uipc_socket.c revision 1.116.2.4 1 /* $NetBSD: uipc_socket.c,v 1.116.2.4 2006/08/11 15:45:47 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.116.2.4 2006/08/11 15:45:47 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
259 {
260 vaddr_t va, sva, eva;
261 vsize_t len;
262 paddr_t pa;
263 int i, npgs;
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 if (__predict_false(pgs == NULL)) {
271 pgs = alloca(npgs * sizeof(*pgs));
272
273 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
274 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
275 panic("sodoloanfree: va 0x%lx not mapped", va);
276 pgs[i] = PHYS_TO_VM_PAGE(pa);
277 }
278 }
279
280 pmap_kremove(sva, len);
281 pmap_update(pmap_kernel());
282 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
283 sokvafree(sva, len);
284 }
285
286 static size_t
287 sodopendfree()
288 {
289 int s;
290 size_t rv;
291
292 s = splvm();
293 simple_lock(&so_pendfree_slock);
294 rv = sodopendfreel();
295 simple_unlock(&so_pendfree_slock);
296 splx(s);
297
298 return rv;
299 }
300
301 /*
302 * sodopendfreel: free mbufs on "pendfree" list.
303 * unlock and relock so_pendfree_slock when freeing mbufs.
304 *
305 * => called with so_pendfree_slock held.
306 * => called at splvm.
307 */
308
309 static size_t
310 sodopendfreel()
311 {
312 size_t rv = 0;
313
314 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
315
316 for (;;) {
317 struct mbuf *m;
318 struct mbuf *next;
319
320 m = so_pendfree;
321 if (m == NULL)
322 break;
323 so_pendfree = NULL;
324 simple_unlock(&so_pendfree_slock);
325 /* XXX splx */
326
327 for (; m != NULL; m = next) {
328 next = m->m_next;
329
330 rv += m->m_ext.ext_size;
331 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
332 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
333 m->m_ext.ext_size);
334 pool_cache_put(&mbpool_cache, m);
335 }
336
337 /* XXX splvm */
338 simple_lock(&so_pendfree_slock);
339 }
340
341 return (rv);
342 }
343
344 void
345 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
346 {
347 int s;
348
349 if (m == NULL) {
350
351 /*
352 * called from MEXTREMOVE.
353 */
354
355 sodoloanfree(NULL, buf, size);
356 return;
357 }
358
359 /*
360 * postpone freeing mbuf.
361 *
362 * we can't do it in interrupt context
363 * because we need to put kva back to kernel_map.
364 */
365
366 s = splvm();
367 simple_lock(&so_pendfree_slock);
368 m->m_next = so_pendfree;
369 so_pendfree = m;
370 if (sokvawaiters)
371 wakeup(&socurkva);
372 simple_unlock(&so_pendfree_slock);
373 splx(s);
374 }
375
376 static long
377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
378 {
379 struct iovec *iov = uio->uio_iov;
380 vaddr_t sva, eva;
381 vsize_t len;
382 vaddr_t lva, va;
383 int npgs, i, error;
384
385 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
386 return (0);
387
388 if (iov->iov_len < (size_t) space)
389 space = iov->iov_len;
390 if (space > SOCK_LOAN_CHUNK)
391 space = SOCK_LOAN_CHUNK;
392
393 eva = round_page((vaddr_t) iov->iov_base + space);
394 sva = trunc_page((vaddr_t) iov->iov_base);
395 len = eva - sva;
396 npgs = len >> PAGE_SHIFT;
397
398 /* XXX KDASSERT */
399 KASSERT(npgs <= M_EXT_MAXPAGES);
400
401 lva = sokvaalloc(len, so);
402 if (lva == 0)
403 return 0;
404
405 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
406 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
407 if (error) {
408 sokvafree(lva, len);
409 return (0);
410 }
411
412 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
413 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
414 VM_PROT_READ);
415 pmap_update(pmap_kernel());
416
417 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
418
419 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
420 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
421
422 uio->uio_resid -= space;
423 /* uio_offset not updated, not set/used for write(2) */
424 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
425 uio->uio_iov->iov_len -= space;
426 if (uio->uio_iov->iov_len == 0) {
427 uio->uio_iov++;
428 uio->uio_iovcnt--;
429 }
430
431 return (space);
432 }
433
434 static int
435 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
436 {
437
438 KASSERT(ce == &sokva_reclaimerentry);
439 KASSERT(obj == NULL);
440
441 sodopendfree();
442 if (!vm_map_starved_p(kernel_map)) {
443 return CALLBACK_CHAIN_ABORT;
444 }
445 return CALLBACK_CHAIN_CONTINUE;
446 }
447
448 void
449 soinit(void)
450 {
451
452 /* Set the initial adjusted socket buffer size. */
453 if (sb_max_set(sb_max))
454 panic("bad initial sb_max value: %lu", sb_max);
455
456 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
457 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
458 }
459
460 /*
461 * Socket operation routines.
462 * These routines are called by the routines in
463 * sys_socket.c or from a system process, and
464 * implement the semantics of socket operations by
465 * switching out to the protocol specific routines.
