uipc_socket.c revision 1.111.2.7 1 /* $NetBSD: uipc_socket.c,v 1.111.2.7 2007/09/03 14:41:18 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.7 2007/09/03 14:41:18 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95 #include <sys/mutex.h>
96 #include <sys/condvar.h>
97
98 #include <uvm/uvm.h>
99
100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
101 IPL_SOFTNET);
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern int somaxconn; /* patchable (XXX sysctl) */
107 int somaxconn = SOMAXCONN;
108
109 #ifdef SOSEND_COUNTERS
110 #include <sys/device.h>
111
112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "loan big");
114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy big");
116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "copy small");
118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "kva limit");
120
121 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
122
123 EVCNT_ATTACH_STATIC(sosend_loan_big);
124 EVCNT_ATTACH_STATIC(sosend_copy_big);
125 EVCNT_ATTACH_STATIC(sosend_copy_small);
126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
127 #else
128
129 #define SOSEND_COUNTER_INCR(ev) /* nothing */
130
131 #endif /* SOSEND_COUNTERS */
132
133 static struct callback_entry sokva_reclaimerentry;
134
135 #ifdef SOSEND_NO_LOAN
136 int sock_loan_thresh = -1;
137 #else
138 int sock_loan_thresh = 4096;
139 #endif
140
141 static kmutex_t so_pendfree_lock;
142 static struct mbuf *so_pendfree;
143
144 #ifndef SOMAXKVA
145 #define SOMAXKVA (16 * 1024 * 1024)
146 #endif
147 int somaxkva = SOMAXKVA;
148 static int socurkva;
149 static kcondvar_t socurkva_cv;
150
151 #define SOCK_LOAN_CHUNK 65536
152
153 static size_t sodopendfree(void);
154 static size_t sodopendfreel(void);
155
156 static vsize_t
157 sokvareserve(struct socket *so, vsize_t len)
158 {
159 int error;
160
161 mutex_enter(&so_pendfree_lock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
180 if (error) {
181 len = 0;
182 break;
183 }
184 }
185 socurkva += len;
186 mutex_exit(&so_pendfree_lock);
187 return len;
188 }
189
190 static void
191 sokvaunreserve(vsize_t len)
192 {
193
194 mutex_enter(&so_pendfree_lock);
195 socurkva -= len;
196 cv_broadcast(&socurkva_cv);
197 mutex_exit(&so_pendfree_lock);
198 }
199
200 /*
201 * sokvaalloc: allocate kva for loan.
202 */
203
204 vaddr_t
205 sokvaalloc(vsize_t len, struct socket *so)
206 {
207 vaddr_t lva;
208
209 /*
210 * reserve kva.
211 */
212
213 if (sokvareserve(so, len) == 0)
214 return 0;
215
216 /*
217 * allocate kva.
218 */
219
220 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
221 if (lva == 0) {
222 sokvaunreserve(len);
223 return (0);
224 }
225
226 return lva;
227 }
228
229 /*
230 * sokvafree: free kva for loan.
231 */
232
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 /*
238 * free kva.
239 */
240
241 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
242
243 /*
244 * unreserve kva.
245 */
246
247 sokvaunreserve(len);
248 }
249
250 static void
251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size, bool mapped)
252 {
253 vaddr_t sva, eva;
254 vsize_t len;
255 int npgs;
256
257 KASSERT(pgs != NULL);
258
259 eva = round_page((vaddr_t) buf + size);
260 sva = trunc_page((vaddr_t) buf);
261 len = eva - sva;
262 npgs = len >> PAGE_SHIFT;
263
264 if (mapped) {
265 pmap_kremove(sva, len);
266 pmap_update(pmap_kernel());
267 }
268 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
269 sokvafree(sva, len);
270 }
271
272 static size_t
273 sodopendfree()
274 {
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278 rv = sodopendfreel();
279 mutex_exit(&so_pendfree_lock);
280
281 return rv;
282 }
283
284 /*
285 * sodopendfreel: free mbufs on "pendfree" list.
286 * unlock and relock so_pendfree_lock when freeing mbufs.
287 *
288 * => called with so_pendfree_lock held.
289 */
290
291 static size_t
292 sodopendfreel()
293 {
294 struct mbuf *m, *next;
295 size_t rv = 0;
296 int s;
297
298 KASSERT(mutex_owned(&so_pendfree_lock));
299
300 while (so_pendfree != NULL) {
301 m = so_pendfree;
302 so_pendfree = NULL;
303 mutex_exit(&so_pendfree_lock);
304
305 for (; m != NULL; m = next) {
306 next = m->m_next;
307 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
308 KASSERT(m->m_ext.ext_refcnt == 0);
309
310 rv += m->m_ext.ext_size;
311 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
312 m->m_ext.ext_size,
313 (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
314 s = splvm();
315 pool_cache_put(&mbpool_cache, m);
316 splx(s);
317 }
318
319 mutex_enter(&so_pendfree_lock);
320 }
321
322 return (rv);
323 }
324
325 void
326 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
327 {
328
329 KASSERT(m != NULL);
330
331 /*
332 * postpone freeing mbuf.
333 *
334 * we can't do it in interrupt context
335 * because we need to put kva back to kernel_map.
