uipc_socket.c revision 1.111.2.8 1 /* $NetBSD: uipc_socket.c,v 1.111.2.8 2007/10/27 11:35:38 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.111.2.8 2007/10/27 11:35:38 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size, bool mapped)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 if (mapped) {
268 pmap_kremove(sva, len);
269 pmap_update(pmap_kernel());
270 }
271 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
272 sokvafree(sva, len);
273 }
274
275 static size_t
276 sodopendfree()
277 {
278 size_t rv;
279
280 mutex_enter(&so_pendfree_lock);
281 rv = sodopendfreel();
282 mutex_exit(&so_pendfree_lock);
283
284 return rv;
285 }
286
287 /*
288 * sodopendfreel: free mbufs on "pendfree" list.
289 * unlock and relock so_pendfree_lock when freeing mbufs.
290 *
291 * => called with so_pendfree_lock held.
292 */
293
294 static size_t
295 sodopendfreel()
296 {
297 struct mbuf *m, *next;
298 size_t rv = 0;
299 int s;
300
301 KASSERT(mutex_owned(&so_pendfree_lock));
302
303 while (so_pendfree != NULL) {
304 m = so_pendfree;
305 so_pendfree = NULL;
306 mutex_exit(&so_pendfree_lock);
307
308 for (; m != NULL; m = next) {
309 next = m->m_next;
310 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
311 KASSERT(m->m_ext.ext_refcnt == 0);
312
313 rv += m->m_ext.ext_size;
314 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
315 m->m_ext.ext_size,
316 (m->m_ext.ext_flags & M_EXT_LAZY) == 0);
317 s = splvm();
318 pool_cache_put(&mbpool_cache, m);
319 splx(s);
320 }
321
322 mutex_enter(&so_pendfree_lock);
323 }
324
325 return (rv);
326 }
327
328 void
329 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
330 {
331
332 KASSERT(m != NULL);
333
334 /*
335 * postpone freeing mbuf.
336 *
337 * we can't do it in interrupt context
338 * because we need to put kva back to kernel_map.
339 */
340
341 mutex_enter(&so_pendfree_lock);
342 m->m_next = so_pendfree;
343 so_pendfree = m;
344 cv_broadcast(&socurkva_cv);
345 mutex_exit(&so_pendfree_lock);
346 }
347
348 static long
349 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
350 {
351 struct iovec *iov = uio->uio_iov;
352 vaddr_t sva, eva;
353 vsize_t len;
354 vaddr_t lva;
355 int npgs, error;
356 #if !defined(__HAVE_LAZY_MBUF)
357 vaddr_t va;
358 int i;
359 #endif /* !defined(__HAVE_LAZY_MBUF) */
360
361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
362 return (0);
363
364 if (iov->iov_len < (size_t) space)
365 space = iov->iov_len;
366 if (space > SOCK_LOAN_CHUNK)
367 space = SOCK_LOAN_CHUNK;
368
369 eva = round_page((vaddr_t) iov->iov_base + space);
370 sva = trunc_page((vaddr_t) iov->iov_base);
371 len = eva - sva;
372 npgs = len >> PAGE_SHIFT;
373
374 /* XXX KDASSERT */
375 KASSERT(npgs <= M_EXT_MAXPAGES);
376
377 lva = sokvaalloc(len, so);
378 if (lva == 0)
379 return 0;
380
381 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
382 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
383 if (error) {
384 sokvafree(lva, len);
385 return (0);
386 }
387
388 #if !defined(__HAVE_LAZY_MBUF)
389 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
390 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
391 VM_PROT_READ);
392 pmap_update(pmap_kernel());
393 #endif /* !defined(__HAVE_LAZY_MBUF) */
394
395 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
396
397 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
398 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
399
400 #if defined(__HAVE_LAZY_MBUF)
401 m->m_flags |= M_EXT_LAZY;
402 m->m_ext.ext_flags |= M_EXT_LAZY;
403 #endif /* defined(__HAVE_LAZY_MBUF) */
404
405 uio->uio_resid -= space;
406 /* uio_offset not updated, not set/used for write(2) */
407 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
408 uio->uio_iov->iov_len -= space;
409 if (uio->uio_iov->iov_len == 0) {
410 uio->uio_iov++;
411 uio->uio_iovcnt--;
412 }
413
414 return (space);
415 }
416
417 static int
418 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
419 {
420
421 KASSERT(ce == &sokva_reclaimerentry);
422 KASSERT(obj == NULL);
423
424 sodopendfree();
425 if (!vm_map_starved_p(kernel_map)) {
426 return CALLBACK_CHAIN_ABORT;
427 }
428 return CALLBACK_CHAIN_CONTINUE;
429 }
430
431 struct mbuf *
432 getsombuf(struct socket *so)
433 {
434 struct mbuf *m;
435
436 m = m_get(M_WAIT, MT_SONAME);
437 MCLAIM(m, so->so_mowner);
438 return m;
439 }
440
441 struct mbuf *
442 m_intopt(struct socket *so, int val)
443 {
444 struct mbuf *m;
445
446 m = getsombuf(so);
447 m->m_len = sizeof(int);
448 *mtod(m, int *) = val;
449 return m;
450 }
451
452 void
453 soinit(void)
454 {
455
456 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
457 cv_init(&socurkva_cv, "sokva");
458
459 /* Set the initial adjusted socket buffer size. */
460 if (sb_max_set(sb_max))
461 panic("bad initial sb_max value: %lu", sb_max);
462
463 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
464 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
465 }
466
467 /*
468 * Socket operation routines.
469 * These routines are called by the routines in
470 * sys_socket.c or from a system process, and
471 * implement the semantics of socket operations by
472 * switching out to the protocol specific routines.