466 */
467 /*ARGSUSED*/
468 int
469 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
470 {
471 const struct protosw *prp;
472 struct socket *so;
473 uid_t uid;
474 int error, s;
475
476 if (proto)
477 prp = pffindproto(dom, proto, type);
478 else
479 prp = pffindtype(dom, type);
480 if (prp == 0) {
481 /* no support for domain */
482 if (pffinddomain(dom) == 0)
483 return (EAFNOSUPPORT);
484 /* no support for socket type */
485 if (proto == 0 && type != 0)
486 return (EPROTOTYPE);
487 return (EPROTONOSUPPORT);
488 }
489 if (prp->pr_usrreq == 0)
490 return (EPROTONOSUPPORT);
491 if (prp->pr_type != type)
492 return (EPROTOTYPE);
493 s = splsoftnet();
494 so = pool_get(&socket_pool, PR_WAITOK);
495 memset((caddr_t)so, 0, sizeof(*so));
496 TAILQ_INIT(&so->so_q0);
497 TAILQ_INIT(&so->so_q);
498 so->so_type = type;
499 so->so_proto = prp;
500 so->so_send = sosend;
501 so->so_receive = soreceive;
502 #ifdef MBUFTRACE
503 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
504 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
505 so->so_mowner = &prp->pr_domain->dom_mowner;
506 #endif
507 if (l != NULL) {
508 uid = kauth_cred_geteuid(l->l_cred);
509 } else {
510 uid = 0;
511 }
512 so->so_uidinfo = uid_find(uid);
513 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
514 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
515 if (error) {
516 so->so_state |= SS_NOFDREF;
517 sofree(so);
518 splx(s);
519 return (error);
520 }
521 splx(s);
522 *aso = so;
523 return (0);
524 }
525
526 int
527 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
528 {
529 int s, error;
530
531 s = splsoftnet();
532 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
533 nam, (struct mbuf *)0, l);
534 splx(s);
535 return (error);
536 }
537
538 int
539 solisten(struct socket *so, int backlog)
540 {
541 int s, error;
542
543 s = splsoftnet();
544 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
545 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
546 if (error) {
547 splx(s);
548 return (error);
549 }
550 if (TAILQ_EMPTY(&so->so_q))
551 so->so_options |= SO_ACCEPTCONN;
552 if (backlog < 0)
553 backlog = 0;
554 so->so_qlimit = min(backlog, somaxconn);
555 splx(s);
556 return (0);
557 }
558
559 void
560 sofree(struct socket *so)
561 {
562
563 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
564 return;
565 if (so->so_head) {
566 /*
567 * We must not decommission a socket that's on the accept(2)
568 * queue. If we do, then accept(2) may hang after select(2)
569 * indicated that the listening socket was ready.
570 */
571 if (!soqremque(so, 0))
572 return;
573 }
574 if (so->so_rcv.sb_hiwat)
575 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
576 RLIM_INFINITY);
577 if (so->so_snd.sb_hiwat)
578 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
579 RLIM_INFINITY);
580 sbrelease(&so->so_snd, so);
581 sorflush(so);
582 pool_put(&socket_pool, so);
583 }
584
585 /*
586 * Close a socket on last file table reference removal.
587 * Initiate disconnect if connected.
588 * Free socket when disconnect complete.
589 */
590 int
591 soclose(struct socket *so)
592 {
593 struct socket *so2;
594 int s, error;
595
596 error = 0;
597 s = splsoftnet(); /* conservative */
598 if (so->so_options & SO_ACCEPTCONN) {
599 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
600 (void) soqremque(so2, 0);
601 (void) soabort(so2);
602 }
603 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
604 (void) soqremque(so2, 1);
605 (void) soabort(so2);
606 }
607 }
608 if (so->so_pcb == 0)
609 goto discard;
610 if (so->so_state & SS_ISCONNECTED) {
611 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
612 error = sodisconnect(so);
613 if (error)
614 goto drop;
615 }
616 if (so->so_options & SO_LINGER) {
617 if ((so->so_state & SS_ISDISCONNECTING) &&
618 (so->so_state & SS_NBIO))
619 goto drop;
620 while (so->so_state & SS_ISCONNECTED) {
621 error = tsleep((caddr_t)&so->so_timeo,
622 PSOCK | PCATCH, netcls,
623 so->so_linger * hz);
624 if (error)
625 break;
626 }
627 }
628 }
629 drop:
630 if (so->so_pcb) {
631 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
632 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
633 (struct lwp *)0);
634 if (error == 0)
635 error = error2;
636 }
637 discard:
638 if (so->so_state & SS_NOFDREF)
639 panic("soclose: NOFDREF");
640 so->so_state |= SS_NOFDREF;
641 sofree(so);
642 splx(s);
643 return (error);
644 }
645
646 /*
647 * Must be called at splsoftnet...
648 */
649 int
650 soabort(struct socket *so)
651 {
652
653 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
654 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
655 }
656
657 int
658 soaccept(struct socket *so, struct mbuf *nam)
659 {
660 int s, error;
661
662 error = 0;
663 s = splsoftnet();
664 if ((so->so_state & SS_NOFDREF) == 0)
665 panic("soaccept: !NOFDREF");
666 so->so_state &= ~SS_NOFDREF;
667 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
668 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
669 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
670 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
671 else
672 error = ECONNABORTED;
673
674 splx(s);
675 return (error);
676 }
677
678 int
679 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
680 {
681 int s, error;
682
683 if (so->so_options & SO_ACCEPTCONN)
684 return (EOPNOTSUPP);
685 s = splsoftnet();
686 /*
687 * If protocol is connection-based, can only connect once.
688 * Otherwise, if connected, try to disconnect first.
689 * This allows user to disconnect by connecting to, e.g.,
690 * a null address.
691 */
692 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
693 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
694 (error = sodisconnect(so))))
695 error = EISCONN;
696 else
697 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
698 (struct mbuf *)0, nam, (struct mbuf *)0, l);
699 splx(s);
700 return (error);
701 }
702
703 int
704 soconnect2(struct socket *so1, struct socket *so2)
705 {
706 int s, error;
707
708 s = splsoftnet();
709 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
710 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
711 (struct lwp *)0);
712 splx(s);
713 return (error);
714 }
715
716 int
717 sodisconnect(struct socket *so)
718 {
719 int s, error;
720
721 s = splsoftnet();
722 if ((so->so_state & SS_ISCONNECTED) == 0) {
723 error = ENOTCONN;
724 goto bad;
725 }
726 if (so->so_state & SS_ISDISCONNECTING) {
727 error = EALREADY;
728 goto bad;
729 }
730 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
731 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
732 (struct lwp *)0);
733 bad:
734 splx(s);
735 sodopendfree();
736 return (error);
737 }
738
739 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
740 /*
741 * Send on a socket.