336 */
337
338 mutex_enter(&so_pendfree_lock);
339 m->m_next = so_pendfree;
340 so_pendfree = m;
341 cv_broadcast(&socurkva_cv);
342 mutex_exit(&so_pendfree_lock);
343 }
344
345 static long
346 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
347 {
348 struct iovec *iov = uio->uio_iov;
349 vaddr_t sva, eva;
350 vsize_t len;
351 vaddr_t lva;
352 int npgs, error;
353 #if !defined(__HAVE_LAZY_MBUF)
354 vaddr_t va;
355 int i;
356 #endif /* !defined(__HAVE_LAZY_MBUF) */
357
358 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
359 return (0);
360
361 if (iov->iov_len < (size_t) space)
362 space = iov->iov_len;
363 if (space > SOCK_LOAN_CHUNK)
364 space = SOCK_LOAN_CHUNK;
365
366 eva = round_page((vaddr_t) iov->iov_base + space);
367 sva = trunc_page((vaddr_t) iov->iov_base);
368 len = eva - sva;
369 npgs = len >> PAGE_SHIFT;
370
371 /* XXX KDASSERT */
372 KASSERT(npgs <= M_EXT_MAXPAGES);
373
374 lva = sokvaalloc(len, so);
375 if (lva == 0)
376 return 0;
377
378 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
379 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
380 if (error) {
381 sokvafree(lva, len);
382 return (0);
383 }
384
385 #if !defined(__HAVE_LAZY_MBUF)
386 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
387 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
388 VM_PROT_READ);
389 pmap_update(pmap_kernel());
390 #endif /* !defined(__HAVE_LAZY_MBUF) */
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 #if defined(__HAVE_LAZY_MBUF)
398 m->m_flags |= M_EXT_LAZY;
399 m->m_ext.ext_flags |= M_EXT_LAZY;
400 #endif /* defined(__HAVE_LAZY_MBUF) */
401
402 uio->uio_resid -= space;
403 /* uio_offset not updated, not set/used for write(2) */
404 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
405 uio->uio_iov->iov_len -= space;
406 if (uio->uio_iov->iov_len == 0) {
407 uio->uio_iov++;
408 uio->uio_iovcnt--;
409 }
410
411 return (space);
412 }
413
414 static int
415 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
416 {
417
418 KASSERT(ce == &sokva_reclaimerentry);
419 KASSERT(obj == NULL);
420
421 sodopendfree();
422 if (!vm_map_starved_p(kernel_map)) {
423 return CALLBACK_CHAIN_ABORT;
424 }
425 return CALLBACK_CHAIN_CONTINUE;
426 }
427
428 void
429 soinit(void)
430 {
431
432 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
433 cv_init(&socurkva_cv, "sokva");
434
435 /* Set the initial adjusted socket buffer size. */
436 if (sb_max_set(sb_max))
437 panic("bad initial sb_max value: %lu", sb_max);
438
439 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
440 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
441 }
442
443 /*
444 * Socket operation routines.
445 * These routines are called by the routines in
446 * sys_socket.c or from a system process, and
447 * implement the semantics of socket operations by
448 * switching out to the protocol specific routines.
449 */
450 /*ARGSUSED*/
451 int
452 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
453 {
454 const struct protosw *prp;
455 struct socket *so;
456 uid_t uid;
457 int error, s;
458
459 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
460 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
461 KAUTH_ARG(proto));
462 if (error != 0)
463 return error;
464
465 if (proto)
466 prp = pffindproto(dom, proto, type);
467 else
468 prp = pffindtype(dom, type);
469 if (prp == NULL) {
470 /* no support for domain */
471 if (pffinddomain(dom) == 0)
472 return EAFNOSUPPORT;
473 /* no support for socket type */
474 if (proto == 0 && type != 0)
475 return EPROTOTYPE;
476 return EPROTONOSUPPORT;
477 }
478 if (prp->pr_usrreq == NULL)
479 return EPROTONOSUPPORT;
480 if (prp->pr_type != type)
481 return EPROTOTYPE;
482 s = splsoftnet();
483 so = pool_get(&socket_pool, PR_WAITOK);
484 memset(so, 0, sizeof(*so));
485 TAILQ_INIT(&so->so_q0);
486 TAILQ_INIT(&so->so_q);
487 so->so_type = type;
488 so->so_proto = prp;
489 so->so_send = sosend;
490 so->so_receive = soreceive;
491 #ifdef MBUFTRACE
492 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
493 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
494 so->so_mowner = &prp->pr_domain->dom_mowner;
495 #endif
496 uid = kauth_cred_geteuid(l->l_cred);
497 so->so_uidinfo = uid_find(uid);
498 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
499 (struct mbuf *)(long)proto, NULL, l);
500 if (error != 0) {
501 so->so_state |= SS_NOFDREF;
502 sofree(so);
503 splx(s);
504 return error;
505 }
506 splx(s);
507 *aso = so;
508 return 0;
509 }
510
511 int
512 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
513 {
514 int s, error;
515
516 s = splsoftnet();
517 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
518 splx(s);
519 return error;
520 }
521
522 int
523 solisten(struct socket *so, int backlog)
524 {
525 int s, error;
526
527 s = splsoftnet();
528 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
529 NULL, NULL, NULL);
530 if (error != 0) {
531 splx(s);
532 return error;
533 }
534 if (TAILQ_EMPTY(&so->so_q))
535 so->so_options |= SO_ACCEPTCONN;
536 if (backlog < 0)
537 backlog = 0;
538 so->so_qlimit = min(backlog, somaxconn);
539 splx(s);
540 return 0;
541 }
542
543 void
544 sofree(struct socket *so)
545 {
546
547 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
548 return;
549 if (so->so_head) {
550 /*
551 * We must not decommission a socket that's on the accept(2)
552 * queue. If we do, then accept(2) may hang after select(2)
553 * indicated that the listening socket was ready.
554 */
555 if (!soqremque(so, 0))
556 return;
557 }
558 if (so->so_rcv.sb_hiwat)
559 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
560 RLIM_INFINITY);
561 if (so->so_snd.sb_hiwat)
562 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
563 RLIM_INFINITY);
564 sbrelease(&so->so_snd, so);
565 sorflush(so);
566 pool_put(&socket_pool, so);
567 }
568
569 /*
570 * Close a socket on last file table reference removal.
571 * Initiate disconnect if connected.
572 * Free socket when disconnect complete.
573 */
574 int
575 soclose(struct socket *so)
576 {
577 struct socket *so2;
578 int s, error;
579
580 error = 0;
581 s = splsoftnet(); /* conservative */
582 if (so->so_options & SO_ACCEPTCONN) {
583 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
584 (void) soqremque(so2, 0);
585 (void) soabort(so2);
586 }
587 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
588 (void) soqremque(so2, 1);
589 (void) soabort(so2);
590 }
591 }
592 if (so->so_pcb == 0)
593 goto discard;
594 if (so->so_state & SS_ISCONNECTED) {
595 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
596 error = sodisconnect(so);
597 if (error)
598 goto drop;
599 }
600 if (so->so_options & SO_LINGER) {
601 if ((so->so_state & SS_ISDISCONNECTING) &&
602 (so->so_state & SS_NBIO))
603 goto drop;
604 while (so->so_state & SS_ISCONNECTED) {
605 error = tsleep((void *)&so->so_timeo,
606 PSOCK | PCATCH, netcls,
607 so->so_linger * hz);
608 if (error)
609 break;
610 }
611 }
612 }
613 drop:
614 if (so->so_pcb) {
615 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
616 NULL, NULL, NULL, NULL);
617 if (error == 0)
618 error = error2;
619 }
620 discard:
621 if (so->so_state & SS_NOFDREF)
622 panic("soclose: NOFDREF");
623 so->so_state |= SS_NOFDREF;
624 sofree(so);
625 splx(s);
626 return (error);
627 }
628
629 /*
630 * Must be called at splsoftnet...
