uipc_socket.c revision 1.116.2.2 1 /* $NetBSD: uipc_socket.c,v 1.116.2.2 2006/05/24 10:58:42 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.116.2.2 2006/05/24 10:58:42 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 void
131 soinit(void)
132 {
133
134 /* Set the initial adjusted socket buffer size. */
135 if (sb_max_set(sb_max))
136 panic("bad initial sb_max value: %lu", sb_max);
137
138 }
139
140 #ifdef SOSEND_NO_LOAN
141 int use_sosend_loan = 0;
142 #else
143 int use_sosend_loan = 1;
144 #endif
145
146 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
147 static struct mbuf *so_pendfree;
148
149 #ifndef SOMAXKVA
150 #define SOMAXKVA (16 * 1024 * 1024)
151 #endif
152 int somaxkva = SOMAXKVA;
153 static int socurkva;
154 static int sokvawaiters;
155
156 #define SOCK_LOAN_THRESH 4096
157 #define SOCK_LOAN_CHUNK 65536
158
159 static size_t sodopendfree(void);
160 static size_t sodopendfreel(void);
161
162 static vsize_t
163 sokvareserve(struct socket *so, vsize_t len)
164 {
165 int s;
166 int error;
167
168 s = splvm();
169 simple_lock(&so_pendfree_slock);
170 while (socurkva + len > somaxkva) {
171 size_t freed;
172
173 /*
174 * try to do pendfree.
175 */
176
177 freed = sodopendfreel();
178
179 /*
180 * if some kva was freed, try again.
181 */
182
183 if (freed)
184 continue;
185
186 SOSEND_COUNTER_INCR(&sosend_kvalimit);
187 sokvawaiters++;
188 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
189 &so_pendfree_slock);
190 sokvawaiters--;
191 if (error) {
192 len = 0;
193 break;
194 }
195 }
196 socurkva += len;
197 simple_unlock(&so_pendfree_slock);
198 splx(s);
199 return len;
200 }
201
202 static void
203 sokvaunreserve(vsize_t len)
204 {
205 int s;
206
207 s = splvm();
208 simple_lock(&so_pendfree_slock);
209 socurkva -= len;
210 if (sokvawaiters)
211 wakeup(&socurkva);
212 simple_unlock(&so_pendfree_slock);
213 splx(s);
214 }
215
216 /*
217 * sokvaalloc: allocate kva for loan.
218 */
219
220 vaddr_t
221 sokvaalloc(vsize_t len, struct socket *so)
222 {
223 vaddr_t lva;
224
225 /*
226 * reserve kva.
227 */
228
229 if (sokvareserve(so, len) == 0)
230 return 0;
231
232 /*
233 * allocate kva.
234 */
235
236 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
237 if (lva == 0) {
238 sokvaunreserve(len);
239 return (0);
240 }
241
242 return lva;
243 }
244
245 /*
246 * sokvafree: free kva for loan.
247 */
248
249 void
250 sokvafree(vaddr_t sva, vsize_t len)
251 {
252
253 /*
254 * free kva.
255 */
256
257 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
258
259 /*
260 * unreserve kva.
261 */
262
263 sokvaunreserve(len);
264 }
265
266 static void
267 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
268 {
269 vaddr_t va, sva, eva;
270 vsize_t len;
271 paddr_t pa;
272 int i, npgs;
273
274 eva = round_page((vaddr_t) buf + size);
275 sva = trunc_page((vaddr_t) buf);
276 len = eva - sva;
277 npgs = len >> PAGE_SHIFT;
278
279 if (__predict_false(pgs == NULL)) {
280 pgs = alloca(npgs * sizeof(*pgs));
281
282 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
283 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
284 panic("sodoloanfree: va 0x%lx not mapped", va);
285 pgs[i] = PHYS_TO_VM_PAGE(pa);
286 }
287 }
288
289 pmap_kremove(sva, len);
290 pmap_update(pmap_kernel());
291 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
292 sokvafree(sva, len);
293 }
294
295 static size_t
296 sodopendfree()
297 {
298 int s;
299 size_t rv;
300
301 s = splvm();
302 simple_lock(&so_pendfree_slock);
303 rv = sodopendfreel();
304 simple_unlock(&so_pendfree_slock);
305 splx(s);
306
307 return rv;
308 }
309
310 /*
311 * sodopendfreel: free mbufs on "pendfree" list.
312 * unlock and relock so_pendfree_slock when freeing mbufs.
313 *
314 * => called with so_pendfree_slock held.
315 * => called at splvm.
316 */
317
318 static size_t
319 sodopendfreel()
320 {
321 size_t rv = 0;
322
323 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
324
325 for (;;) {
326 struct mbuf *m;
327 struct mbuf *next;
328
329 m = so_pendfree;
330 if (m == NULL)
331 break;
332 so_pendfree = NULL;
333 simple_unlock(&so_pendfree_slock);
334 /* XXX splx */
335
336 for (; m != NULL; m = next) {
337 next = m->m_next;
338
339 rv += m->m_ext.ext_size;
340 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
341 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
342 m->m_ext.ext_size);
343 pool_cache_put(&mbpool_cache, m);
344 }
345
346 /* XXX splvm */
347 simple_lock(&so_pendfree_slock);
348 }
349
350 return (rv);
351 }
352
353 void
354 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
355 {
356 int s;
357
358 if (m == NULL) {
359
360 /*
361 * called from MEXTREMOVE.
362 */
363
364 sodoloanfree(NULL, buf, size);
365 return;
366 }
367
368 /*
369 * postpone freeing mbuf.
370 *
371 * we can't do it in interrupt context
372 * because we need to put kva back to kernel_map.
