uipc_socket.c revision 1.111.2.6 1 /* $NetBSD: uipc_socket.c,v 1.111.2.6 2007/02/26 09:11:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.6 2007/02/26 09:11:20 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size, bool mapped)
259 {
260 vaddr_t sva, eva;
261 vsize_t len;
262 int npgs;
263
264 KASSERT(pgs != NULL);
265
266 eva = round_page((vaddr_t) buf + size);
267 sva = trunc_page((vaddr_t) buf);
268 len = eva - sva;
269 npgs = len >> PAGE_SHIFT;
270
271 if (mapped) {
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 }
275 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
276 sokvafree(sva, len);
277 }
278
279 static size_t
280 sodopendfree()
281 {
282 int s;
283 size_t rv;
284
285 s = splvm();
286 simple_lock(&so_pendfree_slock);
287 rv = sodopendfreel();
288 simple_unlock(&so_pendfree_slock);
289 splx(s);
290
291 return rv;
292 }
293
294 /*
295 * sodopendfreel: free mbufs on "pendfree" list.
296 * unlock and relock so_pendfree_slock when freeing mbufs.
297 *
298 * => called with so_pendfree_slock held.
299 * => called at splvm.
300 */
301
302 static size_t
303 sodopendfreel()
304 {
305 size_t rv = 0;
306
307 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
308
309 for (;;) {
310 struct mbuf *m;
311 struct mbuf *next;
312
313 m = so_pendfree;
314 if (m == NULL)
315 break;
316 so_pendfree = NULL;
317 simple_unlock(&so_pendfree_slock);
318 /* XXX splx */
319
320 for (; m != NULL; m = next) {
321 next = m->m_next;
322 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
323 KASSERT(m->m_ext.ext_refcnt == 0);
324
325 rv += m->m_ext.ext_size;
326 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
327 m->m_ext.ext_size,
328 (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
329 pool_cache_put(&mbpool_cache, m);
330 }
331
332 /* XXX splvm */
333 simple_lock(&so_pendfree_slock);
334 }
335
336 return (rv);
337 }
338
339 void
340 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
341 {
342 int s;
343
344 KASSERT(m != NULL);
345
346 /*
347 * postpone freeing mbuf.
348 *
349 * we can't do it in interrupt context
350 * because we need to put kva back to kernel_map.
351 */
352
353 s = splvm();
354 simple_lock(&so_pendfree_slock);
355 m->m_next = so_pendfree;
356 so_pendfree = m;
357 if (sokvawaiters)
358 wakeup(&socurkva);
359 simple_unlock(&so_pendfree_slock);
360 splx(s);
361 }
362
363 static long
364 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
365 {
366 struct iovec *iov = uio->uio_iov;
367 vaddr_t sva, eva;
368 vsize_t len;
369 vaddr_t lva;
370 int npgs, error;
371 #if !defined(__HAVE_LAZY_MBUF)
372 vaddr_t va;
373 int i;
374 #endif /* !defined(__HAVE_LAZY_MBUF) */
375
376 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
377 return (0);
378
379 if (iov->iov_len < (size_t) space)
380 space = iov->iov_len;
381 if (space > SOCK_LOAN_CHUNK)
382 space = SOCK_LOAN_CHUNK;
383
384 eva = round_page((vaddr_t) iov->iov_base + space);
385 sva = trunc_page((vaddr_t) iov->iov_base);
386 len = eva - sva;
387 npgs = len >> PAGE_SHIFT;
388
389 /* XXX KDASSERT */
390 KASSERT(npgs <= M_EXT_MAXPAGES);
391
392 lva = sokvaalloc(len, so);
393 if (lva == 0)
394 return 0;
395
396 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
397 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
398 if (error) {
399 sokvafree(lva, len);
400 return (0);
401 }
402
403 #if !defined(__HAVE_LAZY_MBUF)
404 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
405 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
406 VM_PROT_READ);
407 pmap_update(pmap_kernel());
408 #endif /* !defined(__HAVE_LAZY_MBUF) */
409
410 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
411
412 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
413 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
414
415 #if defined(__HAVE_LAZY_MBUF)
416 m->m_flags |= M_EXT_LAZY;
417 m->m_ext.ext_flags |= M_EXT_LAZY;
418 #endif /* defined(__HAVE_LAZY_MBUF) */
419
420 uio->uio_resid -= space;
421 /* uio_offset not updated, not set/used for write(2) */
422 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
423 uio->uio_iov->iov_len -= space;
424 if (uio->uio_iov->iov_len == 0) {
425 uio->uio_iov++;
426 uio->uio_iovcnt--;
427 }
428
429 return (space);
430 }
431
432 static int
433 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
434 {
435
436 KASSERT(ce == &sokva_reclaimerentry);
437 KASSERT(obj == NULL);
438
439 sodopendfree();
440 if (!vm_map_starved_p(kernel_map)) {
441 return CALLBACK_CHAIN_ABORT;
442 }
443 return CALLBACK_CHAIN_CONTINUE;
444 }
445
446 void
447 soinit(void)
448 {
449
450 /* Set the initial adjusted socket buffer size. */
451 if (sb_max_set(sb_max))
452 panic("bad initial sb_max value: %lu", sb_max);
453
454 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
455 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
456 }
457
458 /*
459 * Socket operation routines.
460 * These routines are called by the routines in
461 * sys_socket.c or from a system process, and
462 * implement the semantics of socket operations by
463 * switching out to the protocol specific routines.
