Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.111.2.7
      1 /*	$NetBSD: uipc_socket.c,v 1.111.2.7 2007/09/03 14:41:18 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.7 2007/09/03 14:41:18 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 #include <sys/mutex.h>
     96 #include <sys/condvar.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    101     IPL_SOFTNET);
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern int	somaxconn;			/* patchable (XXX sysctl) */
    107 int		somaxconn = SOMAXCONN;
    108 
    109 #ifdef SOSEND_COUNTERS
    110 #include <sys/device.h>
    111 
    112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "loan big");
    114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "copy big");
    116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    117     NULL, "sosend", "copy small");
    118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "kva limit");
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    122 
    123 EVCNT_ATTACH_STATIC(sosend_loan_big);
    124 EVCNT_ATTACH_STATIC(sosend_copy_big);
    125 EVCNT_ATTACH_STATIC(sosend_copy_small);
    126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    127 #else
    128 
    129 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    130 
    131 #endif /* SOSEND_COUNTERS */
    132 
    133 static struct callback_entry sokva_reclaimerentry;
    134 
    135 #ifdef SOSEND_NO_LOAN
    136 int sock_loan_thresh = -1;
    137 #else
    138 int sock_loan_thresh = 4096;
    139 #endif
    140 
    141 static kmutex_t so_pendfree_lock;
    142 static struct mbuf *so_pendfree;
    143 
    144 #ifndef SOMAXKVA
    145 #define	SOMAXKVA (16 * 1024 * 1024)
    146 #endif
    147 int somaxkva = SOMAXKVA;
    148 static int socurkva;
    149 static kcondvar_t socurkva_cv;
    150 
    151 #define	SOCK_LOAN_CHUNK		65536
    152 
    153 static size_t sodopendfree(void);
    154 static size_t sodopendfreel(void);
    155 
    156 static vsize_t
    157 sokvareserve(struct socket *so, vsize_t len)
    158 {
    159 	int error;
    160 
    161 	mutex_enter(&so_pendfree_lock);
    162 	while (socurkva + len > somaxkva) {
    163 		size_t freed;
    164 
    165 		/*
    166 		 * try to do pendfree.
    167 		 */
    168 
    169 		freed = sodopendfreel();
    170 
    171 		/*
    172 		 * if some kva was freed, try again.
    173 		 */
    174 
    175 		if (freed)
    176 			continue;
    177 
    178 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    179 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    180 		if (error) {
    181 			len = 0;
    182 			break;
    183 		}
    184 	}
    185 	socurkva += len;
    186 	mutex_exit(&so_pendfree_lock);
    187 	return len;
    188 }
    189 
    190 static void
    191 sokvaunreserve(vsize_t len)
    192 {
    193 
    194 	mutex_enter(&so_pendfree_lock);
    195 	socurkva -= len;
    196 	cv_broadcast(&socurkva_cv);
    197 	mutex_exit(&so_pendfree_lock);
    198 }
    199 
    200 /*
    201  * sokvaalloc: allocate kva for loan.
    202  */
    203 
    204 vaddr_t
    205 sokvaalloc(vsize_t len, struct socket *so)
    206 {
    207 	vaddr_t lva;
    208 
    209 	/*
    210 	 * reserve kva.
    211 	 */
    212 
    213 	if (sokvareserve(so, len) == 0)
    214 		return 0;
    215 
    216 	/*
    217 	 * allocate kva.
    218 	 */
    219 
    220 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    221 	if (lva == 0) {
    222 		sokvaunreserve(len);
    223 		return (0);
    224 	}
    225 
    226 	return lva;
    227 }
    228 
    229 /*
    230  * sokvafree: free kva for loan.
    231  */
    232 
    233 void
    234 sokvafree(vaddr_t sva, vsize_t len)
    235 {
    236 
    237 	/*
    238 	 * free kva.
    239 	 */
    240 
    241 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    242 
    243 	/*
    244 	 * unreserve kva.
    245 	 */
    246 
    247 	sokvaunreserve(len);
    248 }
    249 
    250 static void
    251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size, bool mapped)
    252 {
    253 	vaddr_t sva, eva;
    254 	vsize_t len;
    255 	int npgs;
    256 
    257 	KASSERT(pgs != NULL);
    258 
    259 	eva = round_page((vaddr_t) buf + size);
    260 	sva = trunc_page((vaddr_t) buf);
    261 	len = eva - sva;
    262 	npgs = len >> PAGE_SHIFT;
    263 
    264 	if (mapped) {
    265 		pmap_kremove(sva, len);
    266 		pmap_update(pmap_kernel());
    267 	}
    268 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    269 	sokvafree(sva, len);
    270 }
    271 
    272 static size_t
    273 sodopendfree()
    274 {
    275 	size_t rv;
    276 
    277 	mutex_enter(&so_pendfree_lock);
    278 	rv = sodopendfreel();
    279 	mutex_exit(&so_pendfree_lock);
    280 
    281 	return rv;
    282 }
    283 
    284 /*
    285  * sodopendfreel: free mbufs on "pendfree" list.
    286  * unlock and relock so_pendfree_lock when freeing mbufs.
    287  *
    288  * => called with so_pendfree_lock held.
    289  */
    290 
    291 static size_t
    292 sodopendfreel()
    293 {
    294 	struct mbuf *m, *next;
    295 	size_t rv = 0;
    296 	int s;
    297 
    298 	KASSERT(mutex_owned(&so_pendfree_lock));
    299 
    300 	while (so_pendfree != NULL) {
    301 		m = so_pendfree;
    302 		so_pendfree = NULL;
    303 		mutex_exit(&so_pendfree_lock);
    304 
    305 		for (; m != NULL; m = next) {
    306 			next = m->m_next;
    307 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    308 			KASSERT(m->m_ext.ext_refcnt == 0);
    309 
    310 			rv += m->m_ext.ext_size;
    311 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    312 			    m->m_ext.ext_size,
    313 			    (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
    314 			s = splvm();
    315 			pool_cache_put(&mbpool_cache, m);
    316 			splx(s);
    317 		}
    318 
    319 		mutex_enter(&so_pendfree_lock);
    320 	}
    321 
    322 	return (rv);
    323 }
    324 
    325 void
    326 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    327 {
    328 
    329 	KASSERT(m != NULL);
    330 
    331 	/*
    332 	 * postpone freeing mbuf.
    333 	 *
    334 	 * we can't do it in interrupt context
    335 	 * because we need to put kva back to kernel_map.
