uipc_socket.c revision 1.115 1 /* $NetBSD: uipc_socket.c,v 1.115 2005/12/27 00:00:29 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.115 2005/12/27 00:00:29 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 void
130 soinit(void)
131 {
132
133 /* Set the initial adjusted socket buffer size. */
134 if (sb_max_set(sb_max))
135 panic("bad initial sb_max value: %lu", sb_max);
136
137 }
138
139 #ifdef SOSEND_NO_LOAN
140 int use_sosend_loan = 0;
141 #else
142 int use_sosend_loan = 1;
143 #endif
144
145 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
146 static struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static int sokvawaiters;
154
155 #define SOCK_LOAN_THRESH 4096
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(struct socket *);
159 static size_t sodopendfreel(struct socket *);
160
161 static vsize_t
162 sokvareserve(struct socket *so, vsize_t len)
163 {
164 int s;
165 int error;
166
167 s = splvm();
168 simple_lock(&so_pendfree_slock);
169 while (socurkva + len > somaxkva) {
170 size_t freed;
171
172 /*
173 * try to do pendfree.
174 */
175
176 freed = sodopendfreel(so);
177
178 /*
179 * if some kva was freed, try again.
180 */
181
182 if (freed)
183 continue;
184
185 SOSEND_COUNTER_INCR(&sosend_kvalimit);
186 sokvawaiters++;
187 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
188 &so_pendfree_slock);
189 sokvawaiters--;
190 if (error) {
191 len = 0;
192 break;
193 }
194 }
195 socurkva += len;
196 simple_unlock(&so_pendfree_slock);
197 splx(s);
198 return len;
199 }
200
201 static void
202 sokvaunreserve(vsize_t len)
203 {
204 int s;
205
206 s = splvm();
207 simple_lock(&so_pendfree_slock);
208 socurkva -= len;
209 if (sokvawaiters)
210 wakeup(&socurkva);
211 simple_unlock(&so_pendfree_slock);
212 splx(s);
213 }
214
215 /*
216 * sokvaalloc: allocate kva for loan.
217 */
218
219 vaddr_t
220 sokvaalloc(vsize_t len, struct socket *so)
221 {
222 vaddr_t lva;
223
224 /*
225 * reserve kva.
226 */
227
228 if (sokvareserve(so, len) == 0)
229 return 0;
230
231 /*
232 * allocate kva.
233 */
234
235 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
236 if (lva == 0) {
237 sokvaunreserve(len);
238 return (0);
239 }
240
241 return lva;
242 }
243
244 /*
245 * sokvafree: free kva for loan.
246 */
247
248 void
249 sokvafree(vaddr_t sva, vsize_t len)
250 {
251
252 /*
253 * free kva.
254 */
255
256 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
257
258 /*
259 * unreserve kva.
260 */
261
262 sokvaunreserve(len);
263 }
264
265 static void
266 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
267 {
268 vaddr_t va, sva, eva;
269 vsize_t len;
270 paddr_t pa;
271 int i, npgs;
272
273 eva = round_page((vaddr_t) buf + size);
274 sva = trunc_page((vaddr_t) buf);
275 len = eva - sva;
276 npgs = len >> PAGE_SHIFT;
277
278 if (__predict_false(pgs == NULL)) {
279 pgs = alloca(npgs * sizeof(*pgs));
280
281 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
282 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
283 panic("sodoloanfree: va 0x%lx not mapped", va);
284 pgs[i] = PHYS_TO_VM_PAGE(pa);
285 }
286 }
287
288 pmap_kremove(sva, len);
289 pmap_update(pmap_kernel());
290 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
291 sokvafree(sva, len);
292 }
293
294 static size_t
295 sodopendfree(struct socket *so)
296 {
297 int s;
298 size_t rv;
299
300 s = splvm();
301 simple_lock(&so_pendfree_slock);
302 rv = sodopendfreel(so);
303 simple_unlock(&so_pendfree_slock);
304 splx(s);
305
306 return rv;
307 }
308
309 /*
310 * sodopendfreel: free mbufs on "pendfree" list.
311 * unlock and relock so_pendfree_slock when freeing mbufs.
312 *
313 * => called with so_pendfree_slock held.
314 * => called at splvm.
315 */
316
317 static size_t
318 sodopendfreel(struct socket *so)
319 {
320 size_t rv = 0;
321
322 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
323
324 for (;;) {
325 struct mbuf *m;
326 struct mbuf *next;
327
328 m = so_pendfree;
329 if (m == NULL)
330 break;
331 so_pendfree = NULL;
332 simple_unlock(&so_pendfree_slock);
333 /* XXX splx */
334
335 for (; m != NULL; m = next) {
336 next = m->m_next;
337
338 rv += m->m_ext.ext_size;
339 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
340 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
341 m->m_ext.ext_size);
342 pool_cache_put(&mbpool_cache, m);
343 }
344
345 /* XXX splvm */
346 simple_lock(&so_pendfree_slock);
347 }
348
349 return (rv);
350 }
351
352 void
353 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
354 {
355 int s;
356
357 if (m == NULL) {
358
359 /*
360 * called from MEXTREMOVE.
361 */
362
363 sodoloanfree(NULL, buf, size);
364 return;
365 }
366
367 /*
368 * postpone freeing mbuf.
369 *
370 * we can't do it in interrupt context
371 * because we need to put kva back to kernel_map.
