uipc_socket.c revision 1.115.2.2 1 /* $NetBSD: uipc_socket.c,v 1.115.2.2 2005/12/31 11:21:51 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.115.2.2 2005/12/31 11:21:51 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94
95 #include <uvm/uvm.h>
96
97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
98
99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
100 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 void
130 soinit(void)
131 {
132
133 /* Set the initial adjusted socket buffer size. */
134 if (sb_max_set(sb_max))
135 panic("bad initial sb_max value: %lu", sb_max);
136
137 }
138
139 #ifdef SOSEND_NO_LOAN
140 int use_sosend_loan = 0;
141 #else
142 int use_sosend_loan = 1;
143 #endif
144
145 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
146 static struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static int sokvawaiters;
154
155 #define SOCK_LOAN_THRESH 4096
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(struct socket *);
159 static size_t sodopendfreel(struct socket *);
160
161 static vsize_t
162 sokvareserve(struct socket *so, vsize_t len)
163 {
164 int s;
165 int error;
166
167 s = splvm();
168 simple_lock(&so_pendfree_slock);
169 while (socurkva + len > somaxkva) {
170 size_t freed;
171
172 /*
173 * try to do pendfree.
174 */
175
176 freed = sodopendfreel(so);
177
178 /*
179 * if some kva was freed, try again.
180 */
181
182 if (freed)
183 continue;
184
185 SOSEND_COUNTER_INCR(&sosend_kvalimit);
186 sokvawaiters++;
187 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
188 &so_pendfree_slock);
189 sokvawaiters--;
190 if (error) {
191 len = 0;
192 break;
193 }
194 }
195 socurkva += len;
196 simple_unlock(&so_pendfree_slock);
197 splx(s);
198 return len;
199 }
200
201 static void
202 sokvaunreserve(vsize_t len)
203 {
204 int s;
205
206 s = splvm();
207 simple_lock(&so_pendfree_slock);
208 socurkva -= len;
209 if (sokvawaiters)
210 wakeup(&socurkva);
211 simple_unlock(&so_pendfree_slock);
212 splx(s);
213 }
214
215 /*
216 * sokvaalloc: allocate kva for loan.
217 */
218
219 vaddr_t
220 sokvaalloc(vsize_t len, struct socket *so)
221 {
222 vaddr_t lva;
223
224 /*
225 * reserve kva.
226 */
227
228 if (sokvareserve(so, len) == 0)
229 return 0;
230
231 /*
232 * allocate kva.
233 */
234
235 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
236 if (lva == 0) {
237 sokvaunreserve(len);
238 return (0);
239 }
240
241 return lva;
242 }
243
244 /*
245 * sokvafree: free kva for loan.
246 */
247
248 void
249 sokvafree(vaddr_t sva, vsize_t len)
250 {
251
252 /*
253 * free kva.
254 */
255
256 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
257
258 /*
259 * unreserve kva.
260 */
261
262 sokvaunreserve(len);
263 }
264
265 static void
266 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
267 {
268 vaddr_t va, sva, eva;
269 vsize_t len;
270 paddr_t pa;
271 int i, npgs;
272
273 eva = round_page((vaddr_t) buf + size);
274 sva = trunc_page((vaddr_t) buf);
275 len = eva - sva;
276 npgs = len >> PAGE_SHIFT;
277
278 if (__predict_false(pgs == NULL)) {
279 pgs = alloca(npgs * sizeof(*pgs));
280
281 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
282 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
283 panic("sodoloanfree: va 0x%lx not mapped", va);
284 pgs[i] = PHYS_TO_VM_PAGE(pa);
285 }
286 }
287
288 pmap_kremove(sva, len);
289 pmap_update(pmap_kernel());
290 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
291 sokvafree(sva, len);
292 }
293
294 static size_t
295 sodopendfree(struct socket *so)
296 {
297 int s;
298 size_t rv;
299
300 s = splvm();
301 simple_lock(&so_pendfree_slock);
302 rv = sodopendfreel(so);
303 simple_unlock(&so_pendfree_slock);
304 splx(s);
305
306 return rv;
307 }
308
309 /*
310 * sodopendfreel: free mbufs on "pendfree" list.
311 * unlock and relock so_pendfree_slock when freeing mbufs.
312 *
313 * => called with so_pendfree_slock held.
314 * => called at splvm.
315 */
316
317 static size_t
318 sodopendfreel(struct socket *so)
319 {
320 size_t rv = 0;
321
322 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
323
324 for (;;) {
325 struct mbuf *m;
326 struct mbuf *next;
327
328 m = so_pendfree;
329 if (m == NULL)
330 break;
331 so_pendfree = NULL;
332 simple_unlock(&so_pendfree_slock);
333 /* XXX splx */
334
335 for (; m != NULL; m = next) {
336 next = m->m_next;
337
338 rv += m->m_ext.ext_size;
339 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
340 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
341 m->m_ext.ext_size);
342 pool_cache_put(&mbpool_cache, m);
343 }
344
345 /* XXX splvm */
346 simple_lock(&so_pendfree_slock);
347 }
348
349 return (rv);
350 }
351
352 void
353 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
354 {
355 int s;
356
357 if (m == NULL) {
358
359 /*
360 * called from MEXTREMOVE.
361 */
362
363 sodoloanfree(NULL, buf, size);
364 return;
365 }
366
367 /*
368 * postpone freeing mbuf.
369 *
370 * we can't do it in interrupt context
371 * because we need to put kva back to kernel_map.