742 * If send must go all at once and message is larger than
743 * send buffering, then hard error.
744 * Lock against other senders.
745 * If must go all at once and not enough room now, then
746 * inform user that this would block and do nothing.
747 * Otherwise, if nonblocking, send as much as possible.
748 * The data to be sent is described by "uio" if nonzero,
749 * otherwise by the mbuf chain "top" (which must be null
750 * if uio is not). Data provided in mbuf chain must be small
751 * enough to send all at once.
752 *
753 * Returns nonzero on error, timeout or signal; callers
754 * must check for short counts if EINTR/ERESTART are returned.
755 * Data and control buffers are freed on return.
756 */
757 int
758 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
759 struct mbuf *control, int flags, struct lwp *l)
760 {
761 struct mbuf **mp, *m;
762 struct proc *p;
763 long space, len, resid, clen, mlen;
764 int error, s, dontroute, atomic;
765
766 p = l->l_proc;
767 sodopendfree();
768
769 clen = 0;
770 atomic = sosendallatonce(so) || top;
771 if (uio)
772 resid = uio->uio_resid;
773 else
774 resid = top->m_pkthdr.len;
775 /*
776 * In theory resid should be unsigned.
777 * However, space must be signed, as it might be less than 0
778 * if we over-committed, and we must use a signed comparison
779 * of space and resid. On the other hand, a negative resid
780 * causes us to loop sending 0-length segments to the protocol.
781 */
782 if (resid < 0) {
783 error = EINVAL;
784 goto out;
785 }
786 dontroute =
787 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
788 (so->so_proto->pr_flags & PR_ATOMIC);
789 if (p)
790 p->p_stats->p_ru.ru_msgsnd++;
791 if (control)
792 clen = control->m_len;
793 #define snderr(errno) { error = errno; splx(s); goto release; }
794
795 restart:
796 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
797 goto out;
798 do {
799 s = splsoftnet();
800 if (so->so_state & SS_CANTSENDMORE)
801 snderr(EPIPE);
802 if (so->so_error) {
803 error = so->so_error;
804 so->so_error = 0;
805 splx(s);
806 goto release;
807 }
808 if ((so->so_state & SS_ISCONNECTED) == 0) {
809 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
810 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
811 !(resid == 0 && clen != 0))
812 snderr(ENOTCONN);
813 } else if (addr == 0)
814 snderr(EDESTADDRREQ);
815 }
816 space = sbspace(&so->so_snd);
817 if (flags & MSG_OOB)
818 space += 1024;
819 if ((atomic && resid > so->so_snd.sb_hiwat) ||
820 clen > so->so_snd.sb_hiwat)
821 snderr(EMSGSIZE);
822 if (space < resid + clen &&
823 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
824 if (so->so_state & SS_NBIO)
825 snderr(EWOULDBLOCK);
826 sbunlock(&so->so_snd);
827 error = sbwait(&so->so_snd);
828 splx(s);
829 if (error)
830 goto out;
831 goto restart;
832 }
833 splx(s);
834 mp = ⊤
835 space -= clen;
836 do {
837 if (uio == NULL) {
838 /*
839 * Data is prepackaged in "top".
840 */
841 resid = 0;
842 if (flags & MSG_EOR)
843 top->m_flags |= M_EOR;
844 } else do {
845 if (top == 0) {
846 m = m_gethdr(M_WAIT, MT_DATA);
847 mlen = MHLEN;
848 m->m_pkthdr.len = 0;
849 m->m_pkthdr.rcvif = (struct ifnet *)0;
850 } else {
851 m = m_get(M_WAIT, MT_DATA);
852 mlen = MLEN;
853 }
854 MCLAIM(m, so->so_snd.sb_mowner);
855 if (sock_loan_thresh >= 0 &&
856 uio->uio_iov->iov_len >= sock_loan_thresh &&
857 space >= sock_loan_thresh &&
858 (len = sosend_loan(so, uio, m,
859 space)) != 0) {
860 SOSEND_COUNTER_INCR(&sosend_loan_big);
861 space -= len;
862 goto have_data;
863 }
864 if (resid >= MINCLSIZE && space >= MCLBYTES) {
865 SOSEND_COUNTER_INCR(&sosend_copy_big);
866 m_clget(m, M_WAIT);
867 if ((m->m_flags & M_EXT) == 0)
868 goto nopages;
869 mlen = MCLBYTES;
870 if (atomic && top == 0) {
871 len = lmin(MCLBYTES - max_hdr,
872 resid);
873 m->m_data += max_hdr;
874 } else
875 len = lmin(MCLBYTES, resid);
876 space -= len;
877 } else {
878 nopages:
879 SOSEND_COUNTER_INCR(&sosend_copy_small);
880 len = lmin(lmin(mlen, resid), space);
881 space -= len;
882 /*
883 * For datagram protocols, leave room
884 * for protocol headers in first mbuf.