372 */
373
374 s = splvm();
375 simple_lock(&so_pendfree_slock);
376 m->m_next = so_pendfree;
377 so_pendfree = m;
378 if (sokvawaiters)
379 wakeup(&socurkva);
380 simple_unlock(&so_pendfree_slock);
381 splx(s);
382 }
383
384 static long
385 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
386 {
387 struct iovec *iov = uio->uio_iov;
388 vaddr_t sva, eva;
389 vsize_t len;
390 vaddr_t lva, va;
391 int npgs, i, error;
392
393 if (uio->uio_segflg != UIO_USERSPACE)
394 return (0);
395
396 if (iov->iov_len < (size_t) space)
397 space = iov->iov_len;
398 if (space > SOCK_LOAN_CHUNK)
399 space = SOCK_LOAN_CHUNK;
400
401 eva = round_page((vaddr_t) iov->iov_base + space);
402 sva = trunc_page((vaddr_t) iov->iov_base);
403 len = eva - sva;
404 npgs = len >> PAGE_SHIFT;
405
406 /* XXX KDASSERT */
407 KASSERT(npgs <= M_EXT_MAXPAGES);
408 KASSERT(uio->uio_lwp != NULL);
409
410 lva = sokvaalloc(len, so);
411 if (lva == 0)
412 return 0;
413
414 error = uvm_loan(&uio->uio_lwp->l_proc->p_vmspace->vm_map, sva, len,
415 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
416 if (error) {
417 sokvafree(lva, len);
418 return (0);
419 }
420
421 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
422 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
423 VM_PROT_READ);
424 pmap_update(pmap_kernel());
425
426 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
427
428 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
429 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
430
431 uio->uio_resid -= space;
432 /* uio_offset not updated, not set/used for write(2) */
433 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
434 uio->uio_iov->iov_len -= space;
435 if (uio->uio_iov->iov_len == 0) {
436 uio->uio_iov++;
437 uio->uio_iovcnt--;
438 }
439
440 return (space);
441 }
442
443 /*
444 * Socket operation routines.
445 * These routines are called by the routines in
446 * sys_socket.c or from a system process, and
447 * implement the semantics of socket operations by
448 * switching out to the protocol specific routines.
449 */
450 /*ARGSUSED*/
451 int
452 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
453 {
454 const struct protosw *prp;
455 struct socket *so;
456 uid_t uid;
457 int error, s;
458
459 if (proto)
460 prp = pffindproto(dom, proto, type);
461 else
462 prp = pffindtype(dom, type);
463 if (prp == 0 || prp->pr_usrreq == 0)
464 return (EPROTONOSUPPORT);
465 if (prp->pr_type != type)
466 return (EPROTOTYPE);
467 s = splsoftnet();
468 so = pool_get(&socket_pool, PR_WAITOK);
469 memset((caddr_t)so, 0, sizeof(*so));
470 TAILQ_INIT(&so->so_q0);
471 TAILQ_INIT(&so->so_q);
472 so->so_type = type;
473 so->so_proto = prp;
474 so->so_send = sosend;
475 so->so_receive = soreceive;
476 #ifdef MBUFTRACE
477 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
478 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
479 so->so_mowner = &prp->pr_domain->dom_mowner;
480 #endif
481 if (l != NULL) {
482 uid = l->l_proc->p_ucred->cr_uid;
483 } else {
484 uid = 0;
485 }
486 so->so_uidinfo = uid_find(uid);
487 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
488 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
489 if (error) {
490 so->so_state |= SS_NOFDREF;
491 sofree(so);
492 splx(s);
493 return (error);
494 }
495 splx(s);
496 *aso = so;
497 return (0);
498 }
499
500 int
501 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
502 {
503 int s, error;
504
505 s = splsoftnet();
506 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
507 nam, (struct mbuf *)0, l);
508 splx(s);
509 return (error);
510 }
511
512 int
513 solisten(struct socket *so, int backlog)
514 {
515 int s, error;
516
517 s = splsoftnet();
518 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
519 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
520 if (error) {
521 splx(s);
522 return (error);
523 }
524 if (TAILQ_EMPTY(&so->so_q))
525 so->so_options |= SO_ACCEPTCONN;
526 if (backlog < 0)
527 backlog = 0;
528 so->so_qlimit = min(backlog, somaxconn);
529 splx(s);
530 return (0);
531 }
532
533 void
534 sofree(struct socket *so)
535 {
536
537 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
538 return;
539 if (so->so_head) {
540 /*
541 * We must not decommission a socket that's on the accept(2)
542 * queue. If we do, then accept(2) may hang after select(2)
543 * indicated that the listening socket was ready.
544 */
545 if (!soqremque(so, 0))
546 return;
547 }
548 if (so->so_rcv.sb_hiwat)
549 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
550 RLIM_INFINITY);
551 if (so->so_snd.sb_hiwat)
552 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
553 RLIM_INFINITY);
554 sbrelease(&so->so_snd, so);
555 sorflush(so);
556 pool_put(&socket_pool, so);
557 }
558
559 /*
560 * Close a socket on last file table reference removal.
561 * Initiate disconnect if connected.
562 * Free socket when disconnect complete.
563 */
564 int
565 soclose(struct socket *so)
566 {
567 struct socket *so2;
568 int s, error;
569
570 error = 0;
571 s = splsoftnet(); /* conservative */
572 if (so->so_options & SO_ACCEPTCONN) {
573 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
574 (void) soqremque(so2, 0);
575 (void) soabort(so2);
576 }
577 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
578 (void) soqremque(so2, 1);
579 (void) soabort(so2);
580 }
581 }
582 if (so->so_pcb == 0)
583 goto discard;
584 if (so->so_state & SS_ISCONNECTED) {
585 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
586 error = sodisconnect(so);
587 if (error)
588 goto drop;
589 }
590 if (so->so_options & SO_LINGER) {
591 if ((so->so_state & SS_ISDISCONNECTING) &&
592 (so->so_state & SS_NBIO))
593 goto drop;
594 while (so->so_state & SS_ISCONNECTED) {
595 error = tsleep((caddr_t)&so->so_timeo,
596 PSOCK | PCATCH, netcls,
597 so->so_linger * hz);
598 if (error)
599 break;
600 }
601 }
602 }
603 drop:
604 if (so->so_pcb) {
605 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
606 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
607 (struct lwp *)0);
608 if (error == 0)
609 error = error2;
610 }
611 discard:
612 if (so->so_state & SS_NOFDREF)
613 panic("soclose: NOFDREF");
614 so->so_state |= SS_NOFDREF;
615 sofree(so);
616 splx(s);
617 return (error);
618 }
619
620 /*
621 * Must be called at splsoftnet...