372 */
373
374 s = splvm();
375 simple_lock(&so_pendfree_slock);
376 m->m_next = so_pendfree;
377 so_pendfree = m;
378 if (sokvawaiters)
379 wakeup(&socurkva);
380 simple_unlock(&so_pendfree_slock);
381 splx(s);
382 }
383
384 static long
385 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
386 {
387 struct iovec *iov = uio->uio_iov;
388 vaddr_t sva, eva;
389 vsize_t len;
390 vaddr_t lva, va;
391 int npgs, i, error;
392
393 if (VMSPACE_IS_KERNEL(&uio->uio_vmspace->vm_map))
394 return (0);
395
396 if (iov->iov_len < (size_t) space)
397 space = iov->iov_len;
398 if (space > SOCK_LOAN_CHUNK)
399 space = SOCK_LOAN_CHUNK;
400
401 eva = round_page((vaddr_t) iov->iov_base + space);
402 sva = trunc_page((vaddr_t) iov->iov_base);
403 len = eva - sva;
404 npgs = len >> PAGE_SHIFT;
405
406 /* XXX KDASSERT */
407 KASSERT(npgs <= M_EXT_MAXPAGES);
408
409 lva = sokvaalloc(len, so);
410 if (lva == 0)
411 return 0;
412
413 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
414 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
415 if (error) {
416 sokvafree(lva, len);
417 return (0);
418 }
419
420 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
421 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
422 VM_PROT_READ);
423 pmap_update(pmap_kernel());
424
425 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
426
427 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
428 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
429
430 uio->uio_resid -= space;
431 /* uio_offset not updated, not set/used for write(2) */
432 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
433 uio->uio_iov->iov_len -= space;
434 if (uio->uio_iov->iov_len == 0) {
435 uio->uio_iov++;
436 uio->uio_iovcnt--;
437 }
438
439 return (space);
440 }
441
442 /*
443 * Socket operation routines.
444 * These routines are called by the routines in
445 * sys_socket.c or from a system process, and
446 * implement the semantics of socket operations by
447 * switching out to the protocol specific routines.
448 */
449 /*ARGSUSED*/
450 int
451 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
452 {
453 const struct protosw *prp;
454 struct socket *so;
455 uid_t uid;
456 int error, s;
457
458 if (proto)
459 prp = pffindproto(dom, proto, type);
460 else
461 prp = pffindtype(dom, type);
462 if (prp == 0 || prp->pr_usrreq == 0)
463 return (EPROTONOSUPPORT);
464 if (prp->pr_type != type)
465 return (EPROTOTYPE);
466 s = splsoftnet();
467 so = pool_get(&socket_pool, PR_WAITOK);
468 memset((caddr_t)so, 0, sizeof(*so));
469 TAILQ_INIT(&so->so_q0);
470 TAILQ_INIT(&so->so_q);
471 so->so_type = type;
472 so->so_proto = prp;
473 so->so_send = sosend;
474 so->so_receive = soreceive;
475 #ifdef MBUFTRACE
476 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
477 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
478 so->so_mowner = &prp->pr_domain->dom_mowner;
479 #endif
480 if (l != NULL) {
481 uid = l->l_proc->p_ucred->cr_uid;
482 } else {
483 uid = 0;
484 }
485 so->so_uidinfo = uid_find(uid);
486 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
487 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
488 if (error) {
489 so->so_state |= SS_NOFDREF;
490 sofree(so);
491 splx(s);
492 return (error);
493 }
494 splx(s);
495 *aso = so;
496 return (0);
497 }
498
499 int
500 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
501 {
502 int s, error;
503
504 s = splsoftnet();
505 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
506 nam, (struct mbuf *)0, l);
507 splx(s);
508 return (error);
509 }
510
511 int
512 solisten(struct socket *so, int backlog)
513 {
514 int s, error;
515
516 s = splsoftnet();
517 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
518 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
519 if (error) {
520 splx(s);
521 return (error);
522 }
523 if (TAILQ_EMPTY(&so->so_q))
524 so->so_options |= SO_ACCEPTCONN;
525 if (backlog < 0)
526 backlog = 0;
527 so->so_qlimit = min(backlog, somaxconn);
528 splx(s);
529 return (0);
530 }
531
532 void
533 sofree(struct socket *so)
534 {
535
536 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
537 return;
538 if (so->so_head) {
539 /*
540 * We must not decommission a socket that's on the accept(2)
541 * queue. If we do, then accept(2) may hang after select(2)
542 * indicated that the listening socket was ready.
543 */
544 if (!soqremque(so, 0))
545 return;
546 }
547 if (so->so_rcv.sb_hiwat)
548 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
549 RLIM_INFINITY);
550 if (so->so_snd.sb_hiwat)
551 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
552 RLIM_INFINITY);
553 sbrelease(&so->so_snd, so);
554 sorflush(so);
555 pool_put(&socket_pool, so);
556 }
557
558 /*
559 * Close a socket on last file table reference removal.
560 * Initiate disconnect if connected.
561 * Free socket when disconnect complete.
562 */
563 int
564 soclose(struct socket *so)
565 {
566 struct socket *so2;
567 int s, error;
568
569 error = 0;
570 s = splsoftnet(); /* conservative */
571 if (so->so_options & SO_ACCEPTCONN) {
572 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
573 (void) soqremque(so2, 0);
574 (void) soabort(so2);
575 }
576 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
577 (void) soqremque(so2, 1);
578 (void) soabort(so2);
579 }
580 }
581 if (so->so_pcb == 0)
582 goto discard;
583 if (so->so_state & SS_ISCONNECTED) {
584 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
585 error = sodisconnect(so);
586 if (error)
587 goto drop;
588 }
589 if (so->so_options & SO_LINGER) {
590 if ((so->so_state & SS_ISDISCONNECTING) &&
591 (so->so_state & SS_NBIO))
592 goto drop;
593 while (so->so_state & SS_ISCONNECTED) {
594 error = tsleep((caddr_t)&so->so_timeo,
595 PSOCK | PCATCH, netcls,
596 so->so_linger * hz);
597 if (error)
598 break;
599 }
600 }
601 }
602 drop:
603 if (so->so_pcb) {
604 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
605 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
606 (struct lwp *)0);
607 if (error == 0)
608 error = error2;
609 }
610 discard:
611 if (so->so_state & SS_NOFDREF)
612 panic("soclose: NOFDREF");
613 so->so_state |= SS_NOFDREF;
614 sofree(so);
615 splx(s);
616 return (error);
617 }
618
619 /*
620 * Must be called at splsoftnet...