473 */
474 /*ARGSUSED*/
475 int
476 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
477 {
478 const struct protosw *prp;
479 struct socket *so;
480 uid_t uid;
481 int error, s;
482
483 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
484 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
485 KAUTH_ARG(proto));
486 if (error != 0)
487 return error;
488
489 if (proto)
490 prp = pffindproto(dom, proto, type);
491 else
492 prp = pffindtype(dom, type);
493 if (prp == NULL) {
494 /* no support for domain */
495 if (pffinddomain(dom) == 0)
496 return EAFNOSUPPORT;
497 /* no support for socket type */
498 if (proto == 0 && type != 0)
499 return EPROTOTYPE;
500 return EPROTONOSUPPORT;
501 }
502 if (prp->pr_usrreq == NULL)
503 return EPROTONOSUPPORT;
504 if (prp->pr_type != type)
505 return EPROTOTYPE;
506 s = splsoftnet();
507 so = pool_get(&socket_pool, PR_WAITOK);
508 memset(so, 0, sizeof(*so));
509 TAILQ_INIT(&so->so_q0);
510 TAILQ_INIT(&so->so_q);
511 so->so_type = type;
512 so->so_proto = prp;
513 so->so_send = sosend;
514 so->so_receive = soreceive;
515 #ifdef MBUFTRACE
516 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
517 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
518 so->so_mowner = &prp->pr_domain->dom_mowner;
519 #endif
520 selinit(&so->so_rcv.sb_sel);
521 selinit(&so->so_snd.sb_sel);
522 uid = kauth_cred_geteuid(l->l_cred);
523 so->so_uidinfo = uid_find(uid);
524 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
525 (struct mbuf *)(long)proto, NULL, l);
526 if (error != 0) {
527 so->so_state |= SS_NOFDREF;
528 sofree(so);
529 splx(s);
530 return error;
531 }
532 splx(s);
533 *aso = so;
534 return 0;
535 }
536
537 /* On success, write file descriptor to fdout and return zero. On
538 * failure, return non-zero; *fdout will be undefined.
539 */
540 int
541 fsocreate(int domain, struct socket **sop, int type, int protocol,
542 struct lwp *l, int *fdout)
543 {
544 struct filedesc *fdp;
545 struct socket *so;
546 struct file *fp;
547 int fd, error;
548
549 fdp = l->l_proc->p_fd;
550 /* falloc() will use the desciptor for us */
551 if ((error = falloc(l, &fp, &fd)) != 0)
552 return (error);
553 fp->f_flag = FREAD|FWRITE;
554 fp->f_type = DTYPE_SOCKET;
555 fp->f_ops = &socketops;
556 error = socreate(domain, &so, type, protocol, l);
557 if (error != 0) {
558 FILE_UNUSE(fp, l);
559 fdremove(fdp, fd);
560 ffree(fp);
561 } else {
562 if (sop != NULL)
563 *sop = so;
564 fp->f_data = so;
565 FILE_SET_MATURE(fp);
566 FILE_UNUSE(fp, l);
567 *fdout = fd;
568 }
569 return error;
570 }
571
572 int
573 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
574 {
575 int s, error;
576
577 s = splsoftnet();
578 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
579 splx(s);
580 return error;
581 }
582
583 int
584 solisten(struct socket *so, int backlog)
585 {
586 int s, error;
587
588 s = splsoftnet();
589 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
590 NULL, NULL, NULL);
591 if (error != 0) {
592 splx(s);
593 return error;
594 }
595 if (TAILQ_EMPTY(&so->so_q))
596 so->so_options |= SO_ACCEPTCONN;
597 if (backlog < 0)
598 backlog = 0;
599 so->so_qlimit = min(backlog, somaxconn);
600 splx(s);
601 return 0;
602 }
603
604 void
605 sofree(struct socket *so)
606 {
607
608 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
609 return;
610 if (so->so_head) {
611 /*
612 * We must not decommission a socket that's on the accept(2)
613 * queue. If we do, then accept(2) may hang after select(2)
614 * indicated that the listening socket was ready.
615 */
616 if (!soqremque(so, 0))
617 return;
618 }
619 if (so->so_rcv.sb_hiwat)
620 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
621 RLIM_INFINITY);
622 if (so->so_snd.sb_hiwat)
623 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
624 RLIM_INFINITY);
625 sbrelease(&so->so_snd, so);
626 sorflush(so);
627 seldestroy(&so->so_rcv.sb_sel);
628 seldestroy(&so->so_snd.sb_sel);
629 pool_put(&socket_pool, so);
630 }
631
632 /*
633 * Close a socket on last file table reference removal.
634 * Initiate disconnect if connected.
635 * Free socket when disconnect complete.
636 */
637 int
638 soclose(struct socket *so)
639 {
640 struct socket *so2;
641 int s, error;
642
643 error = 0;
644 s = splsoftnet(); /* conservative */
645 if (so->so_options & SO_ACCEPTCONN) {
646 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
647 (void) soqremque(so2, 0);
648 (void) soabort(so2);
649 }
650 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
651 (void) soqremque(so2, 1);
652 (void) soabort(so2);
653 }
654 }
655 if (so->so_pcb == 0)
656 goto discard;
657 if (so->so_state & SS_ISCONNECTED) {
658 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
659 error = sodisconnect(so);
660 if (error)
661 goto drop;
662 }
663 if (so->so_options & SO_LINGER) {
664 if ((so->so_state & SS_ISDISCONNECTING) &&
665 (so->so_state & SS_NBIO))
666 goto drop;
667 while (so->so_state & SS_ISCONNECTED) {
668 error = tsleep((void *)&so->so_timeo,
669 PSOCK | PCATCH, netcls,
670 so->so_linger * hz);
671 if (error)
672 break;
673 }
674 }
675 }
676 drop:
677 if (so->so_pcb) {
678 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
679 NULL, NULL, NULL, NULL);
680 if (error == 0)
681 error = error2;
682 }
683 discard:
684 if (so->so_state & SS_NOFDREF)
685 panic("soclose: NOFDREF");
686 so->so_state |= SS_NOFDREF;
687 sofree(so);
688 splx(s);
689 return (error);
690 }
691
692 /*
693 * Must be called at splsoftnet...