885 */
886 if (atomic && top == 0 && len < mlen)
887 MH_ALIGN(m, len);
888 }
889 error = uiomove(mtod(m, caddr_t), (int)len,
890 uio);
891 have_data:
892 resid = uio->uio_resid;
893 m->m_len = len;
894 *mp = m;
895 top->m_pkthdr.len += len;
896 if (error)
897 goto release;
898 mp = &m->m_next;
899 if (resid <= 0) {
900 if (flags & MSG_EOR)
901 top->m_flags |= M_EOR;
902 break;
903 }
904 } while (space > 0 && atomic);
905
906 s = splsoftnet();
907
908 if (so->so_state & SS_CANTSENDMORE)
909 snderr(EPIPE);
910
911 if (dontroute)
912 so->so_options |= SO_DONTROUTE;
913 if (resid > 0)
914 so->so_state |= SS_MORETOCOME;
915 error = (*so->so_proto->pr_usrreq)(so,
916 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
917 top, addr, control, curlwp); /* XXX */
918 if (dontroute)
919 so->so_options &= ~SO_DONTROUTE;
920 if (resid > 0)
921 so->so_state &= ~SS_MORETOCOME;
922 splx(s);
923
924 clen = 0;
925 control = 0;
926 top = 0;
927 mp = ⊤
928 if (error)
929 goto release;
930 } while (resid && space > 0);
931 } while (resid);
932
933 release:
934 sbunlock(&so->so_snd);
935 out:
936 if (top)
937 m_freem(top);
938 if (control)
939 m_freem(control);
940 return (error);
941 }
942
943 /*
944 * Implement receive operations on a socket.
945 * We depend on the way that records are added to the sockbuf
946 * by sbappend*. In particular, each record (mbufs linked through m_next)
947 * must begin with an address if the protocol so specifies,
948 * followed by an optional mbuf or mbufs containing ancillary data,
949 * and then zero or more mbufs of data.
950 * In order to avoid blocking network interrupts for the entire time here,
951 * we splx() while doing the actual copy to user space.
952 * Although the sockbuf is locked, new data may still be appended,
953 * and thus we must maintain consistency of the sockbuf during that time.
954 *
955 * The caller may receive the data as a single mbuf chain by supplying
956 * an mbuf **mp0 for use in returning the chain. The uio is then used
957 * only for the count in uio_resid.
958 */
959 int
960 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
961 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
962 {
963 struct lwp *l = curlwp;
964 struct mbuf *m, **mp;
965 int flags, len, error, s, offset, moff, type, orig_resid;
966 const struct protosw *pr;
967 struct mbuf *nextrecord;
968 int mbuf_removed = 0;
969
970 pr = so->so_proto;
971 mp = mp0;
972 type = 0;
973 orig_resid = uio->uio_resid;
974
975 if (paddr)
976 *paddr = 0;
977 if (controlp)
978 *controlp = 0;
979 if (flagsp)
980 flags = *flagsp &~ MSG_EOR;
981 else
982 flags = 0;
983
984 if ((flags & MSG_DONTWAIT) == 0)
985 sodopendfree();
986
987 if (flags & MSG_OOB) {
988 m = m_get(M_WAIT, MT_DATA);
989 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
990 (struct mbuf *)(long)(flags & MSG_PEEK),
991 (struct mbuf *)0, l);
992 if (error)
993 goto bad;
994 do {
995 error = uiomove(mtod(m, caddr_t),
996 (int) min(uio->uio_resid, m->m_len), uio);
997 m = m_free(m);
998 } while (uio->uio_resid && error == 0 && m);
999 bad:
1000 if (m)
1001 m_freem(m);
1002 return (error);
1003 }
1004 if (mp)
1005 *mp = (struct mbuf *)0;
1006 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1007 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1008 (struct mbuf *)0, (struct mbuf *)0, l);
1009
1010 restart:
1011 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1012 return (error);
1013 s = splsoftnet();
1014
1015 m = so->so_rcv.sb_mb;
1016 /*
1017 * If we have less data than requested, block awaiting more
1018 * (subject to any timeout) if:
1019 * 1. the current count is less than the low water mark,
1020 * 2. MSG_WAITALL is set, and it is possible to do the entire
1021 * receive operation at once if we block (resid <= hiwat), or
1022 * 3. MSG_DONTWAIT is not set.
1023 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1024 * we have to do the receive in sections, and thus risk returning
1025 * a short count if a timeout or signal occurs after we start.
1026 */
1027 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1028 so->so_rcv.sb_cc < uio->uio_resid) &&
1029 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1030 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1031 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1032 #ifdef DIAGNOSTIC
1033 if (m == 0 && so->so_rcv.sb_cc)
1034 panic("receive 1");
1035 #endif
1036 if (so->so_error) {
1037 if (m)
1038 goto dontblock;
1039 error = so->so_error;
1040 if ((flags & MSG_PEEK) == 0)
1041 so->so_error = 0;
1042 goto release;
1043 }
1044 if (so->so_state & SS_CANTRCVMORE) {
1045 if (m)
1046 goto dontblock;
1047 else
1048 goto release;
1049 }
1050 for (; m; m = m->m_next)
1051 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1052 m = so->so_rcv.sb_mb;
1053 goto dontblock;
1054 }
1055 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1056 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1057 error = ENOTCONN;
1058 goto release;
1059 }
1060 if (uio->uio_resid == 0)
1061 goto release;
1062 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1063 error = EWOULDBLOCK;
1064 goto release;
1065 }
1066 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1067 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1068 sbunlock(&so->so_rcv);
1069 error = sbwait(&so->so_rcv);
1070 splx(s);
1071 if (error)
1072 return (error);
1073 goto restart;
1074 }
1075 dontblock:
1076 /*
1077 * On entry here, m points to the first record of the socket buffer.
1078 * While we process the initial mbufs containing address and control
1079 * info, we save a copy of m->m_nextpkt into nextrecord.
