Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.116.2.4
      1 /*	$NetBSD: uipc_socket.c,v 1.116.2.4 2006/08/11 15:45:47 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.116.2.4 2006/08/11 15:45:47 yamt Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 
     96 #include <uvm/uvm.h>
     97 
     98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
     99 
    100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    102 
    103 extern int	somaxconn;			/* patchable (XXX sysctl) */
    104 int		somaxconn = SOMAXCONN;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #ifdef SOSEND_NO_LOAN
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static int sokvawaiters;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static vsize_t
    154 sokvareserve(struct socket *so, vsize_t len)
    155 {
    156 	int s;
    157 	int error;
    158 
    159 	s = splvm();
    160 	simple_lock(&so_pendfree_slock);
    161 	while (socurkva + len > somaxkva) {
    162 		size_t freed;
    163 
    164 		/*
    165 		 * try to do pendfree.
    166 		 */
    167 
    168 		freed = sodopendfreel();
    169 
    170 		/*
    171 		 * if some kva was freed, try again.
    172 		 */
    173 
    174 		if (freed)
    175 			continue;
    176 
    177 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    178 		sokvawaiters++;
    179 		error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
    180 		    &so_pendfree_slock);
    181 		sokvawaiters--;
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	simple_unlock(&so_pendfree_slock);
    189 	splx(s);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 	int s;
    197 
    198 	s = splvm();
    199 	simple_lock(&so_pendfree_slock);
    200 	socurkva -= len;
    201 	if (sokvawaiters)
    202 		wakeup(&socurkva);
    203 	simple_unlock(&so_pendfree_slock);
    204 	splx(s);
    205 }
    206 
    207 /*
    208  * sokvaalloc: allocate kva for loan.
    209  */
    210 
    211 vaddr_t
    212 sokvaalloc(vsize_t len, struct socket *so)
    213 {
    214 	vaddr_t lva;
    215 
    216 	/*
    217 	 * reserve kva.
    218 	 */
    219 
    220 	if (sokvareserve(so, len) == 0)
    221 		return 0;
    222 
    223 	/*
    224 	 * allocate kva.
    225 	 */
    226 
    227 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    228 	if (lva == 0) {
    229 		sokvaunreserve(len);
    230 		return (0);
    231 	}
    232 
    233 	return lva;
    234 }
    235 
    236 /*
    237  * sokvafree: free kva for loan.
    238  */
    239 
    240 void
    241 sokvafree(vaddr_t sva, vsize_t len)
    242 {
    243 
    244 	/*
    245 	 * free kva.
    246 	 */
    247 
    248 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    249 
    250 	/*
    251 	 * unreserve kva.
    252 	 */
    253 
    254 	sokvaunreserve(len);
    255 }
    256 
    257 static void
    258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
    259 {
    260 	vaddr_t va, sva, eva;
    261 	vsize_t len;
    262 	paddr_t pa;
    263 	int i, npgs;
    264 
    265 	eva = round_page((vaddr_t) buf + size);
    266 	sva = trunc_page((vaddr_t) buf);
    267 	len = eva - sva;
    268 	npgs = len >> PAGE_SHIFT;
    269 
    270 	if (__predict_false(pgs == NULL)) {
    271 		pgs = alloca(npgs * sizeof(*pgs));
    272 
    273 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    274 			if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
    275 				panic("sodoloanfree: va 0x%lx not mapped", va);
    276 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    277 		}
    278 	}
    279 
    280 	pmap_kremove(sva, len);
    281 	pmap_update(pmap_kernel());
    282 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    283 	sokvafree(sva, len);
    284 }
    285 
    286 static size_t
    287 sodopendfree()
    288 {
    289 	int s;
    290 	size_t rv;
    291 
    292 	s = splvm();
    293 	simple_lock(&so_pendfree_slock);
    294 	rv = sodopendfreel();
    295 	simple_unlock(&so_pendfree_slock);
    296 	splx(s);
    297 
    298 	return rv;
    299 }
    300 
    301 /*
    302  * sodopendfreel: free mbufs on "pendfree" list.
    303  * unlock and relock so_pendfree_slock when freeing mbufs.
    304  *
    305  * => called with so_pendfree_slock held.
    306  * => called at splvm.
