566 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1567 			return ((*so->so_proto->pr_ctloutput)
   1568 				  (PRCO_GETOPT, so, level, optname, mp));
   1569 		} else
   1570 			return (ENOPROTOOPT);
   1571 	} else {
   1572 		m = m_get(M_WAIT, MT_SOOPTS);
   1573 		m->m_len = sizeof(int);
   1574 
   1575 		switch (optname) {
   1576 
   1577 		case SO_LINGER:
   1578 			m->m_len = sizeof(struct linger);
   1579 			mtod(m, struct linger *)->l_onoff =
   1580 				so->so_options & SO_LINGER;
   1581 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1582 			break;
   1583 
   1584 		case SO_USELOOPBACK:
   1585 		case SO_DONTROUTE:
   1586 		case SO_DEBUG:
   1587 		case SO_KEEPALIVE:
   1588 		case SO_REUSEADDR:
   1589 		case SO_REUSEPORT:
   1590 		case SO_BROADCAST:
   1591 		case SO_OOBINLINE:
   1592 		case SO_TIMESTAMP:
   1593 			*mtod(m, int *) = so->so_options & optname;
   1594 			break;
   1595 
   1596 		case SO_TYPE:
   1597 			*mtod(m, int *) = so->so_type;
   1598 			break;
   1599 
   1600 		case SO_ERROR:
   1601 			*mtod(m, int *) = so->so_error;
   1602 			so->so_error = 0;
   1603 			break;
   1604 
   1605 		case SO_SNDBUF:
   1606 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1607 			break;
   1608 
   1609 		case SO_RCVBUF:
   1610 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1611 			break;
   1612 
   1613 		case SO_SNDLOWAT:
   1614 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1615 			break;
   1616 
   1617 		case SO_RCVLOWAT:
   1618 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1619 			break;
   1620 
   1621 		case SO_SNDTIMEO:
   1622 		case SO_RCVTIMEO:
   1623 		    {
   1624 			int val = (optname == SO_SNDTIMEO ?
   1625 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1626 
   1627 			m->m_len = sizeof(struct timeval);
   1628 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1629 			mtod(m, struct timeval *)->tv_usec =
   1630 			    (val % hz) * tick;
   1631 			break;
   1632 		    }
   1633 
   1634 		case SO_OVERFLOWED:
   1635 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1636 			break;
   1637 
   1638 		default:
   1639 			(void)m_free(m);
   1640 			return (ENOPROTOOPT);
   1641 		}
   1642 		*mp = m;
   1643 		return (0);
   1644 	}
   1645 }
   1646 
   1647 void
   1648 sohasoutofband(struct socket *so)
   1649 {
   1650 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1651 	selwakeup(&so->so_rcv.sb_sel);
   1652 }
   1653 
   1654 static void
   1655 filt_sordetach(struct knote *kn)
   1656 {
   1657 	struct socket	*so;
   1658 
   1659 	so = (struct socket *)kn->kn_fp->f_data;
   1660 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1661 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1662 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1663 }
   1664 
   1665 /*ARGSUSED*/
   1666 static int
   1667 filt_soread(struct knote *kn, long hint)
   1668 {
   1669 	struct socket	*so;
   1670 
   1671 	so = (struct socket *)kn->kn_fp->f_data;
   1672 	kn->kn_data = so->so_rcv.sb_cc;
   1673 	if (so->so_state & SS_CANTRCVMORE) {
   1674 		kn->kn_flags |= EV_EOF;
   1675 		kn->kn_fflags = so->so_error;
   1676 		return (1);
   1677 	}
   1678 	if (so->so_error)	/* temporary udp error */
   1679 		return (1);
   1680 	if (kn->kn_sfflags & NOTE_LOWAT)
   1681 		return (kn->kn_data >= kn->kn_sdata);
   1682 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1683 }
   1684 
   1685 static void
   1686 filt_sowdetach(struct knote *kn)
   1687 {
   1688 	struct socket	*so;
   1689 
   1690 	so = (struct socket *)kn->kn_fp->f_data;
   1691 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1692 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1693 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1694 }
   1695 
   1696 /*ARGSUSED*/
   1697 static int
   1698 filt_sowrite(struct knote *kn, long hint)
   1699 {
   1700 	struct socket	*so;
   1701 
   1702 	so = (struct socket *)kn->kn_fp->f_data;
   1703 	kn->kn_data = sbspace(&so->so_snd);
   1704 	if (so->so_state & SS_CANTSENDMORE) {
   1705 		kn->kn_flags |= EV_EOF;
   1706 		kn->kn_fflags = so->so_error;
   1707 		return (1);
   1708 	}
   1709 	if (so->so_error)	/* temporary udp error */
   1710 		return (1);
   1711 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1712 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1713 		return (0);
   1714 	if (kn->kn_sfflags & NOTE_LOWAT)
   1715 		return (kn->kn_data >= kn->kn_sdata);
   1716 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1717 }
   1718 
   1719 /*ARGSUSED*/
   1720 static int
   1721 filt_solisten(struct knote *kn, long hint)
   1722 {
   1723 	struct socket	*so;
   1724 
   1725 	so = (struct socket *)kn->kn_fp->f_data;
   1726 
   1727 	/*
   1728 	 * Set kn_data to number of incoming connections, not
   1729 	 * counting partial (incomplete) connections.