621 */
622 int
623 soabort(struct socket *so)
624 {
625
626 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
627 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
628 }
629
630 int
631 soaccept(struct socket *so, struct mbuf *nam)
632 {
633 int s, error;
634
635 error = 0;
636 s = splsoftnet();
637 if ((so->so_state & SS_NOFDREF) == 0)
638 panic("soaccept: !NOFDREF");
639 so->so_state &= ~SS_NOFDREF;
640 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
641 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
642 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
643 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
644 else
645 error = ECONNABORTED;
646
647 splx(s);
648 return (error);
649 }
650
651 int
652 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
653 {
654 int s, error;
655
656 if (so->so_options & SO_ACCEPTCONN)
657 return (EOPNOTSUPP);
658 s = splsoftnet();
659 /*
660 * If protocol is connection-based, can only connect once.
661 * Otherwise, if connected, try to disconnect first.
662 * This allows user to disconnect by connecting to, e.g.,
663 * a null address.
664 */
665 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
666 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
667 (error = sodisconnect(so))))
668 error = EISCONN;
669 else
670 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
671 (struct mbuf *)0, nam, (struct mbuf *)0, l);
672 splx(s);
673 return (error);
674 }
675
676 int
677 soconnect2(struct socket *so1, struct socket *so2)
678 {
679 int s, error;
680
681 s = splsoftnet();
682 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
683 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
684 (struct lwp *)0);
685 splx(s);
686 return (error);
687 }
688
689 int
690 sodisconnect(struct socket *so)
691 {
692 int s, error;
693
694 s = splsoftnet();
695 if ((so->so_state & SS_ISCONNECTED) == 0) {
696 error = ENOTCONN;
697 goto bad;
698 }
699 if (so->so_state & SS_ISDISCONNECTING) {
700 error = EALREADY;
701 goto bad;
702 }
703 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
704 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
705 (struct lwp *)0);
706 bad:
707 splx(s);
708 sodopendfree(so);
709 return (error);
710 }
711
712 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
713 /*
714 * Send on a socket.
715 * If send must go all at once and message is larger than
716 * send buffering, then hard error.
717 * Lock against other senders.
718 * If must go all at once and not enough room now, then
719 * inform user that this would block and do nothing.
720 * Otherwise, if nonblocking, send as much as possible.
721 * The data to be sent is described by "uio" if nonzero,
722 * otherwise by the mbuf chain "top" (which must be null
723 * if uio is not). Data provided in mbuf chain must be small
724 * enough to send all at once.
725 *
726 * Returns nonzero on error, timeout or signal; callers
727 * must check for short counts if EINTR/ERESTART are returned.
728 * Data and control buffers are freed on return.
729 */
730 int
731 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
732 struct mbuf *control, int flags, struct lwp *l)
733 {
734 struct mbuf **mp, *m;
735 struct proc *p;
736 long space, len, resid, clen, mlen;
737 int error, s, dontroute, atomic;
738
739 p = l->l_proc;
740 sodopendfree(so);
741
742 clen = 0;
743 atomic = sosendallatonce(so) || top;
744 if (uio)
745 resid = uio->uio_resid;
746 else
747 resid = top->m_pkthdr.len;
748 /*
749 * In theory resid should be unsigned.
750 * However, space must be signed, as it might be less than 0
751 * if we over-committed, and we must use a signed comparison
752 * of space and resid. On the other hand, a negative resid
753 * causes us to loop sending 0-length segments to the protocol.
754 */
755 if (resid < 0) {
756 error = EINVAL;
757 goto out;
758 }
759 dontroute =
760 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
761 (so->so_proto->pr_flags & PR_ATOMIC);
762 if (p)
763 p->p_stats->p_ru.ru_msgsnd++;
764 if (control)
765 clen = control->m_len;
766 #define snderr(errno) { error = errno; splx(s); goto release; }
767
768 restart:
769 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
770 goto out;
771 do {
772 s = splsoftnet();
773 if (so->so_state & SS_CANTSENDMORE)
774 snderr(EPIPE);
775 if (so->so_error) {
776 error = so->so_error;
777 so->so_error = 0;
778 splx(s);
779 goto release;
780 }
781 if ((so->so_state & SS_ISCONNECTED) == 0) {
782 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
783 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
784 !(resid == 0 && clen != 0))
785 snderr(ENOTCONN);
786 } else if (addr == 0)
787 snderr(EDESTADDRREQ);
788 }
789 space = sbspace(&so->so_snd);
790 if (flags & MSG_OOB)
791 space += 1024;
792 if ((atomic && resid > so->so_snd.sb_hiwat) ||
793 clen > so->so_snd.sb_hiwat)
794 snderr(EMSGSIZE);
795 if (space < resid + clen &&
796 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
797 if (so->so_state & SS_NBIO)
798 snderr(EWOULDBLOCK);
799 sbunlock(&so->so_snd);
800 error = sbwait(&so->so_snd);
801 splx(s);
802 if (error)
803 goto out;
804 goto restart;
805 }
806 splx(s);
807 mp = ⊤
808 space -= clen;
809 do {
810 if (uio == NULL) {
811 /*
812 * Data is prepackaged in "top".
813 */
814 resid = 0;
815 if (flags & MSG_EOR)
816 top->m_flags |= M_EOR;
817 } else do {
818 if (top == 0) {
819 m = m_gethdr(M_WAIT, MT_DATA);
820 mlen = MHLEN;
821 m->m_pkthdr.len = 0;
822 m->m_pkthdr.rcvif = (struct ifnet *)0;
823 } else {
824 m = m_get(M_WAIT, MT_DATA);
825 mlen = MLEN;
826 }
827 MCLAIM(m, so->so_snd.sb_mowner);
828 if (use_sosend_loan &&
829 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
830 space >= SOCK_LOAN_THRESH &&
831 (len = sosend_loan(so, uio, m,
832 space)) != 0) {
833 SOSEND_COUNTER_INCR(&sosend_loan_big);
834 space -= len;
835 goto have_data;
836 }
837 if (resid >= MINCLSIZE && space >= MCLBYTES) {
838 SOSEND_COUNTER_INCR(&sosend_copy_big);
839 m_clget(m, M_WAIT);
840 if ((m->m_flags & M_EXT) == 0)
841 goto nopages;
842 mlen = MCLBYTES;
843 if (atomic && top == 0) {
844 len = lmin(MCLBYTES - max_hdr,
845 resid);
846 m->m_data += max_hdr;
847 } else
848 len = lmin(MCLBYTES, resid);
849 space -= len;
850 } else {
851 nopages:
852 SOSEND_COUNTER_INCR(&sosend_copy_small);
853 len = lmin(lmin(mlen, resid), space);
854 space -= len;
855 /*
856 * For datagram protocols, leave room
857 * for protocol headers in first mbuf.