694 */
695 int
696 soabort(struct socket *so)
697 {
698 int error;
699
700 KASSERT(so->so_head == NULL);
701 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
702 NULL, NULL, NULL);
703 if (error) {
704 sofree(so);
705 }
706 return error;
707 }
708
709 int
710 soaccept(struct socket *so, struct mbuf *nam)
711 {
712 int s, error;
713
714 error = 0;
715 s = splsoftnet();
716 if ((so->so_state & SS_NOFDREF) == 0)
717 panic("soaccept: !NOFDREF");
718 so->so_state &= ~SS_NOFDREF;
719 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
720 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
721 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
722 NULL, nam, NULL, NULL);
723 else
724 error = ECONNABORTED;
725
726 splx(s);
727 return (error);
728 }
729
730 int
731 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
732 {
733 int s, error;
734
735 if (so->so_options & SO_ACCEPTCONN)
736 return (EOPNOTSUPP);
737 s = splsoftnet();
738 /*
739 * If protocol is connection-based, can only connect once.
740 * Otherwise, if connected, try to disconnect first.
741 * This allows user to disconnect by connecting to, e.g.,
742 * a null address.
743 */
744 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
745 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
746 (error = sodisconnect(so))))
747 error = EISCONN;
748 else
749 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
750 NULL, nam, NULL, l);
751 splx(s);
752 return (error);
753 }
754
755 int
756 soconnect2(struct socket *so1, struct socket *so2)
757 {
758 int s, error;
759
760 s = splsoftnet();
761 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
762 NULL, (struct mbuf *)so2, NULL, NULL);
763 splx(s);
764 return (error);
765 }
766
767 int
768 sodisconnect(struct socket *so)
769 {
770 int s, error;
771
772 s = splsoftnet();
773 if ((so->so_state & SS_ISCONNECTED) == 0) {
774 error = ENOTCONN;
775 goto bad;
776 }
777 if (so->so_state & SS_ISDISCONNECTING) {
778 error = EALREADY;
779 goto bad;
780 }
781 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
782 NULL, NULL, NULL, NULL);
783 bad:
784 splx(s);
785 sodopendfree();
786 return (error);
787 }
788
789 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
790 /*
791 * Send on a socket.
792 * If send must go all at once and message is larger than
793 * send buffering, then hard error.
794 * Lock against other senders.
795 * If must go all at once and not enough room now, then
796 * inform user that this would block and do nothing.
797 * Otherwise, if nonblocking, send as much as possible.
798 * The data to be sent is described by "uio" if nonzero,
799 * otherwise by the mbuf chain "top" (which must be null
800 * if uio is not). Data provided in mbuf chain must be small
801 * enough to send all at once.
802 *
803 * Returns nonzero on error, timeout or signal; callers
804 * must check for short counts if EINTR/ERESTART are returned.
805 * Data and control buffers are freed on return.
806 */
807 int
808 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
809 struct mbuf *control, int flags, struct lwp *l)
810 {
811 struct mbuf **mp, *m;
812 struct proc *p;
813 long space, len, resid, clen, mlen;
814 int error, s, dontroute, atomic;
815
816 p = l->l_proc;
817 sodopendfree();
818
819 clen = 0;
820 atomic = sosendallatonce(so) || top;
821 if (uio)
822 resid = uio->uio_resid;
823 else
824 resid = top->m_pkthdr.len;
825 /*
826 * In theory resid should be unsigned.
827 * However, space must be signed, as it might be less than 0
828 * if we over-committed, and we must use a signed comparison
829 * of space and resid. On the other hand, a negative resid
830 * causes us to loop sending 0-length segments to the protocol.
831 */
832 if (resid < 0) {
833 error = EINVAL;
834 goto out;
835 }
836 dontroute =
837 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
838 (so->so_proto->pr_flags & PR_ATOMIC);
839 if (p)
840 p->p_stats->p_ru.ru_msgsnd++;
841 if (control)
842 clen = control->m_len;
843 #define snderr(errno) { error = errno; splx(s); goto release; }
844
845 restart:
846 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
847 goto out;
848 do {
849 s = splsoftnet();
850 if (so->so_state & SS_CANTSENDMORE)
851 snderr(EPIPE);
852 if (so->so_error) {
853 error = so->so_error;
854 so->so_error = 0;
855 splx(s);
856 goto release;
857 }
858 if ((so->so_state & SS_ISCONNECTED) == 0) {
859 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
860 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
861 !(resid == 0 && clen != 0))
862 snderr(ENOTCONN);
863 } else if (addr == 0)
864 snderr(EDESTADDRREQ);
865 }
866 space = sbspace(&so->so_snd);
867 if (flags & MSG_OOB)
868 space += 1024;
869 if ((atomic && resid > so->so_snd.sb_hiwat) ||
870 clen > so->so_snd.sb_hiwat)
871 snderr(EMSGSIZE);
872 if (space < resid + clen &&
873 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
874 if (so->so_state & SS_NBIO)
875 snderr(EWOULDBLOCK);
876 sbunlock(&so->so_snd);
877 error = sbwait(&so->so_snd);
878 splx(s);
879 if (error)
880 goto out;
881 goto restart;
882 }
883 splx(s);
884 mp = ⊤
885 space -= clen;
886 do {
887 if (uio == NULL) {
888 /*
889 * Data is prepackaged in "top".
890 */
891 resid = 0;
892 if (flags & MSG_EOR)
893 top->m_flags |= M_EOR;
894 } else do {
895 if (top == NULL) {
896 m = m_gethdr(M_WAIT, MT_DATA);
897 mlen = MHLEN;
898 m->m_pkthdr.len = 0;
899 m->m_pkthdr.rcvif = NULL;
900 } else {
901 m = m_get(M_WAIT, MT_DATA);
902 mlen = MLEN;
903 }
904 MCLAIM(m, so->so_snd.sb_mowner);
905 if (sock_loan_thresh >= 0 &&
906 uio->uio_iov->iov_len >= sock_loan_thresh &&
907 space >= sock_loan_thresh &&
908 (len = sosend_loan(so, uio, m,
909 space)) != 0) {
910 SOSEND_COUNTER_INCR(&sosend_loan_big);
911 space -= len;
912 goto have_data;
913 }
914 if (resid >= MINCLSIZE && space >= MCLBYTES) {
915 SOSEND_COUNTER_INCR(&sosend_copy_big);
916 m_clget(m, M_WAIT);
917 if ((m->m_flags & M_EXT) == 0)
918 goto nopages;
919 mlen = MCLBYTES;
920 if (atomic && top == 0) {
921 len = lmin(MCLBYTES - max_hdr,
922 resid);
923 m->m_data += max_hdr;
924 } else
925 len = lmin(MCLBYTES, resid);
926 space -= len;
927 } else {
928 nopages:
929 SOSEND_COUNTER_INCR(&sosend_copy_small);
930 len = lmin(lmin(mlen, resid), space);
931 space -= len;
932 /*
933 * For datagram protocols, leave room
934 * for protocol headers in first mbuf.
