uipc_socket.c revision 1.111.2.5 1 /* $NetBSD: uipc_socket.c,v 1.111.2.5 2006/12/30 20:50:07 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.5 2006/12/30 20:50:07 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size, boolean_t mapped)
259 {
260 vaddr_t sva, eva;
261 vsize_t len;
262 int npgs;
263
264 KASSERT(pgs != NULL);
265
266 eva = round_page((vaddr_t) buf + size);
267 sva = trunc_page((vaddr_t) buf);
268 len = eva - sva;
269 npgs = len >> PAGE_SHIFT;
270
271 if (mapped) {
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 }
275 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
276 sokvafree(sva, len);
277 }
278
279 static size_t
280 sodopendfree()
281 {
282 int s;
283 size_t rv;
284
285 s = splvm();
286 simple_lock(&so_pendfree_slock);
287 rv = sodopendfreel();
288 simple_unlock(&so_pendfree_slock);
289 splx(s);
290
291 return rv;
292 }
293
294 /*
295 * sodopendfreel: free mbufs on "pendfree" list.
296 * unlock and relock so_pendfree_slock when freeing mbufs.
297 *
298 * => called with so_pendfree_slock held.
299 * => called at splvm.
300 */
301
302 static size_t
303 sodopendfreel()
304 {
305 size_t rv = 0;
306
307 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
308
309 for (;;) {
310 struct mbuf *m;
311 struct mbuf *next;
312
313 m = so_pendfree;
314 if (m == NULL)
315 break;
316 so_pendfree = NULL;
317 simple_unlock(&so_pendfree_slock);
318 /* XXX splx */
319
320 for (; m != NULL; m = next) {
321 next = m->m_next;
322 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
323 KASSERT(m->m_ext.ext_refcnt == 0);
324
325 rv += m->m_ext.ext_size;
326 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
327 m->m_ext.ext_size,
328 (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
329 pool_cache_put(&mbpool_cache, m);
330 }
331
332 /* XXX splvm */
333 simple_lock(&so_pendfree_slock);
334 }
335
336 return (rv);
337 }
338
339 void
340 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
341 {
342 int s;
343
344 KASSERT(m != NULL);
345
346 /*
347 * postpone freeing mbuf.
348 *
349 * we can't do it in interrupt context
350 * because we need to put kva back to kernel_map.
351 */
352
353 s = splvm();
354 simple_lock(&so_pendfree_slock);
355 m->m_next = so_pendfree;
356 so_pendfree = m;
357 if (sokvawaiters)
358 wakeup(&socurkva);
359 simple_unlock(&so_pendfree_slock);
360 splx(s);
361 }
362
363 static long
364 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
365 {
366 struct iovec *iov = uio->uio_iov;
367 vaddr_t sva, eva;
368 vsize_t len;
369 vaddr_t lva;
370 int npgs, error;
371 #if !defined(__HAVE_LAZY_MBUF)
372 vaddr_t va;
373 int i;
374 #endif /* !defined(__HAVE_LAZY_MBUF) */
375
376 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
377 return (0);
378
379 if (iov->iov_len < (size_t) space)
380 space = iov->iov_len;
381 if (space > SOCK_LOAN_CHUNK)
382 space = SOCK_LOAN_CHUNK;
383
384 eva = round_page((vaddr_t) iov->iov_base + space);
385 sva = trunc_page((vaddr_t) iov->iov_base);
386 len = eva - sva;
387 npgs = len >> PAGE_SHIFT;
388
389 /* XXX KDASSERT */
390 KASSERT(npgs <= M_EXT_MAXPAGES);
391
392 lva = sokvaalloc(len, so);
393 if (lva == 0)
394 return 0;
395
396 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
397 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
398 if (error) {
399 sokvafree(lva, len);
400 return (0);
401 }
402
403 #if !defined(__HAVE_LAZY_MBUF)
404 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
405 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
406 VM_PROT_READ);
407 pmap_update(pmap_kernel());
408 #endif /* !defined(__HAVE_LAZY_MBUF) */
409
410 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
411
412 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
413 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
414
415 #if defined(__HAVE_LAZY_MBUF)
416 m->m_flags |= M_EXT_LAZY;
417 m->m_ext.ext_flags |= M_EXT_LAZY;
418 #endif /* defined(__HAVE_LAZY_MBUF) */
419
420 uio->uio_resid -= space;
421 /* uio_offset not updated, not set/used for write(2) */
422 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
423 uio->uio_iov->iov_len -= space;
424 if (uio->uio_iov->iov_len == 0) {
425 uio->uio_iov++;
426 uio->uio_iovcnt--;
427 }
428
429 return (space);
430 }
431
432 static int
433 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
434 {
435
436 KASSERT(ce == &sokva_reclaimerentry);
437 KASSERT(obj == NULL);
438
439 sodopendfree();
440 if (!vm_map_starved_p(kernel_map)) {
441 return CALLBACK_CHAIN_ABORT;
442 }
443 return CALLBACK_CHAIN_CONTINUE;
444 }
445
446 void
447 soinit(void)
448 {
449
450 /* Set the initial adjusted socket buffer size. */
451 if (sb_max_set(sb_max))
452 panic("bad initial sb_max value: %lu", sb_max);
453
454 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
455 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
456 }
457
458 /*
459 * Socket operation routines.
460 * These routines are called by the routines in
461 * sys_socket.c or from a system process, and
462 * implement the semantics of socket operations by
463 * switching out to the protocol specific routines.