373 */
374
375 s = splvm();
376 simple_lock(&so_pendfree_slock);
377 m->m_next = so_pendfree;
378 so_pendfree = m;
379 if (sokvawaiters)
380 wakeup(&socurkva);
381 simple_unlock(&so_pendfree_slock);
382 splx(s);
383 }
384
385 static long
386 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
387 {
388 struct iovec *iov = uio->uio_iov;
389 vaddr_t sva, eva;
390 vsize_t len;
391 vaddr_t lva, va;
392 int npgs, i, error;
393
394 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
395 return (0);
396
397 if (iov->iov_len < (size_t) space)
398 space = iov->iov_len;
399 if (space > SOCK_LOAN_CHUNK)
400 space = SOCK_LOAN_CHUNK;
401
402 eva = round_page((vaddr_t) iov->iov_base + space);
403 sva = trunc_page((vaddr_t) iov->iov_base);
404 len = eva - sva;
405 npgs = len >> PAGE_SHIFT;
406
407 /* XXX KDASSERT */
408 KASSERT(npgs <= M_EXT_MAXPAGES);
409
410 lva = sokvaalloc(len, so);
411 if (lva == 0)
412 return 0;
413
414 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
415 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
416 if (error) {
417 sokvafree(lva, len);
418 return (0);
419 }
420
421 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
422 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
423 VM_PROT_READ);
424 pmap_update(pmap_kernel());
425
426 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
427
428 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
429 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
430
431 uio->uio_resid -= space;
432 /* uio_offset not updated, not set/used for write(2) */
433 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
434 uio->uio_iov->iov_len -= space;
435 if (uio->uio_iov->iov_len == 0) {
436 uio->uio_iov++;
437 uio->uio_iovcnt--;
438 }
439
440 return (space);
441 }
442
443 /*
444 * Socket operation routines.
445 * These routines are called by the routines in
446 * sys_socket.c or from a system process, and
447 * implement the semantics of socket operations by
448 * switching out to the protocol specific routines.
449 */
450 /*ARGSUSED*/
451 int
452 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
453 {
454 const struct protosw *prp;
455 struct socket *so;
456 uid_t uid;
457 int error, s;
458
459 if (proto)
460 prp = pffindproto(dom, proto, type);
461 else
462 prp = pffindtype(dom, type);
463 if (prp == 0 || prp->pr_usrreq == 0)
464 return (EPROTONOSUPPORT);
465 if (prp->pr_type != type)
466 return (EPROTOTYPE);
467 s = splsoftnet();
468 so = pool_get(&socket_pool, PR_WAITOK);
469 memset((caddr_t)so, 0, sizeof(*so));
470 TAILQ_INIT(&so->so_q0);
471 TAILQ_INIT(&so->so_q);
472 so->so_type = type;
473 so->so_proto = prp;
474 so->so_send = sosend;
475 so->so_receive = soreceive;
476 #ifdef MBUFTRACE
477 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
478 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
479 so->so_mowner = &prp->pr_domain->dom_mowner;
480 #endif
481 if (l != NULL) {
482 uid = kauth_cred_geteuid(l->l_proc->p_cred);
483 } else {
484 uid = 0;
485 }
486 so->so_uidinfo = uid_find(uid);
487 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
488 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
489 if (error) {
490 so->so_state |= SS_NOFDREF;
491 sofree(so);
492 splx(s);
493 return (error);
494 }
495 splx(s);
496 *aso = so;
497 return (0);
498 }
499
500 int
501 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
502 {
503 int s, error;
504
505 s = splsoftnet();
506 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
507 nam, (struct mbuf *)0, l);
508 splx(s);
509 return (error);
510 }
511
512 int
513 solisten(struct socket *so, int backlog)
514 {
515 int s, error;
516
517 s = splsoftnet();
518 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
519 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
520 if (error) {
521 splx(s);
522 return (error);
523 }
524 if (TAILQ_EMPTY(&so->so_q))
525 so->so_options |= SO_ACCEPTCONN;
526 if (backlog < 0)
527 backlog = 0;
528 so->so_qlimit = min(backlog, somaxconn);
529 splx(s);
530 return (0);
531 }
532
533 void
534 sofree(struct socket *so)
535 {
536
537 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
538 return;
539 if (so->so_head) {
540 /*
541 * We must not decommission a socket that's on the accept(2)
542 * queue. If we do, then accept(2) may hang after select(2)
543 * indicated that the listening socket was ready.
544 */
545 if (!soqremque(so, 0))
546 return;
547 }
548 if (so->so_rcv.sb_hiwat)
549 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
550 RLIM_INFINITY);
551 if (so->so_snd.sb_hiwat)
552 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
553 RLIM_INFINITY);
554 sbrelease(&so->so_snd, so);
555 sorflush(so);
556 pool_put(&socket_pool, so);
557 }
558
559 /*
560 * Close a socket on last file table reference removal.
561 * Initiate disconnect if connected.
562 * Free socket when disconnect complete.
563 */
564 int
565 soclose(struct socket *so)
566 {
567 struct socket *so2;
568 int s, error;
569
570 error = 0;
571 s = splsoftnet(); /* conservative */
572 if (so->so_options & SO_ACCEPTCONN) {
573 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
574 (void) soqremque(so2, 0);
575 (void) soabort(so2);
576 }
577 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
578 (void) soqremque(so2, 1);
579 (void) soabort(so2);
580 }
581 }
582 if (so->so_pcb == 0)
583 goto discard;
584 if (so->so_state & SS_ISCONNECTED) {
585 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
586 error = sodisconnect(so);
587 if (error)
588 goto drop;
589 }
590 if (so->so_options & SO_LINGER) {
591 if ((so->so_state & SS_ISDISCONNECTING) &&
592 (so->so_state & SS_NBIO))
593 goto drop;
594 while (so->so_state & SS_ISCONNECTED) {
595 error = tsleep((caddr_t)&so->so_timeo,
596 PSOCK | PCATCH, netcls,
597 so->so_linger * hz);
598 if (error)
599 break;
600 }
601 }
602 }
603 drop:
604 if (so->so_pcb) {
605 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
606 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
607 (struct lwp *)0);
608 if (error == 0)
609 error = error2;
610 }
611 discard:
612 if (so->so_state & SS_NOFDREF)
613 panic("soclose: NOFDREF");
614 so->so_state |= SS_NOFDREF;
615 sofree(so);
616 splx(s);
617 return (error);
618 }
619
620 /*
621 * Must be called at splsoftnet...
