uipc_socket.c revision 1.113 1 /* $NetBSD: uipc_socket.c,v 1.113 2005/12/08 03:13:18 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.113 2005/12/08 03:13:18 thorpej Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 void
130 soinit(void)
131 {
132
133 /* Set the initial adjusted socket buffer size. */
134 if (sb_max_set(sb_max))
135 panic("bad initial sb_max value: %lu", sb_max);
136
137 }
138
139 #ifdef SOSEND_NO_LOAN
140 int use_sosend_loan = 0;
141 #else
142 int use_sosend_loan = 1;
143 #endif
144
145 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
146 static struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static int sokvawaiters;
154
155 #define SOCK_LOAN_THRESH 4096
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(struct socket *);
159 static size_t sodopendfreel(struct socket *);
160
161 static vsize_t
162 sokvareserve(struct socket *so, vsize_t len)
163 {
164 int s;
165 int error;
166
167 s = splvm();
168 simple_lock(&so_pendfree_slock);
169 while (socurkva + len > somaxkva) {
170 size_t freed;
171
172 /*
173 * try to do pendfree.
174 */
175
176 freed = sodopendfreel(so);
177
178 /*
179 * if some kva was freed, try again.
180 */
181
182 if (freed)
183 continue;
184
185 SOSEND_COUNTER_INCR(&sosend_kvalimit);
186 sokvawaiters++;
187 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
188 &so_pendfree_slock);
189 sokvawaiters--;
190 if (error) {
191 len = 0;
192 break;
193 }
194 }
195 socurkva += len;
196 simple_unlock(&so_pendfree_slock);
197 splx(s);
198 return len;
199 }
200
201 static void
202 sokvaunreserve(vsize_t len)
203 {
204 int s;
205
206 s = splvm();
207 simple_lock(&so_pendfree_slock);
208 socurkva -= len;
209 if (sokvawaiters)
210 wakeup(&socurkva);
211 simple_unlock(&so_pendfree_slock);
212 splx(s);
213 }
214
215 /*
216 * sokvaalloc: allocate kva for loan.
217 */
218
219 vaddr_t
220 sokvaalloc(vsize_t len, struct socket *so)
221 {
222 vaddr_t lva;
223
224 /*
225 * reserve kva.
226 */
227
228 if (sokvareserve(so, len) == 0)
229 return 0;
230
231 /*
232 * allocate kva.
233 */
234
235 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
236 if (lva == 0) {
237 sokvaunreserve(len);
238 return (0);
239 }
240
241 return lva;
242 }
243
244 /*
245 * sokvafree: free kva for loan.
246 */
247
248 void
249 sokvafree(vaddr_t sva, vsize_t len)
250 {
251
252 /*
253 * free kva.
254 */
255
256 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
257
258 /*
259 * unreserve kva.
260 */
261
262 sokvaunreserve(len);
263 }
264
265 static void
266 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
267 {
268 vaddr_t va, sva, eva;
269 vsize_t len;
270 paddr_t pa;
271 int i, npgs;
272
273 eva = round_page((vaddr_t) buf + size);
274 sva = trunc_page((vaddr_t) buf);
275 len = eva - sva;
276 npgs = len >> PAGE_SHIFT;
277
278 if (__predict_false(pgs == NULL)) {
279 pgs = alloca(npgs * sizeof(*pgs));
280
281 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
282 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
283 panic("sodoloanfree: va 0x%lx not mapped", va);
284 pgs[i] = PHYS_TO_VM_PAGE(pa);
285 }
286 }
287
288 pmap_kremove(sva, len);
289 pmap_update(pmap_kernel());
290 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
291 sokvafree(sva, len);
292 }
293
294 static size_t
295 sodopendfree(struct socket *so)
296 {
297 int s;
298 size_t rv;
299
300 s = splvm();
301 simple_lock(&so_pendfree_slock);
302 rv = sodopendfreel(so);
303 simple_unlock(&so_pendfree_slock);
304 splx(s);
305
306 return rv;
307 }
308
309 /*
310 * sodopendfreel: free mbufs on "pendfree" list.
311 * unlock and relock so_pendfree_slock when freeing mbufs.
312 *
313 * => called with so_pendfree_slock held.
314 * => called at splvm.
315 */
316
317 static size_t
318 sodopendfreel(struct socket *so)
319 {
320 size_t rv = 0;
321
322 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
323
324 for (;;) {
325 struct mbuf *m;
326 struct mbuf *next;
327
328 m = so_pendfree;
329 if (m == NULL)
330 break;
331 so_pendfree = NULL;
332 simple_unlock(&so_pendfree_slock);
333 /* XXX splx */
334
335 for (; m != NULL; m = next) {
336 next = m->m_next;
337
338 rv += m->m_ext.ext_size;
339 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
340 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
341 m->m_ext.ext_size);
342 pool_cache_put(&mbpool_cache, m);
343 }
344
345 /* XXX splvm */
346 simple_lock(&so_pendfree_slock);
347 }
348
349 return (rv);
350 }
351
352 void
353 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
354 {
355 int s;
356
357 if (m == NULL) {
358
359 /*
360 * called from MEXTREMOVE.
361 */
362
363 sodoloanfree(NULL, buf, size);
364 return;
365 }
366
367 /*
368 * postpone freeing mbuf.
369 *
370 * we can't do it in interrupt context
371 * because we need to put kva back to kernel_map.