464 */
465 /*ARGSUSED*/
466 int
467 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
468 {
469 const struct protosw *prp;
470 struct socket *so;
471 uid_t uid;
472 int error, s;
473
474 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
475 KAUTH_REQ_NETWORK_SOCKET_OPEN, (void *)(u_long)dom,
476 (void *)(u_long)type, (void *)(u_long)proto) != 0)
477 return (EPERM);
478
479 if (proto)
480 prp = pffindproto(dom, proto, type);
481 else
482 prp = pffindtype(dom, type);
483 if (prp == 0) {
484 /* no support for domain */
485 if (pffinddomain(dom) == 0)
486 return (EAFNOSUPPORT);
487 /* no support for socket type */
488 if (proto == 0 && type != 0)
489 return (EPROTOTYPE);
490 return (EPROTONOSUPPORT);
491 }
492 if (prp->pr_usrreq == 0)
493 return (EPROTONOSUPPORT);
494 if (prp->pr_type != type)
495 return (EPROTOTYPE);
496 s = splsoftnet();
497 so = pool_get(&socket_pool, PR_WAITOK);
498 memset((caddr_t)so, 0, sizeof(*so));
499 TAILQ_INIT(&so->so_q0);
500 TAILQ_INIT(&so->so_q);
501 so->so_type = type;
502 so->so_proto = prp;
503 so->so_send = sosend;
504 so->so_receive = soreceive;
505 #ifdef MBUFTRACE
506 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
507 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
508 so->so_mowner = &prp->pr_domain->dom_mowner;
509 #endif
510 if (l != NULL) {
511 uid = kauth_cred_geteuid(l->l_cred);
512 } else {
513 uid = 0;
514 }
515 so->so_uidinfo = uid_find(uid);
516 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
517 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
518 if (error) {
519 so->so_state |= SS_NOFDREF;
520 sofree(so);
521 splx(s);
522 return (error);
523 }
524 splx(s);
525 *aso = so;
526 return (0);
527 }
528
529 int
530 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
531 {
532 int s, error;
533
534 s = splsoftnet();
535 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
536 nam, (struct mbuf *)0, l);
537 splx(s);
538 return (error);
539 }
540
541 int
542 solisten(struct socket *so, int backlog)
543 {
544 int s, error;
545
546 s = splsoftnet();
547 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
548 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
549 if (error) {
550 splx(s);
551 return (error);
552 }
553 if (TAILQ_EMPTY(&so->so_q))
554 so->so_options |= SO_ACCEPTCONN;
555 if (backlog < 0)
556 backlog = 0;
557 so->so_qlimit = min(backlog, somaxconn);
558 splx(s);
559 return (0);
560 }
561
562 void
563 sofree(struct socket *so)
564 {
565
566 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
567 return;
568 if (so->so_head) {
569 /*
570 * We must not decommission a socket that's on the accept(2)
571 * queue. If we do, then accept(2) may hang after select(2)
572 * indicated that the listening socket was ready.
573 */
574 if (!soqremque(so, 0))
575 return;
576 }
577 if (so->so_rcv.sb_hiwat)
578 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
579 RLIM_INFINITY);
580 if (so->so_snd.sb_hiwat)
581 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
582 RLIM_INFINITY);
583 sbrelease(&so->so_snd, so);
584 sorflush(so);
585 pool_put(&socket_pool, so);
586 }
587
588 /*
589 * Close a socket on last file table reference removal.
590 * Initiate disconnect if connected.
591 * Free socket when disconnect complete.
592 */
593 int
594 soclose(struct socket *so)
595 {
596 struct socket *so2;
597 int s, error;
598
599 error = 0;
600 s = splsoftnet(); /* conservative */
601 if (so->so_options & SO_ACCEPTCONN) {
602 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
603 (void) soqremque(so2, 0);
604 (void) soabort(so2);
605 }
606 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
607 (void) soqremque(so2, 1);
608 (void) soabort(so2);
609 }
610 }
611 if (so->so_pcb == 0)
612 goto discard;
613 if (so->so_state & SS_ISCONNECTED) {
614 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
615 error = sodisconnect(so);
616 if (error)
617 goto drop;
618 }
619 if (so->so_options & SO_LINGER) {
620 if ((so->so_state & SS_ISDISCONNECTING) &&
621 (so->so_state & SS_NBIO))
622 goto drop;
623 while (so->so_state & SS_ISCONNECTED) {
624 error = tsleep((caddr_t)&so->so_timeo,
625 PSOCK | PCATCH, netcls,
626 so->so_linger * hz);
627 if (error)
628 break;
629 }
630 }
631 }
632 drop:
633 if (so->so_pcb) {
634 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
635 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
636 (struct lwp *)0);
637 if (error == 0)
638 error = error2;
639 }
640 discard:
641 if (so->so_state & SS_NOFDREF)
642 panic("soclose: NOFDREF");
643 so->so_state |= SS_NOFDREF;
644 sofree(so);
645 splx(s);
646 return (error);
647 }
648
649 /*
650 * Must be called at splsoftnet...
651 */
652 int
653 soabort(struct socket *so)
654 {
655
656 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
657 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
658 }
659
660 int
661 soaccept(struct socket *so, struct mbuf *nam)
662 {
663 int s, error;
664
665 error = 0;
666 s = splsoftnet();
667 if ((so->so_state & SS_NOFDREF) == 0)
668 panic("soaccept: !NOFDREF");
669 so->so_state &= ~SS_NOFDREF;
670 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
671 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
672 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
673 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
674 else
675 error = ECONNABORTED;
676
677 splx(s);
678 return (error);
679 }
680
681 int
682 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
683 {
684 int s, error;
685
686 if (so->so_options & SO_ACCEPTCONN)
687 return (EOPNOTSUPP);
688 s = splsoftnet();
689 /*
690 * If protocol is connection-based, can only connect once.
691 * Otherwise, if connected, try to disconnect first.
692 * This allows user to disconnect by connecting to, e.g.,
693 * a null address.