622 */
623 int
624 soabort(struct socket *so)
625 {
626
627 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
628 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
629 }
630
631 int
632 soaccept(struct socket *so, struct mbuf *nam)
633 {
634 int s, error;
635
636 error = 0;
637 s = splsoftnet();
638 if ((so->so_state & SS_NOFDREF) == 0)
639 panic("soaccept: !NOFDREF");
640 so->so_state &= ~SS_NOFDREF;
641 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
642 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
643 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
644 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
645 else
646 error = ECONNABORTED;
647
648 splx(s);
649 return (error);
650 }
651
652 int
653 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
654 {
655 int s, error;
656
657 if (so->so_options & SO_ACCEPTCONN)
658 return (EOPNOTSUPP);
659 s = splsoftnet();
660 /*
661 * If protocol is connection-based, can only connect once.
662 * Otherwise, if connected, try to disconnect first.
663 * This allows user to disconnect by connecting to, e.g.,
664 * a null address.
665 */
666 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
667 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
668 (error = sodisconnect(so))))
669 error = EISCONN;
670 else
671 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
672 (struct mbuf *)0, nam, (struct mbuf *)0, l);
673 splx(s);
674 return (error);
675 }
676
677 int
678 soconnect2(struct socket *so1, struct socket *so2)
679 {
680 int s, error;
681
682 s = splsoftnet();
683 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
684 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
685 (struct lwp *)0);
686 splx(s);
687 return (error);
688 }
689
690 int
691 sodisconnect(struct socket *so)
692 {
693 int s, error;
694
695 s = splsoftnet();
696 if ((so->so_state & SS_ISCONNECTED) == 0) {
697 error = ENOTCONN;
698 goto bad;
699 }
700 if (so->so_state & SS_ISDISCONNECTING) {
701 error = EALREADY;
702 goto bad;
703 }
704 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
705 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
706 (struct lwp *)0);
707 bad:
708 splx(s);
709 sodopendfree();
710 return (error);
711 }
712
713 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
714 /*
715 * Send on a socket.
716 * If send must go all at once and message is larger than
717 * send buffering, then hard error.
718 * Lock against other senders.
719 * If must go all at once and not enough room now, then
720 * inform user that this would block and do nothing.
721 * Otherwise, if nonblocking, send as much as possible.
722 * The data to be sent is described by "uio" if nonzero,
723 * otherwise by the mbuf chain "top" (which must be null
724 * if uio is not). Data provided in mbuf chain must be small
725 * enough to send all at once.
726 *
727 * Returns nonzero on error, timeout or signal; callers
728 * must check for short counts if EINTR/ERESTART are returned.
729 * Data and control buffers are freed on return.
730 */
731 int
732 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
733 struct mbuf *control, int flags, struct lwp *l)
734 {
735 struct mbuf **mp, *m;
736 struct proc *p;
737 long space, len, resid, clen, mlen;
738 int error, s, dontroute, atomic;
739
740 p = l->l_proc;
741 sodopendfree();
742
743 clen = 0;
744 atomic = sosendallatonce(so) || top;
745 if (uio)
746 resid = uio->uio_resid;
747 else
748 resid = top->m_pkthdr.len;
749 /*
750 * In theory resid should be unsigned.
751 * However, space must be signed, as it might be less than 0
752 * if we over-committed, and we must use a signed comparison
753 * of space and resid. On the other hand, a negative resid
754 * causes us to loop sending 0-length segments to the protocol.
755 */
756 if (resid < 0) {
757 error = EINVAL;
758 goto out;
759 }
760 dontroute =
761 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
762 (so->so_proto->pr_flags & PR_ATOMIC);
763 if (p)
764 p->p_stats->p_ru.ru_msgsnd++;
765 if (control)
766 clen = control->m_len;
767 #define snderr(errno) { error = errno; splx(s); goto release; }
768
769 restart:
770 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
771 goto out;
772 do {
773 s = splsoftnet();
774 if (so->so_state & SS_CANTSENDMORE)
775 snderr(EPIPE);
776 if (so->so_error) {
777 error = so->so_error;
778 so->so_error = 0;
779 splx(s);
780 goto release;
781 }
782 if ((so->so_state & SS_ISCONNECTED) == 0) {
783 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
784 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
785 !(resid == 0 && clen != 0))
786 snderr(ENOTCONN);
787 } else if (addr == 0)
788 snderr(EDESTADDRREQ);
789 }
790 space = sbspace(&so->so_snd);
791 if (flags & MSG_OOB)
792 space += 1024;
793 if ((atomic && resid > so->so_snd.sb_hiwat) ||
794 clen > so->so_snd.sb_hiwat)
795 snderr(EMSGSIZE);
796 if (space < resid + clen &&
797 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
798 if (so->so_state & SS_NBIO)
799 snderr(EWOULDBLOCK);
800 sbunlock(&so->so_snd);
801 error = sbwait(&so->so_snd);
802 splx(s);
803 if (error)
804 goto out;
805 goto restart;
806 }
807 splx(s);
808 mp = ⊤
809 space -= clen;
810 do {
811 if (uio == NULL) {
812 /*
813 * Data is prepackaged in "top".
814 */
815 resid = 0;
816 if (flags & MSG_EOR)
817 top->m_flags |= M_EOR;
818 } else do {
819 if (top == 0) {
820 m = m_gethdr(M_WAIT, MT_DATA);
821 mlen = MHLEN;
822 m->m_pkthdr.len = 0;
823 m->m_pkthdr.rcvif = (struct ifnet *)0;
824 } else {
825 m = m_get(M_WAIT, MT_DATA);
826 mlen = MLEN;
827 }
828 MCLAIM(m, so->so_snd.sb_mowner);
829 if (use_sosend_loan &&
830 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
831 space >= SOCK_LOAN_THRESH &&
832 (len = sosend_loan(so, uio, m,
833 space)) != 0) {
834 SOSEND_COUNTER_INCR(&sosend_loan_big);
835 space -= len;
836 goto have_data;
837 }
838 if (resid >= MINCLSIZE && space >= MCLBYTES) {
839 SOSEND_COUNTER_INCR(&sosend_copy_big);
840 m_clget(m, M_WAIT);
841 if ((m->m_flags & M_EXT) == 0)
842 goto nopages;
843 mlen = MCLBYTES;
844 if (atomic && top == 0) {
845 len = lmin(MCLBYTES - max_hdr,
846 resid);
847 m->m_data += max_hdr;
848 } else
849 len = lmin(MCLBYTES, resid);
850 space -= len;
851 } else {
852 nopages:
853 SOSEND_COUNTER_INCR(&sosend_copy_small);
854 len = lmin(lmin(mlen, resid), space);
855 space -= len;
856 /*
857 * For datagram protocols, leave room
858 * for protocol headers in first mbuf.