372 */
373
374 s = splvm();
375 simple_lock(&so_pendfree_slock);
376 m->m_next = so_pendfree;
377 so_pendfree = m;
378 if (sokvawaiters)
379 wakeup(&socurkva);
380 simple_unlock(&so_pendfree_slock);
381 splx(s);
382 }
383
384 static long
385 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
386 {
387 struct iovec *iov = uio->uio_iov;
388 vaddr_t sva, eva;
389 vsize_t len;
390 vaddr_t lva, va;
391 int npgs, i, error;
392
393 if (uio->uio_segflg != UIO_USERSPACE)
394 return (0);
395
396 if (iov->iov_len < (size_t) space)
397 space = iov->iov_len;
398 if (space > SOCK_LOAN_CHUNK)
399 space = SOCK_LOAN_CHUNK;
400
401 eva = round_page((vaddr_t) iov->iov_base + space);
402 sva = trunc_page((vaddr_t) iov->iov_base);
403 len = eva - sva;
404 npgs = len >> PAGE_SHIFT;
405
406 /* XXX KDASSERT */
407 KASSERT(npgs <= M_EXT_MAXPAGES);
408 KASSERT(uio->uio_procp != NULL);
409
410 lva = sokvaalloc(len, so);
411 if (lva == 0)
412 return 0;
413
414 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
415 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
416 if (error) {
417 sokvafree(lva, len);
418 return (0);
419 }
420
421 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
422 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
423 VM_PROT_READ);
424 pmap_update(pmap_kernel());
425
426 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
427
428 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
429 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
430
431 uio->uio_resid -= space;
432 /* uio_offset not updated, not set/used for write(2) */
433 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
434 uio->uio_iov->iov_len -= space;
435 if (uio->uio_iov->iov_len == 0) {
436 uio->uio_iov++;
437 uio->uio_iovcnt--;
438 }
439
440 return (space);
441 }
442
443 /*
444 * Socket operation routines.
445 * These routines are called by the routines in
446 * sys_socket.c or from a system process, and
447 * implement the semantics of socket operations by
448 * switching out to the protocol specific routines.
449 */
450 /*ARGSUSED*/
451 int
452 socreate(int dom, struct socket **aso, int type, int proto, struct proc *p)
453 {
454 const struct protosw *prp;
455 struct socket *so;
456 int error, s;
457
458 if (proto)
459 prp = pffindproto(dom, proto, type);
460 else
461 prp = pffindtype(dom, type);
462 if (prp == 0 || prp->pr_usrreq == 0)
463 return (EPROTONOSUPPORT);
464 if (prp->pr_type != type)
465 return (EPROTOTYPE);
466 s = splsoftnet();
467 so = pool_get(&socket_pool, PR_WAITOK);
468 memset((caddr_t)so, 0, sizeof(*so));
469 TAILQ_INIT(&so->so_q0);
470 TAILQ_INIT(&so->so_q);
471 so->so_type = type;
472 so->so_proto = prp;
473 so->so_send = sosend;
474 so->so_receive = soreceive;
475 #ifdef MBUFTRACE
476 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
477 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
478 so->so_mowner = &prp->pr_domain->dom_mowner;
479 #endif
480 if (p != 0)
481 so->so_uidinfo = uid_find(p->p_ucred->cr_uid);
482 else
483 so->so_uidinfo = uid_find(0);
484 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
485 (struct mbuf *)(long)proto, (struct mbuf *)0, p);
486 if (error) {
487 so->so_state |= SS_NOFDREF;
488 sofree(so);
489 splx(s);
490 return (error);
491 }
492 splx(s);
493 *aso = so;
494 return (0);
495 }
496
497 int
498 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
499 {
500 int s, error;
501
502 s = splsoftnet();
503 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
504 nam, (struct mbuf *)0, p);
505 splx(s);
506 return (error);
507 }
508
509 int
510 solisten(struct socket *so, int backlog)
511 {
512 int s, error;
513
514 s = splsoftnet();
515 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
516 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
517 if (error) {
518 splx(s);
519 return (error);
520 }
521 if (TAILQ_EMPTY(&so->so_q))
522 so->so_options |= SO_ACCEPTCONN;
523 if (backlog < 0)
524 backlog = 0;
525 so->so_qlimit = min(backlog, somaxconn);
526 splx(s);
527 return (0);
528 }
529
530 void
531 sofree(struct socket *so)
532 {
533
534 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
535 return;
536 if (so->so_head) {
537 /*
538 * We must not decommission a socket that's on the accept(2)
539 * queue. If we do, then accept(2) may hang after select(2)
540 * indicated that the listening socket was ready.
541 */
542 if (!soqremque(so, 0))
543 return;
544 }
545 if (so->so_rcv.sb_hiwat)
546 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
547 RLIM_INFINITY);
548 if (so->so_snd.sb_hiwat)
549 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
550 RLIM_INFINITY);
551 sbrelease(&so->so_snd, so);
552 sorflush(so);
553 pool_put(&socket_pool, so);
554 }
555
556 /*
557 * Close a socket on last file table reference removal.
558 * Initiate disconnect if connected.
559 * Free socket when disconnect complete.
560 */
561 int
562 soclose(struct socket *so)
563 {
564 struct socket *so2;
565 int s, error;
566
567 error = 0;
568 s = splsoftnet(); /* conservative */
569 if (so->so_options & SO_ACCEPTCONN) {
570 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
571 (void) soqremque(so2, 0);
572 (void) soabort(so2);
573 }
574 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
575 (void) soqremque(so2, 1);
576 (void) soabort(so2);
577 }
578 }
579 if (so->so_pcb == 0)
580 goto discard;
581 if (so->so_state & SS_ISCONNECTED) {
582 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
583 error = sodisconnect(so);
584 if (error)
585 goto drop;
586 }
587 if (so->so_options & SO_LINGER) {
588 if ((so->so_state & SS_ISDISCONNECTING) &&
589 (so->so_state & SS_NBIO))
590 goto drop;
591 while (so->so_state & SS_ISCONNECTED) {
592 error = tsleep((caddr_t)&so->so_timeo,
593 PSOCK | PCATCH, netcls,
594 so->so_linger * hz);
595 if (error)
596 break;
597 }
598 }
599 }
600 drop:
601 if (so->so_pcb) {
602 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
603 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
604 (struct proc *)0);
605 if (error == 0)
606 error = error2;
607 }
608 discard:
609 if (so->so_state & SS_NOFDREF)
610 panic("soclose: NOFDREF");
611 so->so_state |= SS_NOFDREF;
612 sofree(so);
613 splx(s);
614 return (error);
615 }
616
617 /*
618 * Must be called at splsoftnet...