694 */
695 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
696 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
697 (error = sodisconnect(so))))
698 error = EISCONN;
699 else
700 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
701 (struct mbuf *)0, nam, (struct mbuf *)0, l);
702 splx(s);
703 return (error);
704 }
705
706 int
707 soconnect2(struct socket *so1, struct socket *so2)
708 {
709 int s, error;
710
711 s = splsoftnet();
712 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
713 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
714 (struct lwp *)0);
715 splx(s);
716 return (error);
717 }
718
719 int
720 sodisconnect(struct socket *so)
721 {
722 int s, error;
723
724 s = splsoftnet();
725 if ((so->so_state & SS_ISCONNECTED) == 0) {
726 error = ENOTCONN;
727 goto bad;
728 }
729 if (so->so_state & SS_ISDISCONNECTING) {
730 error = EALREADY;
731 goto bad;
732 }
733 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
734 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
735 (struct lwp *)0);
736 bad:
737 splx(s);
738 sodopendfree();
739 return (error);
740 }
741
742 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
743 /*
744 * Send on a socket.
745 * If send must go all at once and message is larger than
746 * send buffering, then hard error.
747 * Lock against other senders.
748 * If must go all at once and not enough room now, then
749 * inform user that this would block and do nothing.
750 * Otherwise, if nonblocking, send as much as possible.
751 * The data to be sent is described by "uio" if nonzero,
752 * otherwise by the mbuf chain "top" (which must be null
753 * if uio is not). Data provided in mbuf chain must be small
754 * enough to send all at once.
755 *
756 * Returns nonzero on error, timeout or signal; callers
757 * must check for short counts if EINTR/ERESTART are returned.
758 * Data and control buffers are freed on return.
759 */
760 int
761 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
762 struct mbuf *control, int flags, struct lwp *l)
763 {
764 struct mbuf **mp, *m;
765 struct proc *p;
766 long space, len, resid, clen, mlen;
767 int error, s, dontroute, atomic;
768
769 p = l->l_proc;
770 sodopendfree();
771
772 clen = 0;
773 atomic = sosendallatonce(so) || top;
774 if (uio)
775 resid = uio->uio_resid;
776 else
777 resid = top->m_pkthdr.len;
778 /*
779 * In theory resid should be unsigned.
780 * However, space must be signed, as it might be less than 0
781 * if we over-committed, and we must use a signed comparison
782 * of space and resid. On the other hand, a negative resid
783 * causes us to loop sending 0-length segments to the protocol.
784 */
785 if (resid < 0) {
786 error = EINVAL;
787 goto out;
788 }
789 dontroute =
790 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
791 (so->so_proto->pr_flags & PR_ATOMIC);
792 if (p)
793 p->p_stats->p_ru.ru_msgsnd++;
794 if (control)
795 clen = control->m_len;
796 #define snderr(errno) { error = errno; splx(s); goto release; }
797
798 restart:
799 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
800 goto out;
801 do {
802 s = splsoftnet();
803 if (so->so_state & SS_CANTSENDMORE)
804 snderr(EPIPE);
805 if (so->so_error) {
806 error = so->so_error;
807 so->so_error = 0;
808 splx(s);
809 goto release;
810 }
811 if ((so->so_state & SS_ISCONNECTED) == 0) {
812 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
813 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
814 !(resid == 0 && clen != 0))
815 snderr(ENOTCONN);
816 } else if (addr == 0)
817 snderr(EDESTADDRREQ);
818 }
819 space = sbspace(&so->so_snd);
820 if (flags & MSG_OOB)
821 space += 1024;
822 if ((atomic && resid > so->so_snd.sb_hiwat) ||
823 clen > so->so_snd.sb_hiwat)
824 snderr(EMSGSIZE);
825 if (space < resid + clen &&
826 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
827 if (so->so_state & SS_NBIO)
828 snderr(EWOULDBLOCK);
829 sbunlock(&so->so_snd);
830 error = sbwait(&so->so_snd);
831 splx(s);
832 if (error)
833 goto out;
834 goto restart;
835 }
836 splx(s);
837 mp = ⊤
838 space -= clen;
839 do {
840 if (uio == NULL) {
841 /*
842 * Data is prepackaged in "top".
843 */
844 resid = 0;
845 if (flags & MSG_EOR)
846 top->m_flags |= M_EOR;
847 } else do {
848 if (top == 0) {
849 m = m_gethdr(M_WAIT, MT_DATA);
850 mlen = MHLEN;
851 m->m_pkthdr.len = 0;
852 m->m_pkthdr.rcvif = (struct ifnet *)0;
853 } else {
854 m = m_get(M_WAIT, MT_DATA);
855 mlen = MLEN;
856 }
857 MCLAIM(m, so->so_snd.sb_mowner);
858 if (sock_loan_thresh >= 0 &&
859 uio->uio_iov->iov_len >= sock_loan_thresh &&
860 space >= sock_loan_thresh &&
861 (len = sosend_loan(so, uio, m,
862 space)) != 0) {
863 SOSEND_COUNTER_INCR(&sosend_loan_big);
864 space -= len;
865 goto have_data;
866 }
867 if (resid >= MINCLSIZE && space >= MCLBYTES) {
868 SOSEND_COUNTER_INCR(&sosend_copy_big);
869 m_clget(m, M_WAIT);
870 if ((m->m_flags & M_EXT) == 0)
871 goto nopages;
872 mlen = MCLBYTES;
873 if (atomic && top == 0) {
874 len = lmin(MCLBYTES - max_hdr,
875 resid);
876 m->m_data += max_hdr;
877 } else
878 len = lmin(MCLBYTES, resid);
879 space -= len;
880 } else {
881 nopages:
882 SOSEND_COUNTER_INCR(&sosend_copy_small);
883 len = lmin(lmin(mlen, resid), space);
884 space -= len;
885 /*
886 * For datagram protocols, leave room
887 * for protocol headers in first mbuf.