622 */
623 int
624 soabort(struct socket *so)
625 {
626
627 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
628 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
629 }
630
631 int
632 soaccept(struct socket *so, struct mbuf *nam)
633 {
634 int s, error;
635
636 error = 0;
637 s = splsoftnet();
638 if ((so->so_state & SS_NOFDREF) == 0)
639 panic("soaccept: !NOFDREF");
640 so->so_state &= ~SS_NOFDREF;
641 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
642 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
643 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
644 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
645 else
646 error = ECONNABORTED;
647
648 splx(s);
649 return (error);
650 }
651
652 int
653 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
654 {
655 int s, error;
656
657 if (so->so_options & SO_ACCEPTCONN)
658 return (EOPNOTSUPP);
659 s = splsoftnet();
660 /*
661 * If protocol is connection-based, can only connect once.
662 * Otherwise, if connected, try to disconnect first.
663 * This allows user to disconnect by connecting to, e.g.,
664 * a null address.
665 */
666 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
667 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
668 (error = sodisconnect(so))))
669 error = EISCONN;
670 else
671 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
672 (struct mbuf *)0, nam, (struct mbuf *)0, l);
673 splx(s);
674 return (error);
675 }
676
677 int
678 soconnect2(struct socket *so1, struct socket *so2)
679 {
680 int s, error;
681
682 s = splsoftnet();
683 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
684 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
685 (struct lwp *)0);
686 splx(s);
687 return (error);
688 }
689
690 int
691 sodisconnect(struct socket *so)
692 {
693 int s, error;
694
695 s = splsoftnet();
696 if ((so->so_state & SS_ISCONNECTED) == 0) {
697 error = ENOTCONN;
698 goto bad;
699 }
700 if (so->so_state & SS_ISDISCONNECTING) {
701 error = EALREADY;
702 goto bad;
703 }
704 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
705 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
706 (struct lwp *)0);
707 bad:
708 splx(s);
709 sodopendfree(so);
710 return (error);
711 }
712
713 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
714 /*
715 * Send on a socket.
716 * If send must go all at once and message is larger than
717 * send buffering, then hard error.
718 * Lock against other senders.
719 * If must go all at once and not enough room now, then
720 * inform user that this would block and do nothing.
721 * Otherwise, if nonblocking, send as much as possible.
722 * The data to be sent is described by "uio" if nonzero,
723 * otherwise by the mbuf chain "top" (which must be null
724 * if uio is not). Data provided in mbuf chain must be small
725 * enough to send all at once.
726 *
727 * Returns nonzero on error, timeout or signal; callers
728 * must check for short counts if EINTR/ERESTART are returned.
729 * Data and control buffers are freed on return.
730 */
731 int
732 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
733 struct mbuf *control, int flags, struct lwp *l)
734 {
735 struct mbuf **mp, *m;
736 struct proc *p;
737 long space, len, resid, clen, mlen;
738 int error, s, dontroute, atomic;
739
740 p = l->l_proc;
741 sodopendfree(so);
742
743 clen = 0;
744 atomic = sosendallatonce(so) || top;
745 if (uio)
746 resid = uio->uio_resid;
747 else
748 resid = top->m_pkthdr.len;
749 /*
750 * In theory resid should be unsigned.
751 * However, space must be signed, as it might be less than 0
752 * if we over-committed, and we must use a signed comparison
753 * of space and resid. On the other hand, a negative resid
754 * causes us to loop sending 0-length segments to the protocol.
755 */
756 if (resid < 0) {
757 error = EINVAL;
758 goto out;
759 }
760 dontroute =
761 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
762 (so->so_proto->pr_flags & PR_ATOMIC);
763 if (p)
764 p->p_stats->p_ru.ru_msgsnd++;
765 if (control)
766 clen = control->m_len;
767 #define snderr(errno) { error = errno; splx(s); goto release; }
768
769 restart:
770 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
771 goto out;
772 do {
773 s = splsoftnet();
774 if (so->so_state & SS_CANTSENDMORE)
775 snderr(EPIPE);
776 if (so->so_error) {
777 error = so->so_error;
778 so->so_error = 0;
779 splx(s);
780 goto release;
781 }
782 if ((so->so_state & SS_ISCONNECTED) == 0) {
783 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
784 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
785 !(resid == 0 && clen != 0))
786 snderr(ENOTCONN);
787 } else if (addr == 0)
788 snderr(EDESTADDRREQ);
789 }
790 space = sbspace(&so->so_snd);
791 if (flags & MSG_OOB)
792 space += 1024;
793 if ((atomic && resid > so->so_snd.sb_hiwat) ||
794 clen > so->so_snd.sb_hiwat)
795 snderr(EMSGSIZE);
796 if (space < resid + clen &&
797 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
798 if (so->so_state & SS_NBIO)
799 snderr(EWOULDBLOCK);
800 sbunlock(&so->so_snd);
801 error = sbwait(&so->so_snd);
802 splx(s);
803 if (error)
804 goto out;
805 goto restart;
806 }
807 splx(s);
808 mp = ⊤
809 space -= clen;
810 do {
811 if (uio == NULL) {
812 /*
813 * Data is prepackaged in "top".
814 */
815 resid = 0;
816 if (flags & MSG_EOR)
817 top->m_flags |= M_EOR;
818 } else do {
819 if (top == 0) {
820 m = m_gethdr(M_WAIT, MT_DATA);
821 mlen = MHLEN;
822 m->m_pkthdr.len = 0;
823 m->m_pkthdr.rcvif = (struct ifnet *)0;
824 } else {
825 m = m_get(M_WAIT, MT_DATA);
826 mlen = MLEN;
827 }
828 MCLAIM(m, so->so_snd.sb_mowner);
829 if (use_sosend_loan &&
830 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
831 space >= SOCK_LOAN_THRESH &&
832 (len = sosend_loan(so, uio, m,
833 space)) != 0) {
834 SOSEND_COUNTER_INCR(&sosend_loan_big);
835 space -= len;
836 goto have_data;
837 }
838 if (resid >= MINCLSIZE && space >= MCLBYTES) {
839 SOSEND_COUNTER_INCR(&sosend_copy_big);
840 m_clget(m, M_WAIT);
841 if ((m->m_flags & M_EXT) == 0)
842 goto nopages;
843 mlen = MCLBYTES;
844 if (atomic && top == 0) {
845 len = lmin(MCLBYTES - max_hdr,
846 resid);
847 m->m_data += max_hdr;
848 } else
849 len = lmin(MCLBYTES, resid);
850 space -= len;
851 } else {
852 nopages:
853 SOSEND_COUNTER_INCR(&sosend_copy_small);
854 len = lmin(lmin(mlen, resid), space);
855 space -= len;
856 /*
857 * For datagram protocols, leave room
858 * for protocol headers in first mbuf.