858 */
859 if (atomic && top == 0 && len < mlen)
860 MH_ALIGN(m, len);
861 }
862 error = uiomove(mtod(m, caddr_t), (int)len,
863 uio);
864 have_data:
865 resid = uio->uio_resid;
866 m->m_len = len;
867 *mp = m;
868 top->m_pkthdr.len += len;
869 if (error)
870 goto release;
871 mp = &m->m_next;
872 if (resid <= 0) {
873 if (flags & MSG_EOR)
874 top->m_flags |= M_EOR;
875 break;
876 }
877 } while (space > 0 && atomic);
878
879 s = splsoftnet();
880
881 if (so->so_state & SS_CANTSENDMORE)
882 snderr(EPIPE);
883
884 if (dontroute)
885 so->so_options |= SO_DONTROUTE;
886 if (resid > 0)
887 so->so_state |= SS_MORETOCOME;
888 error = (*so->so_proto->pr_usrreq)(so,
889 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
890 top, addr, control, curlwp); /* XXX */
891 if (dontroute)
892 so->so_options &= ~SO_DONTROUTE;
893 if (resid > 0)
894 so->so_state &= ~SS_MORETOCOME;
895 splx(s);
896
897 clen = 0;
898 control = 0;
899 top = 0;
900 mp = ⊤
901 if (error)
902 goto release;
903 } while (resid && space > 0);
904 } while (resid);
905
906 release:
907 sbunlock(&so->so_snd);
908 out:
909 if (top)
910 m_freem(top);
911 if (control)
912 m_freem(control);
913 return (error);
914 }
915
916 /*
917 * Implement receive operations on a socket.
918 * We depend on the way that records are added to the sockbuf
919 * by sbappend*. In particular, each record (mbufs linked through m_next)
920 * must begin with an address if the protocol so specifies,
921 * followed by an optional mbuf or mbufs containing ancillary data,
922 * and then zero or more mbufs of data.
923 * In order to avoid blocking network interrupts for the entire time here,
924 * we splx() while doing the actual copy to user space.
925 * Although the sockbuf is locked, new data may still be appended,
926 * and thus we must maintain consistency of the sockbuf during that time.
927 *
928 * The caller may receive the data as a single mbuf chain by supplying
929 * an mbuf **mp0 for use in returning the chain. The uio is then used
930 * only for the count in uio_resid.
931 */
932 int
933 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
934 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
935 {
936 struct lwp *l = curlwp;
937 struct mbuf *m, **mp;
938 int flags, len, error, s, offset, moff, type, orig_resid;
939 const struct protosw *pr;
940 struct mbuf *nextrecord;
941 int mbuf_removed = 0;
942
943 pr = so->so_proto;
944 mp = mp0;
945 type = 0;
946 orig_resid = uio->uio_resid;
947
948 if (paddr)
949 *paddr = 0;
950 if (controlp)
951 *controlp = 0;
952 if (flagsp)
953 flags = *flagsp &~ MSG_EOR;
954 else
955 flags = 0;
956
957 if ((flags & MSG_DONTWAIT) == 0)
958 sodopendfree(so);
959
960 if (flags & MSG_OOB) {
961 m = m_get(M_WAIT, MT_DATA);
962 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
963 (struct mbuf *)(long)(flags & MSG_PEEK),
964 (struct mbuf *)0, l);
965 if (error)
966 goto bad;
967 do {
968 error = uiomove(mtod(m, caddr_t),
969 (int) min(uio->uio_resid, m->m_len), uio);
970 m = m_free(m);
971 } while (uio->uio_resid && error == 0 && m);
972 bad:
973 if (m)
974 m_freem(m);
975 return (error);
976 }
977 if (mp)
978 *mp = (struct mbuf *)0;
979 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
980 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
981 (struct mbuf *)0, (struct mbuf *)0, l);
982
983 restart:
984 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
985 return (error);
986 s = splsoftnet();
987
988 m = so->so_rcv.sb_mb;
989 /*
990 * If we have less data than requested, block awaiting more
991 * (subject to any timeout) if:
992 * 1. the current count is less than the low water mark,
993 * 2. MSG_WAITALL is set, and it is possible to do the entire
994 * receive operation at once if we block (resid <= hiwat), or
995 * 3. MSG_DONTWAIT is not set.
996 * If MSG_WAITALL is set but resid is larger than the receive buffer,
997 * we have to do the receive in sections, and thus risk returning
998 * a short count if a timeout or signal occurs after we start.
999 */
1000 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1001 so->so_rcv.sb_cc < uio->uio_resid) &&
1002 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1003 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1004 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1005 #ifdef DIAGNOSTIC
1006 if (m == 0 && so->so_rcv.sb_cc)
1007 panic("receive 1");
1008 #endif
1009 if (so->so_error) {
1010 if (m)
1011 goto dontblock;
1012 error = so->so_error;
1013 if ((flags & MSG_PEEK) == 0)
1014 so->so_error = 0;
1015 goto release;
1016 }
1017 if (so->so_state & SS_CANTRCVMORE) {
1018 if (m)
1019 goto dontblock;
1020 else
1021 goto release;
1022 }
1023 for (; m; m = m->m_next)
1024 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1025 m = so->so_rcv.sb_mb;
1026 goto dontblock;
1027 }
1028 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1029 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1030 error = ENOTCONN;
1031 goto release;
1032 }
1033 if (uio->uio_resid == 0)
1034 goto release;
1035 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1036 error = EWOULDBLOCK;
1037 goto release;
1038 }
1039 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1040 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1041 sbunlock(&so->so_rcv);
1042 error = sbwait(&so->so_rcv);
1043 splx(s);
1044 if (error)
1045 return (error);
1046 goto restart;
1047 }
1048 dontblock:
1049 /*
1050 * On entry here, m points to the first record of the socket buffer.