935 */
936 if (atomic && top == 0 && len < mlen)
937 MH_ALIGN(m, len);
938 }
939 error = uiomove(mtod(m, void *), (int)len, uio);
940 have_data:
941 resid = uio->uio_resid;
942 m->m_len = len;
943 *mp = m;
944 top->m_pkthdr.len += len;
945 if (error != 0)
946 goto release;
947 mp = &m->m_next;
948 if (resid <= 0) {
949 if (flags & MSG_EOR)
950 top->m_flags |= M_EOR;
951 break;
952 }
953 } while (space > 0 && atomic);
954
955 s = splsoftnet();
956
957 if (so->so_state & SS_CANTSENDMORE)
958 snderr(EPIPE);
959
960 if (dontroute)
961 so->so_options |= SO_DONTROUTE;
962 if (resid > 0)
963 so->so_state |= SS_MORETOCOME;
964 error = (*so->so_proto->pr_usrreq)(so,
965 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
966 top, addr, control, curlwp); /* XXX */
967 if (dontroute)
968 so->so_options &= ~SO_DONTROUTE;
969 if (resid > 0)
970 so->so_state &= ~SS_MORETOCOME;
971 splx(s);
972
973 clen = 0;
974 control = NULL;
975 top = NULL;
976 mp = ⊤
977 if (error != 0)
978 goto release;
979 } while (resid && space > 0);
980 } while (resid);
981
982 release:
983 sbunlock(&so->so_snd);
984 out:
985 if (top)
986 m_freem(top);
987 if (control)
988 m_freem(control);
989 return (error);
990 }
991
992 /*
993 * Implement receive operations on a socket.
994 * We depend on the way that records are added to the sockbuf
995 * by sbappend*. In particular, each record (mbufs linked through m_next)
996 * must begin with an address if the protocol so specifies,
997 * followed by an optional mbuf or mbufs containing ancillary data,
998 * and then zero or more mbufs of data.
999 * In order to avoid blocking network interrupts for the entire time here,
1000 * we splx() while doing the actual copy to user space.
1001 * Although the sockbuf is locked, new data may still be appended,
1002 * and thus we must maintain consistency of the sockbuf during that time.
1003 *
1004 * The caller may receive the data as a single mbuf chain by supplying
1005 * an mbuf **mp0 for use in returning the chain. The uio is then used
1006 * only for the count in uio_resid.
1007 */
1008 int
1009 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1010 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1011 {
1012 struct lwp *l = curlwp;
1013 struct mbuf *m, **mp;
1014 int flags, len, error, s, offset, moff, type, orig_resid;
1015 const struct protosw *pr;
1016 struct mbuf *nextrecord;
1017 int mbuf_removed = 0;
1018
1019 pr = so->so_proto;
1020 mp = mp0;
1021 type = 0;
1022 orig_resid = uio->uio_resid;
1023
1024 if (paddr != NULL)
1025 *paddr = NULL;
1026 if (controlp != NULL)
1027 *controlp = NULL;
1028 if (flagsp != NULL)
1029 flags = *flagsp &~ MSG_EOR;
1030 else
1031 flags = 0;
1032
1033 if ((flags & MSG_DONTWAIT) == 0)
1034 sodopendfree();
1035
1036 if (flags & MSG_OOB) {
1037 m = m_get(M_WAIT, MT_DATA);
1038 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1039 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1040 if (error)
1041 goto bad;
1042 do {
1043 error = uiomove(mtod(m, void *),
1044 (int) min(uio->uio_resid, m->m_len), uio);
1045 m = m_free(m);
1046 } while (uio->uio_resid > 0 && error == 0 && m);
1047 bad:
1048 if (m != NULL)
1049 m_freem(m);
1050 return error;
1051 }
1052 if (mp != NULL)
1053 *mp = NULL;
1054 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1055 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1056
1057 restart:
1058 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1059 return error;
1060 s = splsoftnet();
1061
1062 m = so->so_rcv.sb_mb;
1063 /*
1064 * If we have less data than requested, block awaiting more
1065 * (subject to any timeout) if:
1066 * 1. the current count is less than the low water mark,
1067 * 2. MSG_WAITALL is set, and it is possible to do the entire
1068 * receive operation at once if we block (resid <= hiwat), or
1069 * 3. MSG_DONTWAIT is not set.
1070 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1071 * we have to do the receive in sections, and thus risk returning
1072 * a short count if a timeout or signal occurs after we start.
1073 */
1074 if (m == NULL ||
1075 ((flags & MSG_DONTWAIT) == 0 &&
1076 so->so_rcv.sb_cc < uio->uio_resid &&
1077 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1078 ((flags & MSG_WAITALL) &&
1079 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1080 m->m_nextpkt == NULL &&
1081 (pr->pr_flags & PR_ATOMIC) == 0)) {
1082 #ifdef DIAGNOSTIC
1083 if (m == NULL && so->so_rcv.sb_cc)
1084 panic("receive 1");
1085 #endif
1086 if (so->so_error) {
1087 if (m != NULL)
1088 goto dontblock;
1089 error = so->so_error;
1090 if ((flags & MSG_PEEK) == 0)
1091 so->so_error = 0;
1092 goto release;
1093 }
1094 if (so->so_state & SS_CANTRCVMORE) {
1095 if (m != NULL)
1096 goto dontblock;
1097 else
1098 goto release;
1099 }
1100 for (; m != NULL; m = m->m_next)
1101 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1102 m = so->so_rcv.sb_mb;
1103 goto dontblock;
1104 }
1105 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1106 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1107 error = ENOTCONN;
1108 goto release;
1109 }
1110 if (uio->uio_resid == 0)
1111 goto release;
1112 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1113 error = EWOULDBLOCK;
1114 goto release;
1115 }
1116 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1117 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1118 sbunlock(&so->so_rcv);
1119 error = sbwait(&so->so_rcv);
1120 splx(s);
1121 if (error != 0)
1122 return error;
1123 goto restart;
1124 }
1125 dontblock:
1126 /*
1127 * On entry here, m points to the first record of the socket buffer.