    336 	 */
    337 
    338 	mutex_enter(&so_pendfree_lock);
    339 	m->m_next = so_pendfree;
    340 	so_pendfree = m;
    341 	cv_broadcast(&socurkva_cv);
    342 	mutex_exit(&so_pendfree_lock);
    343 }
    344 
    345 static long
    346 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    347 {
    348 	struct iovec *iov = uio->uio_iov;
    349 	vaddr_t sva, eva;
    350 	vsize_t len;
    351 	vaddr_t lva;
    352 	int npgs, error;
    353 #if !defined(__HAVE_LAZY_MBUF)
    354 	vaddr_t va;
    355 	int i;
    356 #endif /* !defined(__HAVE_LAZY_MBUF) */
    357 
    358 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    359 		return (0);
    360 
    361 	if (iov->iov_len < (size_t) space)
    362 		space = iov->iov_len;
    363 	if (space > SOCK_LOAN_CHUNK)
    364 		space = SOCK_LOAN_CHUNK;
    365 
    366 	eva = round_page((vaddr_t) iov->iov_base + space);
    367 	sva = trunc_page((vaddr_t) iov->iov_base);
    368 	len = eva - sva;
    369 	npgs = len >> PAGE_SHIFT;
    370 
    371 	/* XXX KDASSERT */
    372 	KASSERT(npgs <= M_EXT_MAXPAGES);
    373 
    374 	lva = sokvaalloc(len, so);
    375 	if (lva == 0)
    376 		return 0;
    377 
    378 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    379 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    380 	if (error) {
    381 		sokvafree(lva, len);
    382 		return (0);
    383 	}
    384 
    385 #if !defined(__HAVE_LAZY_MBUF)
    386 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    387 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    388 		    VM_PROT_READ);
    389 	pmap_update(pmap_kernel());
    390 #endif /* !defined(__HAVE_LAZY_MBUF) */
    391 
    392 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    393 
    394 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    395 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    396 
    397 #if defined(__HAVE_LAZY_MBUF)
    398 	m->m_flags |= M_EXT_LAZY;
    399 	m->m_ext.ext_flags |= M_EXT_LAZY;
    400 #endif /* defined(__HAVE_LAZY_MBUF) */
    401 
    402 	uio->uio_resid -= space;
    403 	/* uio_offset not updated, not set/used for write(2) */
    404 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    405 	uio->uio_iov->iov_len -= space;
    406 	if (uio->uio_iov->iov_len == 0) {
    407 		uio->uio_iov++;
    408 		uio->uio_iovcnt--;
    409 	}
    410 
    411 	return (space);
    412 }
    413 
    414 static int
    415 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    416 {
    417 
    418 	KASSERT(ce == &sokva_reclaimerentry);
    419 	KASSERT(obj == NULL);
    420 
    421 	sodopendfree();
    422 	if (!vm_map_starved_p(kernel_map)) {
    423 		return CALLBACK_CHAIN_ABORT;
    424 	}
    425 	return CALLBACK_CHAIN_CONTINUE;
    426 }
    427 
    428 void
    429 soinit(void)
    430 {
    431 
    432 	mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
    433 	cv_init(&socurkva_cv, "sokva");
    434 
    435 	/* Set the initial adjusted socket buffer size. */
    436 	if (sb_max_set(sb_max))
    437 		panic("bad initial sb_max value: %lu", sb_max);
    438 
    439 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    440 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    441 }
    442 
    443 /*
    444  * Socket operation routines.
    445  * These routines are called by the routines in
    446  * sys_socket.c or from a system process, and
    447  * implement the semantics of socket operations by
    448  * switching out to the protocol specific routines.
    449  */
    450 /*ARGSUSED*/
    451 int
    452 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    453 {
    454 	const struct protosw	*prp;
    455 	struct socket	*so;
    456 	uid_t		uid;
    457 	int		error, s;
    458 
    459 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    460 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    461 	    KAUTH_ARG(proto));
    462 	if (error != 0)
    463 		return error;
    464 
    465 	if (proto)
    466 		prp = pffindproto(dom, proto, type);
    467 	else
    468 		prp = pffindtype(dom, type);
    469 	if (prp == NULL) {
    470 		/* no support for domain */
    471 		if (pffinddomain(dom) == 0)
    472 			return EAFNOSUPPORT;
    473 		/* no support for socket type */
    474 		if (proto == 0 && type != 0)
    475 			return EPROTOTYPE;
    476 		return EPROTONOSUPPORT;
    477 	}
    478 	if (prp->pr_usrreq == NULL)
    479 		return EPROTONOSUPPORT;
    480 	if (prp->pr_type != type)
    481 		return EPROTOTYPE;
    482 	s = splsoftnet();
    483 	so = pool_get(&socket_pool, PR_WAITOK);
    484 	memset(so, 0, sizeof(*so));
    485 	TAILQ_INIT(&so->so_q0);
    486 	TAILQ_INIT(&so->so_q);
    487 	so->so_type = type;
    488 	so->so_proto = prp;
    489 	so->so_send = sosend;
    490 	so->so_receive = soreceive;
    491 #ifdef MBUFTRACE
    492 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    493 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    494 	so->so_mowner = &prp->pr_domain->dom_mowner;
    495 #endif
    496 	uid = kauth_cred_geteuid(l->l_cred);
    497 	so->so_uidinfo = uid_find(uid);
    498 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    499 	    (struct mbuf *)(long)proto, NULL, l);
    500 	if (error != 0) {
    501 		so->so_state |= SS_NOFDREF;
    502 		sofree(so);
    503 		splx(s);
    504 		return error;
    505 	}
    506 	splx(s);
    507 	*aso = so;
    508 	return 0;
    509 }
    510 
    511 int
    512 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    513 {
    514 	int	s, error;
    515 
    516 	s = splsoftnet();
    517 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    518 	splx(s);
    519 	return error;
    520 }
    521 
    522 int
    523 solisten(struct socket *so, int backlog)
    524 {
    525 	int	s, error;
    526 
    527 	s = splsoftnet();
    528 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    529 	    NULL, NULL, NULL);
    530 	if (error != 0) {
    531 		splx(s);
    532 		return error;
    533 	}
    534 	if (TAILQ_EMPTY(&so->so_q))
    535 		so->so_options |= SO_ACCEPTCONN;
    536 	if (backlog < 0)
    537 		backlog = 0;
    538 	so->so_qlimit = min(backlog, somaxconn);
    539 	splx(s);
    540 	return 0;
    541 }
    542 
    543 void
    544 sofree(struct socket *so)
    545 {
    546 
    547 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    548 		return;
    549 	if (so->so_head) {
    550 		/*
    551 		 * We must not decommission a socket that's on the accept(2)
    552 		 * queue.  If we do, then accept(2) may hang after select(2)
    553 		 * indicated that the listening socket was ready.
    554 		 */
    555 		if (!soqremque(so, 0))
    556 			return;
    557 	}
    558 	if (so->so_rcv.sb_hiwat)
    559 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    560 		    RLIM_INFINITY);
    561 	if (so->so_snd.sb_hiwat)
    562 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    563 		    RLIM_INFINITY);
    564 	sbrelease(&so->so_snd, so);
    565 	sorflush(so);
    566 	pool_put(&socket_pool, so);
    567 }
    568 
    569 /*
    570  * Close a socket on last file table reference removal.
    571  * Initiate disconnect if connected.