631 */
632 int
633 soabort(struct socket *so)
634 {
635 int error;
636
637 KASSERT(so->so_head == NULL);
638 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
639 NULL, NULL, NULL);
640 if (error) {
641 sofree(so);
642 }
643 return error;
644 }
645
646 int
647 soaccept(struct socket *so, struct mbuf *nam)
648 {
649 int s, error;
650
651 error = 0;
652 s = splsoftnet();
653 if ((so->so_state & SS_NOFDREF) == 0)
654 panic("soaccept: !NOFDREF");
655 so->so_state &= ~SS_NOFDREF;
656 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
657 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
658 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
659 NULL, nam, NULL, NULL);
660 else
661 error = ECONNABORTED;
662
663 splx(s);
664 return (error);
665 }
666
667 int
668 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
669 {
670 int s, error;
671
672 if (so->so_options & SO_ACCEPTCONN)
673 return (EOPNOTSUPP);
674 s = splsoftnet();
675 /*
676 * If protocol is connection-based, can only connect once.
677 * Otherwise, if connected, try to disconnect first.
678 * This allows user to disconnect by connecting to, e.g.,
679 * a null address.
680 */
681 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
682 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
683 (error = sodisconnect(so))))
684 error = EISCONN;
685 else
686 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
687 NULL, nam, NULL, l);
688 splx(s);
689 return (error);
690 }
691
692 int
693 soconnect2(struct socket *so1, struct socket *so2)
694 {
695 int s, error;
696
697 s = splsoftnet();
698 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
699 NULL, (struct mbuf *)so2, NULL, NULL);
700 splx(s);
701 return (error);
702 }
703
704 int
705 sodisconnect(struct socket *so)
706 {
707 int s, error;
708
709 s = splsoftnet();
710 if ((so->so_state & SS_ISCONNECTED) == 0) {
711 error = ENOTCONN;
712 goto bad;
713 }
714 if (so->so_state & SS_ISDISCONNECTING) {
715 error = EALREADY;
716 goto bad;
717 }
718 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
719 NULL, NULL, NULL, NULL);
720 bad:
721 splx(s);
722 sodopendfree();
723 return (error);
724 }
725
726 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
727 /*
728 * Send on a socket.
729 * If send must go all at once and message is larger than
730 * send buffering, then hard error.
731 * Lock against other senders.
732 * If must go all at once and not enough room now, then
733 * inform user that this would block and do nothing.
734 * Otherwise, if nonblocking, send as much as possible.
735 * The data to be sent is described by "uio" if nonzero,
736 * otherwise by the mbuf chain "top" (which must be null
737 * if uio is not). Data provided in mbuf chain must be small
738 * enough to send all at once.
739 *
740 * Returns nonzero on error, timeout or signal; callers
741 * must check for short counts if EINTR/ERESTART are returned.
742 * Data and control buffers are freed on return.
743 */
744 int
745 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
746 struct mbuf *control, int flags, struct lwp *l)
747 {
748 struct mbuf **mp, *m;
749 struct proc *p;
750 long space, len, resid, clen, mlen;
751 int error, s, dontroute, atomic;
752
753 p = l->l_proc;
754 sodopendfree();
755
756 clen = 0;
757 atomic = sosendallatonce(so) || top;
758 if (uio)
759 resid = uio->uio_resid;
760 else
761 resid = top->m_pkthdr.len;
762 /*
763 * In theory resid should be unsigned.
764 * However, space must be signed, as it might be less than 0
765 * if we over-committed, and we must use a signed comparison
766 * of space and resid. On the other hand, a negative resid
767 * causes us to loop sending 0-length segments to the protocol.
768 */
769 if (resid < 0) {
770 error = EINVAL;
771 goto out;
772 }
773 dontroute =
774 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
775 (so->so_proto->pr_flags & PR_ATOMIC);
776 if (p)
777 p->p_stats->p_ru.ru_msgsnd++;
778 if (control)
779 clen = control->m_len;
780 #define snderr(errno) { error = errno; splx(s); goto release; }
781
782 restart:
783 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
784 goto out;
785 do {
786 s = splsoftnet();
787 if (so->so_state & SS_CANTSENDMORE)
788 snderr(EPIPE);
789 if (so->so_error) {
790 error = so->so_error;
791 so->so_error = 0;
792 splx(s);
793 goto release;
794 }
795 if ((so->so_state & SS_ISCONNECTED) == 0) {
796 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
797 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
798 !(resid == 0 && clen != 0))
799 snderr(ENOTCONN);
800 } else if (addr == 0)
801 snderr(EDESTADDRREQ);
802 }
803 space = sbspace(&so->so_snd);
804 if (flags & MSG_OOB)
805 space += 1024;
806 if ((atomic && resid > so->so_snd.sb_hiwat) ||
807 clen > so->so_snd.sb_hiwat)
808 snderr(EMSGSIZE);
809 if (space < resid + clen &&
810 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
811 if (so->so_state & SS_NBIO)
812 snderr(EWOULDBLOCK);
813 sbunlock(&so->so_snd);
814 error = sbwait(&so->so_snd);
815 splx(s);
816 if (error)
817 goto out;
818 goto restart;
819 }
820 splx(s);
821 mp = ⊤
822 space -= clen;
823 do {
824 if (uio == NULL) {
825 /*
826 * Data is prepackaged in "top".