    307  */
    308 
    309 static size_t
    310 sodopendfreel()
    311 {
    312 	size_t rv = 0;
    313 
    314 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    315 
    316 	for (;;) {
    317 		struct mbuf *m;
    318 		struct mbuf *next;
    319 
    320 		m = so_pendfree;
    321 		if (m == NULL)
    322 			break;
    323 		so_pendfree = NULL;
    324 		simple_unlock(&so_pendfree_slock);
    325 		/* XXX splx */
    326 
    327 		for (; m != NULL; m = next) {
    328 			next = m->m_next;
    329 
    330 			rv += m->m_ext.ext_size;
    331 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    332 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    333 			    m->m_ext.ext_size);
    334 			pool_cache_put(&mbpool_cache, m);
    335 		}
    336 
    337 		/* XXX splvm */
    338 		simple_lock(&so_pendfree_slock);
    339 	}
    340 
    341 	return (rv);
    342 }
    343 
    344 void
    345 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    346 {
    347 	int s;
    348 
    349 	if (m == NULL) {
    350 
    351 		/*
    352 		 * called from MEXTREMOVE.
    353 		 */
    354 
    355 		sodoloanfree(NULL, buf, size);
    356 		return;
    357 	}
    358 
    359 	/*
    360 	 * postpone freeing mbuf.
    361 	 *
    362 	 * we can't do it in interrupt context
    363 	 * because we need to put kva back to kernel_map.
    364 	 */
    365 
    366 	s = splvm();
    367 	simple_lock(&so_pendfree_slock);
    368 	m->m_next = so_pendfree;
    369 	so_pendfree = m;
    370 	if (sokvawaiters)
    371 		wakeup(&socurkva);
    372 	simple_unlock(&so_pendfree_slock);
    373 	splx(s);
    374 }
    375 
    376 static long
    377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    378 {
    379 	struct iovec *iov = uio->uio_iov;
    380 	vaddr_t sva, eva;
    381 	vsize_t len;
    382 	vaddr_t lva, va;
    383 	int npgs, i, error;
    384 
    385 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    386 		return (0);
    387 
    388 	if (iov->iov_len < (size_t) space)
    389 		space = iov->iov_len;
    390 	if (space > SOCK_LOAN_CHUNK)
    391 		space = SOCK_LOAN_CHUNK;
    392 
    393 	eva = round_page((vaddr_t) iov->iov_base + space);
    394 	sva = trunc_page((vaddr_t) iov->iov_base);
    395 	len = eva - sva;
    396 	npgs = len >> PAGE_SHIFT;
    397 
    398 	/* XXX KDASSERT */
    399 	KASSERT(npgs <= M_EXT_MAXPAGES);
    400 
    401 	lva = sokvaalloc(len, so);
    402 	if (lva == 0)
    403 		return 0;
    404 
    405 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    406 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    407 	if (error) {
    408 		sokvafree(lva, len);
    409 		return (0);
    410 	}
    411 
    412 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    413 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    414 		    VM_PROT_READ);
    415 	pmap_update(pmap_kernel());
    416 
    417 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    418 
    419 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
    420 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    421 
    422 	uio->uio_resid -= space;
    423 	/* uio_offset not updated, not set/used for write(2) */
    424 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
    425 	uio->uio_iov->iov_len -= space;
    426 	if (uio->uio_iov->iov_len == 0) {
    427 		uio->uio_iov++;
    428 		uio->uio_iovcnt--;
    429 	}
    430 
    431 	return (space);
    432 }
    433 
    434 static int
    435 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    436 {
    437 
    438 	KASSERT(ce == &sokva_reclaimerentry);
    439 	KASSERT(obj == NULL);
    440 
    441 	sodopendfree();
    442 	if (!vm_map_starved_p(kernel_map)) {
    443 		return CALLBACK_CHAIN_ABORT;
    444 	}
    445 	return CALLBACK_CHAIN_CONTINUE;
    446 }
    447 
    448 void
    449 soinit(void)
    450 {
    451 
    452 	/* Set the initial adjusted socket buffer size. */
    453 	if (sb_max_set(sb_max))
    454 		panic("bad initial sb_max value: %lu", sb_max);
    455 
    456 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    457 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    458 }
    459 
    460 /*
    461  * Socket operation routines.
    462  * These routines are called by the routines in
    463  * sys_socket.c or from a system process, and
    464  * implement the semantics of socket operations by
    465  * switching out to the protocol specific routines.