619 */
620 int
621 soabort(struct socket *so)
622 {
623
624 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
625 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
626 }
627
628 int
629 soaccept(struct socket *so, struct mbuf *nam)
630 {
631 int s, error;
632
633 error = 0;
634 s = splsoftnet();
635 if ((so->so_state & SS_NOFDREF) == 0)
636 panic("soaccept: !NOFDREF");
637 so->so_state &= ~SS_NOFDREF;
638 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
639 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
640 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
641 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
642 else
643 error = ECONNABORTED;
644
645 splx(s);
646 return (error);
647 }
648
649 int
650 soconnect(struct socket *so, struct mbuf *nam, struct proc *p)
651 {
652 int s, error;
653
654 if (so->so_options & SO_ACCEPTCONN)
655 return (EOPNOTSUPP);
656 s = splsoftnet();
657 /*
658 * If protocol is connection-based, can only connect once.
659 * Otherwise, if connected, try to disconnect first.
660 * This allows user to disconnect by connecting to, e.g.,
661 * a null address.
662 */
663 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
664 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
665 (error = sodisconnect(so))))
666 error = EISCONN;
667 else
668 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
669 (struct mbuf *)0, nam, (struct mbuf *)0, p);
670 splx(s);
671 return (error);
672 }
673
674 int
675 soconnect2(struct socket *so1, struct socket *so2)
676 {
677 int s, error;
678
679 s = splsoftnet();
680 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
681 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
682 (struct proc *)0);
683 splx(s);
684 return (error);
685 }
686
687 int
688 sodisconnect(struct socket *so)
689 {
690 int s, error;
691
692 s = splsoftnet();
693 if ((so->so_state & SS_ISCONNECTED) == 0) {
694 error = ENOTCONN;
695 goto bad;
696 }
697 if (so->so_state & SS_ISDISCONNECTING) {
698 error = EALREADY;
699 goto bad;
700 }
701 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
702 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
703 (struct proc *)0);
704 bad:
705 splx(s);
706 sodopendfree(so);
707 return (error);
708 }
709
710 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
711 /*
712 * Send on a socket.
713 * If send must go all at once and message is larger than
714 * send buffering, then hard error.
715 * Lock against other senders.
716 * If must go all at once and not enough room now, then
717 * inform user that this would block and do nothing.
718 * Otherwise, if nonblocking, send as much as possible.
719 * The data to be sent is described by "uio" if nonzero,
720 * otherwise by the mbuf chain "top" (which must be null
721 * if uio is not). Data provided in mbuf chain must be small
722 * enough to send all at once.
723 *
724 * Returns nonzero on error, timeout or signal; callers
725 * must check for short counts if EINTR/ERESTART are returned.
726 * Data and control buffers are freed on return.
727 */
728 int
729 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
730 struct mbuf *control, int flags, struct proc *p)
731 {
732 struct mbuf **mp, *m;
733 long space, len, resid, clen, mlen;
734 int error, s, dontroute, atomic;
735
736 sodopendfree(so);
737
738 clen = 0;
739 atomic = sosendallatonce(so) || top;
740 if (uio)
741 resid = uio->uio_resid;
742 else
743 resid = top->m_pkthdr.len;
744 /*
745 * In theory resid should be unsigned.
746 * However, space must be signed, as it might be less than 0
747 * if we over-committed, and we must use a signed comparison
748 * of space and resid. On the other hand, a negative resid
749 * causes us to loop sending 0-length segments to the protocol.
750 */
751 if (resid < 0) {
752 error = EINVAL;
753 goto out;
754 }
755 dontroute =
756 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
757 (so->so_proto->pr_flags & PR_ATOMIC);
758 if (p)
759 p->p_stats->p_ru.ru_msgsnd++;
760 if (control)
761 clen = control->m_len;
762 #define snderr(errno) { error = errno; splx(s); goto release; }
763
764 restart:
765 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
766 goto out;
767 do {
768 s = splsoftnet();
769 if (so->so_state & SS_CANTSENDMORE)
770 snderr(EPIPE);
771 if (so->so_error) {
772 error = so->so_error;
773 so->so_error = 0;
774 splx(s);
775 goto release;
776 }
777 if ((so->so_state & SS_ISCONNECTED) == 0) {
778 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
779 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
780 !(resid == 0 && clen != 0))
781 snderr(ENOTCONN);
782 } else if (addr == 0)
783 snderr(EDESTADDRREQ);
784 }
785 space = sbspace(&so->so_snd);
786 if (flags & MSG_OOB)
787 space += 1024;
788 if ((atomic && resid > so->so_snd.sb_hiwat) ||
789 clen > so->so_snd.sb_hiwat)
790 snderr(EMSGSIZE);
791 if (space < resid + clen &&
792 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
793 if (so->so_state & SS_NBIO)
794 snderr(EWOULDBLOCK);
795 sbunlock(&so->so_snd);
796 error = sbwait(&so->so_snd);
797 splx(s);
798 if (error)
799 goto out;
800 goto restart;
801 }
802 splx(s);
803 mp = ⊤
804 space -= clen;
805 do {
806 if (uio == NULL) {
807 /*
808 * Data is prepackaged in "top".
809 */
810 resid = 0;
811 if (flags & MSG_EOR)
812 top->m_flags |= M_EOR;
813 } else do {
814 if (top == 0) {
815 m = m_gethdr(M_WAIT, MT_DATA);
816 mlen = MHLEN;
817 m->m_pkthdr.len = 0;
818 m->m_pkthdr.rcvif = (struct ifnet *)0;
819 } else {
820 m = m_get(M_WAIT, MT_DATA);
821 mlen = MLEN;
822 }
823 MCLAIM(m, so->so_snd.sb_mowner);
824 if (use_sosend_loan &&
825 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
826 space >= SOCK_LOAN_THRESH &&
827 (len = sosend_loan(so, uio, m,
828 space)) != 0) {
829 SOSEND_COUNTER_INCR(&sosend_loan_big);
830 space -= len;
831 goto have_data;
832 }
833 if (resid >= MINCLSIZE && space >= MCLBYTES) {
834 SOSEND_COUNTER_INCR(&sosend_copy_big);
835 m_clget(m, M_WAIT);
836 if ((m->m_flags & M_EXT) == 0)
837 goto nopages;
838 mlen = MCLBYTES;
839 if (atomic && top == 0) {
840 len = lmin(MCLBYTES - max_hdr,
841 resid);
842 m->m_data += max_hdr;
843 } else
844 len = lmin(MCLBYTES, resid);
845 space -= len;
846 } else {
847 nopages:
848 SOSEND_COUNTER_INCR(&sosend_copy_small);
849 len = lmin(lmin(mlen, resid), space);
850 space -= len;
851 /*
852 * For datagram protocols, leave room
853 * for protocol headers in first mbuf.