    572  * Free socket when disconnect complete.
    573  */
    574 int
    575 soclose(struct socket *so)
    576 {
    577 	struct socket	*so2;
    578 	int		s, error;
    579 
    580 	error = 0;
    581 	s = splsoftnet();		/* conservative */
    582 	if (so->so_options & SO_ACCEPTCONN) {
    583 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    584 			(void) soqremque(so2, 0);
    585 			(void) soabort(so2);
    586 		}
    587 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    588 			(void) soqremque(so2, 1);
    589 			(void) soabort(so2);
    590 		}
    591 	}
    592 	if (so->so_pcb == 0)
    593 		goto discard;
    594 	if (so->so_state & SS_ISCONNECTED) {
    595 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    596 			error = sodisconnect(so);
    597 			if (error)
    598 				goto drop;
    599 		}
    600 		if (so->so_options & SO_LINGER) {
    601 			if ((so->so_state & SS_ISDISCONNECTING) &&
    602 			    (so->so_state & SS_NBIO))
    603 				goto drop;
    604 			while (so->so_state & SS_ISCONNECTED) {
    605 				error = tsleep((void *)&so->so_timeo,
    606 					       PSOCK | PCATCH, netcls,
    607 					       so->so_linger * hz);
    608 				if (error)
    609 					break;
    610 			}
    611 		}
    612 	}
    613  drop:
    614 	if (so->so_pcb) {
    615 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    616 		    NULL, NULL, NULL, NULL);
    617 		if (error == 0)
    618 			error = error2;
    619 	}
    620  discard:
    621 	if (so->so_state & SS_NOFDREF)
    622 		panic("soclose: NOFDREF");
    623 	so->so_state |= SS_NOFDREF;
    624 	sofree(so);
    625 	splx(s);
    626 	return (error);
    627 }
    628 
    629 /*
    630  * Must be called at splsoftnet...
    631  */
    632 int
    633 soabort(struct socket *so)
    634 {
    635 	int error;
    636 
    637 	KASSERT(so->so_head == NULL);
    638 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    639 	    NULL, NULL, NULL);
    640 	if (error) {
    641 		sofree(so);
    642 	}
    643 	return error;
    644 }
    645 
    646 int
    647 soaccept(struct socket *so, struct mbuf *nam)
    648 {
    649 	int	s, error;
    650 
    651 	error = 0;
    652 	s = splsoftnet();
    653 	if ((so->so_state & SS_NOFDREF) == 0)
    654 		panic("soaccept: !NOFDREF");
    655 	so->so_state &= ~SS_NOFDREF;
    656 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    657 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    658 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    659 		    NULL, nam, NULL, NULL);
    660 	else
    661 		error = ECONNABORTED;
    662 
    663 	splx(s);
    664 	return (error);
    665 }
    666 
    667 int
    668 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    669 {
    670 	int		s, error;
    671 
    672 	if (so->so_options & SO_ACCEPTCONN)
    673 		return (EOPNOTSUPP);
    674 	s = splsoftnet();
    675 	/*
    676 	 * If protocol is connection-based, can only connect once.
    677 	 * Otherwise, if connected, try to disconnect first.
    678 	 * This allows user to disconnect by connecting to, e.g.,
    679 	 * a null address.
    680 	 */
    681 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    682 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    683 	    (error = sodisconnect(so))))
    684 		error = EISCONN;
    685 	else
    686 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    687 		    NULL, nam, NULL, l);
    688 	splx(s);
    689 	return (error);
    690 }
    691 
    692 int
    693 soconnect2(struct socket *so1, struct socket *so2)
    694 {
    695 	int	s, error;
    696 
    697 	s = splsoftnet();
    698 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    699 	    NULL, (struct mbuf *)so2, NULL, NULL);
    700 	splx(s);
    701 	return (error);
    702 }
    703 
    704 int
    705 sodisconnect(struct socket *so)
    706 {
    707 	int	s, error;
    708 
    709 	s = splsoftnet();
    710 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    711 		error = ENOTCONN;
    712 		goto bad;
    713 	}
    714 	if (so->so_state & SS_ISDISCONNECTING) {
    715 		error = EALREADY;
    716 		goto bad;
    717 	}
    718 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    719 	    NULL, NULL, NULL, NULL);
    720  bad:
    721 	splx(s);
    722 	sodopendfree();
    723 	return (error);
    724 }
    725 
    726 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    727 /*
    728  * Send on a socket.
    729  * If send must go all at once and message is larger than
    730  * send buffering, then hard error.
    731  * Lock against other senders.
    732  * If must go all at once and not enough room now, then
    733  * inform user that this would block and do nothing.
    734  * Otherwise, if nonblocking, send as much as possible.
    735  * The data to be sent is described by "uio" if nonzero,
    736  * otherwise by the mbuf chain "top" (which must be null
    737  * if uio is not).  Data provided in mbuf chain must be small
    738  * enough to send all at once.
    739  *
    740  * Returns nonzero on error, timeout or signal; callers
    741  * must check for short counts if EINTR/ERESTART are returned.
    742  * Data and control buffers are freed on return.
    743  */
    744 int
    745 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    746 	struct mbuf *control, int flags, struct lwp *l)
    747 {
    748 	struct mbuf	**mp, *m;
    749 	struct proc	*p;
    750 	long		space, len, resid, clen, mlen;
    751 	int		error, s, dontroute, atomic;
    752 
    753 	p = l->l_proc;
    754 	sodopendfree();
    755 
    756 	clen = 0;
    757 	atomic = sosendallatonce(so) || top;
    758 	if (uio)
    759 		resid = uio->uio_resid;
    760 	else
    761 		resid = top->m_pkthdr.len;
    762 	/*
    763 	 * In theory resid should be unsigned.
    764 	 * However, space must be signed, as it might be less than 0
    765 	 * if we over-committed, and we must use a signed comparison
    766 	 * of space and resid.  On the other hand, a negative resid
    767 	 * causes us to loop sending 0-length segments to the protocol.
    768 	 */
    769 	if (resid < 0) {
    770 		error = EINVAL;
    771 		goto out;
    772 	}
    773 	dontroute =
    774 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    775 	    (so->so_proto->pr_flags & PR_ATOMIC);
    776 	if (p)
    777 		p->p_stats->p_ru.ru_msgsnd++;
    778 	if (control)
    779 		clen = control->m_len;
    780 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    781 
    782  restart:
    783 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    784 		goto out;
    785 	do {
    786 		s = splsoftnet();
    787 		if (so->so_state & SS_CANTSENDMORE)
    788 			snderr(EPIPE);
    789 		if (so->so_error) {
    790 			error = so->so_error;
    791 			so->so_error = 0;
    792 			splx(s);
    793 			goto release;
    794 		}
    795 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    796 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    797 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    798 				    !(resid == 0 && clen != 0))
    799 					snderr(ENOTCONN);
    800 			} else if (addr == 0)
    801 				snderr(EDESTADDRREQ);
    802 		}
    803 		space = sbspace(&so->so_snd);
    804 		if (flags & MSG_OOB)
    805 			space += 1024;
    806 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    807 		    clen > so->so_snd.sb_hiwat)
    808 			snderr(EMSGSIZE);
    809 		if (space < resid + clen &&
    810 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    811 			if (so->so_state & SS_NBIO)
    812 				snderr(EWOULDBLOCK);
    813 			sbunlock(&so->so_snd);
    814 			error = sbwait(&so->so_snd);
    815 			splx(s);
    816 			if (error)
    817 				goto out;
    818 			goto restart;
    819 		}
    820 		splx(s);
    821 		mp = &top;
    822 		space -= clen;
    823 		do {
    824 			if (uio == NULL) {
    825 				/*
    826 				 * Data is prepackaged in "top".