859 */
860 if (atomic && top == 0 && len < mlen)
861 MH_ALIGN(m, len);
862 }
863 error = uiomove(mtod(m, caddr_t), (int)len,
864 uio);
865 have_data:
866 resid = uio->uio_resid;
867 m->m_len = len;
868 *mp = m;
869 top->m_pkthdr.len += len;
870 if (error)
871 goto release;
872 mp = &m->m_next;
873 if (resid <= 0) {
874 if (flags & MSG_EOR)
875 top->m_flags |= M_EOR;
876 break;
877 }
878 } while (space > 0 && atomic);
879
880 s = splsoftnet();
881
882 if (so->so_state & SS_CANTSENDMORE)
883 snderr(EPIPE);
884
885 if (dontroute)
886 so->so_options |= SO_DONTROUTE;
887 if (resid > 0)
888 so->so_state |= SS_MORETOCOME;
889 error = (*so->so_proto->pr_usrreq)(so,
890 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
891 top, addr, control, curlwp); /* XXX */
892 if (dontroute)
893 so->so_options &= ~SO_DONTROUTE;
894 if (resid > 0)
895 so->so_state &= ~SS_MORETOCOME;
896 splx(s);
897
898 clen = 0;
899 control = 0;
900 top = 0;
901 mp = ⊤
902 if (error)
903 goto release;
904 } while (resid && space > 0);
905 } while (resid);
906
907 release:
908 sbunlock(&so->so_snd);
909 out:
910 if (top)
911 m_freem(top);
912 if (control)
913 m_freem(control);
914 return (error);
915 }
916
917 /*
918 * Implement receive operations on a socket.
919 * We depend on the way that records are added to the sockbuf
920 * by sbappend*. In particular, each record (mbufs linked through m_next)
921 * must begin with an address if the protocol so specifies,
922 * followed by an optional mbuf or mbufs containing ancillary data,
923 * and then zero or more mbufs of data.
924 * In order to avoid blocking network interrupts for the entire time here,
925 * we splx() while doing the actual copy to user space.
926 * Although the sockbuf is locked, new data may still be appended,
927 * and thus we must maintain consistency of the sockbuf during that time.
928 *
929 * The caller may receive the data as a single mbuf chain by supplying
930 * an mbuf **mp0 for use in returning the chain. The uio is then used
931 * only for the count in uio_resid.
932 */
933 int
934 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
935 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
936 {
937 struct lwp *l;
938 struct mbuf *m, **mp;
939 int flags, len, error, s, offset, moff, type, orig_resid;
940 const struct protosw *pr;
941 struct mbuf *nextrecord;
942 int mbuf_removed = 0;
943
944 pr = so->so_proto;
945 mp = mp0;
946 type = 0;
947 orig_resid = uio->uio_resid;
948 l = uio->uio_lwp;
949
950 if (paddr)
951 *paddr = 0;
952 if (controlp)
953 *controlp = 0;
954 if (flagsp)
955 flags = *flagsp &~ MSG_EOR;
956 else
957 flags = 0;
958
959 if ((flags & MSG_DONTWAIT) == 0)
960 sodopendfree(so);
961
962 if (flags & MSG_OOB) {
963 m = m_get(M_WAIT, MT_DATA);
964 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
965 (struct mbuf *)(long)(flags & MSG_PEEK),
966 (struct mbuf *)0, l);
967 if (error)
968 goto bad;
969 do {
970 error = uiomove(mtod(m, caddr_t),
971 (int) min(uio->uio_resid, m->m_len), uio);
972 m = m_free(m);
973 } while (uio->uio_resid && error == 0 && m);
974 bad:
975 if (m)
976 m_freem(m);
977 return (error);
978 }
979 if (mp)
980 *mp = (struct mbuf *)0;
981 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
982 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
983 (struct mbuf *)0, (struct mbuf *)0, l);
984
985 restart:
986 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
987 return (error);
988 s = splsoftnet();
989
990 m = so->so_rcv.sb_mb;
991 /*
992 * If we have less data than requested, block awaiting more
993 * (subject to any timeout) if:
994 * 1. the current count is less than the low water mark,
995 * 2. MSG_WAITALL is set, and it is possible to do the entire
996 * receive operation at once if we block (resid <= hiwat), or
997 * 3. MSG_DONTWAIT is not set.
998 * If MSG_WAITALL is set but resid is larger than the receive buffer,
999 * we have to do the receive in sections, and thus risk returning
1000 * a short count if a timeout or signal occurs after we start.
1001 */
1002 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1003 so->so_rcv.sb_cc < uio->uio_resid) &&
1004 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1005 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1006 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1007 #ifdef DIAGNOSTIC
1008 if (m == 0 && so->so_rcv.sb_cc)
1009 panic("receive 1");
1010 #endif
1011 if (so->so_error) {
1012 if (m)
1013 goto dontblock;
1014 error = so->so_error;
1015 if ((flags & MSG_PEEK) == 0)
1016 so->so_error = 0;
1017 goto release;
1018 }
1019 if (so->so_state & SS_CANTRCVMORE) {
1020 if (m)
1021 goto dontblock;
1022 else
1023 goto release;
1024 }
1025 for (; m; m = m->m_next)
1026 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1027 m = so->so_rcv.sb_mb;
1028 goto dontblock;
1029 }
1030 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1031 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1032 error = ENOTCONN;
1033 goto release;
1034 }
1035 if (uio->uio_resid == 0)
1036 goto release;
1037 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1038 error = EWOULDBLOCK;
1039 goto release;
1040 }
1041 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1042 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1043 sbunlock(&so->so_rcv);
1044 error = sbwait(&so->so_rcv);
1045 splx(s);
1046 if (error)
1047 return (error);
1048 goto restart;
1049 }
1050 dontblock:
1051 /*
1052 * On entry here, m points to the first record of the socket buffer.