854 */
855 if (atomic && top == 0 && len < mlen)
856 MH_ALIGN(m, len);
857 }
858 error = uiomove(mtod(m, caddr_t), (int)len,
859 uio);
860 have_data:
861 resid = uio->uio_resid;
862 m->m_len = len;
863 *mp = m;
864 top->m_pkthdr.len += len;
865 if (error)
866 goto release;
867 mp = &m->m_next;
868 if (resid <= 0) {
869 if (flags & MSG_EOR)
870 top->m_flags |= M_EOR;
871 break;
872 }
873 } while (space > 0 && atomic);
874
875 s = splsoftnet();
876
877 if (so->so_state & SS_CANTSENDMORE)
878 snderr(EPIPE);
879
880 if (dontroute)
881 so->so_options |= SO_DONTROUTE;
882 if (resid > 0)
883 so->so_state |= SS_MORETOCOME;
884 error = (*so->so_proto->pr_usrreq)(so,
885 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
886 top, addr, control, p);
887 if (dontroute)
888 so->so_options &= ~SO_DONTROUTE;
889 if (resid > 0)
890 so->so_state &= ~SS_MORETOCOME;
891 splx(s);
892
893 clen = 0;
894 control = 0;
895 top = 0;
896 mp = ⊤
897 if (error)
898 goto release;
899 } while (resid && space > 0);
900 } while (resid);
901
902 release:
903 sbunlock(&so->so_snd);
904 out:
905 if (top)
906 m_freem(top);
907 if (control)
908 m_freem(control);
909 return (error);
910 }
911
912 /*
913 * Implement receive operations on a socket.
914 * We depend on the way that records are added to the sockbuf
915 * by sbappend*. In particular, each record (mbufs linked through m_next)
916 * must begin with an address if the protocol so specifies,
917 * followed by an optional mbuf or mbufs containing ancillary data,
918 * and then zero or more mbufs of data.
919 * In order to avoid blocking network interrupts for the entire time here,
920 * we splx() while doing the actual copy to user space.
921 * Although the sockbuf is locked, new data may still be appended,
922 * and thus we must maintain consistency of the sockbuf during that time.
923 *
924 * The caller may receive the data as a single mbuf chain by supplying
925 * an mbuf **mp0 for use in returning the chain. The uio is then used
926 * only for the count in uio_resid.
927 */
928 int
929 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
930 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
931 {
932 struct proc * p;
933 struct mbuf *m, **mp;
934 int flags, len, error, s, offset, moff, type, orig_resid;
935 const struct protosw *pr;
936 struct mbuf *nextrecord;
937 int mbuf_removed = 0;
938
939 pr = so->so_proto;
940 mp = mp0;
941 type = 0;
942 orig_resid = uio->uio_resid;
943 p = uio->uio_procp;
944
945 if (paddr)
946 *paddr = 0;
947 if (controlp)
948 *controlp = 0;
949 if (flagsp)
950 flags = *flagsp &~ MSG_EOR;
951 else
952 flags = 0;
953
954 if ((flags & MSG_DONTWAIT) == 0)
955 sodopendfree(so);
956
957 if (flags & MSG_OOB) {
958 m = m_get(M_WAIT, MT_DATA);
959 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
960 (struct mbuf *)(long)(flags & MSG_PEEK),
961 (struct mbuf *)0, p);
962 if (error)
963 goto bad;
964 do {
965 error = uiomove(mtod(m, caddr_t),
966 (int) min(uio->uio_resid, m->m_len), uio);
967 m = m_free(m);
968 } while (uio->uio_resid && error == 0 && m);
969 bad:
970 if (m)
971 m_freem(m);
972 return (error);
973 }
974 if (mp)
975 *mp = (struct mbuf *)0;
976 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
977 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
978 (struct mbuf *)0, (struct mbuf *)0, p);
979
980 restart:
981 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
982 return (error);
983 s = splsoftnet();
984
985 m = so->so_rcv.sb_mb;
986 /*
987 * If we have less data than requested, block awaiting more
988 * (subject to any timeout) if:
989 * 1. the current count is less than the low water mark,
990 * 2. MSG_WAITALL is set, and it is possible to do the entire
991 * receive operation at once if we block (resid <= hiwat), or
992 * 3. MSG_DONTWAIT is not set.
993 * If MSG_WAITALL is set but resid is larger than the receive buffer,
994 * we have to do the receive in sections, and thus risk returning
995 * a short count if a timeout or signal occurs after we start.
996 */
997 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
998 so->so_rcv.sb_cc < uio->uio_resid) &&
999 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1000 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1001 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1002 #ifdef DIAGNOSTIC
1003 if (m == 0 && so->so_rcv.sb_cc)
1004 panic("receive 1");
1005 #endif
1006 if (so->so_error) {
1007 if (m)
1008 goto dontblock;
1009 error = so->so_error;
1010 if ((flags & MSG_PEEK) == 0)
1011 so->so_error = 0;
1012 goto release;
1013 }
1014 if (so->so_state & SS_CANTRCVMORE) {
1015 if (m)
1016 goto dontblock;
1017 else
1018 goto release;
1019 }
1020 for (; m; m = m->m_next)
1021 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1022 m = so->so_rcv.sb_mb;
1023 goto dontblock;
1024 }
1025 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1026 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1027 error = ENOTCONN;
1028 goto release;
1029 }
1030 if (uio->uio_resid == 0)
1031 goto release;
1032 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1033 error = EWOULDBLOCK;
1034 goto release;
1035 }
1036 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1037 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1038 sbunlock(&so->so_rcv);
1039 error = sbwait(&so->so_rcv);
1040 splx(s);
1041 if (error)
1042 return (error);
1043 goto restart;
1044 }
1045 dontblock:
1046 /*
1047 * On entry here, m points to the first record of the socket buffer.