827 */
828 resid = 0;
829 if (flags & MSG_EOR)
830 top->m_flags |= M_EOR;
831 } else do {
832 if (top == 0) {
833 m = m_gethdr(M_WAIT, MT_DATA);
834 mlen = MHLEN;
835 m->m_pkthdr.len = 0;
836 m->m_pkthdr.rcvif = NULL;
837 } else {
838 m = m_get(M_WAIT, MT_DATA);
839 mlen = MLEN;
840 }
841 MCLAIM(m, so->so_snd.sb_mowner);
842 if (sock_loan_thresh >= 0 &&
843 uio->uio_iov->iov_len >= sock_loan_thresh &&
844 space >= sock_loan_thresh &&
845 (len = sosend_loan(so, uio, m,
846 space)) != 0) {
847 SOSEND_COUNTER_INCR(&sosend_loan_big);
848 space -= len;
849 goto have_data;
850 }
851 if (resid >= MINCLSIZE && space >= MCLBYTES) {
852 SOSEND_COUNTER_INCR(&sosend_copy_big);
853 m_clget(m, M_WAIT);
854 if ((m->m_flags & M_EXT) == 0)
855 goto nopages;
856 mlen = MCLBYTES;
857 if (atomic && top == 0) {
858 len = lmin(MCLBYTES - max_hdr,
859 resid);
860 m->m_data += max_hdr;
861 } else
862 len = lmin(MCLBYTES, resid);
863 space -= len;
864 } else {
865 nopages:
866 SOSEND_COUNTER_INCR(&sosend_copy_small);
867 len = lmin(lmin(mlen, resid), space);
868 space -= len;
869 /*
870 * For datagram protocols, leave room
871 * for protocol headers in first mbuf.
872 */
873 if (atomic && top == 0 && len < mlen)
874 MH_ALIGN(m, len);
875 }
876 error = uiomove(mtod(m, void *), (int)len,
877 uio);
878 have_data:
879 resid = uio->uio_resid;
880 m->m_len = len;
881 *mp = m;
882 top->m_pkthdr.len += len;
883 if (error)
884 goto release;
885 mp = &m->m_next;
886 if (resid <= 0) {
887 if (flags & MSG_EOR)
888 top->m_flags |= M_EOR;
889 break;
890 }
891 } while (space > 0 && atomic);
892
893 s = splsoftnet();
894
895 if (so->so_state & SS_CANTSENDMORE)
896 snderr(EPIPE);
897
898 if (dontroute)
899 so->so_options |= SO_DONTROUTE;
900 if (resid > 0)
901 so->so_state |= SS_MORETOCOME;
902 error = (*so->so_proto->pr_usrreq)(so,
903 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
904 top, addr, control, curlwp); /* XXX */
905 if (dontroute)
906 so->so_options &= ~SO_DONTROUTE;
907 if (resid > 0)
908 so->so_state &= ~SS_MORETOCOME;
909 splx(s);
910
911 clen = 0;
912 control = 0;
913 top = 0;
914 mp = ⊤
915 if (error)
916 goto release;
917 } while (resid && space > 0);
918 } while (resid);
919
920 release:
921 sbunlock(&so->so_snd);
922 out:
923 if (top)
924 m_freem(top);
925 if (control)
926 m_freem(control);
927 return (error);
928 }
929
930 /*
931 * Implement receive operations on a socket.
932 * We depend on the way that records are added to the sockbuf
933 * by sbappend*. In particular, each record (mbufs linked through m_next)
934 * must begin with an address if the protocol so specifies,
935 * followed by an optional mbuf or mbufs containing ancillary data,
936 * and then zero or more mbufs of data.
937 * In order to avoid blocking network interrupts for the entire time here,
938 * we splx() while doing the actual copy to user space.
939 * Although the sockbuf is locked, new data may still be appended,
940 * and thus we must maintain consistency of the sockbuf during that time.
941 *
942 * The caller may receive the data as a single mbuf chain by supplying
943 * an mbuf **mp0 for use in returning the chain. The uio is then used
944 * only for the count in uio_resid.
945 */
946 int
947 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
948 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
949 {
950 struct lwp *l = curlwp;
951 struct mbuf *m, **mp;
952 int flags, len, error, s, offset, moff, type, orig_resid;
953 const struct protosw *pr;
954 struct mbuf *nextrecord;
955 int mbuf_removed = 0;
956
957 pr = so->so_proto;
958 mp = mp0;
959 type = 0;
960 orig_resid = uio->uio_resid;
961
962 if (paddr)
963 *paddr = 0;
964 if (controlp)
965 *controlp = 0;
966 if (flagsp)
967 flags = *flagsp &~ MSG_EOR;
968 else
969 flags = 0;
970
971 if ((flags & MSG_DONTWAIT) == 0)
972 sodopendfree();
973
974 if (flags & MSG_OOB) {
975 m = m_get(M_WAIT, MT_DATA);
976 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
977 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
978 if (error)
979 goto bad;
980 do {
981 error = uiomove(mtod(m, void *),
982 (int) min(uio->uio_resid, m->m_len), uio);
983 m = m_free(m);
984 } while (uio->uio_resid && error == 0 && m);
985 bad:
986 if (m)
987 m_freem(m);
988 return (error);
989 }
990 if (mp)
991 *mp = NULL;
992 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
993 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
994
995 restart:
996 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
997 return (error);
998 s = splsoftnet();
999
1000 m = so->so_rcv.sb_mb;
1001 /*
1002 * If we have less data than requested, block awaiting more
1003 * (subject to any timeout) if:
1004 * 1. the current count is less than the low water mark,
1005 * 2. MSG_WAITALL is set, and it is possible to do the entire
1006 * receive operation at once if we block (resid <= hiwat), or
1007 * 3. MSG_DONTWAIT is not set.
1008 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1009 * we have to do the receive in sections, and thus risk returning
1010 * a short count if a timeout or signal occurs after we start.