464 */
465 /*ARGSUSED*/
466 int
467 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
468 {
469 const struct protosw *prp;
470 struct socket *so;
471 uid_t uid;
472 int error, s;
473
474 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
475 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
476 KAUTH_ARG(proto));
477 if (error)
478 return (error);
479
480 if (proto)
481 prp = pffindproto(dom, proto, type);
482 else
483 prp = pffindtype(dom, type);
484 if (prp == 0) {
485 /* no support for domain */
486 if (pffinddomain(dom) == 0)
487 return (EAFNOSUPPORT);
488 /* no support for socket type */
489 if (proto == 0 && type != 0)
490 return (EPROTOTYPE);
491 return (EPROTONOSUPPORT);
492 }
493 if (prp->pr_usrreq == 0)
494 return (EPROTONOSUPPORT);
495 if (prp->pr_type != type)
496 return (EPROTOTYPE);
497 s = splsoftnet();
498 so = pool_get(&socket_pool, PR_WAITOK);
499 memset((caddr_t)so, 0, sizeof(*so));
500 TAILQ_INIT(&so->so_q0);
501 TAILQ_INIT(&so->so_q);
502 so->so_type = type;
503 so->so_proto = prp;
504 so->so_send = sosend;
505 so->so_receive = soreceive;
506 #ifdef MBUFTRACE
507 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
508 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
509 so->so_mowner = &prp->pr_domain->dom_mowner;
510 #endif
511 if (l != NULL) {
512 uid = kauth_cred_geteuid(l->l_cred);
513 } else {
514 uid = 0;
515 }
516 so->so_uidinfo = uid_find(uid);
517 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
518 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
519 if (error) {
520 so->so_state |= SS_NOFDREF;
521 sofree(so);
522 splx(s);
523 return (error);
524 }
525 splx(s);
526 *aso = so;
527 return (0);
528 }
529
530 int
531 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
532 {
533 int s, error;
534
535 s = splsoftnet();
536 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
537 nam, (struct mbuf *)0, l);
538 splx(s);
539 return (error);
540 }
541
542 int
543 solisten(struct socket *so, int backlog)
544 {
545 int s, error;
546
547 s = splsoftnet();
548 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
549 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
550 if (error) {
551 splx(s);
552 return (error);
553 }
554 if (TAILQ_EMPTY(&so->so_q))
555 so->so_options |= SO_ACCEPTCONN;
556 if (backlog < 0)
557 backlog = 0;
558 so->so_qlimit = min(backlog, somaxconn);
559 splx(s);
560 return (0);
561 }
562
563 void
564 sofree(struct socket *so)
565 {
566
567 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
568 return;
569 if (so->so_head) {
570 /*
571 * We must not decommission a socket that's on the accept(2)
572 * queue. If we do, then accept(2) may hang after select(2)
573 * indicated that the listening socket was ready.
574 */
575 if (!soqremque(so, 0))
576 return;
577 }
578 if (so->so_rcv.sb_hiwat)
579 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
580 RLIM_INFINITY);
581 if (so->so_snd.sb_hiwat)
582 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
583 RLIM_INFINITY);
584 sbrelease(&so->so_snd, so);
585 sorflush(so);
586 pool_put(&socket_pool, so);
587 }
588
589 /*
590 * Close a socket on last file table reference removal.
591 * Initiate disconnect if connected.
592 * Free socket when disconnect complete.
593 */
594 int
595 soclose(struct socket *so)
596 {
597 struct socket *so2;
598 int s, error;
599
600 error = 0;
601 s = splsoftnet(); /* conservative */
602 if (so->so_options & SO_ACCEPTCONN) {
603 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
604 (void) soqremque(so2, 0);
605 (void) soabort(so2);
606 }
607 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
608 (void) soqremque(so2, 1);
609 (void) soabort(so2);
610 }
611 }
612 if (so->so_pcb == 0)
613 goto discard;
614 if (so->so_state & SS_ISCONNECTED) {
615 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
616 error = sodisconnect(so);
617 if (error)
618 goto drop;
619 }
620 if (so->so_options & SO_LINGER) {
621 if ((so->so_state & SS_ISDISCONNECTING) &&
622 (so->so_state & SS_NBIO))
623 goto drop;
624 while (so->so_state & SS_ISCONNECTED) {
625 error = tsleep((caddr_t)&so->so_timeo,
626 PSOCK | PCATCH, netcls,
627 so->so_linger * hz);
628 if (error)
629 break;
630 }
631 }
632 }
633 drop:
634 if (so->so_pcb) {
635 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
636 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
637 (struct lwp *)0);
638 if (error == 0)
639 error = error2;
640 }
641 discard:
642 if (so->so_state & SS_NOFDREF)
643 panic("soclose: NOFDREF");
644 so->so_state |= SS_NOFDREF;
645 sofree(so);
646 splx(s);
647 return (error);
648 }
649
650 /*
651 * Must be called at splsoftnet...
652 */
653 int
654 soabort(struct socket *so)
655 {
656
657 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
658 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
659 }
660
661 int
662 soaccept(struct socket *so, struct mbuf *nam)
663 {
664 int s, error;
665
666 error = 0;
667 s = splsoftnet();
668 if ((so->so_state & SS_NOFDREF) == 0)
669 panic("soaccept: !NOFDREF");
670 so->so_state &= ~SS_NOFDREF;
671 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
672 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
673 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
674 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
675 else
676 error = ECONNABORTED;
677
678 splx(s);
679 return (error);
680 }
681
682 int
683 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
684 {
685 int s, error;
686
687 if (so->so_options & SO_ACCEPTCONN)
688 return (EOPNOTSUPP);
689 s = splsoftnet();
690 /*
691 * If protocol is connection-based, can only connect once.
692 * Otherwise, if connected, try to disconnect first.
693 * This allows user to disconnect by connecting to, e.g.,
694 * a null address.