1048 * While we process the initial mbufs containing address and control
1049 * info, we save a copy of m->m_nextpkt into nextrecord.
1050 */
1051 if (p)
1052 p->p_stats->p_ru.ru_msgrcv++;
1053 KASSERT(m == so->so_rcv.sb_mb);
1054 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1055 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1056 nextrecord = m->m_nextpkt;
1057 if (pr->pr_flags & PR_ADDR) {
1058 #ifdef DIAGNOSTIC
1059 if (m->m_type != MT_SONAME)
1060 panic("receive 1a");
1061 #endif
1062 orig_resid = 0;
1063 if (flags & MSG_PEEK) {
1064 if (paddr)
1065 *paddr = m_copy(m, 0, m->m_len);
1066 m = m->m_next;
1067 } else {
1068 sbfree(&so->so_rcv, m);
1069 mbuf_removed = 1;
1070 if (paddr) {
1071 *paddr = m;
1072 so->so_rcv.sb_mb = m->m_next;
1073 m->m_next = 0;
1074 m = so->so_rcv.sb_mb;
1075 } else {
1076 MFREE(m, so->so_rcv.sb_mb);
1077 m = so->so_rcv.sb_mb;
1078 }
1079 }
1080 }
1081 while (m && m->m_type == MT_CONTROL && error == 0) {
1082 if (flags & MSG_PEEK) {
1083 if (controlp)
1084 *controlp = m_copy(m, 0, m->m_len);
1085 m = m->m_next;
1086 } else {
1087 sbfree(&so->so_rcv, m);
1088 mbuf_removed = 1;
1089 if (controlp) {
1090 struct domain *dom = pr->pr_domain;
1091 if (dom->dom_externalize && p &&
1092 mtod(m, struct cmsghdr *)->cmsg_type ==
1093 SCM_RIGHTS)
1094 error = (*dom->dom_externalize)(m, p);
1095 *controlp = m;
1096 so->so_rcv.sb_mb = m->m_next;
1097 m->m_next = 0;
1098 m = so->so_rcv.sb_mb;
1099 } else {
1100 /*
1101 * Dispose of any SCM_RIGHTS message that went
1102 * through the read path rather than recv.
1103 */
1104 if (pr->pr_domain->dom_dispose &&
1105 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1106 (*pr->pr_domain->dom_dispose)(m);
1107 MFREE(m, so->so_rcv.sb_mb);
1108 m = so->so_rcv.sb_mb;
1109 }
1110 }
1111 if (controlp) {
1112 orig_resid = 0;
1113 controlp = &(*controlp)->m_next;
1114 }
1115 }
1116
1117 /*
1118 * If m is non-NULL, we have some data to read. From now on,
1119 * make sure to keep sb_lastrecord consistent when working on
1120 * the last packet on the chain (nextrecord == NULL) and we
1121 * change m->m_nextpkt.
1122 */
1123 if (m) {
1124 if ((flags & MSG_PEEK) == 0) {
1125 m->m_nextpkt = nextrecord;
1126 /*
1127 * If nextrecord == NULL (this is a single chain),
1128 * then sb_lastrecord may not be valid here if m
1129 * was changed earlier.
1130 */
1131 if (nextrecord == NULL) {
1132 KASSERT(so->so_rcv.sb_mb == m);
1133 so->so_rcv.sb_lastrecord = m;
1134 }
1135 }
1136 type = m->m_type;
1137 if (type == MT_OOBDATA)
1138 flags |= MSG_OOB;
1139 } else {
1140 if ((flags & MSG_PEEK) == 0) {
1141 KASSERT(so->so_rcv.sb_mb == m);
1142 so->so_rcv.sb_mb = nextrecord;
1143 SB_EMPTY_FIXUP(&so->so_rcv);
1144 }
1145 }
1146 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1147 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1148
1149 moff = 0;
1150 offset = 0;
1151 while (m && uio->uio_resid > 0 && error == 0) {
1152 if (m->m_type == MT_OOBDATA) {
1153 if (type != MT_OOBDATA)
1154 break;
1155 } else if (type == MT_OOBDATA)
1156 break;
1157 #ifdef DIAGNOSTIC
1158 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1159 panic("receive 3");
1160 #endif
1161 so->so_state &= ~SS_RCVATMARK;
1162 len = uio->uio_resid;
1163 if (so->so_oobmark && len > so->so_oobmark - offset)
1164 len = so->so_oobmark - offset;
1165 if (len > m->m_len - moff)
1166 len = m->m_len - moff;
1167 /*
1168 * If mp is set, just pass back the mbufs.
1169 * Otherwise copy them out via the uio, then free.
1170 * Sockbuf must be consistent here (points to current mbuf,
1171 * it points to next record) when we drop priority;
1172 * we must note any additions to the sockbuf when we
1173 * block interrupts again.
1174 */
1175 if (mp == 0) {
1176 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1177 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1178 splx(s);
1179 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1180 s = splsoftnet();
1181 if (error) {
1182 /*
1183 * If any part of the record has been removed
1184 * (such as the MT_SONAME mbuf, which will
1185 * happen when PR_ADDR, and thus also
1186 * PR_ATOMIC, is set), then drop the entire
1187 * record to maintain the atomicity of the
1188 * receive operation.
1189 *
1190 * This avoids a later panic("receive 1a")
1191 * when compiled with DIAGNOSTIC.