1128 * While we process the initial mbufs containing address and control
1129 * info, we save a copy of m->m_nextpkt into nextrecord.
1130 */
1131 if (l != NULL)
1132 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1133 KASSERT(m == so->so_rcv.sb_mb);
1134 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1135 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1136 nextrecord = m->m_nextpkt;
1137 if (pr->pr_flags & PR_ADDR) {
1138 #ifdef DIAGNOSTIC
1139 if (m->m_type != MT_SONAME)
1140 panic("receive 1a");
1141 #endif
1142 orig_resid = 0;
1143 if (flags & MSG_PEEK) {
1144 if (paddr)
1145 *paddr = m_copy(m, 0, m->m_len);
1146 m = m->m_next;
1147 } else {
1148 sbfree(&so->so_rcv, m);
1149 mbuf_removed = 1;
1150 if (paddr != NULL) {
1151 *paddr = m;
1152 so->so_rcv.sb_mb = m->m_next;
1153 m->m_next = NULL;
1154 m = so->so_rcv.sb_mb;
1155 } else {
1156 MFREE(m, so->so_rcv.sb_mb);
1157 m = so->so_rcv.sb_mb;
1158 }
1159 }
1160 }
1161 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1162 if (flags & MSG_PEEK) {
1163 if (controlp != NULL)
1164 *controlp = m_copy(m, 0, m->m_len);
1165 m = m->m_next;
1166 } else {
1167 sbfree(&so->so_rcv, m);
1168 mbuf_removed = 1;
1169 if (controlp != NULL) {
1170 struct domain *dom = pr->pr_domain;
1171 if (dom->dom_externalize && l &&
1172 mtod(m, struct cmsghdr *)->cmsg_type ==
1173 SCM_RIGHTS)
1174 error = (*dom->dom_externalize)(m, l);
1175 *controlp = m;
1176 so->so_rcv.sb_mb = m->m_next;
1177 m->m_next = NULL;
1178 m = so->so_rcv.sb_mb;
1179 } else {
1180 /*
1181 * Dispose of any SCM_RIGHTS message that went
1182 * through the read path rather than recv.
1183 */
1184 if (pr->pr_domain->dom_dispose &&
1185 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1186 (*pr->pr_domain->dom_dispose)(m);
1187 MFREE(m, so->so_rcv.sb_mb);
1188 m = so->so_rcv.sb_mb;
1189 }
1190 }
1191 if (controlp != NULL) {
1192 orig_resid = 0;
1193 controlp = &(*controlp)->m_next;
1194 }
1195 }
1196
1197 /*
1198 * If m is non-NULL, we have some data to read. From now on,
1199 * make sure to keep sb_lastrecord consistent when working on
1200 * the last packet on the chain (nextrecord == NULL) and we
1201 * change m->m_nextpkt.
1202 */
1203 if (m != NULL) {
1204 if ((flags & MSG_PEEK) == 0) {
1205 m->m_nextpkt = nextrecord;
1206 /*
1207 * If nextrecord == NULL (this is a single chain),
1208 * then sb_lastrecord may not be valid here if m
1209 * was changed earlier.
1210 */
1211 if (nextrecord == NULL) {
1212 KASSERT(so->so_rcv.sb_mb == m);
1213 so->so_rcv.sb_lastrecord = m;
1214 }
1215 }
1216 type = m->m_type;
1217 if (type == MT_OOBDATA)
1218 flags |= MSG_OOB;
1219 } else {
1220 if ((flags & MSG_PEEK) == 0) {
1221 KASSERT(so->so_rcv.sb_mb == m);
1222 so->so_rcv.sb_mb = nextrecord;
1223 SB_EMPTY_FIXUP(&so->so_rcv);
1224 }
1225 }
1226 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1227 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1228
1229 moff = 0;
1230 offset = 0;
1231 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1232 if (m->m_type == MT_OOBDATA) {
1233 if (type != MT_OOBDATA)
1234 break;
1235 } else if (type == MT_OOBDATA)
1236 break;
1237 #ifdef DIAGNOSTIC
1238 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1239 panic("receive 3");
1240 #endif
1241 so->so_state &= ~SS_RCVATMARK;
1242 len = uio->uio_resid;
1243 if (so->so_oobmark && len > so->so_oobmark - offset)
1244 len = so->so_oobmark - offset;
1245 if (len > m->m_len - moff)
1246 len = m->m_len - moff;
1247 /*
1248 * If mp is set, just pass back the mbufs.
1249 * Otherwise copy them out via the uio, then free.
1250 * Sockbuf must be consistent here (points to current mbuf,
1251 * it points to next record) when we drop priority;
1252 * we must note any additions to the sockbuf when we
1253 * block interrupts again.
1254 */
1255 if (mp == NULL) {
1256 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1257 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1258 splx(s);
1259 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1260 s = splsoftnet();
1261 if (error != 0) {
1262 /*
1263 * If any part of the record has been removed
1264 * (such as the MT_SONAME mbuf, which will
1265 * happen when PR_ADDR, and thus also
1266 * PR_ATOMIC, is set), then drop the entire
1267 * record to maintain the atomicity of the
1268 * receive operation.
1269 *
1270 * This avoids a later panic("receive 1a")
1271 * when compiled with DIAGNOSTIC.