    466  */
    467 /*ARGSUSED*/
    468 int
    469 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    470 {
    471 	const struct protosw	*prp;
    472 	struct socket	*so;
    473 	uid_t		uid;
    474 	int		error, s;
    475 
    476 	if (proto)
    477 		prp = pffindproto(dom, proto, type);
    478 	else
    479 		prp = pffindtype(dom, type);
    480 	if (prp == 0) {
    481 		/* no support for domain */
    482 		if (pffinddomain(dom) == 0)
    483 			return (EAFNOSUPPORT);
    484 		/* no support for socket type */
    485 		if (proto == 0 && type != 0)
    486 			return (EPROTOTYPE);
    487 		return (EPROTONOSUPPORT);
    488 	}
    489 	if (prp->pr_usrreq == 0)
    490 		return (EPROTONOSUPPORT);
    491 	if (prp->pr_type != type)
    492 		return (EPROTOTYPE);
    493 	s = splsoftnet();
    494 	so = pool_get(&socket_pool, PR_WAITOK);
    495 	memset((caddr_t)so, 0, sizeof(*so));
    496 	TAILQ_INIT(&so->so_q0);
    497 	TAILQ_INIT(&so->so_q);
    498 	so->so_type = type;
    499 	so->so_proto = prp;
    500 	so->so_send = sosend;
    501 	so->so_receive = soreceive;
    502 #ifdef MBUFTRACE
    503 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    504 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    505 	so->so_mowner = &prp->pr_domain->dom_mowner;
    506 #endif
    507 	if (l != NULL) {
    508 		uid = kauth_cred_geteuid(l->l_cred);
    509 	} else {
    510 		uid = 0;
    511 	}
    512 	so->so_uidinfo = uid_find(uid);
    513 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    514 	    (struct mbuf *)(long)proto, (struct mbuf *)0, l);
    515 	if (error) {
    516 		so->so_state |= SS_NOFDREF;
    517 		sofree(so);
    518 		splx(s);
    519 		return (error);
    520 	}
    521 	splx(s);
    522 	*aso = so;
    523 	return (0);
    524 }
    525 
    526 int
    527 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    528 {
    529 	int	s, error;
    530 
    531 	s = splsoftnet();
    532 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    533 	    nam, (struct mbuf *)0, l);
    534 	splx(s);
    535 	return (error);
    536 }
    537 
    538 int
    539 solisten(struct socket *so, int backlog)
    540 {
    541 	int	s, error;
    542 
    543 	s = splsoftnet();
    544 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    545 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    546 	if (error) {
    547 		splx(s);
    548 		return (error);
    549 	}
    550 	if (TAILQ_EMPTY(&so->so_q))
    551 		so->so_options |= SO_ACCEPTCONN;
    552 	if (backlog < 0)
    553 		backlog = 0;
    554 	so->so_qlimit = min(backlog, somaxconn);
    555 	splx(s);
    556 	return (0);
    557 }
    558 
    559 void
    560 sofree(struct socket *so)
    561 {
    562 
    563 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    564 		return;
    565 	if (so->so_head) {
    566 		/*
    567 		 * We must not decommission a socket that's on the accept(2)
    568 		 * queue.  If we do, then accept(2) may hang after select(2)
    569 		 * indicated that the listening socket was ready.
    570 		 */
    571 		if (!soqremque(so, 0))
    572 			return;
    573 	}
    574 	if (so->so_rcv.sb_hiwat)
    575 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    576 		    RLIM_INFINITY);
    577 	if (so->so_snd.sb_hiwat)
    578 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    579 		    RLIM_INFINITY);
    580 	sbrelease(&so->so_snd, so);
    581 	sorflush(so);
    582 	pool_put(&socket_pool, so);
    583 }
    584 
    585 /*
    586  * Close a socket on last file table reference removal.
    587  * Initiate disconnect if connected.
    588  * Free socket when disconnect complete.