695 */
696 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
697 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
698 (error = sodisconnect(so))))
699 error = EISCONN;
700 else
701 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
702 (struct mbuf *)0, nam, (struct mbuf *)0, l);
703 splx(s);
704 return (error);
705 }
706
707 int
708 soconnect2(struct socket *so1, struct socket *so2)
709 {
710 int s, error;
711
712 s = splsoftnet();
713 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
714 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
715 (struct lwp *)0);
716 splx(s);
717 return (error);
718 }
719
720 int
721 sodisconnect(struct socket *so)
722 {
723 int s, error;
724
725 s = splsoftnet();
726 if ((so->so_state & SS_ISCONNECTED) == 0) {
727 error = ENOTCONN;
728 goto bad;
729 }
730 if (so->so_state & SS_ISDISCONNECTING) {
731 error = EALREADY;
732 goto bad;
733 }
734 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
735 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
736 (struct lwp *)0);
737 bad:
738 splx(s);
739 sodopendfree();
740 return (error);
741 }
742
743 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
744 /*
745 * Send on a socket.
746 * If send must go all at once and message is larger than
747 * send buffering, then hard error.
748 * Lock against other senders.
749 * If must go all at once and not enough room now, then
750 * inform user that this would block and do nothing.
751 * Otherwise, if nonblocking, send as much as possible.
752 * The data to be sent is described by "uio" if nonzero,
753 * otherwise by the mbuf chain "top" (which must be null
754 * if uio is not). Data provided in mbuf chain must be small
755 * enough to send all at once.
756 *
757 * Returns nonzero on error, timeout or signal; callers
758 * must check for short counts if EINTR/ERESTART are returned.
759 * Data and control buffers are freed on return.
760 */
761 int
762 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
763 struct mbuf *control, int flags, struct lwp *l)
764 {
765 struct mbuf **mp, *m;
766 struct proc *p;
767 long space, len, resid, clen, mlen;
768 int error, s, dontroute, atomic;
769
770 p = l->l_proc;
771 sodopendfree();
772
773 clen = 0;
774 atomic = sosendallatonce(so) || top;
775 if (uio)
776 resid = uio->uio_resid;
777 else
778 resid = top->m_pkthdr.len;
779 /*
780 * In theory resid should be unsigned.
781 * However, space must be signed, as it might be less than 0
782 * if we over-committed, and we must use a signed comparison
783 * of space and resid. On the other hand, a negative resid
784 * causes us to loop sending 0-length segments to the protocol.
785 */
786 if (resid < 0) {
787 error = EINVAL;
788 goto out;
789 }
790 dontroute =
791 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
792 (so->so_proto->pr_flags & PR_ATOMIC);
793 if (p)
794 p->p_stats->p_ru.ru_msgsnd++;
795 if (control)
796 clen = control->m_len;
797 #define snderr(errno) { error = errno; splx(s); goto release; }
798
799 restart:
800 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
801 goto out;
802 do {
803 s = splsoftnet();
804 if (so->so_state & SS_CANTSENDMORE)
805 snderr(EPIPE);
806 if (so->so_error) {
807 error = so->so_error;
808 so->so_error = 0;
809 splx(s);
810 goto release;
811 }
812 if ((so->so_state & SS_ISCONNECTED) == 0) {
813 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
814 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
815 !(resid == 0 && clen != 0))
816 snderr(ENOTCONN);
817 } else if (addr == 0)
818 snderr(EDESTADDRREQ);
819 }
820 space = sbspace(&so->so_snd);
821 if (flags & MSG_OOB)
822 space += 1024;
823 if ((atomic && resid > so->so_snd.sb_hiwat) ||
824 clen > so->so_snd.sb_hiwat)
825 snderr(EMSGSIZE);
826 if (space < resid + clen &&
827 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
828 if (so->so_state & SS_NBIO)
829 snderr(EWOULDBLOCK);
830 sbunlock(&so->so_snd);
831 error = sbwait(&so->so_snd);
832 splx(s);
833 if (error)
834 goto out;
835 goto restart;
836 }
837 splx(s);
838 mp = ⊤
839 space -= clen;
840 do {
841 if (uio == NULL) {
842 /*
843 * Data is prepackaged in "top".
844 */
845 resid = 0;
846 if (flags & MSG_EOR)
847 top->m_flags |= M_EOR;
848 } else do {
849 if (top == 0) {
850 m = m_gethdr(M_WAIT, MT_DATA);
851 mlen = MHLEN;
852 m->m_pkthdr.len = 0;
853 m->m_pkthdr.rcvif = (struct ifnet *)0;
854 } else {
855 m = m_get(M_WAIT, MT_DATA);
856 mlen = MLEN;
857 }
858 MCLAIM(m, so->so_snd.sb_mowner);
859 if (sock_loan_thresh >= 0 &&
860 uio->uio_iov->iov_len >= sock_loan_thresh &&
861 space >= sock_loan_thresh &&
862 (len = sosend_loan(so, uio, m,
863 space)) != 0) {
864 SOSEND_COUNTER_INCR(&sosend_loan_big);
865 space -= len;
866 goto have_data;
867 }
868 if (resid >= MINCLSIZE && space >= MCLBYTES) {
869 SOSEND_COUNTER_INCR(&sosend_copy_big);
870 m_clget(m, M_WAIT);
871 if ((m->m_flags & M_EXT) == 0)
872 goto nopages;
873 mlen = MCLBYTES;
874 if (atomic && top == 0) {
875 len = lmin(MCLBYTES - max_hdr,
876 resid);
877 m->m_data += max_hdr;
878 } else
879 len = lmin(MCLBYTES, resid);
880 space -= len;
881 } else {
882 nopages:
883 SOSEND_COUNTER_INCR(&sosend_copy_small);
884 len = lmin(lmin(mlen, resid), space);
885 space -= len;
886 /*
887 * For datagram protocols, leave room
888 * for protocol headers in first mbuf.