1051 * While we process the initial mbufs containing address and control
1052 * info, we save a copy of m->m_nextpkt into nextrecord.
1053 */
1054 if (l)
1055 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1056 KASSERT(m == so->so_rcv.sb_mb);
1057 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1058 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1059 nextrecord = m->m_nextpkt;
1060 if (pr->pr_flags & PR_ADDR) {
1061 #ifdef DIAGNOSTIC
1062 if (m->m_type != MT_SONAME)
1063 panic("receive 1a");
1064 #endif
1065 orig_resid = 0;
1066 if (flags & MSG_PEEK) {
1067 if (paddr)
1068 *paddr = m_copy(m, 0, m->m_len);
1069 m = m->m_next;
1070 } else {
1071 sbfree(&so->so_rcv, m);
1072 mbuf_removed = 1;
1073 if (paddr) {
1074 *paddr = m;
1075 so->so_rcv.sb_mb = m->m_next;
1076 m->m_next = 0;
1077 m = so->so_rcv.sb_mb;
1078 } else {
1079 MFREE(m, so->so_rcv.sb_mb);
1080 m = so->so_rcv.sb_mb;
1081 }
1082 }
1083 }
1084 while (m && m->m_type == MT_CONTROL && error == 0) {
1085 if (flags & MSG_PEEK) {
1086 if (controlp)
1087 *controlp = m_copy(m, 0, m->m_len);
1088 m = m->m_next;
1089 } else {
1090 sbfree(&so->so_rcv, m);
1091 mbuf_removed = 1;
1092 if (controlp) {
1093 struct domain *dom = pr->pr_domain;
1094 if (dom->dom_externalize && l &&
1095 mtod(m, struct cmsghdr *)->cmsg_type ==
1096 SCM_RIGHTS)
1097 error = (*dom->dom_externalize)(m, l);
1098 *controlp = m;
1099 so->so_rcv.sb_mb = m->m_next;
1100 m->m_next = 0;
1101 m = so->so_rcv.sb_mb;
1102 } else {
1103 /*
1104 * Dispose of any SCM_RIGHTS message that went
1105 * through the read path rather than recv.
1106 */
1107 if (pr->pr_domain->dom_dispose &&
1108 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1109 (*pr->pr_domain->dom_dispose)(m);
1110 MFREE(m, so->so_rcv.sb_mb);
1111 m = so->so_rcv.sb_mb;
1112 }
1113 }
1114 if (controlp) {
1115 orig_resid = 0;
1116 controlp = &(*controlp)->m_next;
1117 }
1118 }
1119
1120 /*
1121 * If m is non-NULL, we have some data to read. From now on,
1122 * make sure to keep sb_lastrecord consistent when working on
1123 * the last packet on the chain (nextrecord == NULL) and we
1124 * change m->m_nextpkt.
1125 */
1126 if (m) {
1127 if ((flags & MSG_PEEK) == 0) {
1128 m->m_nextpkt = nextrecord;
1129 /*
1130 * If nextrecord == NULL (this is a single chain),
1131 * then sb_lastrecord may not be valid here if m
1132 * was changed earlier.
1133 */
1134 if (nextrecord == NULL) {
1135 KASSERT(so->so_rcv.sb_mb == m);
1136 so->so_rcv.sb_lastrecord = m;
1137 }
1138 }
1139 type = m->m_type;
1140 if (type == MT_OOBDATA)
1141 flags |= MSG_OOB;
1142 } else {
1143 if ((flags & MSG_PEEK) == 0) {
1144 KASSERT(so->so_rcv.sb_mb == m);
1145 so->so_rcv.sb_mb = nextrecord;
1146 SB_EMPTY_FIXUP(&so->so_rcv);
1147 }
1148 }
1149 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1150 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1151
1152 moff = 0;
1153 offset = 0;
1154 while (m && uio->uio_resid > 0 && error == 0) {
1155 if (m->m_type == MT_OOBDATA) {
1156 if (type != MT_OOBDATA)
1157 break;
1158 } else if (type == MT_OOBDATA)
1159 break;
1160 #ifdef DIAGNOSTIC
1161 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1162 panic("receive 3");
1163 #endif
1164 so->so_state &= ~SS_RCVATMARK;
1165 len = uio->uio_resid;
1166 if (so->so_oobmark && len > so->so_oobmark - offset)
1167 len = so->so_oobmark - offset;
1168 if (len > m->m_len - moff)
1169 len = m->m_len - moff;
1170 /*
1171 * If mp is set, just pass back the mbufs.
1172 * Otherwise copy them out via the uio, then free.
1173 * Sockbuf must be consistent here (points to current mbuf,
1174 * it points to next record) when we drop priority;
1175 * we must note any additions to the sockbuf when we
1176 * block interrupts again.
1177 */
1178 if (mp == 0) {
1179 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1180 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1181 splx(s);
1182 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1183 s = splsoftnet();
1184 if (error) {
1185 /*
1186 * If any part of the record has been removed
1187 * (such as the MT_SONAME mbuf, which will
1188 * happen when PR_ADDR, and thus also
1189 * PR_ATOMIC, is set), then drop the entire
1190 * record to maintain the atomicity of the
1191 * receive operation.
1192 *
1193 * This avoids a later panic("receive 1a")
1194 * when compiled with DIAGNOSTIC.