888 */
889 if (atomic && top == 0 && len < mlen)
890 MH_ALIGN(m, len);
891 }
892 error = uiomove(mtod(m, caddr_t), (int)len,
893 uio);
894 have_data:
895 resid = uio->uio_resid;
896 m->m_len = len;
897 *mp = m;
898 top->m_pkthdr.len += len;
899 if (error)
900 goto release;
901 mp = &m->m_next;
902 if (resid <= 0) {
903 if (flags & MSG_EOR)
904 top->m_flags |= M_EOR;
905 break;
906 }
907 } while (space > 0 && atomic);
908
909 s = splsoftnet();
910
911 if (so->so_state & SS_CANTSENDMORE)
912 snderr(EPIPE);
913
914 if (dontroute)
915 so->so_options |= SO_DONTROUTE;
916 if (resid > 0)
917 so->so_state |= SS_MORETOCOME;
918 error = (*so->so_proto->pr_usrreq)(so,
919 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
920 top, addr, control, curlwp); /* XXX */
921 if (dontroute)
922 so->so_options &= ~SO_DONTROUTE;
923 if (resid > 0)
924 so->so_state &= ~SS_MORETOCOME;
925 splx(s);
926
927 clen = 0;
928 control = 0;
929 top = 0;
930 mp = ⊤
931 if (error)
932 goto release;
933 } while (resid && space > 0);
934 } while (resid);
935
936 release:
937 sbunlock(&so->so_snd);
938 out:
939 if (top)
940 m_freem(top);
941 if (control)
942 m_freem(control);
943 return (error);
944 }
945
946 /*
947 * Implement receive operations on a socket.
948 * We depend on the way that records are added to the sockbuf
949 * by sbappend*. In particular, each record (mbufs linked through m_next)
950 * must begin with an address if the protocol so specifies,
951 * followed by an optional mbuf or mbufs containing ancillary data,
952 * and then zero or more mbufs of data.
953 * In order to avoid blocking network interrupts for the entire time here,
954 * we splx() while doing the actual copy to user space.
955 * Although the sockbuf is locked, new data may still be appended,
956 * and thus we must maintain consistency of the sockbuf during that time.
957 *
958 * The caller may receive the data as a single mbuf chain by supplying
959 * an mbuf **mp0 for use in returning the chain. The uio is then used
960 * only for the count in uio_resid.
961 */
962 int
963 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
964 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
965 {
966 struct lwp *l = curlwp;
967 struct mbuf *m, **mp;
968 int flags, len, error, s, offset, moff, type, orig_resid;
969 const struct protosw *pr;
970 struct mbuf *nextrecord;
971 int mbuf_removed = 0;
972
973 pr = so->so_proto;
974 mp = mp0;
975 type = 0;
976 orig_resid = uio->uio_resid;
977
978 if (paddr)
979 *paddr = 0;
980 if (controlp)
981 *controlp = 0;
982 if (flagsp)
983 flags = *flagsp &~ MSG_EOR;
984 else
985 flags = 0;
986
987 if ((flags & MSG_DONTWAIT) == 0)
988 sodopendfree();
989
990 if (flags & MSG_OOB) {
991 m = m_get(M_WAIT, MT_DATA);
992 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
993 (struct mbuf *)(long)(flags & MSG_PEEK),
994 (struct mbuf *)0, l);
995 if (error)
996 goto bad;
997 do {
998 error = uiomove(mtod(m, caddr_t),
999 (int) min(uio->uio_resid, m->m_len), uio);
1000 m = m_free(m);
1001 } while (uio->uio_resid && error == 0 && m);
1002 bad:
1003 if (m)
1004 m_freem(m);
1005 return (error);
1006 }
1007 if (mp)
1008 *mp = (struct mbuf *)0;
1009 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1010 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1011 (struct mbuf *)0, (struct mbuf *)0, l);
1012
1013 restart:
1014 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1015 return (error);
1016 s = splsoftnet();
1017
1018 m = so->so_rcv.sb_mb;
1019 /*
1020 * If we have less data than requested, block awaiting more
1021 * (subject to any timeout) if:
1022 * 1. the current count is less than the low water mark,
1023 * 2. MSG_WAITALL is set, and it is possible to do the entire
1024 * receive operation at once if we block (resid <= hiwat), or
1025 * 3. MSG_DONTWAIT is not set.
1026 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1027 * we have to do the receive in sections, and thus risk returning
1028 * a short count if a timeout or signal occurs after we start.
1029 */
1030 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1031 so->so_rcv.sb_cc < uio->uio_resid) &&
1032 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1033 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1034 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1035 #ifdef DIAGNOSTIC
1036 if (m == 0 && so->so_rcv.sb_cc)
1037 panic("receive 1");
1038 #endif
1039 if (so->so_error) {
1040 if (m)
1041 goto dontblock;
1042 error = so->so_error;
1043 if ((flags & MSG_PEEK) == 0)
1044 so->so_error = 0;
1045 goto release;
1046 }
1047 if (so->so_state & SS_CANTRCVMORE) {
1048 if (m)
1049 goto dontblock;
1050 else
1051 goto release;
1052 }
1053 for (; m; m = m->m_next)
1054 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1055 m = so->so_rcv.sb_mb;
1056 goto dontblock;
1057 }
1058 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1059 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1060 error = ENOTCONN;
1061 goto release;
1062 }
1063 if (uio->uio_resid == 0)
1064 goto release;
1065 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1066 error = EWOULDBLOCK;
1067 goto release;
1068 }
1069 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1070 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1071 sbunlock(&so->so_rcv);
1072 error = sbwait(&so->so_rcv);
1073 splx(s);
1074 if (error)
1075 return (error);
1076 goto restart;
1077 }
1078 dontblock:
1079 /*
1080 * On entry here, m points to the first record of the socket buffer.
1081 * While we process the initial mbufs containing address and control
1082 * info, we save a copy of m->m_nextpkt into nextrecord.