1272 */
1273 if (m && mbuf_removed
1274 && (pr->pr_flags & PR_ATOMIC))
1275 (void) sbdroprecord(&so->so_rcv);
1276
1277 goto release;
1278 }
1279 } else
1280 uio->uio_resid -= len;
1281 if (len == m->m_len - moff) {
1282 if (m->m_flags & M_EOR)
1283 flags |= MSG_EOR;
1284 if (flags & MSG_PEEK) {
1285 m = m->m_next;
1286 moff = 0;
1287 } else {
1288 nextrecord = m->m_nextpkt;
1289 sbfree(&so->so_rcv, m);
1290 if (mp) {
1291 *mp = m;
1292 mp = &m->m_next;
1293 so->so_rcv.sb_mb = m = m->m_next;
1294 *mp = NULL;
1295 } else {
1296 MFREE(m, so->so_rcv.sb_mb);
1297 m = so->so_rcv.sb_mb;
1298 }
1299 /*
1300 * If m != NULL, we also know that
1301 * so->so_rcv.sb_mb != NULL.
1302 */
1303 KASSERT(so->so_rcv.sb_mb == m);
1304 if (m) {
1305 m->m_nextpkt = nextrecord;
1306 if (nextrecord == NULL)
1307 so->so_rcv.sb_lastrecord = m;
1308 } else {
1309 so->so_rcv.sb_mb = nextrecord;
1310 SB_EMPTY_FIXUP(&so->so_rcv);
1311 }
1312 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1313 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1314 }
1315 } else if (flags & MSG_PEEK)
1316 moff += len;
1317 else {
1318 if (mp != NULL)
1319 *mp = m_copym(m, 0, len, M_WAIT);
1320 m->m_data += len;
1321 m->m_len -= len;
1322 so->so_rcv.sb_cc -= len;
1323 }
1324 if (so->so_oobmark) {
1325 if ((flags & MSG_PEEK) == 0) {
1326 so->so_oobmark -= len;
1327 if (so->so_oobmark == 0) {
1328 so->so_state |= SS_RCVATMARK;
1329 break;
1330 }
1331 } else {
1332 offset += len;
1333 if (offset == so->so_oobmark)
1334 break;
1335 }
1336 }
1337 if (flags & MSG_EOR)
1338 break;
1339 /*
1340 * If the MSG_WAITALL flag is set (for non-atomic socket),
1341 * we must not quit until "uio->uio_resid == 0" or an error
1342 * termination. If a signal/timeout occurs, return
1343 * with a short count but without error.
1344 * Keep sockbuf locked against other readers.
1345 */
1346 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1347 !sosendallatonce(so) && !nextrecord) {
1348 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1349 break;
1350 /*
1351 * If we are peeking and the socket receive buffer is
1352 * full, stop since we can't get more data to peek at.
1353 */
1354 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1355 break;
1356 /*
1357 * If we've drained the socket buffer, tell the
1358 * protocol in case it needs to do something to
1359 * get it filled again.
1360 */
1361 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1362 (*pr->pr_usrreq)(so, PRU_RCVD,
1363 NULL, (struct mbuf *)(long)flags, NULL, l);
1364 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1365 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1366 error = sbwait(&so->so_rcv);
1367 if (error != 0) {
1368 sbunlock(&so->so_rcv);
1369 splx(s);
1370 return 0;
1371 }
1372 if ((m = so->so_rcv.sb_mb) != NULL)
1373 nextrecord = m->m_nextpkt;
1374 }
1375 }
1376
1377 if (m && pr->pr_flags & PR_ATOMIC) {
1378 flags |= MSG_TRUNC;
1379 if ((flags & MSG_PEEK) == 0)
1380 (void) sbdroprecord(&so->so_rcv);
1381 }
1382 if ((flags & MSG_PEEK) == 0) {
1383 if (m == NULL) {
1384 /*
1385 * First part is an inline SB_EMPTY_FIXUP(). Second
1386 * part makes sure sb_lastrecord is up-to-date if
1387 * there is still data in the socket buffer.
1388 */
1389 so->so_rcv.sb_mb = nextrecord;
1390 if (so->so_rcv.sb_mb == NULL) {
1391 so->so_rcv.sb_mbtail = NULL;
1392 so->so_rcv.sb_lastrecord = NULL;
1393 } else if (nextrecord->m_nextpkt == NULL)
1394 so->so_rcv.sb_lastrecord = nextrecord;
1395 }
1396 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1397 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1398 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1399 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1400 (struct mbuf *)(long)flags, NULL, l);
1401 }
1402 if (orig_resid == uio->uio_resid && orig_resid &&
1403 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1404 sbunlock(&so->so_rcv);
1405 splx(s);
1406 goto restart;
1407 }
1408
1409 if (flagsp != NULL)
1410 *flagsp |= flags;
1411 release:
1412 sbunlock(&so->so_rcv);
1413 splx(s);
1414 return error;
1415 }
1416
1417 int
1418 soshutdown(struct socket *so, int how)
1419 {
1420 const struct protosw *pr;
1421
1422 pr = so->so_proto;
1423 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1424 return (EINVAL);
1425
1426 if (how == SHUT_RD || how == SHUT_RDWR)
1427 sorflush(so);
1428 if (how == SHUT_WR || how == SHUT_RDWR)
1429 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1430 NULL, NULL, NULL);
1431 return 0;
1432 }
1433
1434 void
1435 sorflush(struct socket *so)
1436 {
1437 struct sockbuf *sb, asb;
1438 const struct protosw *pr;
1439 int s;
1440
1441 sb = &so->so_rcv;
1442 pr = so->so_proto;
1443 sb->sb_flags |= SB_NOINTR;
1444 (void) sblock(sb, M_WAITOK);
1445 s = splnet();
1446 socantrcvmore(so);
1447 sbunlock(sb);
1448 asb = *sb;
1449 /*
1450 * Clear most of the sockbuf structure, but leave some of the
1451 * fields valid.