889 */
890 if (atomic && top == 0 && len < mlen)
891 MH_ALIGN(m, len);
892 }
893 error = uiomove(mtod(m, caddr_t), (int)len,
894 uio);
895 have_data:
896 resid = uio->uio_resid;
897 m->m_len = len;
898 *mp = m;
899 top->m_pkthdr.len += len;
900 if (error)
901 goto release;
902 mp = &m->m_next;
903 if (resid <= 0) {
904 if (flags & MSG_EOR)
905 top->m_flags |= M_EOR;
906 break;
907 }
908 } while (space > 0 && atomic);
909
910 s = splsoftnet();
911
912 if (so->so_state & SS_CANTSENDMORE)
913 snderr(EPIPE);
914
915 if (dontroute)
916 so->so_options |= SO_DONTROUTE;
917 if (resid > 0)
918 so->so_state |= SS_MORETOCOME;
919 error = (*so->so_proto->pr_usrreq)(so,
920 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
921 top, addr, control, curlwp); /* XXX */
922 if (dontroute)
923 so->so_options &= ~SO_DONTROUTE;
924 if (resid > 0)
925 so->so_state &= ~SS_MORETOCOME;
926 splx(s);
927
928 clen = 0;
929 control = 0;
930 top = 0;
931 mp = ⊤
932 if (error)
933 goto release;
934 } while (resid && space > 0);
935 } while (resid);
936
937 release:
938 sbunlock(&so->so_snd);
939 out:
940 if (top)
941 m_freem(top);
942 if (control)
943 m_freem(control);
944 return (error);
945 }
946
947 /*
948 * Implement receive operations on a socket.
949 * We depend on the way that records are added to the sockbuf
950 * by sbappend*. In particular, each record (mbufs linked through m_next)
951 * must begin with an address if the protocol so specifies,
952 * followed by an optional mbuf or mbufs containing ancillary data,
953 * and then zero or more mbufs of data.
954 * In order to avoid blocking network interrupts for the entire time here,
955 * we splx() while doing the actual copy to user space.
956 * Although the sockbuf is locked, new data may still be appended,
957 * and thus we must maintain consistency of the sockbuf during that time.
958 *
959 * The caller may receive the data as a single mbuf chain by supplying
960 * an mbuf **mp0 for use in returning the chain. The uio is then used
961 * only for the count in uio_resid.
962 */
963 int
964 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
965 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
966 {
967 struct lwp *l = curlwp;
968 struct mbuf *m, **mp;
969 int flags, len, error, s, offset, moff, type, orig_resid;
970 const struct protosw *pr;
971 struct mbuf *nextrecord;
972 int mbuf_removed = 0;
973
974 pr = so->so_proto;
975 mp = mp0;
976 type = 0;
977 orig_resid = uio->uio_resid;
978
979 if (paddr)
980 *paddr = 0;
981 if (controlp)
982 *controlp = 0;
983 if (flagsp)
984 flags = *flagsp &~ MSG_EOR;
985 else
986 flags = 0;
987
988 if ((flags & MSG_DONTWAIT) == 0)
989 sodopendfree();
990
991 if (flags & MSG_OOB) {
992 m = m_get(M_WAIT, MT_DATA);
993 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
994 (struct mbuf *)(long)(flags & MSG_PEEK),
995 (struct mbuf *)0, l);
996 if (error)
997 goto bad;
998 do {
999 error = uiomove(mtod(m, caddr_t),
1000 (int) min(uio->uio_resid, m->m_len), uio);
1001 m = m_free(m);
1002 } while (uio->uio_resid && error == 0 && m);
1003 bad:
1004 if (m)
1005 m_freem(m);
1006 return (error);
1007 }
1008 if (mp)
1009 *mp = (struct mbuf *)0;
1010 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1011 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1012 (struct mbuf *)0, (struct mbuf *)0, l);
1013
1014 restart:
1015 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1016 return (error);
1017 s = splsoftnet();
1018
1019 m = so->so_rcv.sb_mb;
1020 /*
1021 * If we have less data than requested, block awaiting more
1022 * (subject to any timeout) if:
1023 * 1. the current count is less than the low water mark,
1024 * 2. MSG_WAITALL is set, and it is possible to do the entire
1025 * receive operation at once if we block (resid <= hiwat), or
1026 * 3. MSG_DONTWAIT is not set.
1027 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1028 * we have to do the receive in sections, and thus risk returning
1029 * a short count if a timeout or signal occurs after we start.
1030 */
1031 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1032 so->so_rcv.sb_cc < uio->uio_resid) &&
1033 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1034 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1035 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1036 #ifdef DIAGNOSTIC
1037 if (m == 0 && so->so_rcv.sb_cc)
1038 panic("receive 1");
1039 #endif
1040 if (so->so_error) {
1041 if (m)
1042 goto dontblock;
1043 error = so->so_error;
1044 if ((flags & MSG_PEEK) == 0)
1045 so->so_error = 0;
1046 goto release;
1047 }
1048 if (so->so_state & SS_CANTRCVMORE) {
1049 if (m)
1050 goto dontblock;
1051 else
1052 goto release;
1053 }
1054 for (; m; m = m->m_next)
1055 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1056 m = so->so_rcv.sb_mb;
1057 goto dontblock;
1058 }
1059 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1060 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1061 error = ENOTCONN;
1062 goto release;
1063 }
1064 if (uio->uio_resid == 0)
1065 goto release;
1066 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1067 error = EWOULDBLOCK;
1068 goto release;
1069 }
1070 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1071 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1072 sbunlock(&so->so_rcv);
1073 error = sbwait(&so->so_rcv);
1074 splx(s);
1075 if (error)
1076 return (error);
1077 goto restart;
1078 }
1079 dontblock:
1080 /*
1081 * On entry here, m points to the first record of the socket buffer.
1082 * While we process the initial mbufs containing address and control
1083 * info, we save a copy of m->m_nextpkt into nextrecord.