    589  */
    590 int
    591 soclose(struct socket *so)
    592 {
    593 	struct socket	*so2;
    594 	int		s, error;
    595 
    596 	error = 0;
    597 	s = splsoftnet();		/* conservative */
    598 	if (so->so_options & SO_ACCEPTCONN) {
    599 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    600 			(void) soqremque(so2, 0);
    601 			(void) soabort(so2);
    602 		}
    603 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    604 			(void) soqremque(so2, 1);
    605 			(void) soabort(so2);
    606 		}
    607 	}
    608 	if (so->so_pcb == 0)
    609 		goto discard;
    610 	if (so->so_state & SS_ISCONNECTED) {
    611 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    612 			error = sodisconnect(so);
    613 			if (error)
    614 				goto drop;
    615 		}
    616 		if (so->so_options & SO_LINGER) {
    617 			if ((so->so_state & SS_ISDISCONNECTING) &&
    618 			    (so->so_state & SS_NBIO))
    619 				goto drop;
    620 			while (so->so_state & SS_ISCONNECTED) {
    621 				error = tsleep((caddr_t)&so->so_timeo,
    622 					       PSOCK | PCATCH, netcls,
    623 					       so->so_linger * hz);
    624 				if (error)
    625 					break;
    626 			}
    627 		}
    628 	}
    629  drop:
    630 	if (so->so_pcb) {
    631 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    632 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    633 		    (struct lwp *)0);
    634 		if (error == 0)
    635 			error = error2;
    636 	}
    637  discard:
    638 	if (so->so_state & SS_NOFDREF)
    639 		panic("soclose: NOFDREF");
    640 	so->so_state |= SS_NOFDREF;
    641 	sofree(so);
    642 	splx(s);
    643 	return (error);
    644 }
    645 
    646 /*
    647  * Must be called at splsoftnet...
    648  */
    649 int
    650 soabort(struct socket *so)
    651 {
    652 
    653 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    654 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    655 }
    656 
    657 int
    658 soaccept(struct socket *so, struct mbuf *nam)
    659 {
    660 	int	s, error;
    661 
    662 	error = 0;
    663 	s = splsoftnet();
    664 	if ((so->so_state & SS_NOFDREF) == 0)
    665 		panic("soaccept: !NOFDREF");
    666 	so->so_state &= ~SS_NOFDREF;
    667 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    668 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    669 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    670 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
    671 	else
    672 		error = ECONNABORTED;
    673 
    674 	splx(s);
    675 	return (error);
    676 }
    677 
    678 int
    679 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    680 {
    681 	int		s, error;
    682 
    683 	if (so->so_options & SO_ACCEPTCONN)
    684 		return (EOPNOTSUPP);
    685 	s = splsoftnet();
    686 	/*
    687 	 * If protocol is connection-based, can only connect once.
    688 	 * Otherwise, if connected, try to disconnect first.
    689 	 * This allows user to disconnect by connecting to, e.g.,
    690 	 * a null address.
    691 	 */
    692 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    693 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    694 	    (error = sodisconnect(so))))
    695 		error = EISCONN;
    696 	else
    697 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    698 		    (struct mbuf *)0, nam, (struct mbuf *)0, l);
    699 	splx(s);
    700 	return (error);
    701 }
    702 
    703 int
    704 soconnect2(struct socket *so1, struct socket *so2)
    705 {
    706 	int	s, error;
    707 
    708 	s = splsoftnet();
    709 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    710 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    711 	    (struct lwp *)0);
    712 	splx(s);
    713 	return (error);
    714 }
    715 
    716 int
    717 sodisconnect(struct socket *so)
    718 {
    719 	int	s, error;
    720 
    721 	s = splsoftnet();
    722 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    723 		error = ENOTCONN;
    724 		goto bad;
    725 	}
    726 	if (so->so_state & SS_ISDISCONNECTING) {
    727 		error = EALREADY;
    728 		goto bad;
    729 	}
    730 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    731 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    732 	    (struct lwp *)0);
    733  bad:
    734 	splx(s);
    735 	sodopendfree();
    736 	return (error);
    737 }
    738 
    739 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    740 /*
    741  * Send on a socket.
    742  * If send must go all at once and message is larger than
    743  * send buffering, then hard error.
    744  * Lock against other senders.
    745  * If must go all at once and not enough room now, then
    746  * inform user that this would block and do nothing.
    747  * Otherwise, if nonblocking, send as much as possible.
    748  * The data to be sent is described by "uio" if nonzero,
    749  * otherwise by the mbuf chain "top" (which must be null
    750  * if uio is not).  Data provided in mbuf chain must be small
    751  * enough to send all at once.
    752  *
    753  * Returns nonzero on error, timeout or signal; callers
    754  * must check for short counts if EINTR/ERESTART are returned.
    755  * Data and control buffers are freed on return.