859 */
860 if (atomic && top == 0 && len < mlen)
861 MH_ALIGN(m, len);
862 }
863 error = uiomove(mtod(m, caddr_t), (int)len,
864 uio);
865 have_data:
866 resid = uio->uio_resid;
867 m->m_len = len;
868 *mp = m;
869 top->m_pkthdr.len += len;
870 if (error)
871 goto release;
872 mp = &m->m_next;
873 if (resid <= 0) {
874 if (flags & MSG_EOR)
875 top->m_flags |= M_EOR;
876 break;
877 }
878 } while (space > 0 && atomic);
879
880 s = splsoftnet();
881
882 if (so->so_state & SS_CANTSENDMORE)
883 snderr(EPIPE);
884
885 if (dontroute)
886 so->so_options |= SO_DONTROUTE;
887 if (resid > 0)
888 so->so_state |= SS_MORETOCOME;
889 error = (*so->so_proto->pr_usrreq)(so,
890 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
891 top, addr, control, curlwp); /* XXX */
892 if (dontroute)
893 so->so_options &= ~SO_DONTROUTE;
894 if (resid > 0)
895 so->so_state &= ~SS_MORETOCOME;
896 splx(s);
897
898 clen = 0;
899 control = 0;
900 top = 0;
901 mp = ⊤
902 if (error)
903 goto release;
904 } while (resid && space > 0);
905 } while (resid);
906
907 release:
908 sbunlock(&so->so_snd);
909 out:
910 if (top)
911 m_freem(top);
912 if (control)
913 m_freem(control);
914 return (error);
915 }
916
917 /*
918 * Implement receive operations on a socket.
919 * We depend on the way that records are added to the sockbuf
920 * by sbappend*. In particular, each record (mbufs linked through m_next)
921 * must begin with an address if the protocol so specifies,
922 * followed by an optional mbuf or mbufs containing ancillary data,
923 * and then zero or more mbufs of data.
924 * In order to avoid blocking network interrupts for the entire time here,
925 * we splx() while doing the actual copy to user space.
926 * Although the sockbuf is locked, new data may still be appended,
927 * and thus we must maintain consistency of the sockbuf during that time.
928 *
929 * The caller may receive the data as a single mbuf chain by supplying
930 * an mbuf **mp0 for use in returning the chain. The uio is then used
931 * only for the count in uio_resid.
932 */
933 int
934 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
935 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
936 {
937 struct lwp *l = curlwp;
938 struct mbuf *m, **mp;
939 int flags, len, error, s, offset, moff, type, orig_resid;
940 const struct protosw *pr;
941 struct mbuf *nextrecord;
942 int mbuf_removed = 0;
943
944 pr = so->so_proto;
945 mp = mp0;
946 type = 0;
947 orig_resid = uio->uio_resid;
948
949 if (paddr)
950 *paddr = 0;
951 if (controlp)
952 *controlp = 0;
953 if (flagsp)
954 flags = *flagsp &~ MSG_EOR;
955 else
956 flags = 0;
957
958 if ((flags & MSG_DONTWAIT) == 0)
959 sodopendfree();
960
961 if (flags & MSG_OOB) {
962 m = m_get(M_WAIT, MT_DATA);
963 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
964 (struct mbuf *)(long)(flags & MSG_PEEK),
965 (struct mbuf *)0, l);
966 if (error)
967 goto bad;
968 do {
969 error = uiomove(mtod(m, caddr_t),
970 (int) min(uio->uio_resid, m->m_len), uio);
971 m = m_free(m);
972 } while (uio->uio_resid && error == 0 && m);
973 bad:
974 if (m)
975 m_freem(m);
976 return (error);
977 }
978 if (mp)
979 *mp = (struct mbuf *)0;
980 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
981 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
982 (struct mbuf *)0, (struct mbuf *)0, l);
983
984 restart:
985 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
986 return (error);
987 s = splsoftnet();
988
989 m = so->so_rcv.sb_mb;
990 /*
991 * If we have less data than requested, block awaiting more
992 * (subject to any timeout) if:
993 * 1. the current count is less than the low water mark,
994 * 2. MSG_WAITALL is set, and it is possible to do the entire
995 * receive operation at once if we block (resid <= hiwat), or
996 * 3. MSG_DONTWAIT is not set.
997 * If MSG_WAITALL is set but resid is larger than the receive buffer,
998 * we have to do the receive in sections, and thus risk returning
999 * a short count if a timeout or signal occurs after we start.
1000 */
1001 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1002 so->so_rcv.sb_cc < uio->uio_resid) &&
1003 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1004 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1005 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1006 #ifdef DIAGNOSTIC
1007 if (m == 0 && so->so_rcv.sb_cc)
1008 panic("receive 1");
1009 #endif
1010 if (so->so_error) {
1011 if (m)
1012 goto dontblock;
1013 error = so->so_error;
1014 if ((flags & MSG_PEEK) == 0)
1015 so->so_error = 0;
1016 goto release;
1017 }
1018 if (so->so_state & SS_CANTRCVMORE) {
1019 if (m)
1020 goto dontblock;
1021 else
1022 goto release;
1023 }
1024 for (; m; m = m->m_next)
1025 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1026 m = so->so_rcv.sb_mb;
1027 goto dontblock;
1028 }
1029 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1030 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1031 error = ENOTCONN;
1032 goto release;
1033 }
1034 if (uio->uio_resid == 0)
1035 goto release;
1036 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1037 error = EWOULDBLOCK;
1038 goto release;
1039 }
1040 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1041 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1042 sbunlock(&so->so_rcv);
1043 error = sbwait(&so->so_rcv);
1044 splx(s);
1045 if (error)
1046 return (error);
1047 goto restart;
1048 }
1049 dontblock:
1050 /*
1051 * On entry here, m points to the first record of the socket buffer.