1080 */
1081 if (l)
1082 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1083 KASSERT(m == so->so_rcv.sb_mb);
1084 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1085 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1086 nextrecord = m->m_nextpkt;
1087 if (pr->pr_flags & PR_ADDR) {
1088 #ifdef DIAGNOSTIC
1089 if (m->m_type != MT_SONAME)
1090 panic("receive 1a");
1091 #endif
1092 orig_resid = 0;
1093 if (flags & MSG_PEEK) {
1094 if (paddr)
1095 *paddr = m_copy(m, 0, m->m_len);
1096 m = m->m_next;
1097 } else {
1098 sbfree(&so->so_rcv, m);
1099 mbuf_removed = 1;
1100 if (paddr) {
1101 *paddr = m;
1102 so->so_rcv.sb_mb = m->m_next;
1103 m->m_next = 0;
1104 m = so->so_rcv.sb_mb;
1105 } else {
1106 MFREE(m, so->so_rcv.sb_mb);
1107 m = so->so_rcv.sb_mb;
1108 }
1109 }
1110 }
1111 while (m && m->m_type == MT_CONTROL && error == 0) {
1112 if (flags & MSG_PEEK) {
1113 if (controlp)
1114 *controlp = m_copy(m, 0, m->m_len);
1115 m = m->m_next;
1116 } else {
1117 sbfree(&so->so_rcv, m);
1118 mbuf_removed = 1;
1119 if (controlp) {
1120 struct domain *dom = pr->pr_domain;
1121 if (dom->dom_externalize && l &&
1122 mtod(m, struct cmsghdr *)->cmsg_type ==
1123 SCM_RIGHTS)
1124 error = (*dom->dom_externalize)(m, l);
1125 *controlp = m;
1126 so->so_rcv.sb_mb = m->m_next;
1127 m->m_next = 0;
1128 m = so->so_rcv.sb_mb;
1129 } else {
1130 /*
1131 * Dispose of any SCM_RIGHTS message that went
1132 * through the read path rather than recv.
1133 */
1134 if (pr->pr_domain->dom_dispose &&
1135 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1136 (*pr->pr_domain->dom_dispose)(m);
1137 MFREE(m, so->so_rcv.sb_mb);
1138 m = so->so_rcv.sb_mb;
1139 }
1140 }
1141 if (controlp) {
1142 orig_resid = 0;
1143 controlp = &(*controlp)->m_next;
1144 }
1145 }
1146
1147 /*
1148 * If m is non-NULL, we have some data to read. From now on,
1149 * make sure to keep sb_lastrecord consistent when working on
1150 * the last packet on the chain (nextrecord == NULL) and we
1151 * change m->m_nextpkt.
1152 */
1153 if (m) {
1154 if ((flags & MSG_PEEK) == 0) {
1155 m->m_nextpkt = nextrecord;
1156 /*
1157 * If nextrecord == NULL (this is a single chain),
1158 * then sb_lastrecord may not be valid here if m
1159 * was changed earlier.
1160 */
1161 if (nextrecord == NULL) {
1162 KASSERT(so->so_rcv.sb_mb == m);
1163 so->so_rcv.sb_lastrecord = m;
1164 }
1165 }
1166 type = m->m_type;
1167 if (type == MT_OOBDATA)
1168 flags |= MSG_OOB;
1169 } else {
1170 if ((flags & MSG_PEEK) == 0) {
1171 KASSERT(so->so_rcv.sb_mb == m);
1172 so->so_rcv.sb_mb = nextrecord;
1173 SB_EMPTY_FIXUP(&so->so_rcv);
1174 }
1175 }
1176 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1177 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1178
1179 moff = 0;
1180 offset = 0;
1181 while (m && uio->uio_resid > 0 && error == 0) {
1182 if (m->m_type == MT_OOBDATA) {
1183 if (type != MT_OOBDATA)
1184 break;
1185 } else if (type == MT_OOBDATA)
1186 break;
1187 #ifdef DIAGNOSTIC
1188 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1189 panic("receive 3");
1190 #endif
1191 so->so_state &= ~SS_RCVATMARK;
1192 len = uio->uio_resid;
1193 if (so->so_oobmark && len > so->so_oobmark - offset)
1194 len = so->so_oobmark - offset;
1195 if (len > m->m_len - moff)
1196 len = m->m_len - moff;
1197 /*
1198 * If mp is set, just pass back the mbufs.
1199 * Otherwise copy them out via the uio, then free.
1200 * Sockbuf must be consistent here (points to current mbuf,
1201 * it points to next record) when we drop priority;
1202 * we must note any additions to the sockbuf when we
1203 * block interrupts again.
1204 */
1205 if (mp == 0) {
1206 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1207 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1208 splx(s);
1209 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1210 s = splsoftnet();
1211 if (error) {
1212 /*
1213 * If any part of the record has been removed
1214 * (such as the MT_SONAME mbuf, which will
1215 * happen when PR_ADDR, and thus also
1216 * PR_ATOMIC, is set), then drop the entire
1217 * record to maintain the atomicity of the
1218 * receive operation.
1219 *
1220 * This avoids a later panic("receive 1a")
1221 * when compiled with DIAGNOSTIC.
1222 */
1223 if (m && mbuf_removed
1224 && (pr->pr_flags & PR_ATOMIC))
1225 (void) sbdroprecord(&so->so_rcv);
1226
1227 goto release;
1228 }
1229 } else
1230 uio->uio_resid -= len;
1231 if (len == m->m_len - moff) {
1232 if (m->m_flags & M_EOR)
1233 flags |= MSG_EOR;
1234 if (flags & MSG_PEEK) {
1235 m = m->m_next;
1236 moff = 0;
1237 } else {
1238 nextrecord = m->m_nextpkt;
1239 sbfree(&so->so_rcv, m);
1240 if (mp) {
1241 *mp = m;
1242 mp = &m->m_next;
1243 so->so_rcv.sb_mb = m = m->m_next;
1244 *mp = (struct mbuf *)0;
1245 } else {
1246 MFREE(m, so->so_rcv.sb_mb);
1247 m = so->so_rcv.sb_mb;
1248 }
1249 /*
1250 * If m != NULL, we also know that
1251 * so->so_rcv.sb_mb != NULL.