1195 */
1196 if (m && mbuf_removed
1197 && (pr->pr_flags & PR_ATOMIC))
1198 (void) sbdroprecord(&so->so_rcv);
1199
1200 goto release;
1201 }
1202 } else
1203 uio->uio_resid -= len;
1204 if (len == m->m_len - moff) {
1205 if (m->m_flags & M_EOR)
1206 flags |= MSG_EOR;
1207 if (flags & MSG_PEEK) {
1208 m = m->m_next;
1209 moff = 0;
1210 } else {
1211 nextrecord = m->m_nextpkt;
1212 sbfree(&so->so_rcv, m);
1213 if (mp) {
1214 *mp = m;
1215 mp = &m->m_next;
1216 so->so_rcv.sb_mb = m = m->m_next;
1217 *mp = (struct mbuf *)0;
1218 } else {
1219 MFREE(m, so->so_rcv.sb_mb);
1220 m = so->so_rcv.sb_mb;
1221 }
1222 /*
1223 * If m != NULL, we also know that
1224 * so->so_rcv.sb_mb != NULL.
1225 */
1226 KASSERT(so->so_rcv.sb_mb == m);
1227 if (m) {
1228 m->m_nextpkt = nextrecord;
1229 if (nextrecord == NULL)
1230 so->so_rcv.sb_lastrecord = m;
1231 } else {
1232 so->so_rcv.sb_mb = nextrecord;
1233 SB_EMPTY_FIXUP(&so->so_rcv);
1234 }
1235 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1236 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1237 }
1238 } else {
1239 if (flags & MSG_PEEK)
1240 moff += len;
1241 else {
1242 if (mp)
1243 *mp = m_copym(m, 0, len, M_WAIT);
1244 m->m_data += len;
1245 m->m_len -= len;
1246 so->so_rcv.sb_cc -= len;
1247 }
1248 }
1249 if (so->so_oobmark) {
1250 if ((flags & MSG_PEEK) == 0) {
1251 so->so_oobmark -= len;
1252 if (so->so_oobmark == 0) {
1253 so->so_state |= SS_RCVATMARK;
1254 break;
1255 }
1256 } else {
1257 offset += len;
1258 if (offset == so->so_oobmark)
1259 break;
1260 }
1261 }
1262 if (flags & MSG_EOR)
1263 break;
1264 /*
1265 * If the MSG_WAITALL flag is set (for non-atomic socket),
1266 * we must not quit until "uio->uio_resid == 0" or an error
1267 * termination. If a signal/timeout occurs, return
1268 * with a short count but without error.
1269 * Keep sockbuf locked against other readers.
1270 */
1271 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1272 !sosendallatonce(so) && !nextrecord) {
1273 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1274 break;
1275 /*
1276 * If we are peeking and the socket receive buffer is
1277 * full, stop since we can't get more data to peek at.
1278 */
1279 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1280 break;
1281 /*
1282 * If we've drained the socket buffer, tell the
1283 * protocol in case it needs to do something to
1284 * get it filled again.
1285 */
1286 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1287 (*pr->pr_usrreq)(so, PRU_RCVD,
1288 (struct mbuf *)0,
1289 (struct mbuf *)(long)flags,
1290 (struct mbuf *)0, l);
1291 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1292 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1293 error = sbwait(&so->so_rcv);
1294 if (error) {
1295 sbunlock(&so->so_rcv);
1296 splx(s);
1297 return (0);
1298 }
1299 if ((m = so->so_rcv.sb_mb) != NULL)
1300 nextrecord = m->m_nextpkt;
1301 }
1302 }
1303
1304 if (m && pr->pr_flags & PR_ATOMIC) {
1305 flags |= MSG_TRUNC;
1306 if ((flags & MSG_PEEK) == 0)
1307 (void) sbdroprecord(&so->so_rcv);
1308 }
1309 if ((flags & MSG_PEEK) == 0) {
1310 if (m == 0) {
1311 /*
1312 * First part is an inline SB_EMPTY_FIXUP(). Second
1313 * part makes sure sb_lastrecord is up-to-date if
1314 * there is still data in the socket buffer.
1315 */
1316 so->so_rcv.sb_mb = nextrecord;
1317 if (so->so_rcv.sb_mb == NULL) {
1318 so->so_rcv.sb_mbtail = NULL;
1319 so->so_rcv.sb_lastrecord = NULL;
1320 } else if (nextrecord->m_nextpkt == NULL)
1321 so->so_rcv.sb_lastrecord = nextrecord;
1322 }
1323 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1324 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1325 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1326 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1327 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1328 }
1329 if (orig_resid == uio->uio_resid && orig_resid &&
1330 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1331 sbunlock(&so->so_rcv);
1332 splx(s);
1333 goto restart;
1334 }
1335
1336 if (flagsp)
1337 *flagsp |= flags;
1338 release:
1339 sbunlock(&so->so_rcv);
1340 splx(s);
1341 return (error);
1342 }
1343
1344 int
1345 soshutdown(struct socket *so, int how)
1346 {
1347 const struct protosw *pr;
1348
1349 pr = so->so_proto;
1350 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1351 return (EINVAL);
1352
1353 if (how == SHUT_RD || how == SHUT_RDWR)
1354 sorflush(so);
1355 if (how == SHUT_WR || how == SHUT_RDWR)
1356 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1357 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1358 return (0);
1359 }
1360
1361 void
1362 sorflush(struct socket *so)
1363 {
1364 struct sockbuf *sb, asb;
1365 const struct protosw *pr;
1366 int s;
1367
1368 sb = &so->so_rcv;
1369 pr = so->so_proto;
1370 sb->sb_flags |= SB_NOINTR;
1371 (void) sblock(sb, M_WAITOK);
1372 s = splnet();
1373 socantrcvmore(so);
1374 sbunlock(sb);
1375 asb = *sb;
1376 /*
1377 * Clear most of the sockbuf structure, but leave some of the
1378 * fields valid.