    827 				 */
    828 				resid = 0;
    829 				if (flags & MSG_EOR)
    830 					top->m_flags |= M_EOR;
    831 			} else do {
    832 				if (top == 0) {
    833 					m = m_gethdr(M_WAIT, MT_DATA);
    834 					mlen = MHLEN;
    835 					m->m_pkthdr.len = 0;
    836 					m->m_pkthdr.rcvif = NULL;
    837 				} else {
    838 					m = m_get(M_WAIT, MT_DATA);
    839 					mlen = MLEN;
    840 				}
    841 				MCLAIM(m, so->so_snd.sb_mowner);
    842 				if (sock_loan_thresh >= 0 &&
    843 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    844 				    space >= sock_loan_thresh &&
    845 				    (len = sosend_loan(so, uio, m,
    846 						       space)) != 0) {
    847 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    848 					space -= len;
    849 					goto have_data;
    850 				}
    851 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    852 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    853 					m_clget(m, M_WAIT);
    854 					if ((m->m_flags & M_EXT) == 0)
    855 						goto nopages;
    856 					mlen = MCLBYTES;
    857 					if (atomic && top == 0) {
    858 						len = lmin(MCLBYTES - max_hdr,
    859 						    resid);
    860 						m->m_data += max_hdr;
    861 					} else
    862 						len = lmin(MCLBYTES, resid);
    863 					space -= len;
    864 				} else {
    865  nopages:
    866 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    867 					len = lmin(lmin(mlen, resid), space);
    868 					space -= len;
    869 					/*
    870 					 * For datagram protocols, leave room
    871 					 * for protocol headers in first mbuf.
    872 					 */
    873 					if (atomic && top == 0 && len < mlen)
    874 						MH_ALIGN(m, len);
    875 				}
    876 				error = uiomove(mtod(m, void *), (int)len,
    877 				    uio);
    878  have_data:
    879 				resid = uio->uio_resid;
    880 				m->m_len = len;
    881 				*mp = m;
    882 				top->m_pkthdr.len += len;
    883 				if (error)
    884 					goto release;
    885 				mp = &m->m_next;
    886 				if (resid <= 0) {
    887 					if (flags & MSG_EOR)
    888 						top->m_flags |= M_EOR;
    889 					break;
    890 				}
    891 			} while (space > 0 && atomic);
    892 
    893 			s = splsoftnet();
    894 
    895 			if (so->so_state & SS_CANTSENDMORE)
    896 				snderr(EPIPE);
    897 
    898 			if (dontroute)
    899 				so->so_options |= SO_DONTROUTE;
    900 			if (resid > 0)
    901 				so->so_state |= SS_MORETOCOME;
    902 			error = (*so->so_proto->pr_usrreq)(so,
    903 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    904 			    top, addr, control, curlwp);	/* XXX */
    905 			if (dontroute)
    906 				so->so_options &= ~SO_DONTROUTE;
    907 			if (resid > 0)
    908 				so->so_state &= ~SS_MORETOCOME;
    909 			splx(s);
    910 
    911 			clen = 0;
    912 			control = 0;
    913 			top = 0;
    914 			mp = &top;
    915 			if (error)
    916 				goto release;
    917 		} while (resid && space > 0);
    918 	} while (resid);
    919 
    920  release:
    921 	sbunlock(&so->so_snd);
    922  out:
    923 	if (top)
    924 		m_freem(top);
    925 	if (control)
    926 		m_freem(control);
    927 	return (error);
    928 }
    929 
    930 /*
    931  * Implement receive operations on a socket.
    932  * We depend on the way that records are added to the sockbuf
    933  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    934  * must begin with an address if the protocol so specifies,
    935  * followed by an optional mbuf or mbufs containing ancillary data,
    936  * and then zero or more mbufs of data.
    937  * In order to avoid blocking network interrupts for the entire time here,
    938  * we splx() while doing the actual copy to user space.
    939  * Although the sockbuf is locked, new data may still be appended,
    940  * and thus we must maintain consistency of the sockbuf during that time.
    941  *
    942  * The caller may receive the data as a single mbuf chain by supplying
    943  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    944  * only for the count in uio_resid.
    945  */
    946 int
    947 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    948 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    949 {
    950 	struct lwp *l = curlwp;
    951 	struct mbuf	*m, **mp;
    952 	int		flags, len, error, s, offset, moff, type, orig_resid;
    953 	const struct protosw	*pr;
    954 	struct mbuf	*nextrecord;
    955 	int		mbuf_removed = 0;
    956 
    957 	pr = so->so_proto;
    958 	mp = mp0;
    959 	type = 0;
    960 	orig_resid = uio->uio_resid;
    961 
    962 	if (paddr)
    963 		*paddr = 0;
    964 	if (controlp)
    965 		*controlp = 0;
    966 	if (flagsp)
    967 		flags = *flagsp &~ MSG_EOR;
    968 	else
    969 		flags = 0;
    970 
    971 	if ((flags & MSG_DONTWAIT) == 0)
    972 		sodopendfree();
    973 
    974 	if (flags & MSG_OOB) {
    975 		m = m_get(M_WAIT, MT_DATA);
    976 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    977 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
    978 		if (error)
    979 			goto bad;
    980 		do {
    981 			error = uiomove(mtod(m, void *),
    982 			    (int) min(uio->uio_resid, m->m_len), uio);
    983 			m = m_free(m);
    984 		} while (uio->uio_resid && error == 0 && m);
    985  bad:
    986 		if (m)
    987 			m_freem(m);
    988 		return (error);
    989 	}
    990 	if (mp)
    991 		*mp = NULL;
    992 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    993 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
    994 
    995  restart:
    996 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    997 		return (error);
    998 	s = splsoftnet();
    999 
   1000 	m = so->so_rcv.sb_mb;
   1001 	/*
   1002 	 * If we have less data than requested, block awaiting more
   1003 	 * (subject to any timeout) if:
   1004 	 *   1. the current count is less than the low water mark,
   1005 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1006 	 *	receive operation at once if we block (resid <= hiwat), or
   1007 	 *   3. MSG_DONTWAIT is not set.