1011 */
1012 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1013 so->so_rcv.sb_cc < uio->uio_resid) &&
1014 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1015 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1016 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1017 #ifdef DIAGNOSTIC
1018 if (m == 0 && so->so_rcv.sb_cc)
1019 panic("receive 1");
1020 #endif
1021 if (so->so_error) {
1022 if (m)
1023 goto dontblock;
1024 error = so->so_error;
1025 if ((flags & MSG_PEEK) == 0)
1026 so->so_error = 0;
1027 goto release;
1028 }
1029 if (so->so_state & SS_CANTRCVMORE) {
1030 if (m)
1031 goto dontblock;
1032 else
1033 goto release;
1034 }
1035 for (; m; m = m->m_next)
1036 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1037 m = so->so_rcv.sb_mb;
1038 goto dontblock;
1039 }
1040 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1041 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1042 error = ENOTCONN;
1043 goto release;
1044 }
1045 if (uio->uio_resid == 0)
1046 goto release;
1047 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1048 error = EWOULDBLOCK;
1049 goto release;
1050 }
1051 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1052 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1053 sbunlock(&so->so_rcv);
1054 error = sbwait(&so->so_rcv);
1055 splx(s);
1056 if (error)
1057 return (error);
1058 goto restart;
1059 }
1060 dontblock:
1061 /*
1062 * On entry here, m points to the first record of the socket buffer.
1063 * While we process the initial mbufs containing address and control
1064 * info, we save a copy of m->m_nextpkt into nextrecord.
1065 */
1066 if (l)
1067 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1068 KASSERT(m == so->so_rcv.sb_mb);
1069 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1070 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1071 nextrecord = m->m_nextpkt;
1072 if (pr->pr_flags & PR_ADDR) {
1073 #ifdef DIAGNOSTIC
1074 if (m->m_type != MT_SONAME)
1075 panic("receive 1a");
1076 #endif
1077 orig_resid = 0;
1078 if (flags & MSG_PEEK) {
1079 if (paddr)
1080 *paddr = m_copy(m, 0, m->m_len);
1081 m = m->m_next;
1082 } else {
1083 sbfree(&so->so_rcv, m);
1084 mbuf_removed = 1;
1085 if (paddr) {
1086 *paddr = m;
1087 so->so_rcv.sb_mb = m->m_next;
1088 m->m_next = 0;
1089 m = so->so_rcv.sb_mb;
1090 } else {
1091 MFREE(m, so->so_rcv.sb_mb);
1092 m = so->so_rcv.sb_mb;
1093 }
1094 }
1095 }
1096 while (m && m->m_type == MT_CONTROL && error == 0) {
1097 if (flags & MSG_PEEK) {
1098 if (controlp)
1099 *controlp = m_copy(m, 0, m->m_len);
1100 m = m->m_next;
1101 } else {
1102 sbfree(&so->so_rcv, m);
1103 mbuf_removed = 1;
1104 if (controlp) {
1105 struct domain *dom = pr->pr_domain;
1106 if (dom->dom_externalize && l &&
1107 mtod(m, struct cmsghdr *)->cmsg_type ==
1108 SCM_RIGHTS)
1109 error = (*dom->dom_externalize)(m, l);
1110 *controlp = m;
1111 so->so_rcv.sb_mb = m->m_next;
1112 m->m_next = 0;
1113 m = so->so_rcv.sb_mb;
1114 } else {
1115 /*
1116 * Dispose of any SCM_RIGHTS message that went
1117 * through the read path rather than recv.
1118 */
1119 if (pr->pr_domain->dom_dispose &&
1120 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1121 (*pr->pr_domain->dom_dispose)(m);
1122 MFREE(m, so->so_rcv.sb_mb);
1123 m = so->so_rcv.sb_mb;
1124 }
1125 }
1126 if (controlp) {
1127 orig_resid = 0;
1128 controlp = &(*controlp)->m_next;
1129 }
1130 }
1131
1132 /*
1133 * If m is non-NULL, we have some data to read. From now on,
1134 * make sure to keep sb_lastrecord consistent when working on
1135 * the last packet on the chain (nextrecord == NULL) and we
1136 * change m->m_nextpkt.
1137 */
1138 if (m) {
1139 if ((flags & MSG_PEEK) == 0) {
1140 m->m_nextpkt = nextrecord;
1141 /*
1142 * If nextrecord == NULL (this is a single chain),
1143 * then sb_lastrecord may not be valid here if m
1144 * was changed earlier.
1145 */
1146 if (nextrecord == NULL) {
1147 KASSERT(so->so_rcv.sb_mb == m);
1148 so->so_rcv.sb_lastrecord = m;
1149 }
1150 }
1151 type = m->m_type;
1152 if (type == MT_OOBDATA)
1153 flags |= MSG_OOB;
1154 } else {
1155 if ((flags & MSG_PEEK) == 0) {
1156 KASSERT(so->so_rcv.sb_mb == m);
1157 so->so_rcv.sb_mb = nextrecord;
1158 SB_EMPTY_FIXUP(&so->so_rcv);
1159 }
1160 }
1161 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1162 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1163
1164 moff = 0;
1165 offset = 0;
1166 while (m && uio->uio_resid > 0 && error == 0) {
1167 if (m->m_type == MT_OOBDATA) {
1168 if (type != MT_OOBDATA)
1169 break;
1170 } else if (type == MT_OOBDATA)
1171 break;
1172 #ifdef DIAGNOSTIC
1173 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1174 panic("receive 3");
1175 #endif
1176 so->so_state &= ~SS_RCVATMARK;
1177 len = uio->uio_resid;
1178 if (so->so_oobmark && len > so->so_oobmark - offset)
1179 len = so->so_oobmark - offset;
1180 if (len > m->m_len - moff)
1181 len = m->m_len - moff;
1182 /*
1183 * If mp is set, just pass back the mbufs.
1184 * Otherwise copy them out via the uio, then free.
1185 * Sockbuf must be consistent here (points to current mbuf,
1186 * it points to next record) when we drop priority;
1187 * we must note any additions to the sockbuf when we
1188 * block interrupts again.
1189 */
1190 if (mp == 0) {
1191 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1192 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1193 splx(s);
1194 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1195 s = splsoftnet();
1196 if (error) {
1197 /*
1198 * If any part of the record has been removed
1199 * (such as the MT_SONAME mbuf, which will
1200 * happen when PR_ADDR, and thus also
1201 * PR_ATOMIC, is set), then drop the entire
1202 * record to maintain the atomicity of the
1203 * receive operation.
1204 *
1205 * This avoids a later panic("receive 1a")
1206 * when compiled with DIAGNOSTIC.