1083 */
1084 if (l)
1085 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1086 KASSERT(m == so->so_rcv.sb_mb);
1087 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1088 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1089 nextrecord = m->m_nextpkt;
1090 if (pr->pr_flags & PR_ADDR) {
1091 #ifdef DIAGNOSTIC
1092 if (m->m_type != MT_SONAME)
1093 panic("receive 1a");
1094 #endif
1095 orig_resid = 0;
1096 if (flags & MSG_PEEK) {
1097 if (paddr)
1098 *paddr = m_copy(m, 0, m->m_len);
1099 m = m->m_next;
1100 } else {
1101 sbfree(&so->so_rcv, m);
1102 mbuf_removed = 1;
1103 if (paddr) {
1104 *paddr = m;
1105 so->so_rcv.sb_mb = m->m_next;
1106 m->m_next = 0;
1107 m = so->so_rcv.sb_mb;
1108 } else {
1109 MFREE(m, so->so_rcv.sb_mb);
1110 m = so->so_rcv.sb_mb;
1111 }
1112 }
1113 }
1114 while (m && m->m_type == MT_CONTROL && error == 0) {
1115 if (flags & MSG_PEEK) {
1116 if (controlp)
1117 *controlp = m_copy(m, 0, m->m_len);
1118 m = m->m_next;
1119 } else {
1120 sbfree(&so->so_rcv, m);
1121 mbuf_removed = 1;
1122 if (controlp) {
1123 struct domain *dom = pr->pr_domain;
1124 if (dom->dom_externalize && l &&
1125 mtod(m, struct cmsghdr *)->cmsg_type ==
1126 SCM_RIGHTS)
1127 error = (*dom->dom_externalize)(m, l);
1128 *controlp = m;
1129 so->so_rcv.sb_mb = m->m_next;
1130 m->m_next = 0;
1131 m = so->so_rcv.sb_mb;
1132 } else {
1133 /*
1134 * Dispose of any SCM_RIGHTS message that went
1135 * through the read path rather than recv.
1136 */
1137 if (pr->pr_domain->dom_dispose &&
1138 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1139 (*pr->pr_domain->dom_dispose)(m);
1140 MFREE(m, so->so_rcv.sb_mb);
1141 m = so->so_rcv.sb_mb;
1142 }
1143 }
1144 if (controlp) {
1145 orig_resid = 0;
1146 controlp = &(*controlp)->m_next;
1147 }
1148 }
1149
1150 /*
1151 * If m is non-NULL, we have some data to read. From now on,
1152 * make sure to keep sb_lastrecord consistent when working on
1153 * the last packet on the chain (nextrecord == NULL) and we
1154 * change m->m_nextpkt.
1155 */
1156 if (m) {
1157 if ((flags & MSG_PEEK) == 0) {
1158 m->m_nextpkt = nextrecord;
1159 /*
1160 * If nextrecord == NULL (this is a single chain),
1161 * then sb_lastrecord may not be valid here if m
1162 * was changed earlier.
1163 */
1164 if (nextrecord == NULL) {
1165 KASSERT(so->so_rcv.sb_mb == m);
1166 so->so_rcv.sb_lastrecord = m;
1167 }
1168 }
1169 type = m->m_type;
1170 if (type == MT_OOBDATA)
1171 flags |= MSG_OOB;
1172 } else {
1173 if ((flags & MSG_PEEK) == 0) {
1174 KASSERT(so->so_rcv.sb_mb == m);
1175 so->so_rcv.sb_mb = nextrecord;
1176 SB_EMPTY_FIXUP(&so->so_rcv);
1177 }
1178 }
1179 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1180 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1181
1182 moff = 0;
1183 offset = 0;
1184 while (m && uio->uio_resid > 0 && error == 0) {
1185 if (m->m_type == MT_OOBDATA) {
1186 if (type != MT_OOBDATA)
1187 break;
1188 } else if (type == MT_OOBDATA)
1189 break;
1190 #ifdef DIAGNOSTIC
1191 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1192 panic("receive 3");
1193 #endif
1194 so->so_state &= ~SS_RCVATMARK;
1195 len = uio->uio_resid;
1196 if (so->so_oobmark && len > so->so_oobmark - offset)
1197 len = so->so_oobmark - offset;
1198 if (len > m->m_len - moff)
1199 len = m->m_len - moff;
1200 /*
1201 * If mp is set, just pass back the mbufs.
1202 * Otherwise copy them out via the uio, then free.
1203 * Sockbuf must be consistent here (points to current mbuf,
1204 * it points to next record) when we drop priority;
1205 * we must note any additions to the sockbuf when we
1206 * block interrupts again.
1207 */
1208 if (mp == 0) {
1209 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1210 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1211 splx(s);
1212 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1213 s = splsoftnet();
1214 if (error) {
1215 /*
1216 * If any part of the record has been removed
1217 * (such as the MT_SONAME mbuf, which will
1218 * happen when PR_ADDR, and thus also
1219 * PR_ATOMIC, is set), then drop the entire
1220 * record to maintain the atomicity of the
1221 * receive operation.
1222 *
1223 * This avoids a later panic("receive 1a")
1224 * when compiled with DIAGNOSTIC.
1225 */
1226 if (m && mbuf_removed
1227 && (pr->pr_flags & PR_ATOMIC))
1228 (void) sbdroprecord(&so->so_rcv);
1229
1230 goto release;
1231 }
1232 } else
1233 uio->uio_resid -= len;
1234 if (len == m->m_len - moff) {
1235 if (m->m_flags & M_EOR)
1236 flags |= MSG_EOR;
1237 if (flags & MSG_PEEK) {
1238 m = m->m_next;
1239 moff = 0;
1240 } else {
1241 nextrecord = m->m_nextpkt;
1242 sbfree(&so->so_rcv, m);
1243 if (mp) {
1244 *mp = m;
1245 mp = &m->m_next;
1246 so->so_rcv.sb_mb = m = m->m_next;
1247 *mp = (struct mbuf *)0;
1248 } else {
1249 MFREE(m, so->so_rcv.sb_mb);
1250 m = so->so_rcv.sb_mb;
1251 }
1252 /*
1253 * If m != NULL, we also know that
1254 * so->so_rcv.sb_mb != NULL.