1379 */
1380 memset(&sb->sb_startzero, 0,
1381 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1382 splx(s);
1383 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1384 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1385 sbrelease(&asb, so);
1386 }
1387
1388 int
1389 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1390 {
1391 int error;
1392 struct mbuf *m;
1393
1394 error = 0;
1395 m = m0;
1396 if (level != SOL_SOCKET) {
1397 if (so->so_proto && so->so_proto->pr_ctloutput)
1398 return ((*so->so_proto->pr_ctloutput)
1399 (PRCO_SETOPT, so, level, optname, &m0));
1400 error = ENOPROTOOPT;
1401 } else {
1402 switch (optname) {
1403
1404 case SO_LINGER:
1405 if (m == NULL || m->m_len != sizeof(struct linger)) {
1406 error = EINVAL;
1407 goto bad;
1408 }
1409 if (mtod(m, struct linger *)->l_linger < 0 ||
1410 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1411 error = EDOM;
1412 goto bad;
1413 }
1414 so->so_linger = mtod(m, struct linger *)->l_linger;
1415 /* fall thru... */
1416
1417 case SO_DEBUG:
1418 case SO_KEEPALIVE:
1419 case SO_DONTROUTE:
1420 case SO_USELOOPBACK:
1421 case SO_BROADCAST:
1422 case SO_REUSEADDR:
1423 case SO_REUSEPORT:
1424 case SO_OOBINLINE:
1425 case SO_TIMESTAMP:
1426 if (m == NULL || m->m_len < sizeof(int)) {
1427 error = EINVAL;
1428 goto bad;
1429 }
1430 if (*mtod(m, int *))
1431 so->so_options |= optname;
1432 else
1433 so->so_options &= ~optname;
1434 break;
1435
1436 case SO_SNDBUF:
1437 case SO_RCVBUF:
1438 case SO_SNDLOWAT:
1439 case SO_RCVLOWAT:
1440 {
1441 int optval;
1442
1443 if (m == NULL || m->m_len < sizeof(int)) {
1444 error = EINVAL;
1445 goto bad;
1446 }
1447
1448 /*
1449 * Values < 1 make no sense for any of these
1450 * options, so disallow them.
1451 */
1452 optval = *mtod(m, int *);
1453 if (optval < 1) {
1454 error = EINVAL;
1455 goto bad;
1456 }
1457
1458 switch (optname) {
1459
1460 case SO_SNDBUF:
1461 case SO_RCVBUF:
1462 if (sbreserve(optname == SO_SNDBUF ?
1463 &so->so_snd : &so->so_rcv,
1464 (u_long) optval, so) == 0) {
1465 error = ENOBUFS;
1466 goto bad;
1467 }
1468 break;
1469
1470 /*
1471 * Make sure the low-water is never greater than
1472 * the high-water.
1473 */
1474 case SO_SNDLOWAT:
1475 so->so_snd.sb_lowat =
1476 (optval > so->so_snd.sb_hiwat) ?
1477 so->so_snd.sb_hiwat : optval;
1478 break;
1479 case SO_RCVLOWAT:
1480 so->so_rcv.sb_lowat =
1481 (optval > so->so_rcv.sb_hiwat) ?
1482 so->so_rcv.sb_hiwat : optval;
1483 break;
1484 }
1485 break;
1486 }
1487
1488 case SO_SNDTIMEO:
1489 case SO_RCVTIMEO:
1490 {
1491 struct timeval *tv;
1492 int val;
1493
1494 if (m == NULL || m->m_len < sizeof(*tv)) {
1495 error = EINVAL;
1496 goto bad;
1497 }
1498 tv = mtod(m, struct timeval *);
1499 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1500 error = EDOM;
1501 goto bad;
1502 }
1503 val = tv->tv_sec * hz + tv->tv_usec / tick;
1504 if (val == 0 && tv->tv_usec != 0)
1505 val = 1;
1506
1507 switch (optname) {
1508
1509 case SO_SNDTIMEO:
1510 so->so_snd.sb_timeo = val;
1511 break;
1512 case SO_RCVTIMEO:
1513 so->so_rcv.sb_timeo = val;
1514 break;
1515 }
1516 break;
1517 }
1518
1519 default:
1520 error = ENOPROTOOPT;
1521 break;
1522 }
1523 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1524 (void) ((*so->so_proto->pr_ctloutput)
1525 (PRCO_SETOPT, so, level, optname, &m0));
1526 m = NULL; /* freed by protocol */
1527 }
1528 }
1529 bad:
1530 if (m)
1531 (void) m_free(m);
1532 return (error);
1533 }
1534
1535 int
1536 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1537 {
1538 struct mbuf *m;
1539
1540 if (level != SOL_SOCKET) {
1541 if (so->so_proto && so->so_proto->pr_ctloutput) {
1542 return ((*so->so_proto->pr_ctloutput)
1543 (PRCO_GETOPT, so, level, optname, mp));
1544 } else
1545 return (ENOPROTOOPT);
1546 } else {
1547 m = m_get(M_WAIT, MT_SOOPTS);
1548 m->m_len = sizeof(int);
1549
1550 switch (optname) {
1551
1552 case SO_LINGER:
1553 m->m_len = sizeof(struct linger);
1554 mtod(m, struct linger *)->l_onoff =
1555 so->so_options & SO_LINGER;
1556 mtod(m, struct linger *)->l_linger = so->so_linger;
1557 break;
1558
1559 case SO_USELOOPBACK:
1560 case SO_DONTROUTE:
1561 case SO_DEBUG:
1562 case SO_KEEPALIVE:
1563 case SO_REUSEADDR:
1564 case SO_REUSEPORT:
1565 case SO_BROADCAST:
1566 case SO_OOBINLINE:
1567 case SO_TIMESTAMP:
1568 *mtod(m, int *) = so->so_options & optname;
1569 break;
1570
1571 case SO_TYPE:
1572 *mtod(m, int *) = so->so_type;
1573 break;
1574
1575 case SO_ERROR:
1576 *mtod(m, int *) = so->so_error;
1577 so->so_error = 0;
1578 break;
1579
1580 case SO_SNDBUF:
1581 *mtod(m, int *) = so->so_snd.sb_hiwat;
1582 break;
1583
1584 case SO_RCVBUF:
1585 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1586 break;
1587
1588 case SO_SNDLOWAT:
1589 *mtod(m, int *) = so->so_snd.sb_lowat;
1590 break;
1591
1592 case SO_RCVLOWAT:
1593 *mtod(m, int *) = so->so_rcv.sb_lowat;
1594 break;
1595
1596 case SO_SNDTIMEO:
1597 case SO_RCVTIMEO:
1598 {
1599 int val = (optname == SO_SNDTIMEO ?