1052 * While we process the initial mbufs containing address and control
1053 * info, we save a copy of m->m_nextpkt into nextrecord.
1054 */
1055 if (l)
1056 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1057 KASSERT(m == so->so_rcv.sb_mb);
1058 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1059 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1060 nextrecord = m->m_nextpkt;
1061 if (pr->pr_flags & PR_ADDR) {
1062 #ifdef DIAGNOSTIC
1063 if (m->m_type != MT_SONAME)
1064 panic("receive 1a");
1065 #endif
1066 orig_resid = 0;
1067 if (flags & MSG_PEEK) {
1068 if (paddr)
1069 *paddr = m_copy(m, 0, m->m_len);
1070 m = m->m_next;
1071 } else {
1072 sbfree(&so->so_rcv, m);
1073 mbuf_removed = 1;
1074 if (paddr) {
1075 *paddr = m;
1076 so->so_rcv.sb_mb = m->m_next;
1077 m->m_next = 0;
1078 m = so->so_rcv.sb_mb;
1079 } else {
1080 MFREE(m, so->so_rcv.sb_mb);
1081 m = so->so_rcv.sb_mb;
1082 }
1083 }
1084 }
1085 while (m && m->m_type == MT_CONTROL && error == 0) {
1086 if (flags & MSG_PEEK) {
1087 if (controlp)
1088 *controlp = m_copy(m, 0, m->m_len);
1089 m = m->m_next;
1090 } else {
1091 sbfree(&so->so_rcv, m);
1092 mbuf_removed = 1;
1093 if (controlp) {
1094 struct domain *dom = pr->pr_domain;
1095 if (dom->dom_externalize && l &&
1096 mtod(m, struct cmsghdr *)->cmsg_type ==
1097 SCM_RIGHTS)
1098 error = (*dom->dom_externalize)(m, l);
1099 *controlp = m;
1100 so->so_rcv.sb_mb = m->m_next;
1101 m->m_next = 0;
1102 m = so->so_rcv.sb_mb;
1103 } else {
1104 /*
1105 * Dispose of any SCM_RIGHTS message that went
1106 * through the read path rather than recv.
1107 */
1108 if (pr->pr_domain->dom_dispose &&
1109 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1110 (*pr->pr_domain->dom_dispose)(m);
1111 MFREE(m, so->so_rcv.sb_mb);
1112 m = so->so_rcv.sb_mb;
1113 }
1114 }
1115 if (controlp) {
1116 orig_resid = 0;
1117 controlp = &(*controlp)->m_next;
1118 }
1119 }
1120
1121 /*
1122 * If m is non-NULL, we have some data to read. From now on,
1123 * make sure to keep sb_lastrecord consistent when working on
1124 * the last packet on the chain (nextrecord == NULL) and we
1125 * change m->m_nextpkt.
1126 */
1127 if (m) {
1128 if ((flags & MSG_PEEK) == 0) {
1129 m->m_nextpkt = nextrecord;
1130 /*
1131 * If nextrecord == NULL (this is a single chain),
1132 * then sb_lastrecord may not be valid here if m
1133 * was changed earlier.
1134 */
1135 if (nextrecord == NULL) {
1136 KASSERT(so->so_rcv.sb_mb == m);
1137 so->so_rcv.sb_lastrecord = m;
1138 }
1139 }
1140 type = m->m_type;
1141 if (type == MT_OOBDATA)
1142 flags |= MSG_OOB;
1143 } else {
1144 if ((flags & MSG_PEEK) == 0) {
1145 KASSERT(so->so_rcv.sb_mb == m);
1146 so->so_rcv.sb_mb = nextrecord;
1147 SB_EMPTY_FIXUP(&so->so_rcv);
1148 }
1149 }
1150 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1151 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1152
1153 moff = 0;
1154 offset = 0;
1155 while (m && uio->uio_resid > 0 && error == 0) {
1156 if (m->m_type == MT_OOBDATA) {
1157 if (type != MT_OOBDATA)
1158 break;
1159 } else if (type == MT_OOBDATA)
1160 break;
1161 #ifdef DIAGNOSTIC
1162 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1163 panic("receive 3");
1164 #endif
1165 so->so_state &= ~SS_RCVATMARK;
1166 len = uio->uio_resid;
1167 if (so->so_oobmark && len > so->so_oobmark - offset)
1168 len = so->so_oobmark - offset;
1169 if (len > m->m_len - moff)
1170 len = m->m_len - moff;
1171 /*
1172 * If mp is set, just pass back the mbufs.
1173 * Otherwise copy them out via the uio, then free.
1174 * Sockbuf must be consistent here (points to current mbuf,
1175 * it points to next record) when we drop priority;
1176 * we must note any additions to the sockbuf when we
1177 * block interrupts again.
1178 */
1179 if (mp == 0) {
1180 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1181 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1182 splx(s);
1183 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1184 s = splsoftnet();
1185 if (error) {
1186 /*
1187 * If any part of the record has been removed
1188 * (such as the MT_SONAME mbuf, which will
1189 * happen when PR_ADDR, and thus also
1190 * PR_ATOMIC, is set), then drop the entire
1191 * record to maintain the atomicity of the
1192 * receive operation.
1193 *
1194 * This avoids a later panic("receive 1a")
1195 * when compiled with DIAGNOSTIC.