1192 */
1193 if (m && mbuf_removed
1194 && (pr->pr_flags & PR_ATOMIC))
1195 (void) sbdroprecord(&so->so_rcv);
1196
1197 goto release;
1198 }
1199 } else
1200 uio->uio_resid -= len;
1201 if (len == m->m_len - moff) {
1202 if (m->m_flags & M_EOR)
1203 flags |= MSG_EOR;
1204 if (flags & MSG_PEEK) {
1205 m = m->m_next;
1206 moff = 0;
1207 } else {
1208 nextrecord = m->m_nextpkt;
1209 sbfree(&so->so_rcv, m);
1210 if (mp) {
1211 *mp = m;
1212 mp = &m->m_next;
1213 so->so_rcv.sb_mb = m = m->m_next;
1214 *mp = (struct mbuf *)0;
1215 } else {
1216 MFREE(m, so->so_rcv.sb_mb);
1217 m = so->so_rcv.sb_mb;
1218 }
1219 /*
1220 * If m != NULL, we also know that
1221 * so->so_rcv.sb_mb != NULL.
1222 */
1223 KASSERT(so->so_rcv.sb_mb == m);
1224 if (m) {
1225 m->m_nextpkt = nextrecord;
1226 if (nextrecord == NULL)
1227 so->so_rcv.sb_lastrecord = m;
1228 } else {
1229 so->so_rcv.sb_mb = nextrecord;
1230 SB_EMPTY_FIXUP(&so->so_rcv);
1231 }
1232 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1233 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1234 }
1235 } else {
1236 if (flags & MSG_PEEK)
1237 moff += len;
1238 else {
1239 if (mp)
1240 *mp = m_copym(m, 0, len, M_WAIT);
1241 m->m_data += len;
1242 m->m_len -= len;
1243 so->so_rcv.sb_cc -= len;
1244 }
1245 }
1246 if (so->so_oobmark) {
1247 if ((flags & MSG_PEEK) == 0) {
1248 so->so_oobmark -= len;
1249 if (so->so_oobmark == 0) {
1250 so->so_state |= SS_RCVATMARK;
1251 break;
1252 }
1253 } else {
1254 offset += len;
1255 if (offset == so->so_oobmark)
1256 break;
1257 }
1258 }
1259 if (flags & MSG_EOR)
1260 break;
1261 /*
1262 * If the MSG_WAITALL flag is set (for non-atomic socket),
1263 * we must not quit until "uio->uio_resid == 0" or an error
1264 * termination. If a signal/timeout occurs, return
1265 * with a short count but without error.
1266 * Keep sockbuf locked against other readers.
1267 */
1268 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1269 !sosendallatonce(so) && !nextrecord) {
1270 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1271 break;
1272 /*
1273 * If we are peeking and the socket receive buffer is
1274 * full, stop since we can't get more data to peek at.
1275 */
1276 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1277 break;
1278 /*
1279 * If we've drained the socket buffer, tell the
1280 * protocol in case it needs to do something to
1281 * get it filled again.
1282 */
1283 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1284 (*pr->pr_usrreq)(so, PRU_RCVD,
1285 (struct mbuf *)0,
1286 (struct mbuf *)(long)flags,
1287 (struct mbuf *)0, p);
1288 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1289 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1290 error = sbwait(&so->so_rcv);
1291 if (error) {
1292 sbunlock(&so->so_rcv);
1293 splx(s);
1294 return (0);
1295 }
1296 if ((m = so->so_rcv.sb_mb) != NULL)
1297 nextrecord = m->m_nextpkt;
1298 }
1299 }
1300
1301 if (m && pr->pr_flags & PR_ATOMIC) {
1302 flags |= MSG_TRUNC;
1303 if ((flags & MSG_PEEK) == 0)
1304 (void) sbdroprecord(&so->so_rcv);
1305 }
1306 if ((flags & MSG_PEEK) == 0) {
1307 if (m == 0) {
1308 /*
1309 * First part is an inline SB_EMPTY_FIXUP(). Second
1310 * part makes sure sb_lastrecord is up-to-date if
1311 * there is still data in the socket buffer.
1312 */
1313 so->so_rcv.sb_mb = nextrecord;
1314 if (so->so_rcv.sb_mb == NULL) {
1315 so->so_rcv.sb_mbtail = NULL;
1316 so->so_rcv.sb_lastrecord = NULL;
1317 } else if (nextrecord->m_nextpkt == NULL)
1318 so->so_rcv.sb_lastrecord = nextrecord;
1319 }
1320 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1321 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1322 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1323 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1324 (struct mbuf *)(long)flags, (struct mbuf *)0, p);
1325 }
1326 if (orig_resid == uio->uio_resid && orig_resid &&
1327 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1328 sbunlock(&so->so_rcv);
1329 splx(s);
1330 goto restart;
1331 }
1332
1333 if (flagsp)
1334 *flagsp |= flags;
1335 release:
1336 sbunlock(&so->so_rcv);
1337 splx(s);
1338 return (error);
1339 }
1340
1341 int
1342 soshutdown(struct socket *so, int how)
1343 {
1344 const struct protosw *pr;
1345
1346 pr = so->so_proto;
1347 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1348 return (EINVAL);
1349
1350 if (how == SHUT_RD || how == SHUT_RDWR)
1351 sorflush(so);
1352 if (how == SHUT_WR || how == SHUT_RDWR)
1353 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1354 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1355 return (0);
1356 }
1357
1358 void
1359 sorflush(struct socket *so)
1360 {
1361 struct sockbuf *sb, asb;
1362 const struct protosw *pr;
1363 int s;
1364
1365 sb = &so->so_rcv;
1366 pr = so->so_proto;
1367 sb->sb_flags |= SB_NOINTR;
1368 (void) sblock(sb, M_WAITOK);
1369 s = splnet();
1370 socantrcvmore(so);
1371 sbunlock(sb);
1372 asb = *sb;
1373 /*
1374 * Clear most of the sockbuf structure, but leave some of the
1375 * fields valid.