1255 */
1256 KASSERT(so->so_rcv.sb_mb == m);
1257 if (m) {
1258 m->m_nextpkt = nextrecord;
1259 if (nextrecord == NULL)
1260 so->so_rcv.sb_lastrecord = m;
1261 } else {
1262 so->so_rcv.sb_mb = nextrecord;
1263 SB_EMPTY_FIXUP(&so->so_rcv);
1264 }
1265 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1266 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1267 }
1268 } else {
1269 if (flags & MSG_PEEK)
1270 moff += len;
1271 else {
1272 if (mp)
1273 *mp = m_copym(m, 0, len, M_WAIT);
1274 m->m_data += len;
1275 m->m_len -= len;
1276 so->so_rcv.sb_cc -= len;
1277 }
1278 }
1279 if (so->so_oobmark) {
1280 if ((flags & MSG_PEEK) == 0) {
1281 so->so_oobmark -= len;
1282 if (so->so_oobmark == 0) {
1283 so->so_state |= SS_RCVATMARK;
1284 break;
1285 }
1286 } else {
1287 offset += len;
1288 if (offset == so->so_oobmark)
1289 break;
1290 }
1291 }
1292 if (flags & MSG_EOR)
1293 break;
1294 /*
1295 * If the MSG_WAITALL flag is set (for non-atomic socket),
1296 * we must not quit until "uio->uio_resid == 0" or an error
1297 * termination. If a signal/timeout occurs, return
1298 * with a short count but without error.
1299 * Keep sockbuf locked against other readers.
1300 */
1301 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1302 !sosendallatonce(so) && !nextrecord) {
1303 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1304 break;
1305 /*
1306 * If we are peeking and the socket receive buffer is
1307 * full, stop since we can't get more data to peek at.
1308 */
1309 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1310 break;
1311 /*
1312 * If we've drained the socket buffer, tell the
1313 * protocol in case it needs to do something to
1314 * get it filled again.
1315 */
1316 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1317 (*pr->pr_usrreq)(so, PRU_RCVD,
1318 (struct mbuf *)0,
1319 (struct mbuf *)(long)flags,
1320 (struct mbuf *)0, l);
1321 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1322 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1323 error = sbwait(&so->so_rcv);
1324 if (error) {
1325 sbunlock(&so->so_rcv);
1326 splx(s);
1327 return (0);
1328 }
1329 if ((m = so->so_rcv.sb_mb) != NULL)
1330 nextrecord = m->m_nextpkt;
1331 }
1332 }
1333
1334 if (m && pr->pr_flags & PR_ATOMIC) {
1335 flags |= MSG_TRUNC;
1336 if ((flags & MSG_PEEK) == 0)
1337 (void) sbdroprecord(&so->so_rcv);
1338 }
1339 if ((flags & MSG_PEEK) == 0) {
1340 if (m == 0) {
1341 /*
1342 * First part is an inline SB_EMPTY_FIXUP(). Second
1343 * part makes sure sb_lastrecord is up-to-date if
1344 * there is still data in the socket buffer.
1345 */
1346 so->so_rcv.sb_mb = nextrecord;
1347 if (so->so_rcv.sb_mb == NULL) {
1348 so->so_rcv.sb_mbtail = NULL;
1349 so->so_rcv.sb_lastrecord = NULL;
1350 } else if (nextrecord->m_nextpkt == NULL)
1351 so->so_rcv.sb_lastrecord = nextrecord;
1352 }
1353 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1354 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1355 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1356 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1357 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1358 }
1359 if (orig_resid == uio->uio_resid && orig_resid &&
1360 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1361 sbunlock(&so->so_rcv);
1362 splx(s);
1363 goto restart;
1364 }
1365
1366 if (flagsp)
1367 *flagsp |= flags;
1368 release:
1369 sbunlock(&so->so_rcv);
1370 splx(s);
1371 return (error);
1372 }
1373
1374 int
1375 soshutdown(struct socket *so, int how)
1376 {
1377 const struct protosw *pr;
1378
1379 pr = so->so_proto;
1380 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1381 return (EINVAL);
1382
1383 if (how == SHUT_RD || how == SHUT_RDWR)
1384 sorflush(so);
1385 if (how == SHUT_WR || how == SHUT_RDWR)
1386 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1387 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1388 return (0);
1389 }
1390
1391 void
1392 sorflush(struct socket *so)
1393 {
1394 struct sockbuf *sb, asb;
1395 const struct protosw *pr;
1396 int s;
1397
1398 sb = &so->so_rcv;
1399 pr = so->so_proto;
1400 sb->sb_flags |= SB_NOINTR;
1401 (void) sblock(sb, M_WAITOK);
1402 s = splnet();
1403 socantrcvmore(so);
1404 sbunlock(sb);
1405 asb = *sb;
1406 /*
1407 * Clear most of the sockbuf structure, but leave some of the
1408 * fields valid.