1084 */
1085 if (l)
1086 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1087 KASSERT(m == so->so_rcv.sb_mb);
1088 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1089 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1090 nextrecord = m->m_nextpkt;
1091 if (pr->pr_flags & PR_ADDR) {
1092 #ifdef DIAGNOSTIC
1093 if (m->m_type != MT_SONAME)
1094 panic("receive 1a");
1095 #endif
1096 orig_resid = 0;
1097 if (flags & MSG_PEEK) {
1098 if (paddr)
1099 *paddr = m_copy(m, 0, m->m_len);
1100 m = m->m_next;
1101 } else {
1102 sbfree(&so->so_rcv, m);
1103 mbuf_removed = 1;
1104 if (paddr) {
1105 *paddr = m;
1106 so->so_rcv.sb_mb = m->m_next;
1107 m->m_next = 0;
1108 m = so->so_rcv.sb_mb;
1109 } else {
1110 MFREE(m, so->so_rcv.sb_mb);
1111 m = so->so_rcv.sb_mb;
1112 }
1113 }
1114 }
1115 while (m && m->m_type == MT_CONTROL && error == 0) {
1116 if (flags & MSG_PEEK) {
1117 if (controlp)
1118 *controlp = m_copy(m, 0, m->m_len);
1119 m = m->m_next;
1120 } else {
1121 sbfree(&so->so_rcv, m);
1122 mbuf_removed = 1;
1123 if (controlp) {
1124 struct domain *dom = pr->pr_domain;
1125 if (dom->dom_externalize && l &&
1126 mtod(m, struct cmsghdr *)->cmsg_type ==
1127 SCM_RIGHTS)
1128 error = (*dom->dom_externalize)(m, l);
1129 *controlp = m;
1130 so->so_rcv.sb_mb = m->m_next;
1131 m->m_next = 0;
1132 m = so->so_rcv.sb_mb;
1133 } else {
1134 /*
1135 * Dispose of any SCM_RIGHTS message that went
1136 * through the read path rather than recv.
1137 */
1138 if (pr->pr_domain->dom_dispose &&
1139 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1140 (*pr->pr_domain->dom_dispose)(m);
1141 MFREE(m, so->so_rcv.sb_mb);
1142 m = so->so_rcv.sb_mb;
1143 }
1144 }
1145 if (controlp) {
1146 orig_resid = 0;
1147 controlp = &(*controlp)->m_next;
1148 }
1149 }
1150
1151 /*
1152 * If m is non-NULL, we have some data to read. From now on,
1153 * make sure to keep sb_lastrecord consistent when working on
1154 * the last packet on the chain (nextrecord == NULL) and we
1155 * change m->m_nextpkt.
1156 */
1157 if (m) {
1158 if ((flags & MSG_PEEK) == 0) {
1159 m->m_nextpkt = nextrecord;
1160 /*
1161 * If nextrecord == NULL (this is a single chain),
1162 * then sb_lastrecord may not be valid here if m
1163 * was changed earlier.
1164 */
1165 if (nextrecord == NULL) {
1166 KASSERT(so->so_rcv.sb_mb == m);
1167 so->so_rcv.sb_lastrecord = m;
1168 }
1169 }
1170 type = m->m_type;
1171 if (type == MT_OOBDATA)
1172 flags |= MSG_OOB;
1173 } else {
1174 if ((flags & MSG_PEEK) == 0) {
1175 KASSERT(so->so_rcv.sb_mb == m);
1176 so->so_rcv.sb_mb = nextrecord;
1177 SB_EMPTY_FIXUP(&so->so_rcv);
1178 }
1179 }
1180 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1181 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1182
1183 moff = 0;
1184 offset = 0;
1185 while (m && uio->uio_resid > 0 && error == 0) {
1186 if (m->m_type == MT_OOBDATA) {
1187 if (type != MT_OOBDATA)
1188 break;
1189 } else if (type == MT_OOBDATA)
1190 break;
1191 #ifdef DIAGNOSTIC
1192 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1193 panic("receive 3");
1194 #endif
1195 so->so_state &= ~SS_RCVATMARK;
1196 len = uio->uio_resid;
1197 if (so->so_oobmark && len > so->so_oobmark - offset)
1198 len = so->so_oobmark - offset;
1199 if (len > m->m_len - moff)
1200 len = m->m_len - moff;
1201 /*
1202 * If mp is set, just pass back the mbufs.
1203 * Otherwise copy them out via the uio, then free.
1204 * Sockbuf must be consistent here (points to current mbuf,
1205 * it points to next record) when we drop priority;
1206 * we must note any additions to the sockbuf when we
1207 * block interrupts again.
1208 */
1209 if (mp == 0) {
1210 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1211 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1212 splx(s);
1213 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1214 s = splsoftnet();
1215 if (error) {
1216 /*
1217 * If any part of the record has been removed
1218 * (such as the MT_SONAME mbuf, which will
1219 * happen when PR_ADDR, and thus also
1220 * PR_ATOMIC, is set), then drop the entire
1221 * record to maintain the atomicity of the
1222 * receive operation.
1223 *
1224 * This avoids a later panic("receive 1a")
1225 * when compiled with DIAGNOSTIC.
1226 */
1227 if (m && mbuf_removed
1228 && (pr->pr_flags & PR_ATOMIC))
1229 (void) sbdroprecord(&so->so_rcv);
1230
1231 goto release;
1232 }
1233 } else
1234 uio->uio_resid -= len;
1235 if (len == m->m_len - moff) {
1236 if (m->m_flags & M_EOR)
1237 flags |= MSG_EOR;
1238 if (flags & MSG_PEEK) {
1239 m = m->m_next;
1240 moff = 0;
1241 } else {
1242 nextrecord = m->m_nextpkt;
1243 sbfree(&so->so_rcv, m);
1244 if (mp) {
1245 *mp = m;
1246 mp = &m->m_next;
1247 so->so_rcv.sb_mb = m = m->m_next;
1248 *mp = (struct mbuf *)0;
1249 } else {
1250 MFREE(m, so->so_rcv.sb_mb);
1251 m = so->so_rcv.sb_mb;
1252 }
1253 /*
1254 * If m != NULL, we also know that
1255 * so->so_rcv.sb_mb != NULL.