1207 */
1208 if (m && mbuf_removed
1209 && (pr->pr_flags & PR_ATOMIC))
1210 (void) sbdroprecord(&so->so_rcv);
1211
1212 goto release;
1213 }
1214 } else
1215 uio->uio_resid -= len;
1216 if (len == m->m_len - moff) {
1217 if (m->m_flags & M_EOR)
1218 flags |= MSG_EOR;
1219 if (flags & MSG_PEEK) {
1220 m = m->m_next;
1221 moff = 0;
1222 } else {
1223 nextrecord = m->m_nextpkt;
1224 sbfree(&so->so_rcv, m);
1225 if (mp) {
1226 *mp = m;
1227 mp = &m->m_next;
1228 so->so_rcv.sb_mb = m = m->m_next;
1229 *mp = NULL;
1230 } else {
1231 MFREE(m, so->so_rcv.sb_mb);
1232 m = so->so_rcv.sb_mb;
1233 }
1234 /*
1235 * If m != NULL, we also know that
1236 * so->so_rcv.sb_mb != NULL.
1237 */
1238 KASSERT(so->so_rcv.sb_mb == m);
1239 if (m) {
1240 m->m_nextpkt = nextrecord;
1241 if (nextrecord == NULL)
1242 so->so_rcv.sb_lastrecord = m;
1243 } else {
1244 so->so_rcv.sb_mb = nextrecord;
1245 SB_EMPTY_FIXUP(&so->so_rcv);
1246 }
1247 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1248 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1249 }
1250 } else {
1251 if (flags & MSG_PEEK)
1252 moff += len;
1253 else {
1254 if (mp)
1255 *mp = m_copym(m, 0, len, M_WAIT);
1256 m->m_data += len;
1257 m->m_len -= len;
1258 so->so_rcv.sb_cc -= len;
1259 }
1260 }
1261 if (so->so_oobmark) {
1262 if ((flags & MSG_PEEK) == 0) {
1263 so->so_oobmark -= len;
1264 if (so->so_oobmark == 0) {
1265 so->so_state |= SS_RCVATMARK;
1266 break;
1267 }
1268 } else {
1269 offset += len;
1270 if (offset == so->so_oobmark)
1271 break;
1272 }
1273 }
1274 if (flags & MSG_EOR)
1275 break;
1276 /*
1277 * If the MSG_WAITALL flag is set (for non-atomic socket),
1278 * we must not quit until "uio->uio_resid == 0" or an error
1279 * termination. If a signal/timeout occurs, return
1280 * with a short count but without error.
1281 * Keep sockbuf locked against other readers.
1282 */
1283 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1284 !sosendallatonce(so) && !nextrecord) {
1285 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1286 break;
1287 /*
1288 * If we are peeking and the socket receive buffer is
1289 * full, stop since we can't get more data to peek at.
1290 */
1291 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1292 break;
1293 /*
1294 * If we've drained the socket buffer, tell the
1295 * protocol in case it needs to do something to
1296 * get it filled again.
1297 */
1298 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1299 (*pr->pr_usrreq)(so, PRU_RCVD,
1300 NULL, (struct mbuf *)(long)flags, NULL, l);
1301 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1302 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1303 error = sbwait(&so->so_rcv);
1304 if (error) {
1305 sbunlock(&so->so_rcv);
1306 splx(s);
1307 return (0);
1308 }
1309 if ((m = so->so_rcv.sb_mb) != NULL)
1310 nextrecord = m->m_nextpkt;
1311 }
1312 }
1313
1314 if (m && pr->pr_flags & PR_ATOMIC) {
1315 flags |= MSG_TRUNC;
1316 if ((flags & MSG_PEEK) == 0)
1317 (void) sbdroprecord(&so->so_rcv);
1318 }
1319 if ((flags & MSG_PEEK) == 0) {
1320 if (m == 0) {
1321 /*
1322 * First part is an inline SB_EMPTY_FIXUP(). Second
1323 * part makes sure sb_lastrecord is up-to-date if
1324 * there is still data in the socket buffer.
1325 */
1326 so->so_rcv.sb_mb = nextrecord;
1327 if (so->so_rcv.sb_mb == NULL) {
1328 so->so_rcv.sb_mbtail = NULL;
1329 so->so_rcv.sb_lastrecord = NULL;
1330 } else if (nextrecord->m_nextpkt == NULL)
1331 so->so_rcv.sb_lastrecord = nextrecord;
1332 }
1333 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1334 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1335 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1336 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1337 (struct mbuf *)(long)flags, NULL, l);
1338 }
1339 if (orig_resid == uio->uio_resid && orig_resid &&
1340 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1341 sbunlock(&so->so_rcv);
1342 splx(s);
1343 goto restart;
1344 }
1345
1346 if (flagsp)
1347 *flagsp |= flags;
1348 release:
1349 sbunlock(&so->so_rcv);
1350 splx(s);
1351 return (error);
1352 }
1353
1354 int
1355 soshutdown(struct socket *so, int how)
1356 {
1357 const struct protosw *pr;
1358
1359 pr = so->so_proto;
1360 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1361 return (EINVAL);
1362
1363 if (how == SHUT_RD || how == SHUT_RDWR)
1364 sorflush(so);
1365 if (how == SHUT_WR || how == SHUT_RDWR)
1366 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1367 NULL, NULL, NULL);
1368 return (0);
1369 }
1370
1371 void
1372 sorflush(struct socket *so)
1373 {
1374 struct sockbuf *sb, asb;
1375 const struct protosw *pr;
1376 int s;
1377
1378 sb = &so->so_rcv;
1379 pr = so->so_proto;
1380 sb->sb_flags |= SB_NOINTR;
1381 (void) sblock(sb, M_WAITOK);
1382 s = splnet();
1383 socantrcvmore(so);
1384 sbunlock(sb);
1385 asb = *sb;
1386 /*
1387 * Clear most of the sockbuf structure, but leave some of the
1388 * fields valid.