1409 */
1410 memset(&sb->sb_startzero, 0,
1411 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1412 splx(s);
1413 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1414 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1415 sbrelease(&asb, so);
1416 }
1417
1418 int
1419 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1420 {
1421 int error;
1422 struct mbuf *m;
1423 struct linger *l;
1424
1425 error = 0;
1426 m = m0;
1427 if (level != SOL_SOCKET) {
1428 if (so->so_proto && so->so_proto->pr_ctloutput)
1429 return ((*so->so_proto->pr_ctloutput)
1430 (PRCO_SETOPT, so, level, optname, &m0));
1431 error = ENOPROTOOPT;
1432 } else {
1433 switch (optname) {
1434
1435 case SO_LINGER:
1436 if (m == NULL || m->m_len != sizeof(struct linger)) {
1437 error = EINVAL;
1438 goto bad;
1439 }
1440 l = mtod(m, struct linger *);
1441 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1442 l->l_linger > (INT_MAX / hz)) {
1443 error = EDOM;
1444 goto bad;
1445 }
1446 so->so_linger = l->l_linger;
1447 if (l->l_onoff)
1448 so->so_options |= SO_LINGER;
1449 else
1450 so->so_options &= ~SO_LINGER;
1451 break;
1452
1453 case SO_DEBUG:
1454 case SO_KEEPALIVE:
1455 case SO_DONTROUTE:
1456 case SO_USELOOPBACK:
1457 case SO_BROADCAST:
1458 case SO_REUSEADDR:
1459 case SO_REUSEPORT:
1460 case SO_OOBINLINE:
1461 case SO_TIMESTAMP:
1462 if (m == NULL || m->m_len < sizeof(int)) {
1463 error = EINVAL;
1464 goto bad;
1465 }
1466 if (*mtod(m, int *))
1467 so->so_options |= optname;
1468 else
1469 so->so_options &= ~optname;
1470 break;
1471
1472 case SO_SNDBUF:
1473 case SO_RCVBUF:
1474 case SO_SNDLOWAT:
1475 case SO_RCVLOWAT:
1476 {
1477 int optval;
1478
1479 if (m == NULL || m->m_len < sizeof(int)) {
1480 error = EINVAL;
1481 goto bad;
1482 }
1483
1484 /*
1485 * Values < 1 make no sense for any of these
1486 * options, so disallow them.
1487 */
1488 optval = *mtod(m, int *);
1489 if (optval < 1) {
1490 error = EINVAL;
1491 goto bad;
1492 }
1493
1494 switch (optname) {
1495
1496 case SO_SNDBUF:
1497 case SO_RCVBUF:
1498 if (sbreserve(optname == SO_SNDBUF ?
1499 &so->so_snd : &so->so_rcv,
1500 (u_long) optval, so) == 0) {
1501 error = ENOBUFS;
1502 goto bad;
1503 }
1504 break;
1505
1506 /*
1507 * Make sure the low-water is never greater than
1508 * the high-water.
1509 */
1510 case SO_SNDLOWAT:
1511 so->so_snd.sb_lowat =
1512 (optval > so->so_snd.sb_hiwat) ?
1513 so->so_snd.sb_hiwat : optval;
1514 break;
1515 case SO_RCVLOWAT:
1516 so->so_rcv.sb_lowat =
1517 (optval > so->so_rcv.sb_hiwat) ?
1518 so->so_rcv.sb_hiwat : optval;
1519 break;
1520 }
1521 break;
1522 }
1523
1524 case SO_SNDTIMEO:
1525 case SO_RCVTIMEO:
1526 {
1527 struct timeval *tv;
1528 int val;
1529
1530 if (m == NULL || m->m_len < sizeof(*tv)) {
1531 error = EINVAL;
1532 goto bad;
1533 }
1534 tv = mtod(m, struct timeval *);
1535 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1536 error = EDOM;
1537 goto bad;
1538 }
1539 val = tv->tv_sec * hz + tv->tv_usec / tick;
1540 if (val == 0 && tv->tv_usec != 0)
1541 val = 1;
1542
1543 switch (optname) {
1544
1545 case SO_SNDTIMEO:
1546 so->so_snd.sb_timeo = val;
1547 break;
1548 case SO_RCVTIMEO:
1549 so->so_rcv.sb_timeo = val;
1550 break;
1551 }
1552 break;
1553 }
1554
1555 default:
1556 error = ENOPROTOOPT;
1557 break;
1558 }
1559 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1560 (void) ((*so->so_proto->pr_ctloutput)
1561 (PRCO_SETOPT, so, level, optname, &m0));
1562 m = NULL; /* freed by protocol */
1563 }
1564 }
1565 bad:
1566 if (m)
1567 (void) m_free(m);
1568 return (error);
1569 }
1570
1571 int
1572 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1573 {
1574 struct mbuf *m;
1575
1576 if (level != SOL_SOCKET) {
1577 if (so->so_proto && so->so_proto->pr_ctloutput) {
1578 return ((*so->so_proto->pr_ctloutput)
1579 (PRCO_GETOPT, so, level, optname, mp));
1580 } else
1581 return (ENOPROTOOPT);
1582 } else {
1583 m = m_get(M_WAIT, MT_SOOPTS);
1584 m->m_len = sizeof(int);
1585
1586 switch (optname) {
1587
1588 case SO_LINGER:
1589 m->m_len = sizeof(struct linger);
1590 mtod(m, struct linger *)->l_onoff =
1591 (so->so_options & SO_LINGER) ? 1 : 0;
1592 mtod(m, struct linger *)->l_linger = so->so_linger;
1593 break;
1594
1595 case SO_USELOOPBACK:
1596 case SO_DONTROUTE:
1597 case SO_DEBUG:
1598 case SO_KEEPALIVE:
1599 case SO_REUSEADDR:
1600 case SO_REUSEPORT:
1601 case SO_BROADCAST:
1602 case SO_OOBINLINE:
1603 case SO_TIMESTAMP:
1604 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1605 break;
1606
1607 case SO_TYPE:
1608 *mtod(m, int *) = so->so_type;
1609 break;
1610
1611 case SO_ERROR:
1612 *mtod(m, int *) = so->so_error;
1613 so->so_error = 0;
1614 break;
1615
1616 case SO_SNDBUF:
1617 *mtod(m, int *) = so->so_snd.sb_hiwat;
1618 break;
1619
1620 case SO_RCVBUF:
1621 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1622 break;
1623
1624 case SO_SNDLOWAT:
1625 *mtod(m, int *) = so->so_snd.sb_lowat;
1626 break;
1627
1628 case SO_RCVLOWAT:
1629 *mtod(m, int *) = so->so_rcv.sb_lowat;
1630 break;
1631
1632 case SO_SNDTIMEO:
1633 case SO_RCVTIMEO:
1634 {
1635 int val = (optname == SO_SNDTIMEO ?