1256 */
1257 KASSERT(so->so_rcv.sb_mb == m);
1258 if (m) {
1259 m->m_nextpkt = nextrecord;
1260 if (nextrecord == NULL)
1261 so->so_rcv.sb_lastrecord = m;
1262 } else {
1263 so->so_rcv.sb_mb = nextrecord;
1264 SB_EMPTY_FIXUP(&so->so_rcv);
1265 }
1266 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1267 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1268 }
1269 } else {
1270 if (flags & MSG_PEEK)
1271 moff += len;
1272 else {
1273 if (mp)
1274 *mp = m_copym(m, 0, len, M_WAIT);
1275 m->m_data += len;
1276 m->m_len -= len;
1277 so->so_rcv.sb_cc -= len;
1278 }
1279 }
1280 if (so->so_oobmark) {
1281 if ((flags & MSG_PEEK) == 0) {
1282 so->so_oobmark -= len;
1283 if (so->so_oobmark == 0) {
1284 so->so_state |= SS_RCVATMARK;
1285 break;
1286 }
1287 } else {
1288 offset += len;
1289 if (offset == so->so_oobmark)
1290 break;
1291 }
1292 }
1293 if (flags & MSG_EOR)
1294 break;
1295 /*
1296 * If the MSG_WAITALL flag is set (for non-atomic socket),
1297 * we must not quit until "uio->uio_resid == 0" or an error
1298 * termination. If a signal/timeout occurs, return
1299 * with a short count but without error.
1300 * Keep sockbuf locked against other readers.
1301 */
1302 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1303 !sosendallatonce(so) && !nextrecord) {
1304 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1305 break;
1306 /*
1307 * If we are peeking and the socket receive buffer is
1308 * full, stop since we can't get more data to peek at.
1309 */
1310 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1311 break;
1312 /*
1313 * If we've drained the socket buffer, tell the
1314 * protocol in case it needs to do something to
1315 * get it filled again.
1316 */
1317 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1318 (*pr->pr_usrreq)(so, PRU_RCVD,
1319 (struct mbuf *)0,
1320 (struct mbuf *)(long)flags,
1321 (struct mbuf *)0, l);
1322 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1323 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1324 error = sbwait(&so->so_rcv);
1325 if (error) {
1326 sbunlock(&so->so_rcv);
1327 splx(s);
1328 return (0);
1329 }
1330 if ((m = so->so_rcv.sb_mb) != NULL)
1331 nextrecord = m->m_nextpkt;
1332 }
1333 }
1334
1335 if (m && pr->pr_flags & PR_ATOMIC) {
1336 flags |= MSG_TRUNC;
1337 if ((flags & MSG_PEEK) == 0)
1338 (void) sbdroprecord(&so->so_rcv);
1339 }
1340 if ((flags & MSG_PEEK) == 0) {
1341 if (m == 0) {
1342 /*
1343 * First part is an inline SB_EMPTY_FIXUP(). Second
1344 * part makes sure sb_lastrecord is up-to-date if
1345 * there is still data in the socket buffer.
1346 */
1347 so->so_rcv.sb_mb = nextrecord;
1348 if (so->so_rcv.sb_mb == NULL) {
1349 so->so_rcv.sb_mbtail = NULL;
1350 so->so_rcv.sb_lastrecord = NULL;
1351 } else if (nextrecord->m_nextpkt == NULL)
1352 so->so_rcv.sb_lastrecord = nextrecord;
1353 }
1354 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1355 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1356 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1357 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1358 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1359 }
1360 if (orig_resid == uio->uio_resid && orig_resid &&
1361 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1362 sbunlock(&so->so_rcv);
1363 splx(s);
1364 goto restart;
1365 }
1366
1367 if (flagsp)
1368 *flagsp |= flags;
1369 release:
1370 sbunlock(&so->so_rcv);
1371 splx(s);
1372 return (error);
1373 }
1374
1375 int
1376 soshutdown(struct socket *so, int how)
1377 {
1378 const struct protosw *pr;
1379
1380 pr = so->so_proto;
1381 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1382 return (EINVAL);
1383
1384 if (how == SHUT_RD || how == SHUT_RDWR)
1385 sorflush(so);
1386 if (how == SHUT_WR || how == SHUT_RDWR)
1387 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1388 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1389 return (0);
1390 }
1391
1392 void
1393 sorflush(struct socket *so)
1394 {
1395 struct sockbuf *sb, asb;
1396 const struct protosw *pr;
1397 int s;
1398
1399 sb = &so->so_rcv;
1400 pr = so->so_proto;
1401 sb->sb_flags |= SB_NOINTR;
1402 (void) sblock(sb, M_WAITOK);
1403 s = splnet();
1404 socantrcvmore(so);
1405 sbunlock(sb);
1406 asb = *sb;
1407 /*
1408 * Clear most of the sockbuf structure, but leave some of the
1409 * fields valid.