1389 */
1390 memset(&sb->sb_startzero, 0,
1391 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1392 splx(s);
1393 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1394 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1395 sbrelease(&asb, so);
1396 }
1397
1398 int
1399 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1400 {
1401 int error;
1402 struct mbuf *m;
1403 struct linger *l;
1404 struct sockbuf *sb;
1405
1406 error = 0;
1407 m = m0;
1408 if (level != SOL_SOCKET) {
1409 if (so->so_proto && so->so_proto->pr_ctloutput)
1410 return ((*so->so_proto->pr_ctloutput)
1411 (PRCO_SETOPT, so, level, optname, &m0));
1412 error = ENOPROTOOPT;
1413 } else {
1414 switch (optname) {
1415
1416 case SO_LINGER:
1417 if (m == NULL || m->m_len != sizeof(struct linger)) {
1418 error = EINVAL;
1419 goto bad;
1420 }
1421 l = mtod(m, struct linger *);
1422 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1423 l->l_linger > (INT_MAX / hz)) {
1424 error = EDOM;
1425 goto bad;
1426 }
1427 so->so_linger = l->l_linger;
1428 if (l->l_onoff)
1429 so->so_options |= SO_LINGER;
1430 else
1431 so->so_options &= ~SO_LINGER;
1432 break;
1433
1434 case SO_DEBUG:
1435 case SO_KEEPALIVE:
1436 case SO_DONTROUTE:
1437 case SO_USELOOPBACK:
1438 case SO_BROADCAST:
1439 case SO_REUSEADDR:
1440 case SO_REUSEPORT:
1441 case SO_OOBINLINE:
1442 case SO_TIMESTAMP:
1443 if (m == NULL || m->m_len < sizeof(int)) {
1444 error = EINVAL;
1445 goto bad;
1446 }
1447 if (*mtod(m, int *))
1448 so->so_options |= optname;
1449 else
1450 so->so_options &= ~optname;
1451 break;
1452
1453 case SO_SNDBUF:
1454 case SO_RCVBUF:
1455 case SO_SNDLOWAT:
1456 case SO_RCVLOWAT:
1457 {
1458 int optval;
1459
1460 if (m == NULL || m->m_len < sizeof(int)) {
1461 error = EINVAL;
1462 goto bad;
1463 }
1464
1465 /*
1466 * Values < 1 make no sense for any of these
1467 * options, so disallow them.
1468 */
1469 optval = *mtod(m, int *);
1470 if (optval < 1) {
1471 error = EINVAL;
1472 goto bad;
1473 }
1474
1475 switch (optname) {
1476
1477 case SO_SNDBUF:
1478 case SO_RCVBUF:
1479 sb = (optname == SO_SNDBUF) ?
1480 &so->so_snd : &so->so_rcv;
1481 if (sbreserve(sb, (u_long)optval, so) == 0) {
1482 error = ENOBUFS;
1483 goto bad;
1484 }
1485 sb->sb_flags &= ~SB_AUTOSIZE;
1486 break;
1487
1488 /*
1489 * Make sure the low-water is never greater than
1490 * the high-water.
1491 */
1492 case SO_SNDLOWAT:
1493 so->so_snd.sb_lowat =
1494 (optval > so->so_snd.sb_hiwat) ?
1495 so->so_snd.sb_hiwat : optval;
1496 break;
1497 case SO_RCVLOWAT:
1498 so->so_rcv.sb_lowat =
1499 (optval > so->so_rcv.sb_hiwat) ?
1500 so->so_rcv.sb_hiwat : optval;
1501 break;
1502 }
1503 break;
1504 }
1505
1506 case SO_SNDTIMEO:
1507 case SO_RCVTIMEO:
1508 {
1509 struct timeval *tv;
1510 int val;
1511
1512 if (m == NULL || m->m_len < sizeof(*tv)) {
1513 error = EINVAL;
1514 goto bad;
1515 }
1516 tv = mtod(m, struct timeval *);
1517 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1518 error = EDOM;
1519 goto bad;
1520 }
1521 val = tv->tv_sec * hz + tv->tv_usec / tick;
1522 if (val == 0 && tv->tv_usec != 0)
1523 val = 1;
1524
1525 switch (optname) {
1526
1527 case SO_SNDTIMEO:
1528 so->so_snd.sb_timeo = val;
1529 break;
1530 case SO_RCVTIMEO:
1531 so->so_rcv.sb_timeo = val;
1532 break;
1533 }
1534 break;
1535 }
1536
1537 default:
1538 error = ENOPROTOOPT;
1539 break;
1540 }
1541 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1542 (void) ((*so->so_proto->pr_ctloutput)
1543 (PRCO_SETOPT, so, level, optname, &m0));
1544 m = NULL; /* freed by protocol */
1545 }
1546 }
1547 bad:
1548 if (m)
1549 (void) m_free(m);
1550 return (error);
1551 }
1552
1553 int
1554 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1555 {
1556 struct mbuf *m;
1557
1558 if (level != SOL_SOCKET) {
1559 if (so->so_proto && so->so_proto->pr_ctloutput) {
1560 return ((*so->so_proto->pr_ctloutput)
1561 (PRCO_GETOPT, so, level, optname, mp));
1562 } else
1563 return (ENOPROTOOPT);
1564 } else {
1565 m = m_get(M_WAIT, MT_SOOPTS);
1566 m->m_len = sizeof(int);
1567
1568 switch (optname) {
1569
1570 case SO_LINGER:
1571 m->m_len = sizeof(struct linger);
1572 mtod(m, struct linger *)->l_onoff =
1573 (so->so_options & SO_LINGER) ? 1 : 0;
1574 mtod(m, struct linger *)->l_linger = so->so_linger;
1575 break;
1576
1577 case SO_USELOOPBACK:
1578 case SO_DONTROUTE:
1579 case SO_DEBUG:
1580 case SO_KEEPALIVE:
1581 case SO_REUSEADDR:
1582 case SO_REUSEPORT:
1583 case SO_BROADCAST:
1584 case SO_OOBINLINE:
1585 case SO_TIMESTAMP:
1586 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1587 break;
1588
1589 case SO_TYPE:
1590 *mtod(m, int *) = so->so_type;
1591 break;
1592
1593 case SO_ERROR:
1594 *mtod(m, int *) = so->so_error;
1595 so->so_error = 0;
1596 break;
1597
1598 case SO_SNDBUF:
1599 *mtod(m, int *) = so->so_snd.sb_hiwat;
1600 break;
1601
1602 case SO_RCVBUF:
1603 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1604 break;
1605
1606 case SO_SNDLOWAT:
1607 *mtod(m, int *) = so->so_snd.sb_lowat;
1608 break;
1609
1610 case SO_RCVLOWAT:
1611 *mtod(m, int *) = so->so_rcv.sb_lowat;
1612 break;
1613
1614 case SO_SNDTIMEO:
1615 case SO_RCVTIMEO:
1616 {
1617 int val = (optname == SO_SNDTIMEO ?