1636 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1637
1638 m->m_len = sizeof(struct timeval);
1639 mtod(m, struct timeval *)->tv_sec = val / hz;
1640 mtod(m, struct timeval *)->tv_usec =
1641 (val % hz) * tick;
1642 break;
1643 }
1644
1645 case SO_OVERFLOWED:
1646 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1647 break;
1648
1649 default:
1650 (void)m_free(m);
1651 return (ENOPROTOOPT);
1652 }
1653 *mp = m;
1654 return (0);
1655 }
1656 }
1657
1658 void
1659 sohasoutofband(struct socket *so)
1660 {
1661 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1662 selwakeup(&so->so_rcv.sb_sel);
1663 }
1664
1665 static void
1666 filt_sordetach(struct knote *kn)
1667 {
1668 struct socket *so;
1669
1670 so = (struct socket *)kn->kn_fp->f_data;
1671 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1672 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1673 so->so_rcv.sb_flags &= ~SB_KNOTE;
1674 }
1675
1676 /*ARGSUSED*/
1677 static int
1678 filt_soread(struct knote *kn, long hint)
1679 {
1680 struct socket *so;
1681
1682 so = (struct socket *)kn->kn_fp->f_data;
1683 kn->kn_data = so->so_rcv.sb_cc;
1684 if (so->so_state & SS_CANTRCVMORE) {
1685 kn->kn_flags |= EV_EOF;
1686 kn->kn_fflags = so->so_error;
1687 return (1);
1688 }
1689 if (so->so_error) /* temporary udp error */
1690 return (1);
1691 if (kn->kn_sfflags & NOTE_LOWAT)
1692 return (kn->kn_data >= kn->kn_sdata);
1693 return (kn->kn_data >= so->so_rcv.sb_lowat);
1694 }
1695
1696 static void
1697 filt_sowdetach(struct knote *kn)
1698 {
1699 struct socket *so;
1700
1701 so = (struct socket *)kn->kn_fp->f_data;
1702 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1703 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1704 so->so_snd.sb_flags &= ~SB_KNOTE;
1705 }
1706
1707 /*ARGSUSED*/
1708 static int
1709 filt_sowrite(struct knote *kn, long hint)
1710 {
1711 struct socket *so;
1712
1713 so = (struct socket *)kn->kn_fp->f_data;
1714 kn->kn_data = sbspace(&so->so_snd);
1715 if (so->so_state & SS_CANTSENDMORE) {
1716 kn->kn_flags |= EV_EOF;
1717 kn->kn_fflags = so->so_error;
1718 return (1);
1719 }
1720 if (so->so_error) /* temporary udp error */
1721 return (1);
1722 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1723 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1724 return (0);
1725 if (kn->kn_sfflags & NOTE_LOWAT)
1726 return (kn->kn_data >= kn->kn_sdata);
1727 return (kn->kn_data >= so->so_snd.sb_lowat);
1728 }
1729
1730 /*ARGSUSED*/
1731 static int
1732 filt_solisten(struct knote *kn, long hint)
1733 {
1734 struct socket *so;
1735
1736 so = (struct socket *)kn->kn_fp->f_data;
1737
1738 /*
1739 * Set kn_data to number of incoming connections, not
1740 * counting partial (incomplete) connections.
1741 */
1742 kn->kn_data = so->so_qlen;
1743 return (kn->kn_data > 0);
1744 }
1745
1746 static const struct filterops solisten_filtops =
1747 { 1, NULL, filt_sordetach, filt_solisten };
1748 static const struct filterops soread_filtops =
1749 { 1, NULL, filt_sordetach, filt_soread };
1750 static const struct filterops sowrite_filtops =
1751 { 1, NULL, filt_sowdetach, filt_sowrite };
1752
1753 int
1754 soo_kqfilter(struct file *fp, struct knote *kn)
1755 {
1756 struct socket *so;
1757 struct sockbuf *sb;
1758
1759 so = (struct socket *)kn->kn_fp->f_data;
1760 switch (kn->kn_filter) {
1761 case EVFILT_READ:
1762 if (so->so_options & SO_ACCEPTCONN)
1763 kn->kn_fop = &solisten_filtops;
1764 else
1765 kn->kn_fop = &soread_filtops;
1766 sb = &so->so_rcv;
1767 break;
1768 case EVFILT_WRITE:
1769 kn->kn_fop = &sowrite_filtops;
1770 sb = &so->so_snd;
1771 break;
1772 default:
1773 return (1);
1774 }
1775 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1776 sb->sb_flags |= SB_KNOTE;
1777 return (0);
1778 }
1779
1780 #include <sys/sysctl.h>
1781
1782 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1783
1784 /*
1785 * sysctl helper routine for kern.somaxkva. ensures that the given
1786 * value is not too small.
1787 * (XXX should we maybe make sure it's not too large as well?)
1788 */
1789 static int
1790 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1791 {
1792 int error, new_somaxkva;
1793 struct sysctlnode node;
1794 int s;
1795
1796 new_somaxkva = somaxkva;
1797 node = *rnode;
1798 node.sysctl_data = &new_somaxkva;
1799 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1800 if (error || newp == NULL)
1801 return (error);
1802
1803 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1804 return (EINVAL);
1805
1806 s = splvm();
1807 simple_lock(&so_pendfree_slock);
1808 somaxkva = new_somaxkva;
1809 wakeup(&socurkva);
1810 simple_unlock(&so_pendfree_slock);
1811 splx(s);
1812
1813 return (error);
1814 }
1815
1816 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1817 {
1818
1819 sysctl_createv(clog, 0, NULL, NULL,
1820 CTLFLAG_PERMANENT,
1821 CTLTYPE_NODE, "kern", NULL,
1822 NULL, 0, NULL, 0,
1823 CTL_KERN, CTL_EOL);
1824
1825 sysctl_createv(clog, 0, NULL, NULL,
1826 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1827 CTLTYPE_INT, "somaxkva",
1828 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1829 "used for socket buffers"),
1830 sysctl_kern_somaxkva, 0, NULL, 0,
1831 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1832 }
1833