1196 */
1197 if (m && mbuf_removed
1198 && (pr->pr_flags & PR_ATOMIC))
1199 (void) sbdroprecord(&so->so_rcv);
1200
1201 goto release;
1202 }
1203 } else
1204 uio->uio_resid -= len;
1205 if (len == m->m_len - moff) {
1206 if (m->m_flags & M_EOR)
1207 flags |= MSG_EOR;
1208 if (flags & MSG_PEEK) {
1209 m = m->m_next;
1210 moff = 0;
1211 } else {
1212 nextrecord = m->m_nextpkt;
1213 sbfree(&so->so_rcv, m);
1214 if (mp) {
1215 *mp = m;
1216 mp = &m->m_next;
1217 so->so_rcv.sb_mb = m = m->m_next;
1218 *mp = (struct mbuf *)0;
1219 } else {
1220 MFREE(m, so->so_rcv.sb_mb);
1221 m = so->so_rcv.sb_mb;
1222 }
1223 /*
1224 * If m != NULL, we also know that
1225 * so->so_rcv.sb_mb != NULL.
1226 */
1227 KASSERT(so->so_rcv.sb_mb == m);
1228 if (m) {
1229 m->m_nextpkt = nextrecord;
1230 if (nextrecord == NULL)
1231 so->so_rcv.sb_lastrecord = m;
1232 } else {
1233 so->so_rcv.sb_mb = nextrecord;
1234 SB_EMPTY_FIXUP(&so->so_rcv);
1235 }
1236 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1237 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1238 }
1239 } else {
1240 if (flags & MSG_PEEK)
1241 moff += len;
1242 else {
1243 if (mp)
1244 *mp = m_copym(m, 0, len, M_WAIT);
1245 m->m_data += len;
1246 m->m_len -= len;
1247 so->so_rcv.sb_cc -= len;
1248 }
1249 }
1250 if (so->so_oobmark) {
1251 if ((flags & MSG_PEEK) == 0) {
1252 so->so_oobmark -= len;
1253 if (so->so_oobmark == 0) {
1254 so->so_state |= SS_RCVATMARK;
1255 break;
1256 }
1257 } else {
1258 offset += len;
1259 if (offset == so->so_oobmark)
1260 break;
1261 }
1262 }
1263 if (flags & MSG_EOR)
1264 break;
1265 /*
1266 * If the MSG_WAITALL flag is set (for non-atomic socket),
1267 * we must not quit until "uio->uio_resid == 0" or an error
1268 * termination. If a signal/timeout occurs, return
1269 * with a short count but without error.
1270 * Keep sockbuf locked against other readers.
1271 */
1272 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1273 !sosendallatonce(so) && !nextrecord) {
1274 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1275 break;
1276 /*
1277 * If we are peeking and the socket receive buffer is
1278 * full, stop since we can't get more data to peek at.
1279 */
1280 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1281 break;
1282 /*
1283 * If we've drained the socket buffer, tell the
1284 * protocol in case it needs to do something to
1285 * get it filled again.
1286 */
1287 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1288 (*pr->pr_usrreq)(so, PRU_RCVD,
1289 (struct mbuf *)0,
1290 (struct mbuf *)(long)flags,
1291 (struct mbuf *)0, l);
1292 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1293 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1294 error = sbwait(&so->so_rcv);
1295 if (error) {
1296 sbunlock(&so->so_rcv);
1297 splx(s);
1298 return (0);
1299 }
1300 if ((m = so->so_rcv.sb_mb) != NULL)
1301 nextrecord = m->m_nextpkt;
1302 }
1303 }
1304
1305 if (m && pr->pr_flags & PR_ATOMIC) {
1306 flags |= MSG_TRUNC;
1307 if ((flags & MSG_PEEK) == 0)
1308 (void) sbdroprecord(&so->so_rcv);
1309 }
1310 if ((flags & MSG_PEEK) == 0) {
1311 if (m == 0) {
1312 /*
1313 * First part is an inline SB_EMPTY_FIXUP(). Second
1314 * part makes sure sb_lastrecord is up-to-date if
1315 * there is still data in the socket buffer.
1316 */
1317 so->so_rcv.sb_mb = nextrecord;
1318 if (so->so_rcv.sb_mb == NULL) {
1319 so->so_rcv.sb_mbtail = NULL;
1320 so->so_rcv.sb_lastrecord = NULL;
1321 } else if (nextrecord->m_nextpkt == NULL)
1322 so->so_rcv.sb_lastrecord = nextrecord;
1323 }
1324 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1325 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1326 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1327 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1328 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1329 }
1330 if (orig_resid == uio->uio_resid && orig_resid &&
1331 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1332 sbunlock(&so->so_rcv);
1333 splx(s);
1334 goto restart;
1335 }
1336
1337 if (flagsp)
1338 *flagsp |= flags;
1339 release:
1340 sbunlock(&so->so_rcv);
1341 splx(s);
1342 return (error);
1343 }
1344
1345 int
1346 soshutdown(struct socket *so, int how)
1347 {
1348 const struct protosw *pr;
1349
1350 pr = so->so_proto;
1351 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1352 return (EINVAL);
1353
1354 if (how == SHUT_RD || how == SHUT_RDWR)
1355 sorflush(so);
1356 if (how == SHUT_WR || how == SHUT_RDWR)
1357 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1358 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1359 return (0);
1360 }
1361
1362 void
1363 sorflush(struct socket *so)
1364 {
1365 struct sockbuf *sb, asb;
1366 const struct protosw *pr;
1367 int s;
1368
1369 sb = &so->so_rcv;
1370 pr = so->so_proto;
1371 sb->sb_flags |= SB_NOINTR;
1372 (void) sblock(sb, M_WAITOK);
1373 s = splnet();
1374 socantrcvmore(so);
1375 sbunlock(sb);
1376 asb = *sb;
1377 /*
1378 * Clear most of the sockbuf structure, but leave some of the
1379 * fields valid.