   1008 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1009 	 * we have to do the receive in sections, and thus risk returning
   1010 	 * a short count if a timeout or signal occurs after we start.
   1011 	 */
   1012 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1013 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1014 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1015 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1016 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1017 #ifdef DIAGNOSTIC
   1018 		if (m == 0 && so->so_rcv.sb_cc)
   1019 			panic("receive 1");
   1020 #endif
   1021 		if (so->so_error) {
   1022 			if (m)
   1023 				goto dontblock;
   1024 			error = so->so_error;
   1025 			if ((flags & MSG_PEEK) == 0)
   1026 				so->so_error = 0;
   1027 			goto release;
   1028 		}
   1029 		if (so->so_state & SS_CANTRCVMORE) {
   1030 			if (m)
   1031 				goto dontblock;
   1032 			else
   1033 				goto release;
   1034 		}
   1035 		for (; m; m = m->m_next)
   1036 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1037 				m = so->so_rcv.sb_mb;
   1038 				goto dontblock;
   1039 			}
   1040 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1041 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1042 			error = ENOTCONN;
   1043 			goto release;
   1044 		}
   1045 		if (uio->uio_resid == 0)
   1046 			goto release;
   1047 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1048 			error = EWOULDBLOCK;
   1049 			goto release;
   1050 		}
   1051 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1052 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1053 		sbunlock(&so->so_rcv);
   1054 		error = sbwait(&so->so_rcv);
   1055 		splx(s);
   1056 		if (error)
   1057 			return (error);
   1058 		goto restart;
   1059 	}
   1060  dontblock:
   1061 	/*
   1062 	 * On entry here, m points to the first record of the socket buffer.
   1063 	 * While we process the initial mbufs containing address and control
   1064 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1065 	 */
   1066 	if (l)
   1067 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1068 	KASSERT(m == so->so_rcv.sb_mb);
   1069 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1070 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1071 	nextrecord = m->m_nextpkt;
   1072 	if (pr->pr_flags & PR_ADDR) {
   1073 #ifdef DIAGNOSTIC
   1074 		if (m->m_type != MT_SONAME)
   1075 			panic("receive 1a");
   1076 #endif
   1077 		orig_resid = 0;
   1078 		if (flags & MSG_PEEK) {
   1079 			if (paddr)
   1080 				*paddr = m_copy(m, 0, m->m_len);
   1081 			m = m->m_next;
   1082 		} else {
   1083 			sbfree(&so->so_rcv, m);
   1084 			mbuf_removed = 1;
   1085 			if (paddr) {
   1086 				*paddr = m;
   1087 				so->so_rcv.sb_mb = m->m_next;
   1088 				m->m_next = 0;
   1089 				m = so->so_rcv.sb_mb;
   1090 			} else {
   1091 				MFREE(m, so->so_rcv.sb_mb);
   1092 				m = so->so_rcv.sb_mb;
   1093 			}
   1094 		}
   1095 	}
   1096 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1097 		if (flags & MSG_PEEK) {
   1098 			if (controlp)
   1099 				*controlp = m_copy(m, 0, m->m_len);
   1100 			m = m->m_next;
   1101 		} else {
   1102 			sbfree(&so->so_rcv, m);
   1103 			mbuf_removed = 1;
   1104 			if (controlp) {
   1105 				struct domain *dom = pr->pr_domain;
   1106 				if (dom->dom_externalize && l &&
   1107 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1108 				    SCM_RIGHTS)
   1109 					error = (*dom->dom_externalize)(m, l);
   1110 				*controlp = m;
   1111 				so->so_rcv.sb_mb = m->m_next;
   1112 				m->m_next = 0;
   1113 				m = so->so_rcv.sb_mb;
   1114 			} else {
   1115 				/*
   1116 				 * Dispose of any SCM_RIGHTS message that went
   1117 				 * through the read path rather than recv.
   1118 				 */
   1119 				if (pr->pr_domain->dom_dispose &&
   1120 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1121 					(*pr->pr_domain->dom_dispose)(m);
   1122 				MFREE(m, so->so_rcv.sb_mb);
   1123 				m = so->so_rcv.sb_mb;
   1124 			}
   1125 		}
   1126 		if (controlp) {
   1127 			orig_resid = 0;
   1128 			controlp = &(*controlp)->m_next;
   1129 		}
   1130 	}
   1131 
   1132 	/*
   1133 	 * If m is non-NULL, we have some data to read.  From now on,
   1134 	 * make sure to keep sb_lastrecord consistent when working on
   1135 	 * the last packet on the chain (nextrecord == NULL) and we
   1136 	 * change m->m_nextpkt.
   1137 	 */
   1138 	if (m) {
   1139 		if ((flags & MSG_PEEK) == 0) {
   1140 			m->m_nextpkt = nextrecord;
   1141 			/*
   1142 			 * If nextrecord == NULL (this is a single chain),
   1143 			 * then sb_lastrecord may not be valid here if m
   1144 			 * was changed earlier.
   1145 			 */
   1146 			if (nextrecord == NULL) {
   1147 				KASSERT(so->so_rcv.sb_mb == m);
   1148 				so->so_rcv.sb_lastrecord = m;
   1149 			}
   1150 		}
   1151 		type = m->m_type;
   1152 		if (type == MT_OOBDATA)
   1153 			flags |= MSG_OOB;
   1154 	} else {
   1155 		if ((flags & MSG_PEEK) == 0) {
   1156 			KASSERT(so->so_rcv.sb_mb == m);
   1157 			so->so_rcv.sb_mb = nextrecord;
   1158 			SB_EMPTY_FIXUP(&so->so_rcv);
   1159 		}
   1160 	}
   1161 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1162 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1163 
   1164 	moff = 0;
   1165 	offset = 0;
   1166 	while (m && uio->uio_resid > 0 && error == 0) {
   1167 		if (m->m_type == MT_OOBDATA) {
   1168 			if (type != MT_OOBDATA)
   1169 				break;
   1170 		} else if (type == MT_OOBDATA)
   1171 			break;
   1172 #ifdef DIAGNOSTIC
   1173 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1174 			panic("receive 3");
   1175 #endif
   1176 		so->so_state &= ~SS_RCVATMARK;
   1177 		len = uio->uio_resid;
   1178 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1179 			len = so->so_oobmark - offset;
   1180 		if (len > m->m_len - moff)
   1181 			len = m->m_len - moff;
   1182 		/*
   1183 		 * If mp is set, just pass back the mbufs.
   1184 		 * Otherwise copy them out via the uio, then free.
   1185 		 * Sockbuf must be consistent here (points to current mbuf,
   1186 		 * it points to next record) when we drop priority;
   1187 		 * we must note any additions to the sockbuf when we
   1188 		 * block interrupts again.