1053 * While we process the initial mbufs containing address and control
1054 * info, we save a copy of m->m_nextpkt into nextrecord.
1055 */
1056 if (l)
1057 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1058 KASSERT(m == so->so_rcv.sb_mb);
1059 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1060 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1061 nextrecord = m->m_nextpkt;
1062 if (pr->pr_flags & PR_ADDR) {
1063 #ifdef DIAGNOSTIC
1064 if (m->m_type != MT_SONAME)
1065 panic("receive 1a");
1066 #endif
1067 orig_resid = 0;
1068 if (flags & MSG_PEEK) {
1069 if (paddr)
1070 *paddr = m_copy(m, 0, m->m_len);
1071 m = m->m_next;
1072 } else {
1073 sbfree(&so->so_rcv, m);
1074 mbuf_removed = 1;
1075 if (paddr) {
1076 *paddr = m;
1077 so->so_rcv.sb_mb = m->m_next;
1078 m->m_next = 0;
1079 m = so->so_rcv.sb_mb;
1080 } else {
1081 MFREE(m, so->so_rcv.sb_mb);
1082 m = so->so_rcv.sb_mb;
1083 }
1084 }
1085 }
1086 while (m && m->m_type == MT_CONTROL && error == 0) {
1087 if (flags & MSG_PEEK) {
1088 if (controlp)
1089 *controlp = m_copy(m, 0, m->m_len);
1090 m = m->m_next;
1091 } else {
1092 sbfree(&so->so_rcv, m);
1093 mbuf_removed = 1;
1094 if (controlp) {
1095 struct domain *dom = pr->pr_domain;
1096 if (dom->dom_externalize && l &&
1097 mtod(m, struct cmsghdr *)->cmsg_type ==
1098 SCM_RIGHTS)
1099 error = (*dom->dom_externalize)(m, l);
1100 *controlp = m;
1101 so->so_rcv.sb_mb = m->m_next;
1102 m->m_next = 0;
1103 m = so->so_rcv.sb_mb;
1104 } else {
1105 /*
1106 * Dispose of any SCM_RIGHTS message that went
1107 * through the read path rather than recv.
1108 */
1109 if (pr->pr_domain->dom_dispose &&
1110 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1111 (*pr->pr_domain->dom_dispose)(m);
1112 MFREE(m, so->so_rcv.sb_mb);
1113 m = so->so_rcv.sb_mb;
1114 }
1115 }
1116 if (controlp) {
1117 orig_resid = 0;
1118 controlp = &(*controlp)->m_next;
1119 }
1120 }
1121
1122 /*
1123 * If m is non-NULL, we have some data to read. From now on,
1124 * make sure to keep sb_lastrecord consistent when working on
1125 * the last packet on the chain (nextrecord == NULL) and we
1126 * change m->m_nextpkt.
1127 */
1128 if (m) {
1129 if ((flags & MSG_PEEK) == 0) {
1130 m->m_nextpkt = nextrecord;
1131 /*
1132 * If nextrecord == NULL (this is a single chain),
1133 * then sb_lastrecord may not be valid here if m
1134 * was changed earlier.
1135 */
1136 if (nextrecord == NULL) {
1137 KASSERT(so->so_rcv.sb_mb == m);
1138 so->so_rcv.sb_lastrecord = m;
1139 }
1140 }
1141 type = m->m_type;
1142 if (type == MT_OOBDATA)
1143 flags |= MSG_OOB;
1144 } else {
1145 if ((flags & MSG_PEEK) == 0) {
1146 KASSERT(so->so_rcv.sb_mb == m);
1147 so->so_rcv.sb_mb = nextrecord;
1148 SB_EMPTY_FIXUP(&so->so_rcv);
1149 }
1150 }
1151 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1152 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1153
1154 moff = 0;
1155 offset = 0;
1156 while (m && uio->uio_resid > 0 && error == 0) {
1157 if (m->m_type == MT_OOBDATA) {
1158 if (type != MT_OOBDATA)
1159 break;
1160 } else if (type == MT_OOBDATA)
1161 break;
1162 #ifdef DIAGNOSTIC
1163 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1164 panic("receive 3");
1165 #endif
1166 so->so_state &= ~SS_RCVATMARK;
1167 len = uio->uio_resid;
1168 if (so->so_oobmark && len > so->so_oobmark - offset)
1169 len = so->so_oobmark - offset;
1170 if (len > m->m_len - moff)
1171 len = m->m_len - moff;
1172 /*
1173 * If mp is set, just pass back the mbufs.
1174 * Otherwise copy them out via the uio, then free.
1175 * Sockbuf must be consistent here (points to current mbuf,
1176 * it points to next record) when we drop priority;
1177 * we must note any additions to the sockbuf when we
1178 * block interrupts again.
1179 */
1180 if (mp == 0) {
1181 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1182 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1183 splx(s);
1184 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1185 s = splsoftnet();
1186 if (error) {
1187 /*
1188 * If any part of the record has been removed
1189 * (such as the MT_SONAME mbuf, which will
1190 * happen when PR_ADDR, and thus also
1191 * PR_ATOMIC, is set), then drop the entire
1192 * record to maintain the atomicity of the
1193 * receive operation.
1194 *
1195 * This avoids a later panic("receive 1a")
1196 * when compiled with DIAGNOSTIC.