1452 */
1453 memset(&sb->sb_startzero, 0,
1454 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1455 splx(s);
1456 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1457 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1458 sbrelease(&asb, so);
1459 }
1460
1461 static int
1462 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1463 {
1464 int optval, val;
1465 struct linger *l;
1466 struct sockbuf *sb;
1467 struct timeval *tv;
1468
1469 switch (optname) {
1470
1471 case SO_LINGER:
1472 if (m == NULL || m->m_len != sizeof(struct linger))
1473 return EINVAL;
1474 l = mtod(m, struct linger *);
1475 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1476 l->l_linger > (INT_MAX / hz))
1477 return EDOM;
1478 so->so_linger = l->l_linger;
1479 if (l->l_onoff)
1480 so->so_options |= SO_LINGER;
1481 else
1482 so->so_options &= ~SO_LINGER;
1483 break;
1484
1485 case SO_DEBUG:
1486 case SO_KEEPALIVE:
1487 case SO_DONTROUTE:
1488 case SO_USELOOPBACK:
1489 case SO_BROADCAST:
1490 case SO_REUSEADDR:
1491 case SO_REUSEPORT:
1492 case SO_OOBINLINE:
1493 case SO_TIMESTAMP:
1494 if (m == NULL || m->m_len < sizeof(int))
1495 return EINVAL;
1496 if (*mtod(m, int *))
1497 so->so_options |= optname;
1498 else
1499 so->so_options &= ~optname;
1500 break;
1501
1502 case SO_SNDBUF:
1503 case SO_RCVBUF:
1504 case SO_SNDLOWAT:
1505 case SO_RCVLOWAT:
1506 if (m == NULL || m->m_len < sizeof(int))
1507 return EINVAL;
1508
1509 /*
1510 * Values < 1 make no sense for any of these
1511 * options, so disallow them.
1512 */
1513 optval = *mtod(m, int *);
1514 if (optval < 1)
1515 return EINVAL;
1516
1517 switch (optname) {
1518
1519 case SO_SNDBUF:
1520 case SO_RCVBUF:
1521 sb = (optname == SO_SNDBUF) ?
1522 &so->so_snd : &so->so_rcv;
1523 if (sbreserve(sb, (u_long)optval, so) == 0)
1524 return ENOBUFS;
1525 sb->sb_flags &= ~SB_AUTOSIZE;
1526 break;
1527
1528 /*
1529 * Make sure the low-water is never greater than
1530 * the high-water.
1531 */
1532 case SO_SNDLOWAT:
1533 so->so_snd.sb_lowat =
1534 (optval > so->so_snd.sb_hiwat) ?
1535 so->so_snd.sb_hiwat : optval;
1536 break;
1537 case SO_RCVLOWAT:
1538 so->so_rcv.sb_lowat =
1539 (optval > so->so_rcv.sb_hiwat) ?
1540 so->so_rcv.sb_hiwat : optval;
1541 break;
1542 }
1543 break;
1544
1545 case SO_SNDTIMEO:
1546 case SO_RCVTIMEO:
1547 if (m == NULL || m->m_len < sizeof(*tv))
1548 return EINVAL;
1549 tv = mtod(m, struct timeval *);
1550 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1551 return EDOM;
1552 val = tv->tv_sec * hz + tv->tv_usec / tick;
1553 if (val == 0 && tv->tv_usec != 0)
1554 val = 1;
1555
1556 switch (optname) {
1557
1558 case SO_SNDTIMEO:
1559 so->so_snd.sb_timeo = val;
1560 break;
1561 case SO_RCVTIMEO:
1562 so->so_rcv.sb_timeo = val;
1563 break;
1564 }
1565 break;
1566
1567 default:
1568 return ENOPROTOOPT;
1569 }
1570 return 0;
1571 }
1572
1573 int
1574 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1575 {
1576 int error, prerr;
1577
1578 if (level == SOL_SOCKET)
1579 error = sosetopt1(so, level, optname, m);
1580 else
1581 error = ENOPROTOOPT;
1582
1583 if ((error == 0 || error == ENOPROTOOPT) &&
1584 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1585 /* give the protocol stack a shot */
1586 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1587 optname, &m);
1588 if (prerr == 0)
1589 error = 0;
1590 else if (prerr != ENOPROTOOPT)
1591 error = prerr;
1592 } else if (m != NULL)
1593 (void)m_free(m);
1594 return error;
1595 }
1596
1597 int
1598 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1599 {
1600 struct mbuf *m;
1601
1602 if (level != SOL_SOCKET) {
1603 if (so->so_proto && so->so_proto->pr_ctloutput) {
1604 return ((*so->so_proto->pr_ctloutput)
1605 (PRCO_GETOPT, so, level, optname, mp));
1606 } else
1607 return (ENOPROTOOPT);
1608 } else {
1609 m = m_get(M_WAIT, MT_SOOPTS);
1610 m->m_len = sizeof(int);
1611
1612 switch (optname) {
1613
1614 case SO_LINGER:
1615 m->m_len = sizeof(struct linger);
1616 mtod(m, struct linger *)->l_onoff =
1617 (so->so_options & SO_LINGER) ? 1 : 0;
1618 mtod(m, struct linger *)->l_linger = so->so_linger;
1619 break;
1620
1621 case SO_USELOOPBACK:
1622 case SO_DONTROUTE:
1623 case SO_DEBUG:
1624 case SO_KEEPALIVE:
1625 case SO_REUSEADDR:
1626 case SO_REUSEPORT:
1627 case SO_BROADCAST:
1628 case SO_OOBINLINE:
1629 case SO_TIMESTAMP:
1630 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1631 break;
1632
1633 case SO_TYPE:
1634 *mtod(m, int *) = so->so_type;
1635 break;
1636
1637 case SO_ERROR:
1638 *mtod(m, int *) = so->so_error;
1639 so->so_error = 0;
1640 break;
1641
1642 case SO_SNDBUF:
1643 *mtod(m, int *) = so->so_snd.sb_hiwat;
1644 break;
1645
1646 case SO_RCVBUF:
1647 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1648 break;
1649
1650 case SO_SNDLOWAT:
1651 *mtod(m, int *) = so->so_snd.sb_lowat;
1652 break;
1653
1654 case SO_RCVLOWAT:
1655 *mtod(m, int *) = so->so_rcv.sb_lowat;
1656 break;
1657
1658 case SO_SNDTIMEO:
1659 case SO_RCVTIMEO:
1660 {
1661 int val = (optname == SO_SNDTIMEO ?