   1189 		 */
   1190 		if (mp == 0) {
   1191 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1192 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1193 			splx(s);
   1194 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1195 			s = splsoftnet();
   1196 			if (error) {
   1197 				/*
   1198 				 * If any part of the record has been removed
   1199 				 * (such as the MT_SONAME mbuf, which will
   1200 				 * happen when PR_ADDR, and thus also
   1201 				 * PR_ATOMIC, is set), then drop the entire
   1202 				 * record to maintain the atomicity of the
   1203 				 * receive operation.
   1204 				 *
   1205 				 * This avoids a later panic("receive 1a")
   1206 				 * when compiled with DIAGNOSTIC.
   1207 				 */
   1208 				if (m && mbuf_removed
   1209 				    && (pr->pr_flags & PR_ATOMIC))
   1210 					(void) sbdroprecord(&so->so_rcv);
   1211 
   1212 				goto release;
   1213 			}
   1214 		} else
   1215 			uio->uio_resid -= len;
   1216 		if (len == m->m_len - moff) {
   1217 			if (m->m_flags & M_EOR)
   1218 				flags |= MSG_EOR;
   1219 			if (flags & MSG_PEEK) {
   1220 				m = m->m_next;
   1221 				moff = 0;
   1222 			} else {
   1223 				nextrecord = m->m_nextpkt;
   1224 				sbfree(&so->so_rcv, m);
   1225 				if (mp) {
   1226 					*mp = m;
   1227 					mp = &m->m_next;
   1228 					so->so_rcv.sb_mb = m = m->m_next;
   1229 					*mp = NULL;
   1230 				} else {
   1231 					MFREE(m, so->so_rcv.sb_mb);
   1232 					m = so->so_rcv.sb_mb;
   1233 				}
   1234 				/*
   1235 				 * If m != NULL, we also know that
   1236 				 * so->so_rcv.sb_mb != NULL.
   1237 				 */
   1238 				KASSERT(so->so_rcv.sb_mb == m);
   1239 				if (m) {
   1240 					m->m_nextpkt = nextrecord;
   1241 					if (nextrecord == NULL)
   1242 						so->so_rcv.sb_lastrecord = m;
   1243 				} else {
   1244 					so->so_rcv.sb_mb = nextrecord;
   1245 					SB_EMPTY_FIXUP(&so->so_rcv);
   1246 				}
   1247 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1248 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1249 			}
   1250 		} else {
   1251 			if (flags & MSG_PEEK)
   1252 				moff += len;
   1253 			else {
   1254 				if (mp)
   1255 					*mp = m_copym(m, 0, len, M_WAIT);
   1256 				m->m_data += len;
   1257 				m->m_len -= len;
   1258 				so->so_rcv.sb_cc -= len;
   1259 			}
   1260 		}
   1261 		if (so->so_oobmark) {
   1262 			if ((flags & MSG_PEEK) == 0) {
   1263 				so->so_oobmark -= len;
   1264 				if (so->so_oobmark == 0) {
   1265 					so->so_state |= SS_RCVATMARK;
   1266 					break;
   1267 				}
   1268 			} else {
   1269 				offset += len;
   1270 				if (offset == so->so_oobmark)
   1271 					break;
   1272 			}
   1273 		}
   1274 		if (flags & MSG_EOR)
   1275 			break;
   1276 		/*
   1277 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1278 		 * we must not quit until "uio->uio_resid == 0" or an error
   1279 		 * termination.  If a signal/timeout occurs, return
   1280 		 * with a short count but without error.
   1281 		 * Keep sockbuf locked against other readers.
   1282 		 */
   1283 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1284 		    !sosendallatonce(so) && !nextrecord) {
   1285 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1286 				break;
   1287 			/*
   1288 			 * If we are peeking and the socket receive buffer is
   1289 			 * full, stop since we can't get more data to peek at.
   1290 			 */
   1291 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1292 				break;
   1293 			/*
   1294 			 * If we've drained the socket buffer, tell the
   1295 			 * protocol in case it needs to do something to
   1296 			 * get it filled again.
   1297 			 */
   1298 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1299 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1300 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1301 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1302 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1303 			error = sbwait(&so->so_rcv);
   1304 			if (error) {
   1305 				sbunlock(&so->so_rcv);
   1306 				splx(s);
   1307 				return (0);
   1308 			}
   1309 			if ((m = so->so_rcv.sb_mb) != NULL)
   1310 				nextrecord = m->m_nextpkt;
   1311 		}
   1312 	}
   1313 
   1314 	if (m && pr->pr_flags & PR_ATOMIC) {
   1315 		flags |= MSG_TRUNC;
   1316 		if ((flags & MSG_PEEK) == 0)
   1317 			(void) sbdroprecord(&so->so_rcv);
   1318 	}
   1319 	if ((flags & MSG_PEEK) == 0) {
   1320 		if (m == 0) {
   1321 			/*
   1322 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1323 			 * part makes sure sb_lastrecord is up-to-date if
   1324 			 * there is still data in the socket buffer.
   1325 			 */
   1326 			so->so_rcv.sb_mb = nextrecord;
   1327 			if (so->so_rcv.sb_mb == NULL) {
   1328 				so->so_rcv.sb_mbtail = NULL;
   1329 				so->so_rcv.sb_lastrecord = NULL;
   1330 			} else if (nextrecord->m_nextpkt == NULL)
   1331 				so->so_rcv.sb_lastrecord = nextrecord;
   1332 		}
   1333 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1334 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1335 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1336 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1337 			    (struct mbuf *)(long)flags, NULL, l);
   1338 	}
   1339 	if (orig_resid == uio->uio_resid && orig_resid &&
   1340 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1341 		sbunlock(&so->so_rcv);
   1342 		splx(s);
   1343 		goto restart;
   1344 	}
   1345 
   1346 	if (flagsp)
   1347 		*flagsp |= flags;
   1348  release:
   1349 	sbunlock(&so->so_rcv);
   1350 	splx(s);
   1351 	return (error);
   1352 }
   1353 
   1354 int
   1355 soshutdown(struct socket *so, int how)
   1356 {
   1357 	const struct protosw	*pr;
   1358 
   1359 	pr = so->so_proto;
   1360 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1361 		return (EINVAL);
   1362 
   1363 	if (how == SHUT_RD || how == SHUT_RDWR)
   1364 		sorflush(so);
   1365 	if (how == SHUT_WR || how == SHUT_RDWR)
   1366 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1367 		    NULL, NULL, NULL);
   1368 	return (0);
   1369 }
   1370 
   1371 void
   1372 sorflush(struct socket *so)
   1373 {
   1374 	struct sockbuf	*sb, asb;
   1375 	const struct protosw	*pr;
   1376 	int		s;
   1377 
   1378 	sb = &so->so_rcv;
   1379 	pr = so->so_proto;
   1380 	sb->sb_flags |= SB_NOINTR;
   1381 	(void) sblock(sb, M_WAITOK);
   1382 	s = splnet();
   1383 	socantrcvmore(so);
   1384 	sbunlock(sb);
   1385 	asb = *sb;
   1386 	/*
   1387 	 * Clear most of the sockbuf structure, but leave some of the
   1388 	 * fields valid.