1197 */
1198 if (m && mbuf_removed
1199 && (pr->pr_flags & PR_ATOMIC))
1200 (void) sbdroprecord(&so->so_rcv);
1201
1202 goto release;
1203 }
1204 } else
1205 uio->uio_resid -= len;
1206 if (len == m->m_len - moff) {
1207 if (m->m_flags & M_EOR)
1208 flags |= MSG_EOR;
1209 if (flags & MSG_PEEK) {
1210 m = m->m_next;
1211 moff = 0;
1212 } else {
1213 nextrecord = m->m_nextpkt;
1214 sbfree(&so->so_rcv, m);
1215 if (mp) {
1216 *mp = m;
1217 mp = &m->m_next;
1218 so->so_rcv.sb_mb = m = m->m_next;
1219 *mp = (struct mbuf *)0;
1220 } else {
1221 MFREE(m, so->so_rcv.sb_mb);
1222 m = so->so_rcv.sb_mb;
1223 }
1224 /*
1225 * If m != NULL, we also know that
1226 * so->so_rcv.sb_mb != NULL.
1227 */
1228 KASSERT(so->so_rcv.sb_mb == m);
1229 if (m) {
1230 m->m_nextpkt = nextrecord;
1231 if (nextrecord == NULL)
1232 so->so_rcv.sb_lastrecord = m;
1233 } else {
1234 so->so_rcv.sb_mb = nextrecord;
1235 SB_EMPTY_FIXUP(&so->so_rcv);
1236 }
1237 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1238 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1239 }
1240 } else {
1241 if (flags & MSG_PEEK)
1242 moff += len;
1243 else {
1244 if (mp)
1245 *mp = m_copym(m, 0, len, M_WAIT);
1246 m->m_data += len;
1247 m->m_len -= len;
1248 so->so_rcv.sb_cc -= len;
1249 }
1250 }
1251 if (so->so_oobmark) {
1252 if ((flags & MSG_PEEK) == 0) {
1253 so->so_oobmark -= len;
1254 if (so->so_oobmark == 0) {
1255 so->so_state |= SS_RCVATMARK;
1256 break;
1257 }
1258 } else {
1259 offset += len;
1260 if (offset == so->so_oobmark)
1261 break;
1262 }
1263 }
1264 if (flags & MSG_EOR)
1265 break;
1266 /*
1267 * If the MSG_WAITALL flag is set (for non-atomic socket),
1268 * we must not quit until "uio->uio_resid == 0" or an error
1269 * termination. If a signal/timeout occurs, return
1270 * with a short count but without error.
1271 * Keep sockbuf locked against other readers.
1272 */
1273 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1274 !sosendallatonce(so) && !nextrecord) {
1275 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1276 break;
1277 /*
1278 * If we are peeking and the socket receive buffer is
1279 * full, stop since we can't get more data to peek at.
1280 */
1281 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1282 break;
1283 /*
1284 * If we've drained the socket buffer, tell the
1285 * protocol in case it needs to do something to
1286 * get it filled again.
1287 */
1288 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1289 (*pr->pr_usrreq)(so, PRU_RCVD,
1290 (struct mbuf *)0,
1291 (struct mbuf *)(long)flags,
1292 (struct mbuf *)0, l);
1293 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1294 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1295 error = sbwait(&so->so_rcv);
1296 if (error) {
1297 sbunlock(&so->so_rcv);
1298 splx(s);
1299 return (0);
1300 }
1301 if ((m = so->so_rcv.sb_mb) != NULL)
1302 nextrecord = m->m_nextpkt;
1303 }
1304 }
1305
1306 if (m && pr->pr_flags & PR_ATOMIC) {
1307 flags |= MSG_TRUNC;
1308 if ((flags & MSG_PEEK) == 0)
1309 (void) sbdroprecord(&so->so_rcv);
1310 }
1311 if ((flags & MSG_PEEK) == 0) {
1312 if (m == 0) {
1313 /*
1314 * First part is an inline SB_EMPTY_FIXUP(). Second
1315 * part makes sure sb_lastrecord is up-to-date if
1316 * there is still data in the socket buffer.
1317 */
1318 so->so_rcv.sb_mb = nextrecord;
1319 if (so->so_rcv.sb_mb == NULL) {
1320 so->so_rcv.sb_mbtail = NULL;
1321 so->so_rcv.sb_lastrecord = NULL;
1322 } else if (nextrecord->m_nextpkt == NULL)
1323 so->so_rcv.sb_lastrecord = nextrecord;
1324 }
1325 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1326 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1327 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1328 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1329 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1330 }
1331 if (orig_resid == uio->uio_resid && orig_resid &&
1332 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1333 sbunlock(&so->so_rcv);
1334 splx(s);
1335 goto restart;
1336 }
1337
1338 if (flagsp)
1339 *flagsp |= flags;
1340 release:
1341 sbunlock(&so->so_rcv);
1342 splx(s);
1343 return (error);
1344 }
1345
1346 int
1347 soshutdown(struct socket *so, int how)
1348 {
1349 const struct protosw *pr;
1350
1351 pr = so->so_proto;
1352 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1353 return (EINVAL);
1354
1355 if (how == SHUT_RD || how == SHUT_RDWR)
1356 sorflush(so);
1357 if (how == SHUT_WR || how == SHUT_RDWR)
1358 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1359 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1360 return (0);
1361 }
1362
1363 void
1364 sorflush(struct socket *so)
1365 {
1366 struct sockbuf *sb, asb;
1367 const struct protosw *pr;
1368 int s;
1369
1370 sb = &so->so_rcv;
1371 pr = so->so_proto;
1372 sb->sb_flags |= SB_NOINTR;
1373 (void) sblock(sb, M_WAITOK);
1374 s = splnet();
1375 socantrcvmore(so);
1376 sbunlock(sb);
1377 asb = *sb;
1378 /*
1379 * Clear most of the sockbuf structure, but leave some of the
1380 * fields valid.