1600 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1601
1602 m->m_len = sizeof(struct timeval);
1603 mtod(m, struct timeval *)->tv_sec = val / hz;
1604 mtod(m, struct timeval *)->tv_usec =
1605 (val % hz) * tick;
1606 break;
1607 }
1608
1609 case SO_OVERFLOWED:
1610 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1611 break;
1612
1613 default:
1614 (void)m_free(m);
1615 return (ENOPROTOOPT);
1616 }
1617 *mp = m;
1618 return (0);
1619 }
1620 }
1621
1622 void
1623 sohasoutofband(struct socket *so)
1624 {
1625 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1626 selwakeup(&so->so_rcv.sb_sel);
1627 }
1628
1629 static void
1630 filt_sordetach(struct knote *kn)
1631 {
1632 struct socket *so;
1633
1634 so = (struct socket *)kn->kn_fp->f_data;
1635 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1636 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1637 so->so_rcv.sb_flags &= ~SB_KNOTE;
1638 }
1639
1640 /*ARGSUSED*/
1641 static int
1642 filt_soread(struct knote *kn, long hint)
1643 {
1644 struct socket *so;
1645
1646 so = (struct socket *)kn->kn_fp->f_data;
1647 kn->kn_data = so->so_rcv.sb_cc;
1648 if (so->so_state & SS_CANTRCVMORE) {
1649 kn->kn_flags |= EV_EOF;
1650 kn->kn_fflags = so->so_error;
1651 return (1);
1652 }
1653 if (so->so_error) /* temporary udp error */
1654 return (1);
1655 if (kn->kn_sfflags & NOTE_LOWAT)
1656 return (kn->kn_data >= kn->kn_sdata);
1657 return (kn->kn_data >= so->so_rcv.sb_lowat);
1658 }
1659
1660 static void
1661 filt_sowdetach(struct knote *kn)
1662 {
1663 struct socket *so;
1664
1665 so = (struct socket *)kn->kn_fp->f_data;
1666 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1667 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1668 so->so_snd.sb_flags &= ~SB_KNOTE;
1669 }
1670
1671 /*ARGSUSED*/
1672 static int
1673 filt_sowrite(struct knote *kn, long hint)
1674 {
1675 struct socket *so;
1676
1677 so = (struct socket *)kn->kn_fp->f_data;
1678 kn->kn_data = sbspace(&so->so_snd);
1679 if (so->so_state & SS_CANTSENDMORE) {
1680 kn->kn_flags |= EV_EOF;
1681 kn->kn_fflags = so->so_error;
1682 return (1);
1683 }
1684 if (so->so_error) /* temporary udp error */
1685 return (1);
1686 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1687 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1688 return (0);
1689 if (kn->kn_sfflags & NOTE_LOWAT)
1690 return (kn->kn_data >= kn->kn_sdata);
1691 return (kn->kn_data >= so->so_snd.sb_lowat);
1692 }
1693
1694 /*ARGSUSED*/
1695 static int
1696 filt_solisten(struct knote *kn, long hint)
1697 {
1698 struct socket *so;
1699
1700 so = (struct socket *)kn->kn_fp->f_data;
1701
1702 /*
1703 * Set kn_data to number of incoming connections, not
1704 * counting partial (incomplete) connections.
1705 */
1706 kn->kn_data = so->so_qlen;
1707 return (kn->kn_data > 0);
1708 }
1709
1710 static const struct filterops solisten_filtops =
1711 { 1, NULL, filt_sordetach, filt_solisten };
1712 static const struct filterops soread_filtops =
1713 { 1, NULL, filt_sordetach, filt_soread };
1714 static const struct filterops sowrite_filtops =
1715 { 1, NULL, filt_sowdetach, filt_sowrite };
1716
1717 int
1718 soo_kqfilter(struct file *fp, struct knote *kn)
1719 {
1720 struct socket *so;
1721 struct sockbuf *sb;
1722
1723 so = (struct socket *)kn->kn_fp->f_data;
1724 switch (kn->kn_filter) {
1725 case EVFILT_READ:
1726 if (so->so_options & SO_ACCEPTCONN)
1727 kn->kn_fop = &solisten_filtops;
1728 else
1729 kn->kn_fop = &soread_filtops;
1730 sb = &so->so_rcv;
1731 break;
1732 case EVFILT_WRITE:
1733 kn->kn_fop = &sowrite_filtops;
1734 sb = &so->so_snd;
1735 break;
1736 default:
1737 return (1);
1738 }
1739 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1740 sb->sb_flags |= SB_KNOTE;
1741 return (0);
1742 }
1743
1744 #include <sys/sysctl.h>
1745
1746 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1747
1748 /*
1749 * sysctl helper routine for kern.somaxkva. ensures that the given
1750 * value is not too small.
1751 * (XXX should we maybe make sure it's not too large as well?)
1752 */
1753 static int
1754 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1755 {
1756 int error, new_somaxkva;
1757 struct sysctlnode node;
1758 int s;
1759
1760 new_somaxkva = somaxkva;
1761 node = *rnode;
1762 node.sysctl_data = &new_somaxkva;
1763 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1764 if (error || newp == NULL)
1765 return (error);
1766
1767 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1768 return (EINVAL);
1769
1770 s = splvm();
1771 simple_lock(&so_pendfree_slock);
1772 somaxkva = new_somaxkva;
1773 wakeup(&socurkva);
1774 simple_unlock(&so_pendfree_slock);
1775 splx(s);
1776
1777 return (error);
1778 }
1779
1780 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1781 {
1782
1783 sysctl_createv(clog, 0, NULL, NULL,
1784 CTLFLAG_PERMANENT,
1785 CTLTYPE_NODE, "kern", NULL,
1786 NULL, 0, NULL, 0,
1787 CTL_KERN, CTL_EOL);
1788
1789 sysctl_createv(clog, 0, NULL, NULL,
1790 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1791 CTLTYPE_INT, "somaxkva",
1792 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1793 "used for socket buffers"),
1794 sysctl_kern_somaxkva, 0, NULL, 0,
1795 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1796 }
1797