1252 */
1253 KASSERT(so->so_rcv.sb_mb == m);
1254 if (m) {
1255 m->m_nextpkt = nextrecord;
1256 if (nextrecord == NULL)
1257 so->so_rcv.sb_lastrecord = m;
1258 } else {
1259 so->so_rcv.sb_mb = nextrecord;
1260 SB_EMPTY_FIXUP(&so->so_rcv);
1261 }
1262 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1263 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1264 }
1265 } else {
1266 if (flags & MSG_PEEK)
1267 moff += len;
1268 else {
1269 if (mp)
1270 *mp = m_copym(m, 0, len, M_WAIT);
1271 m->m_data += len;
1272 m->m_len -= len;
1273 so->so_rcv.sb_cc -= len;
1274 }
1275 }
1276 if (so->so_oobmark) {
1277 if ((flags & MSG_PEEK) == 0) {
1278 so->so_oobmark -= len;
1279 if (so->so_oobmark == 0) {
1280 so->so_state |= SS_RCVATMARK;
1281 break;
1282 }
1283 } else {
1284 offset += len;
1285 if (offset == so->so_oobmark)
1286 break;
1287 }
1288 }
1289 if (flags & MSG_EOR)
1290 break;
1291 /*
1292 * If the MSG_WAITALL flag is set (for non-atomic socket),
1293 * we must not quit until "uio->uio_resid == 0" or an error
1294 * termination. If a signal/timeout occurs, return
1295 * with a short count but without error.
1296 * Keep sockbuf locked against other readers.
1297 */
1298 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1299 !sosendallatonce(so) && !nextrecord) {
1300 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1301 break;
1302 /*
1303 * If we are peeking and the socket receive buffer is
1304 * full, stop since we can't get more data to peek at.
1305 */
1306 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1307 break;
1308 /*
1309 * If we've drained the socket buffer, tell the
1310 * protocol in case it needs to do something to
1311 * get it filled again.
1312 */
1313 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1314 (*pr->pr_usrreq)(so, PRU_RCVD,
1315 (struct mbuf *)0,
1316 (struct mbuf *)(long)flags,
1317 (struct mbuf *)0, l);
1318 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1319 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1320 error = sbwait(&so->so_rcv);
1321 if (error) {
1322 sbunlock(&so->so_rcv);
1323 splx(s);
1324 return (0);
1325 }
1326 if ((m = so->so_rcv.sb_mb) != NULL)
1327 nextrecord = m->m_nextpkt;
1328 }
1329 }
1330
1331 if (m && pr->pr_flags & PR_ATOMIC) {
1332 flags |= MSG_TRUNC;
1333 if ((flags & MSG_PEEK) == 0)
1334 (void) sbdroprecord(&so->so_rcv);
1335 }
1336 if ((flags & MSG_PEEK) == 0) {
1337 if (m == 0) {
1338 /*
1339 * First part is an inline SB_EMPTY_FIXUP(). Second
1340 * part makes sure sb_lastrecord is up-to-date if
1341 * there is still data in the socket buffer.
1342 */
1343 so->so_rcv.sb_mb = nextrecord;
1344 if (so->so_rcv.sb_mb == NULL) {
1345 so->so_rcv.sb_mbtail = NULL;
1346 so->so_rcv.sb_lastrecord = NULL;
1347 } else if (nextrecord->m_nextpkt == NULL)
1348 so->so_rcv.sb_lastrecord = nextrecord;
1349 }
1350 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1351 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1352 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1353 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1354 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1355 }
1356 if (orig_resid == uio->uio_resid && orig_resid &&
1357 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1358 sbunlock(&so->so_rcv);
1359 splx(s);
1360 goto restart;
1361 }
1362
1363 if (flagsp)
1364 *flagsp |= flags;
1365 release:
1366 sbunlock(&so->so_rcv);
1367 splx(s);
1368 return (error);
1369 }
1370
1371 int
1372 soshutdown(struct socket *so, int how)
1373 {
1374 const struct protosw *pr;
1375
1376 pr = so->so_proto;
1377 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1378 return (EINVAL);
1379
1380 if (how == SHUT_RD || how == SHUT_RDWR)
1381 sorflush(so);
1382 if (how == SHUT_WR || how == SHUT_RDWR)
1383 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1384 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1385 return (0);
1386 }
1387
1388 void
1389 sorflush(struct socket *so)
1390 {
1391 struct sockbuf *sb, asb;
1392 const struct protosw *pr;
1393 int s;
1394
1395 sb = &so->so_rcv;
1396 pr = so->so_proto;
1397 sb->sb_flags |= SB_NOINTR;
1398 (void) sblock(sb, M_WAITOK);
1399 s = splnet();
1400 socantrcvmore(so);
1401 sbunlock(sb);
1402 asb = *sb;
1403 /*
1404 * Clear most of the sockbuf structure, but leave some of the
1405 * fields valid.
1406 */
1407 memset(&sb->sb_startzero, 0,
1408 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1409 splx(s);
1410 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1411 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1412 sbrelease(&asb, so);
1413 }
1414
1415 int
1416 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1417 {
1418 int error;
1419 struct mbuf *m;
1420
1421 error = 0;
1422 m = m0;
1423 if (level != SOL_SOCKET) {
1424 if (so->so_proto && so->so_proto->pr_ctloutput)
1425 return ((*so->so_proto->pr_ctloutput)
1426 (PRCO_SETOPT, so, level, optname, &m0));
1427 error = ENOPROTOOPT;
1428 } else {
1429 switch (optname) {
1430
1431 case SO_LINGER:
1432 if (m == NULL || m->m_len != sizeof(struct linger)) {
1433 error = EINVAL;
1434 goto bad;
1435 }
1436 if (mtod(m, struct linger *)->l_linger < 0 ||
1437 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1438 error = EDOM;
1439 goto bad;
1440 }
1441 so->so_linger = mtod(m, struct linger *)->l_linger;
1442 /* fall thru... */
1443
1444 case SO_DEBUG:
1445 case SO_KEEPALIVE:
1446 case SO_DONTROUTE:
1447 case SO_USELOOPBACK:
1448 case SO_BROADCAST:
1449 case SO_REUSEADDR:
1450 case SO_REUSEPORT:
1451 case SO_OOBINLINE:
1452 case SO_TIMESTAMP:
1453 if (m == NULL || m->m_len < sizeof(int)) {
1454 error = EINVAL;
1455 goto bad;
1456 }
1457 if (*mtod(m, int *))
1458 so->so_options |= optname;
1459 else
1460 so->so_options &= ~optname;
1461 break;
1462
1463 case SO_SNDBUF:
1464 case SO_RCVBUF:
1465 case SO_SNDLOWAT:
1466 case SO_RCVLOWAT:
1467 {
1468 int optval;
1469
1470 if (m == NULL || m->m_len < sizeof(int)) {
1471 error = EINVAL;
1472 goto bad;
1473 }
1474
1475 /*
1476 * Values < 1 make no sense for any of these
1477 * options, so disallow them.