1618 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1619
1620 m->m_len = sizeof(struct timeval);
1621 mtod(m, struct timeval *)->tv_sec = val / hz;
1622 mtod(m, struct timeval *)->tv_usec =
1623 (val % hz) * tick;
1624 break;
1625 }
1626
1627 case SO_OVERFLOWED:
1628 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1629 break;
1630
1631 default:
1632 (void)m_free(m);
1633 return (ENOPROTOOPT);
1634 }
1635 *mp = m;
1636 return (0);
1637 }
1638 }
1639
1640 void
1641 sohasoutofband(struct socket *so)
1642 {
1643 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1644 selwakeup(&so->so_rcv.sb_sel);
1645 }
1646
1647 static void
1648 filt_sordetach(struct knote *kn)
1649 {
1650 struct socket *so;
1651
1652 so = (struct socket *)kn->kn_fp->f_data;
1653 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1654 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1655 so->so_rcv.sb_flags &= ~SB_KNOTE;
1656 }
1657
1658 /*ARGSUSED*/
1659 static int
1660 filt_soread(struct knote *kn, long hint)
1661 {
1662 struct socket *so;
1663
1664 so = (struct socket *)kn->kn_fp->f_data;
1665 kn->kn_data = so->so_rcv.sb_cc;
1666 if (so->so_state & SS_CANTRCVMORE) {
1667 kn->kn_flags |= EV_EOF;
1668 kn->kn_fflags = so->so_error;
1669 return (1);
1670 }
1671 if (so->so_error) /* temporary udp error */
1672 return (1);
1673 if (kn->kn_sfflags & NOTE_LOWAT)
1674 return (kn->kn_data >= kn->kn_sdata);
1675 return (kn->kn_data >= so->so_rcv.sb_lowat);
1676 }
1677
1678 static void
1679 filt_sowdetach(struct knote *kn)
1680 {
1681 struct socket *so;
1682
1683 so = (struct socket *)kn->kn_fp->f_data;
1684 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1685 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1686 so->so_snd.sb_flags &= ~SB_KNOTE;
1687 }
1688
1689 /*ARGSUSED*/
1690 static int
1691 filt_sowrite(struct knote *kn, long hint)
1692 {
1693 struct socket *so;
1694
1695 so = (struct socket *)kn->kn_fp->f_data;
1696 kn->kn_data = sbspace(&so->so_snd);
1697 if (so->so_state & SS_CANTSENDMORE) {
1698 kn->kn_flags |= EV_EOF;
1699 kn->kn_fflags = so->so_error;
1700 return (1);
1701 }
1702 if (so->so_error) /* temporary udp error */
1703 return (1);
1704 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1705 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1706 return (0);
1707 if (kn->kn_sfflags & NOTE_LOWAT)
1708 return (kn->kn_data >= kn->kn_sdata);
1709 return (kn->kn_data >= so->so_snd.sb_lowat);
1710 }
1711
1712 /*ARGSUSED*/
1713 static int
1714 filt_solisten(struct knote *kn, long hint)
1715 {
1716 struct socket *so;
1717
1718 so = (struct socket *)kn->kn_fp->f_data;
1719
1720 /*
1721 * Set kn_data to number of incoming connections, not
1722 * counting partial (incomplete) connections.
1723 */
1724 kn->kn_data = so->so_qlen;
1725 return (kn->kn_data > 0);
1726 }
1727
1728 static const struct filterops solisten_filtops =
1729 { 1, NULL, filt_sordetach, filt_solisten };
1730 static const struct filterops soread_filtops =
1731 { 1, NULL, filt_sordetach, filt_soread };
1732 static const struct filterops sowrite_filtops =
1733 { 1, NULL, filt_sowdetach, filt_sowrite };
1734
1735 int
1736 soo_kqfilter(struct file *fp, struct knote *kn)
1737 {
1738 struct socket *so;
1739 struct sockbuf *sb;
1740
1741 so = (struct socket *)kn->kn_fp->f_data;
1742 switch (kn->kn_filter) {
1743 case EVFILT_READ:
1744 if (so->so_options & SO_ACCEPTCONN)
1745 kn->kn_fop = &solisten_filtops;
1746 else
1747 kn->kn_fop = &soread_filtops;
1748 sb = &so->so_rcv;
1749 break;
1750 case EVFILT_WRITE:
1751 kn->kn_fop = &sowrite_filtops;
1752 sb = &so->so_snd;
1753 break;
1754 default:
1755 return (1);
1756 }
1757 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1758 sb->sb_flags |= SB_KNOTE;
1759 return (0);
1760 }
1761
1762 #include <sys/sysctl.h>
1763
1764 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1765
1766 /*
1767 * sysctl helper routine for kern.somaxkva. ensures that the given
1768 * value is not too small.
1769 * (XXX should we maybe make sure it's not too large as well?)
1770 */
1771 static int
1772 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1773 {
1774 int error, new_somaxkva;
1775 struct sysctlnode node;
1776
1777 new_somaxkva = somaxkva;
1778 node = *rnode;
1779 node.sysctl_data = &new_somaxkva;
1780 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1781 if (error || newp == NULL)
1782 return (error);
1783
1784 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1785 return (EINVAL);
1786
1787 mutex_enter(&so_pendfree_lock);
1788 somaxkva = new_somaxkva;
1789 cv_broadcast(&socurkva_cv);
1790 mutex_exit(&so_pendfree_lock);
1791
1792 return (error);
1793 }
1794
1795 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1796 {
1797
1798 sysctl_createv(clog, 0, NULL, NULL,
1799 CTLFLAG_PERMANENT,
1800 CTLTYPE_NODE, "kern", NULL,
1801 NULL, 0, NULL, 0,
1802 CTL_KERN, CTL_EOL);
1803
1804 sysctl_createv(clog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1806 CTLTYPE_INT, "somaxkva",
1807 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1808 "used for socket buffers"),
1809 sysctl_kern_somaxkva, 0, NULL, 0,
1810 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1811 }
1812