   1730 	 */
   1731 	kn->kn_data = so->so_qlen;
   1732 	return (kn->kn_data > 0);
   1733 }
   1734 
   1735 static const struct filterops solisten_filtops =
   1736 	{ 1, NULL, filt_sordetach, filt_solisten };
   1737 static const struct filterops soread_filtops =
   1738 	{ 1, NULL, filt_sordetach, filt_soread };
   1739 static const struct filterops sowrite_filtops =
   1740 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1741 
   1742 int
   1743 soo_kqfilter(struct file *fp, struct knote *kn)
   1744 {
   1745 	struct socket	*so;
   1746 	struct sockbuf	*sb;
   1747 
   1748 	so = (struct socket *)kn->kn_fp->f_data;
   1749 	switch (kn->kn_filter) {
   1750 	case EVFILT_READ:
   1751 		if (so->so_options & SO_ACCEPTCONN)
   1752 			kn->kn_fop = &solisten_filtops;
   1753 		else
   1754 			kn->kn_fop = &soread_filtops;
   1755 		sb = &so->so_rcv;
   1756 		break;
   1757 	case EVFILT_WRITE:
   1758 		kn->kn_fop = &sowrite_filtops;
   1759 		sb = &so->so_snd;
   1760 		break;
   1761 	default:
   1762 		return (1);
   1763 	}
   1764 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1765 	sb->sb_flags |= SB_KNOTE;
   1766 	return (0);
   1767 }
   1768 
   1769 #include <sys/sysctl.h>
   1770 
   1771 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1772 
   1773 /*
   1774  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1775  * value is not too small.
   1776  * (XXX should we maybe make sure it's not too large as well?)
   1777  */
   1778 static int
   1779 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1780 {
   1781 	int error, new_somaxkva;
   1782 	struct sysctlnode node;
   1783 	int s;
   1784 
   1785 	new_somaxkva = somaxkva;
   1786 	node = *rnode;
   1787 	node.sysctl_data = &new_somaxkva;
   1788 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1789 	if (error || newp == NULL)
   1790 		return (error);
   1791 
   1792 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1793 		return (EINVAL);
   1794 
   1795 	s = splvm();
   1796 	simple_lock(&so_pendfree_slock);
   1797 	somaxkva = new_somaxkva;
   1798 	wakeup(&socurkva);
   1799 	simple_unlock(&so_pendfree_slock);
   1800 	splx(s);
   1801 
   1802 	return (error);
   1803 }
   1804 
   1805 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1806 {
   1807 
   1808 	sysctl_createv(clog, 0, NULL, NULL,
   1809 		       CTLFLAG_PERMANENT,
   1810 		       CTLTYPE_NODE, "kern", NULL,
   1811 		       NULL, 0, NULL, 0,
   1812 		       CTL_KERN, CTL_EOL);
   1813 
   1814 	sysctl_createv(clog, 0, NULL, NULL,
   1815 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1816 		       CTLTYPE_INT, "somaxkva",
   1817 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1818 				    "used for socket buffers"),
   1819 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1820 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1821 }
   1822