1478 */
1479 optval = *mtod(m, int *);
1480 if (optval < 1) {
1481 error = EINVAL;
1482 goto bad;
1483 }
1484
1485 switch (optname) {
1486
1487 case SO_SNDBUF:
1488 case SO_RCVBUF:
1489 if (sbreserve(optname == SO_SNDBUF ?
1490 &so->so_snd : &so->so_rcv,
1491 (u_long) optval, so) == 0) {
1492 error = ENOBUFS;
1493 goto bad;
1494 }
1495 break;
1496
1497 /*
1498 * Make sure the low-water is never greater than
1499 * the high-water.
1500 */
1501 case SO_SNDLOWAT:
1502 so->so_snd.sb_lowat =
1503 (optval > so->so_snd.sb_hiwat) ?
1504 so->so_snd.sb_hiwat : optval;
1505 break;
1506 case SO_RCVLOWAT:
1507 so->so_rcv.sb_lowat =
1508 (optval > so->so_rcv.sb_hiwat) ?
1509 so->so_rcv.sb_hiwat : optval;
1510 break;
1511 }
1512 break;
1513 }
1514
1515 case SO_SNDTIMEO:
1516 case SO_RCVTIMEO:
1517 {
1518 struct timeval *tv;
1519 int val;
1520
1521 if (m == NULL || m->m_len < sizeof(*tv)) {
1522 error = EINVAL;
1523 goto bad;
1524 }
1525 tv = mtod(m, struct timeval *);
1526 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1527 error = EDOM;
1528 goto bad;
1529 }
1530 val = tv->tv_sec * hz + tv->tv_usec / tick;
1531 if (val == 0 && tv->tv_usec != 0)
1532 val = 1;
1533
1534 switch (optname) {
1535
1536 case SO_SNDTIMEO:
1537 so->so_snd.sb_timeo = val;
1538 break;
1539 case SO_RCVTIMEO:
1540 so->so_rcv.sb_timeo = val;
1541 break;
1542 }
1543 break;
1544 }
1545
1546 default:
1547 error = ENOPROTOOPT;
1548 break;
1549 }
1550 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1551 (void) ((*so->so_proto->pr_ctloutput)
1552 (PRCO_SETOPT, so, level, optname, &m0));
1553 m = NULL; /* freed by protocol */
1554 }
1555 }
1556 bad:
1557 if (m)
1558 (void) m_free(m);
1559 return (error);
1560 }
1561
1562 int
1563 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1564 {
1565 struct mbuf *m;
1566
1567 if (level != SOL_SOCKET) {
1568 if (so->so_proto && so->so_proto->pr_ctloutput) {
1569 return ((*so->so_proto->pr_ctloutput)
1570 (PRCO_GETOPT, so, level, optname, mp));
1571 } else
1572 return (ENOPROTOOPT);
1573 } else {
1574 m = m_get(M_WAIT, MT_SOOPTS);
1575 m->m_len = sizeof(int);
1576
1577 switch (optname) {
1578
1579 case SO_LINGER:
1580 m->m_len = sizeof(struct linger);
1581 mtod(m, struct linger *)->l_onoff =
1582 so->so_options & SO_LINGER;
1583 mtod(m, struct linger *)->l_linger = so->so_linger;
1584 break;
1585
1586 case SO_USELOOPBACK:
1587 case SO_DONTROUTE:
1588 case SO_DEBUG:
1589 case SO_KEEPALIVE:
1590 case SO_REUSEADDR:
1591 case SO_REUSEPORT:
1592 case SO_BROADCAST:
1593 case SO_OOBINLINE:
1594 case SO_TIMESTAMP:
1595 *mtod(m, int *) = so->so_options & optname;
1596 break;
1597
1598 case SO_TYPE:
1599 *mtod(m, int *) = so->so_type;
1600 break;
1601
1602 case SO_ERROR:
1603 *mtod(m, int *) = so->so_error;
1604 so->so_error = 0;
1605 break;
1606
1607 case SO_SNDBUF:
1608 *mtod(m, int *) = so->so_snd.sb_hiwat;
1609 break;
1610
1611 case SO_RCVBUF:
1612 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1613 break;
1614
1615 case SO_SNDLOWAT:
1616 *mtod(m, int *) = so->so_snd.sb_lowat;
1617 break;
1618
1619 case SO_RCVLOWAT:
1620 *mtod(m, int *) = so->so_rcv.sb_lowat;
1621 break;
1622
1623 case SO_SNDTIMEO:
1624 case SO_RCVTIMEO:
1625 {
1626 int val = (optname == SO_SNDTIMEO ?