   1389 	 */
   1390 	memset(&sb->sb_startzero, 0,
   1391 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1392 	splx(s);
   1393 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1394 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1395 	sbrelease(&asb, so);
   1396 }
   1397 
   1398 int
   1399 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1400 {
   1401 	int		error;
   1402 	struct mbuf	*m;
   1403 	struct linger	*l;
   1404 	struct sockbuf	*sb;
   1405 
   1406 	error = 0;
   1407 	m = m0;
   1408 	if (level != SOL_SOCKET) {
   1409 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1410 			return ((*so->so_proto->pr_ctloutput)
   1411 				  (PRCO_SETOPT, so, level, optname, &m0));
   1412 		error = ENOPROTOOPT;
   1413 	} else {
   1414 		switch (optname) {
   1415 
   1416 		case SO_LINGER:
   1417 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1418 				error = EINVAL;
   1419 				goto bad;
   1420 			}
   1421 			l = mtod(m, struct linger *);
   1422 			if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1423 			    l->l_linger > (INT_MAX / hz)) {
   1424 				error = EDOM;
   1425 				goto bad;
   1426 			}
   1427 			so->so_linger = l->l_linger;
   1428 			if (l->l_onoff)
   1429 				so->so_options |= SO_LINGER;
   1430 			else
   1431 				so->so_options &= ~SO_LINGER;
   1432 			break;
   1433 
   1434 		case SO_DEBUG:
   1435 		case SO_KEEPALIVE:
   1436 		case SO_DONTROUTE:
   1437 		case SO_USELOOPBACK:
   1438 		case SO_BROADCAST:
   1439 		case SO_REUSEADDR:
   1440 		case SO_REUSEPORT:
   1441 		case SO_OOBINLINE:
   1442 		case SO_TIMESTAMP:
   1443 			if (m == NULL || m->m_len < sizeof(int)) {
   1444 				error = EINVAL;
   1445 				goto bad;
   1446 			}
   1447 			if (*mtod(m, int *))
   1448 				so->so_options |= optname;
   1449 			else
   1450 				so->so_options &= ~optname;
   1451 			break;
   1452 
   1453 		case SO_SNDBUF:
   1454 		case SO_RCVBUF:
   1455 		case SO_SNDLOWAT:
   1456 		case SO_RCVLOWAT:
   1457 		    {
   1458 			int optval;
   1459 
   1460 			if (m == NULL || m->m_len < sizeof(int)) {
   1461 				error = EINVAL;
   1462 				goto bad;
   1463 			}
   1464 
   1465 			/*
   1466 			 * Values < 1 make no sense for any of these
   1467 			 * options, so disallow them.
   1468 			 */
   1469 			optval = *mtod(m, int *);
   1470 			if (optval < 1) {
   1471 				error = EINVAL;
   1472 				goto bad;
   1473 			}
   1474 
   1475 			switch (optname) {
   1476 
   1477 			case SO_SNDBUF:
   1478 			case SO_RCVBUF:
   1479 				sb = (optname == SO_SNDBUF) ?
   1480 				    &so->so_snd : &so->so_rcv;
   1481 				if (sbreserve(sb, (u_long)optval, so) == 0) {
   1482 					error = ENOBUFS;
   1483 					goto bad;
   1484 				}
   1485 				sb->sb_flags &= ~SB_AUTOSIZE;
   1486 				break;
   1487 
   1488 			/*
   1489 			 * Make sure the low-water is never greater than
   1490 			 * the high-water.
   1491 			 */
   1492 			case SO_SNDLOWAT:
   1493 				so->so_snd.sb_lowat =
   1494 				    (optval > so->so_snd.sb_hiwat) ?
   1495 				    so->so_snd.sb_hiwat : optval;
   1496 				break;
   1497 			case SO_RCVLOWAT:
   1498 				so->so_rcv.sb_lowat =
   1499 				    (optval > so->so_rcv.sb_hiwat) ?
   1500 				    so->so_rcv.sb_hiwat : optval;
   1501 				break;
   1502 			}
   1503 			break;
   1504 		    }
   1505 
   1506 		case SO_SNDTIMEO:
   1507 		case SO_RCVTIMEO:
   1508 		    {
   1509 			struct timeval *tv;
   1510 			int val;
   1511 
   1512 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1513 				error = EINVAL;
   1514 				goto bad;
   1515 			}
   1516 			tv = mtod(m, struct timeval *);
   1517 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1518 				error = EDOM;
   1519 				goto bad;
   1520 			}
   1521 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1522 			if (val == 0 && tv->tv_usec != 0)
   1523 				val = 1;
   1524 
   1525 			switch (optname) {
   1526 
   1527 			case SO_SNDTIMEO:
   1528 				so->so_snd.sb_timeo = val;
   1529 				break;
   1530 			case SO_RCVTIMEO:
   1531 				so->so_rcv.sb_timeo = val;
   1532 				break;
   1533 			}
   1534 			break;
   1535 		    }
   1536 
   1537 		default:
   1538 			error = ENOPROTOOPT;
   1539 			break;
   1540 		}
   1541 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1542 			(void) ((*so->so_proto->pr_ctloutput)
   1543 				  (PRCO_SETOPT, so, level, optname, &m0));
   1544 			m = NULL;	/* freed by protocol */
   1545 		}
   1546 	}
   1547  bad:
   1548 	if (m)
   1549 		(void) m_free(m);
   1550 	return (error);
   1551 }
   1552 
   1553 int
   1554 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1555 {
   1556 	struct mbuf	*m;
   1557 
   1558 	if (level != SOL_SOCKET) {
   1559 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1560 			return ((*so->so_proto->pr_ctloutput)
   1561 				  (PRCO_GETOPT, so, level, optname, mp));
   1562 		} else
   1563 			return (ENOPROTOOPT);
   1564 	} else {
   1565 		m = m_get(M_WAIT, MT_SOOPTS);
   1566 		m->m_len = sizeof(int);
   1567 
   1568 		switch (optname) {
   1569 
   1570 		case SO_LINGER:
   1571 			m->m_len = sizeof(struct linger);
   1572 			mtod(m, struct linger *)->l_onoff =
   1573 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1574 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1575 			break;
   1576 
   1577 		case SO_USELOOPBACK:
   1578 		case SO_DONTROUTE:
   1579 		case SO_DEBUG:
   1580 		case SO_KEEPALIVE:
   1581 		case SO_REUSEADDR:
   1582 		case SO_REUSEPORT:
   1583 		case SO_BROADCAST:
   1584 		case SO_OOBINLINE:
   1585 		case SO_TIMESTAMP:
   1586 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1587 			break;
   1588 
   1589 		case SO_TYPE:
   1590 			*mtod(m, int *) = so->so_type;
   1591 			break;
   1592 
   1593 		case SO_ERROR:
   1594 			*mtod(m, int *) = so->so_error;
   1595 			so->so_error = 0;
   1596 			break;
   1597 
   1598 		case SO_SNDBUF:
   1599 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1600 			break;
   1601 
   1602 		case SO_RCVBUF:
   1603 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1604 			break;
   1605 
   1606 		case SO_SNDLOWAT:
   1607 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1608 			break;
   1609 
   1610 		case SO_RCVLOWAT:
   1611 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1612 			break;
   1613 
   1614 		case SO_SNDTIMEO:
   1615 		case SO_RCVTIMEO:
   1616 		    {
   1617 			int val = (optname == SO_SNDTIMEO ?