1376 */
1377 memset(&sb->sb_startzero, 0,
1378 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1379 splx(s);
1380 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1381 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1382 sbrelease(&asb, so);
1383 }
1384
1385 int
1386 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1387 {
1388 int error;
1389 struct mbuf *m;
1390
1391 error = 0;
1392 m = m0;
1393 if (level != SOL_SOCKET) {
1394 if (so->so_proto && so->so_proto->pr_ctloutput)
1395 return ((*so->so_proto->pr_ctloutput)
1396 (PRCO_SETOPT, so, level, optname, &m0));
1397 error = ENOPROTOOPT;
1398 } else {
1399 switch (optname) {
1400
1401 case SO_LINGER:
1402 if (m == NULL || m->m_len != sizeof(struct linger)) {
1403 error = EINVAL;
1404 goto bad;
1405 }
1406 if (mtod(m, struct linger *)->l_linger < 0 ||
1407 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1408 error = EDOM;
1409 goto bad;
1410 }
1411 so->so_linger = mtod(m, struct linger *)->l_linger;
1412 /* fall thru... */
1413
1414 case SO_DEBUG:
1415 case SO_KEEPALIVE:
1416 case SO_DONTROUTE:
1417 case SO_USELOOPBACK:
1418 case SO_BROADCAST:
1419 case SO_REUSEADDR:
1420 case SO_REUSEPORT:
1421 case SO_OOBINLINE:
1422 case SO_TIMESTAMP:
1423 if (m == NULL || m->m_len < sizeof(int)) {
1424 error = EINVAL;
1425 goto bad;
1426 }
1427 if (*mtod(m, int *))
1428 so->so_options |= optname;
1429 else
1430 so->so_options &= ~optname;
1431 break;
1432
1433 case SO_SNDBUF:
1434 case SO_RCVBUF:
1435 case SO_SNDLOWAT:
1436 case SO_RCVLOWAT:
1437 {
1438 int optval;
1439
1440 if (m == NULL || m->m_len < sizeof(int)) {
1441 error = EINVAL;
1442 goto bad;
1443 }
1444
1445 /*
1446 * Values < 1 make no sense for any of these
1447 * options, so disallow them.
1448 */
1449 optval = *mtod(m, int *);
1450 if (optval < 1) {
1451 error = EINVAL;
1452 goto bad;
1453 }
1454
1455 switch (optname) {
1456
1457 case SO_SNDBUF:
1458 case SO_RCVBUF:
1459 if (sbreserve(optname == SO_SNDBUF ?
1460 &so->so_snd : &so->so_rcv,
1461 (u_long) optval, so) == 0) {
1462 error = ENOBUFS;
1463 goto bad;
1464 }
1465 break;
1466
1467 /*
1468 * Make sure the low-water is never greater than
1469 * the high-water.
1470 */
1471 case SO_SNDLOWAT:
1472 so->so_snd.sb_lowat =
1473 (optval > so->so_snd.sb_hiwat) ?
1474 so->so_snd.sb_hiwat : optval;
1475 break;
1476 case SO_RCVLOWAT:
1477 so->so_rcv.sb_lowat =
1478 (optval > so->so_rcv.sb_hiwat) ?
1479 so->so_rcv.sb_hiwat : optval;
1480 break;
1481 }
1482 break;
1483 }
1484
1485 case SO_SNDTIMEO:
1486 case SO_RCVTIMEO:
1487 {
1488 struct timeval *tv;
1489 int val;
1490
1491 if (m == NULL || m->m_len < sizeof(*tv)) {
1492 error = EINVAL;
1493 goto bad;
1494 }
1495 tv = mtod(m, struct timeval *);
1496 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1497 error = EDOM;
1498 goto bad;
1499 }
1500 val = tv->tv_sec * hz + tv->tv_usec / tick;
1501 if (val == 0 && tv->tv_usec != 0)
1502 val = 1;
1503
1504 switch (optname) {
1505
1506 case SO_SNDTIMEO:
1507 so->so_snd.sb_timeo = val;
1508 break;
1509 case SO_RCVTIMEO:
1510 so->so_rcv.sb_timeo = val;
1511 break;
1512 }
1513 break;
1514 }
1515
1516 default:
1517 error = ENOPROTOOPT;
1518 break;
1519 }
1520 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1521 (void) ((*so->so_proto->pr_ctloutput)
1522 (PRCO_SETOPT, so, level, optname, &m0));
1523 m = NULL; /* freed by protocol */
1524 }
1525 }
1526 bad:
1527 if (m)
1528 (void) m_free(m);
1529 return (error);
1530 }
1531
1532 int
1533 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1534 {
1535 struct mbuf *m;
1536
1537 if (level != SOL_SOCKET) {
1538 if (so->so_proto && so->so_proto->pr_ctloutput) {
1539 return ((*so->so_proto->pr_ctloutput)
1540 (PRCO_GETOPT, so, level, optname, mp));
1541 } else
1542 return (ENOPROTOOPT);
1543 } else {
1544 m = m_get(M_WAIT, MT_SOOPTS);
1545 m->m_len = sizeof(int);
1546
1547 switch (optname) {
1548
1549 case SO_LINGER:
1550 m->m_len = sizeof(struct linger);
1551 mtod(m, struct linger *)->l_onoff =
1552 so->so_options & SO_LINGER;
1553 mtod(m, struct linger *)->l_linger = so->so_linger;
1554 break;
1555
1556 case SO_USELOOPBACK:
1557 case SO_DONTROUTE:
1558 case SO_DEBUG:
1559 case SO_KEEPALIVE:
1560 case SO_REUSEADDR:
1561 case SO_REUSEPORT:
1562 case SO_BROADCAST:
1563 case SO_OOBINLINE:
1564 case SO_TIMESTAMP:
1565 *mtod(m, int *) = so->so_options & optname;
1566 break;
1567
1568 case SO_TYPE:
1569 *mtod(m, int *) = so->so_type;
1570 break;
1571
1572 case SO_ERROR:
1573 *mtod(m, int *) = so->so_error;
1574 so->so_error = 0;
1575 break;
1576
1577 case SO_SNDBUF:
1578 *mtod(m, int *) = so->so_snd.sb_hiwat;
1579 break;
1580
1581 case SO_RCVBUF:
1582 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1583 break;
1584
1585 case SO_SNDLOWAT:
1586 *mtod(m, int *) = so->so_snd.sb_lowat;
1587 break;
1588
1589 case SO_RCVLOWAT:
1590 *mtod(m, int *) = so->so_rcv.sb_lowat;
1591 break;
1592
1593 case SO_SNDTIMEO:
1594 case SO_RCVTIMEO:
1595 {
1596 int val = (optname == SO_SNDTIMEO ?