1380 */
1381 memset(&sb->sb_startzero, 0,
1382 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1383 splx(s);
1384 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1385 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1386 sbrelease(&asb, so);
1387 }
1388
1389 int
1390 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1391 {
1392 int error;
1393 struct mbuf *m;
1394
1395 error = 0;
1396 m = m0;
1397 if (level != SOL_SOCKET) {
1398 if (so->so_proto && so->so_proto->pr_ctloutput)
1399 return ((*so->so_proto->pr_ctloutput)
1400 (PRCO_SETOPT, so, level, optname, &m0));
1401 error = ENOPROTOOPT;
1402 } else {
1403 switch (optname) {
1404
1405 case SO_LINGER:
1406 if (m == NULL || m->m_len != sizeof(struct linger)) {
1407 error = EINVAL;
1408 goto bad;
1409 }
1410 if (mtod(m, struct linger *)->l_linger < 0 ||
1411 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1412 error = EDOM;
1413 goto bad;
1414 }
1415 so->so_linger = mtod(m, struct linger *)->l_linger;
1416 /* fall thru... */
1417
1418 case SO_DEBUG:
1419 case SO_KEEPALIVE:
1420 case SO_DONTROUTE:
1421 case SO_USELOOPBACK:
1422 case SO_BROADCAST:
1423 case SO_REUSEADDR:
1424 case SO_REUSEPORT:
1425 case SO_OOBINLINE:
1426 case SO_TIMESTAMP:
1427 if (m == NULL || m->m_len < sizeof(int)) {
1428 error = EINVAL;
1429 goto bad;
1430 }
1431 if (*mtod(m, int *))
1432 so->so_options |= optname;
1433 else
1434 so->so_options &= ~optname;
1435 break;
1436
1437 case SO_SNDBUF:
1438 case SO_RCVBUF:
1439 case SO_SNDLOWAT:
1440 case SO_RCVLOWAT:
1441 {
1442 int optval;
1443
1444 if (m == NULL || m->m_len < sizeof(int)) {
1445 error = EINVAL;
1446 goto bad;
1447 }
1448
1449 /*
1450 * Values < 1 make no sense for any of these
1451 * options, so disallow them.
1452 */
1453 optval = *mtod(m, int *);
1454 if (optval < 1) {
1455 error = EINVAL;
1456 goto bad;
1457 }
1458
1459 switch (optname) {
1460
1461 case SO_SNDBUF:
1462 case SO_RCVBUF:
1463 if (sbreserve(optname == SO_SNDBUF ?
1464 &so->so_snd : &so->so_rcv,
1465 (u_long) optval, so) == 0) {
1466 error = ENOBUFS;
1467 goto bad;
1468 }
1469 break;
1470
1471 /*
1472 * Make sure the low-water is never greater than
1473 * the high-water.
1474 */
1475 case SO_SNDLOWAT:
1476 so->so_snd.sb_lowat =
1477 (optval > so->so_snd.sb_hiwat) ?
1478 so->so_snd.sb_hiwat : optval;
1479 break;
1480 case SO_RCVLOWAT:
1481 so->so_rcv.sb_lowat =
1482 (optval > so->so_rcv.sb_hiwat) ?
1483 so->so_rcv.sb_hiwat : optval;
1484 break;
1485 }
1486 break;
1487 }
1488
1489 case SO_SNDTIMEO:
1490 case SO_RCVTIMEO:
1491 {
1492 struct timeval *tv;
1493 int val;
1494
1495 if (m == NULL || m->m_len < sizeof(*tv)) {
1496 error = EINVAL;
1497 goto bad;
1498 }
1499 tv = mtod(m, struct timeval *);
1500 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1501 error = EDOM;
1502 goto bad;
1503 }
1504 val = tv->tv_sec * hz + tv->tv_usec / tick;
1505 if (val == 0 && tv->tv_usec != 0)
1506 val = 1;
1507
1508 switch (optname) {
1509
1510 case SO_SNDTIMEO:
1511 so->so_snd.sb_timeo = val;
1512 break;
1513 case SO_RCVTIMEO:
1514 so->so_rcv.sb_timeo = val;
1515 break;
1516 }
1517 break;
1518 }
1519
1520 default:
1521 error = ENOPROTOOPT;
1522 break;
1523 }
1524 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1525 (void) ((*so->so_proto->pr_ctloutput)
1526 (PRCO_SETOPT, so, level, optname, &m0));
1527 m = NULL; /* freed by protocol */
1528 }
1529 }
1530 bad:
1531 if (m)
1532 (void) m_free(m);
1533 return (error);
1534 }
1535
1536 int
1537 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1538 {
1539 struct mbuf *m;
1540
1541 if (level != SOL_SOCKET) {
1542 if (so->so_proto && so->so_proto->pr_ctloutput) {
1543 return ((*so->so_proto->pr_ctloutput)
1544 (PRCO_GETOPT, so, level, optname, mp));
1545 } else
1546 return (ENOPROTOOPT);
1547 } else {
1548 m = m_get(M_WAIT, MT_SOOPTS);
1549 m->m_len = sizeof(int);
1550
1551 switch (optname) {
1552
1553 case SO_LINGER:
1554 m->m_len = sizeof(struct linger);
1555 mtod(m, struct linger *)->l_onoff =
1556 so->so_options & SO_LINGER;
1557 mtod(m, struct linger *)->l_linger = so->so_linger;
1558 break;
1559
1560 case SO_USELOOPBACK:
1561 case SO_DONTROUTE:
1562 case SO_DEBUG:
1563 case SO_KEEPALIVE:
1564 case SO_REUSEADDR:
1565 case SO_REUSEPORT:
1566 case SO_BROADCAST:
1567 case SO_OOBINLINE:
1568 case SO_TIMESTAMP:
1569 *mtod(m, int *) = so->so_options & optname;
1570 break;
1571
1572 case SO_TYPE:
1573 *mtod(m, int *) = so->so_type;
1574 break;
1575
1576 case SO_ERROR:
1577 *mtod(m, int *) = so->so_error;
1578 so->so_error = 0;
1579 break;
1580
1581 case SO_SNDBUF:
1582 *mtod(m, int *) = so->so_snd.sb_hiwat;
1583 break;
1584
1585 case SO_RCVBUF:
1586 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1587 break;
1588
1589 case SO_SNDLOWAT:
1590 *mtod(m, int *) = so->so_snd.sb_lowat;
1591 break;
1592
1593 case SO_RCVLOWAT:
1594 *mtod(m, int *) = so->so_rcv.sb_lowat;
1595 break;
1596
1597 case SO_SNDTIMEO:
1598 case SO_RCVTIMEO:
1599 {
1600 int val = (optname == SO_SNDTIMEO ?