1381 */
1382 memset(&sb->sb_startzero, 0,
1383 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1384 splx(s);
1385 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1386 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1387 sbrelease(&asb, so);
1388 }
1389
1390 int
1391 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1392 {
1393 int error;
1394 struct mbuf *m;
1395
1396 error = 0;
1397 m = m0;
1398 if (level != SOL_SOCKET) {
1399 if (so->so_proto && so->so_proto->pr_ctloutput)
1400 return ((*so->so_proto->pr_ctloutput)
1401 (PRCO_SETOPT, so, level, optname, &m0));
1402 error = ENOPROTOOPT;
1403 } else {
1404 switch (optname) {
1405
1406 case SO_LINGER:
1407 if (m == NULL || m->m_len != sizeof(struct linger)) {
1408 error = EINVAL;
1409 goto bad;
1410 }
1411 if (mtod(m, struct linger *)->l_linger < 0 ||
1412 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1413 error = EDOM;
1414 goto bad;
1415 }
1416 so->so_linger = mtod(m, struct linger *)->l_linger;
1417 /* fall thru... */
1418
1419 case SO_DEBUG:
1420 case SO_KEEPALIVE:
1421 case SO_DONTROUTE:
1422 case SO_USELOOPBACK:
1423 case SO_BROADCAST:
1424 case SO_REUSEADDR:
1425 case SO_REUSEPORT:
1426 case SO_OOBINLINE:
1427 case SO_TIMESTAMP:
1428 if (m == NULL || m->m_len < sizeof(int)) {
1429 error = EINVAL;
1430 goto bad;
1431 }
1432 if (*mtod(m, int *))
1433 so->so_options |= optname;
1434 else
1435 so->so_options &= ~optname;
1436 break;
1437
1438 case SO_SNDBUF:
1439 case SO_RCVBUF:
1440 case SO_SNDLOWAT:
1441 case SO_RCVLOWAT:
1442 {
1443 int optval;
1444
1445 if (m == NULL || m->m_len < sizeof(int)) {
1446 error = EINVAL;
1447 goto bad;
1448 }
1449
1450 /*
1451 * Values < 1 make no sense for any of these
1452 * options, so disallow them.
1453 */
1454 optval = *mtod(m, int *);
1455 if (optval < 1) {
1456 error = EINVAL;
1457 goto bad;
1458 }
1459
1460 switch (optname) {
1461
1462 case SO_SNDBUF:
1463 case SO_RCVBUF:
1464 if (sbreserve(optname == SO_SNDBUF ?
1465 &so->so_snd : &so->so_rcv,
1466 (u_long) optval, so) == 0) {
1467 error = ENOBUFS;
1468 goto bad;
1469 }
1470 break;
1471
1472 /*
1473 * Make sure the low-water is never greater than
1474 * the high-water.
1475 */
1476 case SO_SNDLOWAT:
1477 so->so_snd.sb_lowat =
1478 (optval > so->so_snd.sb_hiwat) ?
1479 so->so_snd.sb_hiwat : optval;
1480 break;
1481 case SO_RCVLOWAT:
1482 so->so_rcv.sb_lowat =
1483 (optval > so->so_rcv.sb_hiwat) ?
1484 so->so_rcv.sb_hiwat : optval;
1485 break;
1486 }
1487 break;
1488 }
1489
1490 case SO_SNDTIMEO:
1491 case SO_RCVTIMEO:
1492 {
1493 struct timeval *tv;
1494 int val;
1495
1496 if (m == NULL || m->m_len < sizeof(*tv)) {
1497 error = EINVAL;
1498 goto bad;
1499 }
1500 tv = mtod(m, struct timeval *);
1501 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1502 error = EDOM;
1503 goto bad;
1504 }
1505 val = tv->tv_sec * hz + tv->tv_usec / tick;
1506 if (val == 0 && tv->tv_usec != 0)
1507 val = 1;
1508
1509 switch (optname) {
1510
1511 case SO_SNDTIMEO:
1512 so->so_snd.sb_timeo = val;
1513 break;
1514 case SO_RCVTIMEO:
1515 so->so_rcv.sb_timeo = val;
1516 break;
1517 }
1518 break;
1519 }
1520
1521 default:
1522 error = ENOPROTOOPT;
1523 break;
1524 }
1525 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1526 (void) ((*so->so_proto->pr_ctloutput)
1527 (PRCO_SETOPT, so, level, optname, &m0));
1528 m = NULL; /* freed by protocol */
1529 }
1530 }
1531 bad:
1532 if (m)
1533 (void) m_free(m);
1534 return (error);
1535 }
1536
1537 int
1538 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1539 {
1540 struct mbuf *m;
1541
1542 if (level != SOL_SOCKET) {
1543 if (so->so_proto && so->so_proto->pr_ctloutput) {
1544 return ((*so->so_proto->pr_ctloutput)
1545 (PRCO_GETOPT, so, level, optname, mp));
1546 } else
1547 return (ENOPROTOOPT);
1548 } else {
1549 m = m_get(M_WAIT, MT_SOOPTS);
1550 m->m_len = sizeof(int);
1551
1552 switch (optname) {
1553
1554 case SO_LINGER:
1555 m->m_len = sizeof(struct linger);
1556 mtod(m, struct linger *)->l_onoff =
1557 so->so_options & SO_LINGER;
1558 mtod(m, struct linger *)->l_linger = so->so_linger;
1559 break;
1560
1561 case SO_USELOOPBACK:
1562 case SO_DONTROUTE:
1563 case SO_DEBUG:
1564 case SO_KEEPALIVE:
1565 case SO_REUSEADDR:
1566 case SO_REUSEPORT:
1567 case SO_BROADCAST:
1568 case SO_OOBINLINE:
1569 case SO_TIMESTAMP:
1570 *mtod(m, int *) = so->so_options & optname;
1571 break;
1572
1573 case SO_TYPE:
1574 *mtod(m, int *) = so->so_type;
1575 break;
1576
1577 case SO_ERROR:
1578 *mtod(m, int *) = so->so_error;
1579 so->so_error = 0;
1580 break;
1581
1582 case SO_SNDBUF:
1583 *mtod(m, int *) = so->so_snd.sb_hiwat;
1584 break;
1585
1586 case SO_RCVBUF:
1587 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1588 break;
1589
1590 case SO_SNDLOWAT:
1591 *mtod(m, int *) = so->so_snd.sb_lowat;
1592 break;
1593
1594 case SO_RCVLOWAT:
1595 *mtod(m, int *) = so->so_rcv.sb_lowat;
1596 break;
1597
1598 case SO_SNDTIMEO:
1599 case SO_RCVTIMEO:
1600 {
1601 int val = (optname == SO_SNDTIMEO ?