1410 */
1411 memset(&sb->sb_startzero, 0,
1412 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1413 splx(s);
1414 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1415 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1416 sbrelease(&asb, so);
1417 }
1418
1419 int
1420 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1421 {
1422 int error;
1423 struct mbuf *m;
1424 struct linger *l;
1425
1426 error = 0;
1427 m = m0;
1428 if (level != SOL_SOCKET) {
1429 if (so->so_proto && so->so_proto->pr_ctloutput)
1430 return ((*so->so_proto->pr_ctloutput)
1431 (PRCO_SETOPT, so, level, optname, &m0));
1432 error = ENOPROTOOPT;
1433 } else {
1434 switch (optname) {
1435
1436 case SO_LINGER:
1437 if (m == NULL || m->m_len != sizeof(struct linger)) {
1438 error = EINVAL;
1439 goto bad;
1440 }
1441 l = mtod(m, struct linger *);
1442 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1443 l->l_linger > (INT_MAX / hz)) {
1444 error = EDOM;
1445 goto bad;
1446 }
1447 so->so_linger = l->l_linger;
1448 if (l->l_onoff)
1449 so->so_options |= SO_LINGER;
1450 else
1451 so->so_options &= ~SO_LINGER;
1452 break;
1453
1454 case SO_DEBUG:
1455 case SO_KEEPALIVE:
1456 case SO_DONTROUTE:
1457 case SO_USELOOPBACK:
1458 case SO_BROADCAST:
1459 case SO_REUSEADDR:
1460 case SO_REUSEPORT:
1461 case SO_OOBINLINE:
1462 case SO_TIMESTAMP:
1463 if (m == NULL || m->m_len < sizeof(int)) {
1464 error = EINVAL;
1465 goto bad;
1466 }
1467 if (*mtod(m, int *))
1468 so->so_options |= optname;
1469 else
1470 so->so_options &= ~optname;
1471 break;
1472
1473 case SO_SNDBUF:
1474 case SO_RCVBUF:
1475 case SO_SNDLOWAT:
1476 case SO_RCVLOWAT:
1477 {
1478 int optval;
1479
1480 if (m == NULL || m->m_len < sizeof(int)) {
1481 error = EINVAL;
1482 goto bad;
1483 }
1484
1485 /*
1486 * Values < 1 make no sense for any of these
1487 * options, so disallow them.
1488 */
1489 optval = *mtod(m, int *);
1490 if (optval < 1) {
1491 error = EINVAL;
1492 goto bad;
1493 }
1494
1495 switch (optname) {
1496
1497 case SO_SNDBUF:
1498 case SO_RCVBUF:
1499 if (sbreserve(optname == SO_SNDBUF ?
1500 &so->so_snd : &so->so_rcv,
1501 (u_long) optval, so) == 0) {
1502 error = ENOBUFS;
1503 goto bad;
1504 }
1505 break;
1506
1507 /*
1508 * Make sure the low-water is never greater than
1509 * the high-water.
1510 */
1511 case SO_SNDLOWAT:
1512 so->so_snd.sb_lowat =
1513 (optval > so->so_snd.sb_hiwat) ?
1514 so->so_snd.sb_hiwat : optval;
1515 break;
1516 case SO_RCVLOWAT:
1517 so->so_rcv.sb_lowat =
1518 (optval > so->so_rcv.sb_hiwat) ?
1519 so->so_rcv.sb_hiwat : optval;
1520 break;
1521 }
1522 break;
1523 }
1524
1525 case SO_SNDTIMEO:
1526 case SO_RCVTIMEO:
1527 {
1528 struct timeval *tv;
1529 int val;
1530
1531 if (m == NULL || m->m_len < sizeof(*tv)) {
1532 error = EINVAL;
1533 goto bad;
1534 }
1535 tv = mtod(m, struct timeval *);
1536 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1537 error = EDOM;
1538 goto bad;
1539 }
1540 val = tv->tv_sec * hz + tv->tv_usec / tick;
1541 if (val == 0 && tv->tv_usec != 0)
1542 val = 1;
1543
1544 switch (optname) {
1545
1546 case SO_SNDTIMEO:
1547 so->so_snd.sb_timeo = val;
1548 break;
1549 case SO_RCVTIMEO:
1550 so->so_rcv.sb_timeo = val;
1551 break;
1552 }
1553 break;
1554 }
1555
1556 default:
1557 error = ENOPROTOOPT;
1558 break;
1559 }
1560 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1561 (void) ((*so->so_proto->pr_ctloutput)
1562 (PRCO_SETOPT, so, level, optname, &m0));
1563 m = NULL; /* freed by protocol */
1564 }
1565 }
1566 bad:
1567 if (m)
1568 (void) m_free(m);
1569 return (error);
1570 }
1571
1572 int
1573 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1574 {
1575 struct mbuf *m;
1576
1577 if (level != SOL_SOCKET) {
1578 if (so->so_proto && so->so_proto->pr_ctloutput) {
1579 return ((*so->so_proto->pr_ctloutput)
1580 (PRCO_GETOPT, so, level, optname, mp));
1581 } else
1582 return (ENOPROTOOPT);
1583 } else {
1584 m = m_get(M_WAIT, MT_SOOPTS);
1585 m->m_len = sizeof(int);
1586
1587 switch (optname) {
1588
1589 case SO_LINGER:
1590 m->m_len = sizeof(struct linger);
1591 mtod(m, struct linger *)->l_onoff =
1592 (so->so_options & SO_LINGER) ? 1 : 0;
1593 mtod(m, struct linger *)->l_linger = so->so_linger;
1594 break;
1595
1596 case SO_USELOOPBACK:
1597 case SO_DONTROUTE:
1598 case SO_DEBUG:
1599 case SO_KEEPALIVE:
1600 case SO_REUSEADDR:
1601 case SO_REUSEPORT:
1602 case SO_BROADCAST:
1603 case SO_OOBINLINE:
1604 case SO_TIMESTAMP:
1605 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1606 break;
1607
1608 case SO_TYPE:
1609 *mtod(m, int *) = so->so_type;
1610 break;
1611
1612 case SO_ERROR:
1613 *mtod(m, int *) = so->so_error;
1614 so->so_error = 0;
1615 break;
1616
1617 case SO_SNDBUF:
1618 *mtod(m, int *) = so->so_snd.sb_hiwat;
1619 break;
1620
1621 case SO_RCVBUF:
1622 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1623 break;
1624
1625 case SO_SNDLOWAT:
1626 *mtod(m, int *) = so->so_snd.sb_lowat;
1627 break;
1628
1629 case SO_RCVLOWAT:
1630 *mtod(m, int *) = so->so_rcv.sb_lowat;
1631 break;
1632
1633 case SO_SNDTIMEO:
1634 case SO_RCVTIMEO:
1635 {
1636 int val = (optname == SO_SNDTIMEO ?