1662 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1663
1664 m->m_len = sizeof(struct timeval);
1665 mtod(m, struct timeval *)->tv_sec = val / hz;
1666 mtod(m, struct timeval *)->tv_usec =
1667 (val % hz) * tick;
1668 break;
1669 }
1670
1671 case SO_OVERFLOWED:
1672 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1673 break;
1674
1675 default:
1676 (void)m_free(m);
1677 return (ENOPROTOOPT);
1678 }
1679 *mp = m;
1680 return (0);
1681 }
1682 }
1683
1684 void
1685 sohasoutofband(struct socket *so)
1686 {
1687 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1688 selwakeup(&so->so_rcv.sb_sel);
1689 }
1690
1691 static void
1692 filt_sordetach(struct knote *kn)
1693 {
1694 struct socket *so;
1695
1696 so = (struct socket *)kn->kn_fp->f_data;
1697 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1698 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1699 so->so_rcv.sb_flags &= ~SB_KNOTE;
1700 }
1701
1702 /*ARGSUSED*/
1703 static int
1704 filt_soread(struct knote *kn, long hint)
1705 {
1706 struct socket *so;
1707
1708 so = (struct socket *)kn->kn_fp->f_data;
1709 kn->kn_data = so->so_rcv.sb_cc;
1710 if (so->so_state & SS_CANTRCVMORE) {
1711 kn->kn_flags |= EV_EOF;
1712 kn->kn_fflags = so->so_error;
1713 return (1);
1714 }
1715 if (so->so_error) /* temporary udp error */
1716 return (1);
1717 if (kn->kn_sfflags & NOTE_LOWAT)
1718 return (kn->kn_data >= kn->kn_sdata);
1719 return (kn->kn_data >= so->so_rcv.sb_lowat);
1720 }
1721
1722 static void
1723 filt_sowdetach(struct knote *kn)
1724 {
1725 struct socket *so;
1726
1727 so = (struct socket *)kn->kn_fp->f_data;
1728 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1729 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1730 so->so_snd.sb_flags &= ~SB_KNOTE;
1731 }
1732
1733 /*ARGSUSED*/
1734 static int
1735 filt_sowrite(struct knote *kn, long hint)
1736 {
1737 struct socket *so;
1738
1739 so = (struct socket *)kn->kn_fp->f_data;
1740 kn->kn_data = sbspace(&so->so_snd);
1741 if (so->so_state & SS_CANTSENDMORE) {
1742 kn->kn_flags |= EV_EOF;
1743 kn->kn_fflags = so->so_error;
1744 return (1);
1745 }
1746 if (so->so_error) /* temporary udp error */
1747 return (1);
1748 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1749 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1750 return (0);
1751 if (kn->kn_sfflags & NOTE_LOWAT)
1752 return (kn->kn_data >= kn->kn_sdata);
1753 return (kn->kn_data >= so->so_snd.sb_lowat);
1754 }
1755
1756 /*ARGSUSED*/
1757 static int
1758 filt_solisten(struct knote *kn, long hint)
1759 {
1760 struct socket *so;
1761
1762 so = (struct socket *)kn->kn_fp->f_data;
1763
1764 /*
1765 * Set kn_data to number of incoming connections, not
1766 * counting partial (incomplete) connections.
1767 */
1768 kn->kn_data = so->so_qlen;
1769 return (kn->kn_data > 0);
1770 }
1771
1772 static const struct filterops solisten_filtops =
1773 { 1, NULL, filt_sordetach, filt_solisten };
1774 static const struct filterops soread_filtops =
1775 { 1, NULL, filt_sordetach, filt_soread };
1776 static const struct filterops sowrite_filtops =
1777 { 1, NULL, filt_sowdetach, filt_sowrite };
1778
1779 int
1780 soo_kqfilter(struct file *fp, struct knote *kn)
1781 {
1782 struct socket *so;
1783 struct sockbuf *sb;
1784
1785 so = (struct socket *)kn->kn_fp->f_data;
1786 switch (kn->kn_filter) {
1787 case EVFILT_READ:
1788 if (so->so_options & SO_ACCEPTCONN)
1789 kn->kn_fop = &solisten_filtops;
1790 else
1791 kn->kn_fop = &soread_filtops;
1792 sb = &so->so_rcv;
1793 break;
1794 case EVFILT_WRITE:
1795 kn->kn_fop = &sowrite_filtops;
1796 sb = &so->so_snd;
1797 break;
1798 default:
1799 return (1);
1800 }
1801 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1802 sb->sb_flags |= SB_KNOTE;
1803 return (0);
1804 }
1805
1806 #include <sys/sysctl.h>
1807
1808 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1809
1810 /*
1811 * sysctl helper routine for kern.somaxkva. ensures that the given
1812 * value is not too small.
1813 * (XXX should we maybe make sure it's not too large as well?)
1814 */
1815 static int
1816 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1817 {
1818 int error, new_somaxkva;
1819 struct sysctlnode node;
1820
1821 new_somaxkva = somaxkva;
1822 node = *rnode;
1823 node.sysctl_data = &new_somaxkva;
1824 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1825 if (error || newp == NULL)
1826 return (error);
1827
1828 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1829 return (EINVAL);
1830
1831 mutex_enter(&so_pendfree_lock);
1832 somaxkva = new_somaxkva;
1833 cv_broadcast(&socurkva_cv);
1834 mutex_exit(&so_pendfree_lock);
1835
1836 return (error);
1837 }
1838
1839 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1840 {
1841
1842 sysctl_createv(clog, 0, NULL, NULL,
1843 CTLFLAG_PERMANENT,
1844 CTLTYPE_NODE, "kern", NULL,
1845 NULL, 0, NULL, 0,
1846 CTL_KERN, CTL_EOL);
1847
1848 sysctl_createv(clog, 0, NULL, NULL,
1849 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1850 CTLTYPE_INT, "somaxkva",
1851 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1852 "used for socket buffers"),
1853 sysctl_kern_somaxkva, 0, NULL, 0,
1854 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1855 }
1856