1627 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1628
1629 m->m_len = sizeof(struct timeval);
1630 mtod(m, struct timeval *)->tv_sec = val / hz;
1631 mtod(m, struct timeval *)->tv_usec =
1632 (val % hz) * tick;
1633 break;
1634 }
1635
1636 case SO_OVERFLOWED:
1637 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1638 break;
1639
1640 default:
1641 (void)m_free(m);
1642 return (ENOPROTOOPT);
1643 }
1644 *mp = m;
1645 return (0);
1646 }
1647 }
1648
1649 void
1650 sohasoutofband(struct socket *so)
1651 {
1652 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1653 selwakeup(&so->so_rcv.sb_sel);
1654 }
1655
1656 static void
1657 filt_sordetach(struct knote *kn)
1658 {
1659 struct socket *so;
1660
1661 so = (struct socket *)kn->kn_fp->f_data;
1662 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1663 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1664 so->so_rcv.sb_flags &= ~SB_KNOTE;
1665 }
1666
1667 /*ARGSUSED*/
1668 static int
1669 filt_soread(struct knote *kn, long hint)
1670 {
1671 struct socket *so;
1672
1673 so = (struct socket *)kn->kn_fp->f_data;
1674 kn->kn_data = so->so_rcv.sb_cc;
1675 if (so->so_state & SS_CANTRCVMORE) {
1676 kn->kn_flags |= EV_EOF;
1677 kn->kn_fflags = so->so_error;
1678 return (1);
1679 }
1680 if (so->so_error) /* temporary udp error */
1681 return (1);
1682 if (kn->kn_sfflags & NOTE_LOWAT)
1683 return (kn->kn_data >= kn->kn_sdata);
1684 return (kn->kn_data >= so->so_rcv.sb_lowat);
1685 }
1686
1687 static void
1688 filt_sowdetach(struct knote *kn)
1689 {
1690 struct socket *so;
1691
1692 so = (struct socket *)kn->kn_fp->f_data;
1693 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1694 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1695 so->so_snd.sb_flags &= ~SB_KNOTE;
1696 }
1697
1698 /*ARGSUSED*/
1699 static int
1700 filt_sowrite(struct knote *kn, long hint)
1701 {
1702 struct socket *so;
1703
1704 so = (struct socket *)kn->kn_fp->f_data;
1705 kn->kn_data = sbspace(&so->so_snd);
1706 if (so->so_state & SS_CANTSENDMORE) {
1707 kn->kn_flags |= EV_EOF;
1708 kn->kn_fflags = so->so_error;
1709 return (1);
1710 }
1711 if (so->so_error) /* temporary udp error */
1712 return (1);
1713 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1714 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1715 return (0);
1716 if (kn->kn_sfflags & NOTE_LOWAT)
1717 return (kn->kn_data >= kn->kn_sdata);
1718 return (kn->kn_data >= so->so_snd.sb_lowat);
1719 }
1720
1721 /*ARGSUSED*/
1722 static int
1723 filt_solisten(struct knote *kn, long hint)
1724 {
1725 struct socket *so;
1726
1727 so = (struct socket *)kn->kn_fp->f_data;
1728
1729 /*
1730 * Set kn_data to number of incoming connections, not
1731 * counting partial (incomplete) connections.
1732 */
1733 kn->kn_data = so->so_qlen;
1734 return (kn->kn_data > 0);
1735 }
1736
1737 static const struct filterops solisten_filtops =
1738 { 1, NULL, filt_sordetach, filt_solisten };
1739 static const struct filterops soread_filtops =
1740 { 1, NULL, filt_sordetach, filt_soread };
1741 static const struct filterops sowrite_filtops =
1742 { 1, NULL, filt_sowdetach, filt_sowrite };
1743
1744 int
1745 soo_kqfilter(struct file *fp, struct knote *kn)
1746 {
1747 struct socket *so;
1748 struct sockbuf *sb;
1749
1750 so = (struct socket *)kn->kn_fp->f_data;
1751 switch (kn->kn_filter) {
1752 case EVFILT_READ:
1753 if (so->so_options & SO_ACCEPTCONN)
1754 kn->kn_fop = &solisten_filtops;
1755 else
1756 kn->kn_fop = &soread_filtops;
1757 sb = &so->so_rcv;
1758 break;
1759 case EVFILT_WRITE:
1760 kn->kn_fop = &sowrite_filtops;
1761 sb = &so->so_snd;
1762 break;
1763 default:
1764 return (1);
1765 }
1766 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1767 sb->sb_flags |= SB_KNOTE;
1768 return (0);
1769 }
1770
1771 #include <sys/sysctl.h>
1772
1773 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1774
1775 /*
1776 * sysctl helper routine for kern.somaxkva. ensures that the given
1777 * value is not too small.
1778 * (XXX should we maybe make sure it's not too large as well?)
1779 */
1780 static int
1781 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1782 {
1783 int error, new_somaxkva;
1784 struct sysctlnode node;
1785 int s;
1786
1787 new_somaxkva = somaxkva;
1788 node = *rnode;
1789 node.sysctl_data = &new_somaxkva;
1790 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1791 if (error || newp == NULL)
1792 return (error);
1793
1794 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1795 return (EINVAL);
1796
1797 s = splvm();
1798 simple_lock(&so_pendfree_slock);
1799 somaxkva = new_somaxkva;
1800 wakeup(&socurkva);
1801 simple_unlock(&so_pendfree_slock);
1802 splx(s);
1803
1804 return (error);
1805 }
1806
1807 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1808 {
1809
1810 sysctl_createv(clog, 0, NULL, NULL,
1811 CTLFLAG_PERMANENT,
1812 CTLTYPE_NODE, "kern", NULL,
1813 NULL, 0, NULL, 0,
1814 CTL_KERN, CTL_EOL);
1815
1816 sysctl_createv(clog, 0, NULL, NULL,
1817 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1818 CTLTYPE_INT, "somaxkva",
1819 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1820 "used for socket buffers"),
1821 sysctl_kern_somaxkva, 0, NULL, 0,
1822 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1823 }
1824