    756  */
    757 int
    758 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    759 	struct mbuf *control, int flags, struct lwp *l)
    760 {
    761 	struct mbuf	**mp, *m;
    762 	struct proc	*p;
    763 	long		space, len, resid, clen, mlen;
    764 	int		error, s, dontroute, atomic;
    765 
    766 	p = l->l_proc;
    767 	sodopendfree();
    768 
    769 	clen = 0;
    770 	atomic = sosendallatonce(so) || top;
    771 	if (uio)
    772 		resid = uio->uio_resid;
    773 	else
    774 		resid = top->m_pkthdr.len;
    775 	/*
    776 	 * In theory resid should be unsigned.
    777 	 * However, space must be signed, as it might be less than 0
    778 	 * if we over-committed, and we must use a signed comparison
    779 	 * of space and resid.  On the other hand, a negative resid
    780 	 * causes us to loop sending 0-length segments to the protocol.
    781 	 */
    782 	if (resid < 0) {
    783 		error = EINVAL;
    784 		goto out;
    785 	}
    786 	dontroute =
    787 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    788 	    (so->so_proto->pr_flags & PR_ATOMIC);
    789 	if (p)
    790 		p->p_stats->p_ru.ru_msgsnd++;
    791 	if (control)
    792 		clen = control->m_len;
    793 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    794 
    795  restart:
    796 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    797 		goto out;
    798 	do {
    799 		s = splsoftnet();
    800 		if (so->so_state & SS_CANTSENDMORE)
    801 			snderr(EPIPE);
    802 		if (so->so_error) {
    803 			error = so->so_error;
    804 			so->so_error = 0;
    805 			splx(s);
    806 			goto release;
    807 		}
    808 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    809 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    810 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    811 				    !(resid == 0 && clen != 0))
    812 					snderr(ENOTCONN);
    813 			} else if (addr == 0)
    814 				snderr(EDESTADDRREQ);
    815 		}
    816 		space = sbspace(&so->so_snd);
    817 		if (flags & MSG_OOB)
    818 			space += 1024;
    819 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    820 		    clen > so->so_snd.sb_hiwat)
    821 			snderr(EMSGSIZE);
    822 		if (space < resid + clen &&
    823 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    824 			if (so->so_state & SS_NBIO)
    825 				snderr(EWOULDBLOCK);
    826 			sbunlock(&so->so_snd);
    827 			error = sbwait(&so->so_snd);
    828 			splx(s);
    829 			if (error)
    830 				goto out;
    831 			goto restart;
    832 		}
    833 		splx(s);
    834 		mp = &top;
    835 		space -= clen;
    836 		do {
    837 			if (uio == NULL) {
    838 				/*
    839 				 * Data is prepackaged in "top".
    840 				 */
    841 				resid = 0;
    842 				if (flags & MSG_EOR)
    843 					top->m_flags |= M_EOR;
    844 			} else do {
    845 				if (top == 0) {
    846 					m = m_gethdr(M_WAIT, MT_DATA);
    847 					mlen = MHLEN;
    848 					m->m_pkthdr.len = 0;
    849 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    850 				} else {
    851 					m = m_get(M_WAIT, MT_DATA);
    852 					mlen = MLEN;
    853 				}
    854 				MCLAIM(m, so->so_snd.sb_mowner);
    855 				if (sock_loan_thresh >= 0 &&
    856 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    857 				    space >= sock_loan_thresh &&
    858 				    (len = sosend_loan(so, uio, m,
    859 						       space)) != 0) {
    860 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    861 					space -= len;
    862 					goto have_data;
    863 				}
    864 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    865 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    866 					m_clget(m, M_WAIT);
    867 					if ((m->m_flags & M_EXT) == 0)
    868 						goto nopages;
    869 					mlen = MCLBYTES;
    870 					if (atomic && top == 0) {
    871 						len = lmin(MCLBYTES - max_hdr,
    872 						    resid);
    873 						m->m_data += max_hdr;
    874 					} else
    875 						len = lmin(MCLBYTES, resid);
    876 					space -= len;
    877 				} else {
    878  nopages:
    879 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    880 					len = lmin(lmin(mlen, resid), space);
    881 					space -= len;
    882 					/*
    883 					 * For datagram protocols, leave room
    884 					 * for protocol headers in first mbuf.