1601 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1602
1603 m->m_len = sizeof(struct timeval);
1604 mtod(m, struct timeval *)->tv_sec = val / hz;
1605 mtod(m, struct timeval *)->tv_usec =
1606 (val % hz) * tick;
1607 break;
1608 }
1609
1610 case SO_OVERFLOWED:
1611 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1612 break;
1613
1614 default:
1615 (void)m_free(m);
1616 return (ENOPROTOOPT);
1617 }
1618 *mp = m;
1619 return (0);
1620 }
1621 }
1622
1623 void
1624 sohasoutofband(struct socket *so)
1625 {
1626 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1627 selwakeup(&so->so_rcv.sb_sel);
1628 }
1629
1630 static void
1631 filt_sordetach(struct knote *kn)
1632 {
1633 struct socket *so;
1634
1635 so = (struct socket *)kn->kn_fp->f_data;
1636 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1637 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1638 so->so_rcv.sb_flags &= ~SB_KNOTE;
1639 }
1640
1641 /*ARGSUSED*/
1642 static int
1643 filt_soread(struct knote *kn, long hint)
1644 {
1645 struct socket *so;
1646
1647 so = (struct socket *)kn->kn_fp->f_data;
1648 kn->kn_data = so->so_rcv.sb_cc;
1649 if (so->so_state & SS_CANTRCVMORE) {
1650 kn->kn_flags |= EV_EOF;
1651 kn->kn_fflags = so->so_error;
1652 return (1);
1653 }
1654 if (so->so_error) /* temporary udp error */
1655 return (1);
1656 if (kn->kn_sfflags & NOTE_LOWAT)
1657 return (kn->kn_data >= kn->kn_sdata);
1658 return (kn->kn_data >= so->so_rcv.sb_lowat);
1659 }
1660
1661 static void
1662 filt_sowdetach(struct knote *kn)
1663 {
1664 struct socket *so;
1665
1666 so = (struct socket *)kn->kn_fp->f_data;
1667 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1668 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1669 so->so_snd.sb_flags &= ~SB_KNOTE;
1670 }
1671
1672 /*ARGSUSED*/
1673 static int
1674 filt_sowrite(struct knote *kn, long hint)
1675 {
1676 struct socket *so;
1677
1678 so = (struct socket *)kn->kn_fp->f_data;
1679 kn->kn_data = sbspace(&so->so_snd);
1680 if (so->so_state & SS_CANTSENDMORE) {
1681 kn->kn_flags |= EV_EOF;
1682 kn->kn_fflags = so->so_error;
1683 return (1);
1684 }
1685 if (so->so_error) /* temporary udp error */
1686 return (1);
1687 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1688 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1689 return (0);
1690 if (kn->kn_sfflags & NOTE_LOWAT)
1691 return (kn->kn_data >= kn->kn_sdata);
1692 return (kn->kn_data >= so->so_snd.sb_lowat);
1693 }
1694
1695 /*ARGSUSED*/
1696 static int
1697 filt_solisten(struct knote *kn, long hint)
1698 {
1699 struct socket *so;
1700
1701 so = (struct socket *)kn->kn_fp->f_data;
1702
1703 /*
1704 * Set kn_data to number of incoming connections, not
1705 * counting partial (incomplete) connections.
1706 */
1707 kn->kn_data = so->so_qlen;
1708 return (kn->kn_data > 0);
1709 }
1710
1711 static const struct filterops solisten_filtops =
1712 { 1, NULL, filt_sordetach, filt_solisten };
1713 static const struct filterops soread_filtops =
1714 { 1, NULL, filt_sordetach, filt_soread };
1715 static const struct filterops sowrite_filtops =
1716 { 1, NULL, filt_sowdetach, filt_sowrite };
1717
1718 int
1719 soo_kqfilter(struct file *fp, struct knote *kn)
1720 {
1721 struct socket *so;
1722 struct sockbuf *sb;
1723
1724 so = (struct socket *)kn->kn_fp->f_data;
1725 switch (kn->kn_filter) {
1726 case EVFILT_READ:
1727 if (so->so_options & SO_ACCEPTCONN)
1728 kn->kn_fop = &solisten_filtops;
1729 else
1730 kn->kn_fop = &soread_filtops;
1731 sb = &so->so_rcv;
1732 break;
1733 case EVFILT_WRITE:
1734 kn->kn_fop = &sowrite_filtops;
1735 sb = &so->so_snd;
1736 break;
1737 default:
1738 return (1);
1739 }
1740 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1741 sb->sb_flags |= SB_KNOTE;
1742 return (0);
1743 }
1744
1745 #include <sys/sysctl.h>
1746
1747 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1748
1749 /*
1750 * sysctl helper routine for kern.somaxkva. ensures that the given
1751 * value is not too small.
1752 * (XXX should we maybe make sure it's not too large as well?)
1753 */
1754 static int
1755 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1756 {
1757 int error, new_somaxkva;
1758 struct sysctlnode node;
1759 int s;
1760
1761 new_somaxkva = somaxkva;
1762 node = *rnode;
1763 node.sysctl_data = &new_somaxkva;
1764 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1765 if (error || newp == NULL)
1766 return (error);
1767
1768 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1769 return (EINVAL);
1770
1771 s = splvm();
1772 simple_lock(&so_pendfree_slock);
1773 somaxkva = new_somaxkva;
1774 wakeup(&socurkva);
1775 simple_unlock(&so_pendfree_slock);
1776 splx(s);
1777
1778 return (error);
1779 }
1780
1781 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1782 {
1783
1784 sysctl_createv(clog, 0, NULL, NULL,
1785 CTLFLAG_PERMANENT,
1786 CTLTYPE_NODE, "kern", NULL,
1787 NULL, 0, NULL, 0,
1788 CTL_KERN, CTL_EOL);
1789
1790 sysctl_createv(clog, 0, NULL, NULL,
1791 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1792 CTLTYPE_INT, "somaxkva",
1793 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1794 "used for socket buffers"),
1795 sysctl_kern_somaxkva, 0, NULL, 0,
1796 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1797 }
1798