   1618 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1619 
   1620 			m->m_len = sizeof(struct timeval);
   1621 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1622 			mtod(m, struct timeval *)->tv_usec =
   1623 			    (val % hz) * tick;
   1624 			break;
   1625 		    }
   1626 
   1627 		case SO_OVERFLOWED:
   1628 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1629 			break;
   1630 
   1631 		default:
   1632 			(void)m_free(m);
   1633 			return (ENOPROTOOPT);
   1634 		}
   1635 		*mp = m;
   1636 		return (0);
   1637 	}
   1638 }
   1639 
   1640 void
   1641 sohasoutofband(struct socket *so)
   1642 {
   1643 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1644 	selwakeup(&so->so_rcv.sb_sel);
   1645 }
   1646 
   1647 static void
   1648 filt_sordetach(struct knote *kn)
   1649 {
   1650 	struct socket	*so;
   1651 
   1652 	so = (struct socket *)kn->kn_fp->f_data;
   1653 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1654 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1655 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1656 }
   1657 
   1658 /*ARGSUSED*/
   1659 static int
   1660 filt_soread(struct knote *kn, long hint)
   1661 {
   1662 	struct socket	*so;
   1663 
   1664 	so = (struct socket *)kn->kn_fp->f_data;
   1665 	kn->kn_data = so->so_rcv.sb_cc;
   1666 	if (so->so_state & SS_CANTRCVMORE) {
   1667 		kn->kn_flags |= EV_EOF;
   1668 		kn->kn_fflags = so->so_error;
   1669 		return (1);
   1670 	}
   1671 	if (so->so_error)	/* temporary udp error */
   1672 		return (1);
   1673 	if (kn->kn_sfflags & NOTE_LOWAT)
   1674 		return (kn->kn_data >= kn->kn_sdata);
   1675 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1676 }
   1677 
   1678 static void
   1679 filt_sowdetach(struct knote *kn)
   1680 {
   1681 	struct socket	*so;
   1682 
   1683 	so = (struct socket *)kn->kn_fp->f_data;
   1684 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1685 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1686 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1687 }
   1688 
   1689 /*ARGSUSED*/
   1690 static int
   1691 filt_sowrite(struct knote *kn, long hint)
   1692 {
   1693 	struct socket	*so;
   1694 
   1695 	so = (struct socket *)kn->kn_fp->f_data;
   1696 	kn->kn_data = sbspace(&so->so_snd);
   1697 	if (so->so_state & SS_CANTSENDMORE) {
   1698 		kn->kn_flags |= EV_EOF;
   1699 		kn->kn_fflags = so->so_error;
   1700 		return (1);
   1701 	}
   1702 	if (so->so_error)	/* temporary udp error */
   1703 		return (1);
   1704 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1705 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1706 		return (0);
   1707 	if (kn->kn_sfflags & NOTE_LOWAT)
   1708 		return (kn->kn_data >= kn->kn_sdata);
   1709 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1710 }
   1711 
   1712 /*ARGSUSED*/
   1713 static int
   1714 filt_solisten(struct knote *kn, long hint)
   1715 {
   1716 	struct socket	*so;
   1717 
   1718 	so = (struct socket *)kn->kn_fp->f_data;
   1719 
   1720 	/*
   1721 	 * Set kn_data to number of incoming connections, not
   1722 	 * counting partial (incomplete) connections.
   1723 	 */
   1724 	kn->kn_data = so->so_qlen;
   1725 	return (kn->kn_data > 0);
   1726 }
   1727 
   1728 static const struct filterops solisten_filtops =
   1729 	{ 1, NULL, filt_sordetach, filt_solisten };
   1730 static const struct filterops soread_filtops =
   1731 	{ 1, NULL, filt_sordetach, filt_soread };
   1732 static const struct filterops sowrite_filtops =
   1733 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1734 
   1735 int
   1736 soo_kqfilter(struct file *fp, struct knote *kn)
   1737 {
   1738 	struct socket	*so;
   1739 	struct sockbuf	*sb;
   1740 
   1741 	so = (struct socket *)kn->kn_fp->f_data;
   1742 	switch (kn->kn_filter) {
   1743 	case EVFILT_READ:
   1744 		if (so->so_options & SO_ACCEPTCONN)
   1745 			kn->kn_fop = &solisten_filtops;
   1746 		else
   1747 			kn->kn_fop = &soread_filtops;
   1748 		sb = &so->so_rcv;
   1749 		break;
   1750 	case EVFILT_WRITE:
   1751 		kn->kn_fop = &sowrite_filtops;
   1752 		sb = &so->so_snd;
   1753 		break;
   1754 	default:
   1755 		return (1);
   1756 	}
   1757 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1758 	sb->sb_flags |= SB_KNOTE;
   1759 	return (0);
   1760 }
   1761 
   1762 #include <sys/sysctl.h>
   1763 
   1764 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1765 
   1766 /*
   1767  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1768  * value is not too small.
   1769  * (XXX should we maybe make sure it's not too large as well?)
   1770  */
   1771 static int
   1772 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1773 {
   1774 	int error, new_somaxkva;
   1775 	struct sysctlnode node;
   1776 
   1777 	new_somaxkva = somaxkva;
   1778 	node = *rnode;
   1779 	node.sysctl_data = &new_somaxkva;
   1780 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1781 	if (error || newp == NULL)
   1782 		return (error);
   1783 
   1784 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1785 		return (EINVAL);
   1786 
   1787 	mutex_enter(&so_pendfree_lock);
   1788 	somaxkva = new_somaxkva;
   1789 	cv_broadcast(&socurkva_cv);
   1790 	mutex_exit(&so_pendfree_lock);
   1791 
   1792 	return (error);
   1793 }
   1794 
   1795 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1796 {
   1797 
   1798 	sysctl_createv(clog, 0, NULL, NULL,
   1799 		       CTLFLAG_PERMANENT,
   1800 		       CTLTYPE_NODE, "kern", NULL,
   1801 		       NULL, 0, NULL, 0,
   1802 		       CTL_KERN, CTL_EOL);
   1803 
   1804 	sysctl_createv(clog, 0, NULL, NULL,
   1805 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1806 		       CTLTYPE_INT, "somaxkva",
   1807 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1808 				    "used for socket buffers"),
   1809 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1810 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1811 }
   1812