1602 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1603
1604 m->m_len = sizeof(struct timeval);
1605 mtod(m, struct timeval *)->tv_sec = val / hz;
1606 mtod(m, struct timeval *)->tv_usec =
1607 (val % hz) * tick;
1608 break;
1609 }
1610
1611 case SO_OVERFLOWED:
1612 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1613 break;
1614
1615 default:
1616 (void)m_free(m);
1617 return (ENOPROTOOPT);
1618 }
1619 *mp = m;
1620 return (0);
1621 }
1622 }
1623
1624 void
1625 sohasoutofband(struct socket *so)
1626 {
1627 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1628 selwakeup(&so->so_rcv.sb_sel);
1629 }
1630
1631 static void
1632 filt_sordetach(struct knote *kn)
1633 {
1634 struct socket *so;
1635
1636 so = (struct socket *)kn->kn_fp->f_data;
1637 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1638 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1639 so->so_rcv.sb_flags &= ~SB_KNOTE;
1640 }
1641
1642 /*ARGSUSED*/
1643 static int
1644 filt_soread(struct knote *kn, long hint)
1645 {
1646 struct socket *so;
1647
1648 so = (struct socket *)kn->kn_fp->f_data;
1649 kn->kn_data = so->so_rcv.sb_cc;
1650 if (so->so_state & SS_CANTRCVMORE) {
1651 kn->kn_flags |= EV_EOF;
1652 kn->kn_fflags = so->so_error;
1653 return (1);
1654 }
1655 if (so->so_error) /* temporary udp error */
1656 return (1);
1657 if (kn->kn_sfflags & NOTE_LOWAT)
1658 return (kn->kn_data >= kn->kn_sdata);
1659 return (kn->kn_data >= so->so_rcv.sb_lowat);
1660 }
1661
1662 static void
1663 filt_sowdetach(struct knote *kn)
1664 {
1665 struct socket *so;
1666
1667 so = (struct socket *)kn->kn_fp->f_data;
1668 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1669 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1670 so->so_snd.sb_flags &= ~SB_KNOTE;
1671 }
1672
1673 /*ARGSUSED*/
1674 static int
1675 filt_sowrite(struct knote *kn, long hint)
1676 {
1677 struct socket *so;
1678
1679 so = (struct socket *)kn->kn_fp->f_data;
1680 kn->kn_data = sbspace(&so->so_snd);
1681 if (so->so_state & SS_CANTSENDMORE) {
1682 kn->kn_flags |= EV_EOF;
1683 kn->kn_fflags = so->so_error;
1684 return (1);
1685 }
1686 if (so->so_error) /* temporary udp error */
1687 return (1);
1688 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1689 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1690 return (0);
1691 if (kn->kn_sfflags & NOTE_LOWAT)
1692 return (kn->kn_data >= kn->kn_sdata);
1693 return (kn->kn_data >= so->so_snd.sb_lowat);
1694 }
1695
1696 /*ARGSUSED*/
1697 static int
1698 filt_solisten(struct knote *kn, long hint)
1699 {
1700 struct socket *so;
1701
1702 so = (struct socket *)kn->kn_fp->f_data;
1703
1704 /*
1705 * Set kn_data to number of incoming connections, not
1706 * counting partial (incomplete) connections.
1707 */
1708 kn->kn_data = so->so_qlen;
1709 return (kn->kn_data > 0);
1710 }
1711
1712 static const struct filterops solisten_filtops =
1713 { 1, NULL, filt_sordetach, filt_solisten };
1714 static const struct filterops soread_filtops =
1715 { 1, NULL, filt_sordetach, filt_soread };
1716 static const struct filterops sowrite_filtops =
1717 { 1, NULL, filt_sowdetach, filt_sowrite };
1718
1719 int
1720 soo_kqfilter(struct file *fp, struct knote *kn)
1721 {
1722 struct socket *so;
1723 struct sockbuf *sb;
1724
1725 so = (struct socket *)kn->kn_fp->f_data;
1726 switch (kn->kn_filter) {
1727 case EVFILT_READ:
1728 if (so->so_options & SO_ACCEPTCONN)
1729 kn->kn_fop = &solisten_filtops;
1730 else
1731 kn->kn_fop = &soread_filtops;
1732 sb = &so->so_rcv;
1733 break;
1734 case EVFILT_WRITE:
1735 kn->kn_fop = &sowrite_filtops;
1736 sb = &so->so_snd;
1737 break;
1738 default:
1739 return (1);
1740 }
1741 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1742 sb->sb_flags |= SB_KNOTE;
1743 return (0);
1744 }
1745
1746 #include <sys/sysctl.h>
1747
1748 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1749
1750 /*
1751 * sysctl helper routine for kern.somaxkva. ensures that the given
1752 * value is not too small.
1753 * (XXX should we maybe make sure it's not too large as well?)
1754 */
1755 static int
1756 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1757 {
1758 int error, new_somaxkva;
1759 struct sysctlnode node;
1760 int s;
1761
1762 new_somaxkva = somaxkva;
1763 node = *rnode;
1764 node.sysctl_data = &new_somaxkva;
1765 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1766 if (error || newp == NULL)
1767 return (error);
1768
1769 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1770 return (EINVAL);
1771
1772 s = splvm();
1773 simple_lock(&so_pendfree_slock);
1774 somaxkva = new_somaxkva;
1775 wakeup(&socurkva);
1776 simple_unlock(&so_pendfree_slock);
1777 splx(s);
1778
1779 return (error);
1780 }
1781
1782 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1783 {
1784
1785 sysctl_createv(clog, 0, NULL, NULL,
1786 CTLFLAG_PERMANENT,
1787 CTLTYPE_NODE, "kern", NULL,
1788 NULL, 0, NULL, 0,
1789 CTL_KERN, CTL_EOL);
1790
1791 sysctl_createv(clog, 0, NULL, NULL,
1792 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1793 CTLTYPE_INT, "somaxkva",
1794 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1795 "used for socket buffers"),
1796 sysctl_kern_somaxkva, 0, NULL, 0,
1797 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1798 }
1799