1597 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1598
1599 m->m_len = sizeof(struct timeval);
1600 mtod(m, struct timeval *)->tv_sec = val / hz;
1601 mtod(m, struct timeval *)->tv_usec =
1602 (val % hz) * tick;
1603 break;
1604 }
1605
1606 case SO_OVERFLOWED:
1607 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1608 break;
1609
1610 default:
1611 (void)m_free(m);
1612 return (ENOPROTOOPT);
1613 }
1614 *mp = m;
1615 return (0);
1616 }
1617 }
1618
1619 void
1620 sohasoutofband(struct socket *so)
1621 {
1622 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1623 selwakeup(&so->so_rcv.sb_sel);
1624 }
1625
1626 static void
1627 filt_sordetach(struct knote *kn)
1628 {
1629 struct socket *so;
1630
1631 so = (struct socket *)kn->kn_fp->f_data;
1632 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1633 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1634 so->so_rcv.sb_flags &= ~SB_KNOTE;
1635 }
1636
1637 /*ARGSUSED*/
1638 static int
1639 filt_soread(struct knote *kn, long hint)
1640 {
1641 struct socket *so;
1642
1643 so = (struct socket *)kn->kn_fp->f_data;
1644 kn->kn_data = so->so_rcv.sb_cc;
1645 if (so->so_state & SS_CANTRCVMORE) {
1646 kn->kn_flags |= EV_EOF;
1647 kn->kn_fflags = so->so_error;
1648 return (1);
1649 }
1650 if (so->so_error) /* temporary udp error */
1651 return (1);
1652 if (kn->kn_sfflags & NOTE_LOWAT)
1653 return (kn->kn_data >= kn->kn_sdata);
1654 return (kn->kn_data >= so->so_rcv.sb_lowat);
1655 }
1656
1657 static void
1658 filt_sowdetach(struct knote *kn)
1659 {
1660 struct socket *so;
1661
1662 so = (struct socket *)kn->kn_fp->f_data;
1663 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1664 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1665 so->so_snd.sb_flags &= ~SB_KNOTE;
1666 }
1667
1668 /*ARGSUSED*/
1669 static int
1670 filt_sowrite(struct knote *kn, long hint)
1671 {
1672 struct socket *so;
1673
1674 so = (struct socket *)kn->kn_fp->f_data;
1675 kn->kn_data = sbspace(&so->so_snd);
1676 if (so->so_state & SS_CANTSENDMORE) {
1677 kn->kn_flags |= EV_EOF;
1678 kn->kn_fflags = so->so_error;
1679 return (1);
1680 }
1681 if (so->so_error) /* temporary udp error */
1682 return (1);
1683 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1684 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1685 return (0);
1686 if (kn->kn_sfflags & NOTE_LOWAT)
1687 return (kn->kn_data >= kn->kn_sdata);
1688 return (kn->kn_data >= so->so_snd.sb_lowat);
1689 }
1690
1691 /*ARGSUSED*/
1692 static int
1693 filt_solisten(struct knote *kn, long hint)
1694 {
1695 struct socket *so;
1696
1697 so = (struct socket *)kn->kn_fp->f_data;
1698
1699 /*
1700 * Set kn_data to number of incoming connections, not
1701 * counting partial (incomplete) connections.
1702 */
1703 kn->kn_data = so->so_qlen;
1704 return (kn->kn_data > 0);
1705 }
1706
1707 static const struct filterops solisten_filtops =
1708 { 1, NULL, filt_sordetach, filt_solisten };
1709 static const struct filterops soread_filtops =
1710 { 1, NULL, filt_sordetach, filt_soread };
1711 static const struct filterops sowrite_filtops =
1712 { 1, NULL, filt_sowdetach, filt_sowrite };
1713
1714 int
1715 soo_kqfilter(struct file *fp, struct knote *kn)
1716 {
1717 struct socket *so;
1718 struct sockbuf *sb;
1719
1720 so = (struct socket *)kn->kn_fp->f_data;
1721 switch (kn->kn_filter) {
1722 case EVFILT_READ:
1723 if (so->so_options & SO_ACCEPTCONN)
1724 kn->kn_fop = &solisten_filtops;
1725 else
1726 kn->kn_fop = &soread_filtops;
1727 sb = &so->so_rcv;
1728 break;
1729 case EVFILT_WRITE:
1730 kn->kn_fop = &sowrite_filtops;
1731 sb = &so->so_snd;
1732 break;
1733 default:
1734 return (1);
1735 }
1736 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1737 sb->sb_flags |= SB_KNOTE;
1738 return (0);
1739 }
1740
1741 #include <sys/sysctl.h>
1742
1743 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1744
1745 /*
1746 * sysctl helper routine for kern.somaxkva. ensures that the given
1747 * value is not too small.
1748 * (XXX should we maybe make sure it's not too large as well?)
1749 */
1750 static int
1751 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1752 {
1753 int error, new_somaxkva;
1754 struct sysctlnode node;
1755 int s;
1756
1757 new_somaxkva = somaxkva;
1758 node = *rnode;
1759 node.sysctl_data = &new_somaxkva;
1760 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1761 if (error || newp == NULL)
1762 return (error);
1763
1764 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1765 return (EINVAL);
1766
1767 s = splvm();
1768 simple_lock(&so_pendfree_slock);
1769 somaxkva = new_somaxkva;
1770 wakeup(&socurkva);
1771 simple_unlock(&so_pendfree_slock);
1772 splx(s);
1773
1774 return (error);
1775 }
1776
1777 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1778 {
1779
1780 sysctl_createv(clog, 0, NULL, NULL,
1781 CTLFLAG_PERMANENT,
1782 CTLTYPE_NODE, "kern", NULL,
1783 NULL, 0, NULL, 0,
1784 CTL_KERN, CTL_EOL);
1785
1786 sysctl_createv(clog, 0, NULL, NULL,
1787 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1788 CTLTYPE_INT, "somaxkva",
1789 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1790 "used for socket buffers"),
1791 sysctl_kern_somaxkva, 0, NULL, 0,
1792 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1793 }
1794