    885 					 */
    886 					if (atomic && top == 0 && len < mlen)
    887 						MH_ALIGN(m, len);
    888 				}
    889 				error = uiomove(mtod(m, caddr_t), (int)len,
    890 				    uio);
    891  have_data:
    892 				resid = uio->uio_resid;
    893 				m->m_len = len;
    894 				*mp = m;
    895 				top->m_pkthdr.len += len;
    896 				if (error)
    897 					goto release;
    898 				mp = &m->m_next;
    899 				if (resid <= 0) {
    900 					if (flags & MSG_EOR)
    901 						top->m_flags |= M_EOR;
    902 					break;
    903 				}
    904 			} while (space > 0 && atomic);
    905 
    906 			s = splsoftnet();
    907 
    908 			if (so->so_state & SS_CANTSENDMORE)
    909 				snderr(EPIPE);
    910 
    911 			if (dontroute)
    912 				so->so_options |= SO_DONTROUTE;
    913 			if (resid > 0)
    914 				so->so_state |= SS_MORETOCOME;
    915 			error = (*so->so_proto->pr_usrreq)(so,
    916 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    917 			    top, addr, control, curlwp);	/* XXX */
    918 			if (dontroute)
    919 				so->so_options &= ~SO_DONTROUTE;
    920 			if (resid > 0)
    921 				so->so_state &= ~SS_MORETOCOME;
    922 			splx(s);
    923 
    924 			clen = 0;
    925 			control = 0;
    926 			top = 0;
    927 			mp = &top;
    928 			if (error)
    929 				goto release;
    930 		} while (resid && space > 0);
    931 	} while (resid);
    932 
    933  release:
    934 	sbunlock(&so->so_snd);
    935  out:
    936 	if (top)
    937 		m_freem(top);
    938 	if (control)
    939 		m_freem(control);
    940 	return (error);
    941 }
    942 
    943 /*
    944  * Implement receive operations on a socket.
    945  * We depend on the way that records are added to the sockbuf
    946  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    947  * must begin with an address if the protocol so specifies,
    948  * followed by an optional mbuf or mbufs containing ancillary data,
    949  * and then zero or more mbufs of data.
    950  * In order to avoid blocking network interrupts for the entire time here,
    951  * we splx() while doing the actual copy to user space.
    952  * Although the sockbuf is locked, new data may still be appended,
    953  * and thus we must maintain consistency of the sockbuf during that time.
    954  *
    955  * The caller may receive the data as a single mbuf chain by supplying
    956  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    957  * only for the count in uio_resid.
    958  */
    959 int
    960 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    961 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    962 {
    963 	struct lwp *l = curlwp;
    964 	struct mbuf	*m, **mp;
    965 	int		flags, len, error, s, offset, moff, type, orig_resid;
    966 	const struct protosw	*pr;
    967 	struct mbuf	*nextrecord;
    968 	int		mbuf_removed = 0;
    969 
    970 	pr = so->so_proto;
    971 	mp = mp0;
    972 	type = 0;
    973 	orig_resid = uio->uio_resid;
    974 
    975 	if (paddr)
    976 		*paddr = 0;
    977 	if (controlp)
    978 		*controlp = 0;
    979 	if (flagsp)
    980 		flags = *flagsp &~ MSG_EOR;
    981 	else
    982 		flags = 0;
    983 
    984 	if ((flags & MSG_DONTWAIT) == 0)
    985 		sodopendfree();
    986 
    987 	if (flags & MSG_OOB) {
    988 		m = m_get(M_WAIT, MT_DATA);
    989 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    990 		    (struct mbuf *)(long)(flags & MSG_PEEK),
    991 		    (struct mbuf *)0, l);
    992 		if (error)
    993 			goto bad;
    994 		do {
    995 			error = uiomove(mtod(m, caddr_t),
    996 			    (int) min(uio->uio_resid, m->m_len), uio);
    997 			m = m_free(m);
    998 		} while (uio->uio_resid && error == 0 && m);
    999  bad:
   1000 		if (m)
   1001 			m_freem(m);
   1002 		return (error);
   1003 	}
   1004 	if (mp)
   1005 		*mp = (struct mbuf *)0;
   1006 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1007 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1008 		    (struct mbuf *)0, (struct mbuf *)0, l);
   1009 
   1010  restart:
   1011 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1012 		return (error);
   1013 	s = splsoftnet();
   1014 
   1015 	m = so->so_rcv.sb_mb;
   1016 	/*
   1017 	 * If we have less data than requested, block awaiting more
   1018 	 * (subject to any timeout) if:
   1019 	 *   1. the current count is less than the low water mark,
   1020 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1021 	 *	receive operation at once if we block (resid <= hiwat), or
   1022 	 *   3. MSG_DONTWAIT is not set.