1637 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1638
1639 m->m_len = sizeof(struct timeval);
1640 mtod(m, struct timeval *)->tv_sec = val / hz;
1641 mtod(m, struct timeval *)->tv_usec =
1642 (val % hz) * tick;
1643 break;
1644 }
1645
1646 case SO_OVERFLOWED:
1647 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1648 break;
1649
1650 default:
1651 (void)m_free(m);
1652 return (ENOPROTOOPT);
1653 }
1654 *mp = m;
1655 return (0);
1656 }
1657 }
1658
1659 void
1660 sohasoutofband(struct socket *so)
1661 {
1662 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1663 selwakeup(&so->so_rcv.sb_sel);
1664 }
1665
1666 static void
1667 filt_sordetach(struct knote *kn)
1668 {
1669 struct socket *so;
1670
1671 so = (struct socket *)kn->kn_fp->f_data;
1672 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1673 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1674 so->so_rcv.sb_flags &= ~SB_KNOTE;
1675 }
1676
1677 /*ARGSUSED*/
1678 static int
1679 filt_soread(struct knote *kn, long hint)
1680 {
1681 struct socket *so;
1682
1683 so = (struct socket *)kn->kn_fp->f_data;
1684 kn->kn_data = so->so_rcv.sb_cc;
1685 if (so->so_state & SS_CANTRCVMORE) {
1686 kn->kn_flags |= EV_EOF;
1687 kn->kn_fflags = so->so_error;
1688 return (1);
1689 }
1690 if (so->so_error) /* temporary udp error */
1691 return (1);
1692 if (kn->kn_sfflags & NOTE_LOWAT)
1693 return (kn->kn_data >= kn->kn_sdata);
1694 return (kn->kn_data >= so->so_rcv.sb_lowat);
1695 }
1696
1697 static void
1698 filt_sowdetach(struct knote *kn)
1699 {
1700 struct socket *so;
1701
1702 so = (struct socket *)kn->kn_fp->f_data;
1703 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1704 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1705 so->so_snd.sb_flags &= ~SB_KNOTE;
1706 }
1707
1708 /*ARGSUSED*/
1709 static int
1710 filt_sowrite(struct knote *kn, long hint)
1711 {
1712 struct socket *so;
1713
1714 so = (struct socket *)kn->kn_fp->f_data;
1715 kn->kn_data = sbspace(&so->so_snd);
1716 if (so->so_state & SS_CANTSENDMORE) {
1717 kn->kn_flags |= EV_EOF;
1718 kn->kn_fflags = so->so_error;
1719 return (1);
1720 }
1721 if (so->so_error) /* temporary udp error */
1722 return (1);
1723 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1724 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1725 return (0);
1726 if (kn->kn_sfflags & NOTE_LOWAT)
1727 return (kn->kn_data >= kn->kn_sdata);
1728 return (kn->kn_data >= so->so_snd.sb_lowat);
1729 }
1730
1731 /*ARGSUSED*/
1732 static int
1733 filt_solisten(struct knote *kn, long hint)
1734 {
1735 struct socket *so;
1736
1737 so = (struct socket *)kn->kn_fp->f_data;
1738
1739 /*
1740 * Set kn_data to number of incoming connections, not
1741 * counting partial (incomplete) connections.
1742 */
1743 kn->kn_data = so->so_qlen;
1744 return (kn->kn_data > 0);
1745 }
1746
1747 static const struct filterops solisten_filtops =
1748 { 1, NULL, filt_sordetach, filt_solisten };
1749 static const struct filterops soread_filtops =
1750 { 1, NULL, filt_sordetach, filt_soread };
1751 static const struct filterops sowrite_filtops =
1752 { 1, NULL, filt_sowdetach, filt_sowrite };
1753
1754 int
1755 soo_kqfilter(struct file *fp, struct knote *kn)
1756 {
1757 struct socket *so;
1758 struct sockbuf *sb;
1759
1760 so = (struct socket *)kn->kn_fp->f_data;
1761 switch (kn->kn_filter) {
1762 case EVFILT_READ:
1763 if (so->so_options & SO_ACCEPTCONN)
1764 kn->kn_fop = &solisten_filtops;
1765 else
1766 kn->kn_fop = &soread_filtops;
1767 sb = &so->so_rcv;
1768 break;
1769 case EVFILT_WRITE:
1770 kn->kn_fop = &sowrite_filtops;
1771 sb = &so->so_snd;
1772 break;
1773 default:
1774 return (1);
1775 }
1776 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1777 sb->sb_flags |= SB_KNOTE;
1778 return (0);
1779 }
1780
1781 #include <sys/sysctl.h>
1782
1783 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1784
1785 /*
1786 * sysctl helper routine for kern.somaxkva. ensures that the given
1787 * value is not too small.
1788 * (XXX should we maybe make sure it's not too large as well?)
1789 */
1790 static int
1791 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1792 {
1793 int error, new_somaxkva;
1794 struct sysctlnode node;
1795 int s;
1796
1797 new_somaxkva = somaxkva;
1798 node = *rnode;
1799 node.sysctl_data = &new_somaxkva;
1800 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1801 if (error || newp == NULL)
1802 return (error);
1803
1804 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1805 return (EINVAL);
1806
1807 s = splvm();
1808 simple_lock(&so_pendfree_slock);
1809 somaxkva = new_somaxkva;
1810 wakeup(&socurkva);
1811 simple_unlock(&so_pendfree_slock);
1812 splx(s);
1813
1814 return (error);
1815 }
1816
1817 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1818 {
1819
1820 sysctl_createv(clog, 0, NULL, NULL,
1821 CTLFLAG_PERMANENT,
1822 CTLTYPE_NODE, "kern", NULL,
1823 NULL, 0, NULL, 0,
1824 CTL_KERN, CTL_EOL);
1825
1826 sysctl_createv(clog, 0, NULL, NULL,
1827 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1828 CTLTYPE_INT, "somaxkva",
1829 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1830 "used for socket buffers"),
1831 sysctl_kern_somaxkva, 0, NULL, 0,
1832 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1833 }
1834