   1023 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1024 	 * we have to do the receive in sections, and thus risk returning
   1025 	 * a short count if a timeout or signal occurs after we start.
   1026 	 */
   1027 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1028 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1029 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1030 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1031 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1032 #ifdef DIAGNOSTIC
   1033 		if (m == 0 && so->so_rcv.sb_cc)
   1034 			panic("receive 1");
   1035 #endif
   1036 		if (so->so_error) {
   1037 			if (m)
   1038 				goto dontblock;
   1039 			error = so->so_error;
   1040 			if ((flags & MSG_PEEK) == 0)
   1041 				so->so_error = 0;
   1042 			goto release;
   1043 		}
   1044 		if (so->so_state & SS_CANTRCVMORE) {
   1045 			if (m)
   1046 				goto dontblock;
   1047 			else
   1048 				goto release;
   1049 		}
   1050 		for (; m; m = m->m_next)
   1051 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1052 				m = so->so_rcv.sb_mb;
   1053 				goto dontblock;
   1054 			}
   1055 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1056 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1057 			error = ENOTCONN;
   1058 			goto release;
   1059 		}
   1060 		if (uio->uio_resid == 0)
   1061 			goto release;
   1062 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1063 			error = EWOULDBLOCK;
   1064 			goto release;
   1065 		}
   1066 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1067 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1068 		sbunlock(&so->so_rcv);
   1069 		error = sbwait(&so->so_rcv);
   1070 		splx(s);
   1071 		if (error)
   1072 			return (error);
   1073 		goto restart;
   1074 	}
   1075  dontblock:
   1076 	/*
   1077 	 * On entry here, m points to the first record of the socket buffer.
   1078 	 * While we process the initial mbufs containing address and control
   1079 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1080 	 */
   1081 	if (l)
   1082 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1083 	KASSERT(m == so->so_rcv.sb_mb);
   1084 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1085 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1086 	nextrecord = m->m_nextpkt;
   1087 	if (pr->pr_flags & PR_ADDR) {
   1088 #ifdef DIAGNOSTIC
   1089 		if (m->m_type != MT_SONAME)
   1090 			panic("receive 1a");
   1091 #endif
   1092 		orig_resid = 0;
   1093 		if (flags & MSG_PEEK) {
   1094 			if (paddr)
   1095 				*paddr = m_copy(m, 0, m->m_len);
   1096 			m = m->m_next;
   1097 		} else {
   1098 			sbfree(&so->so_rcv, m);
   1099 			mbuf_removed = 1;
   1100 			if (paddr) {
   1101 				*paddr = m;
   1102 				so->so_rcv.sb_mb = m->m_next;
   1103 				m->m_next = 0;
   1104 				m = so->so_rcv.sb_mb;
   1105 			} else {
   1106 				MFREE(m, so->so_rcv.sb_mb);
   1107 				m = so->so_rcv.sb_mb;
   1108 			}
   1109 		}
   1110 	}
   1111 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1112 		if (flags & MSG_PEEK) {
   1113 			if (controlp)
   1114 				*controlp = m_copy(m, 0, m->m_len);
   1115 			m = m->m_next;
   1116 		} else {
   1117 			sbfree(&so->so_rcv, m);
   1118 			mbuf_removed = 1;
   1119 			if (controlp) {
   1120 				struct domain *dom = pr->pr_domain;
   1121 				if (dom->dom_externalize && l &&
   1122 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1123 				    SCM_RIGHTS)
   1124 					error = (*dom->dom_externalize)(m, l);
   1125 				*controlp = m;
   1126 				so->so_rcv.sb_mb = m->m_next;
   1127 				m->m_next = 0;
   1128 				m = so->so_rcv.sb_mb;
   1129 			} else {
   1130 				/*
   1131 				 * Dispose of any SCM_RIGHTS message that went
   1132 				 * through the read path rather than recv.
   1133 				 */
   1134 				if (pr->pr_domain->dom_dispose &&
   1135 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1136 					(*pr->pr_domain->dom_dispose)(m);
   1137 				MFREE(m, so->so_rcv.sb_mb);
   1138 				m = so->so_rcv.sb_mb;
   1139 			}
   1140 		}
   1141 		if (controlp) {
   1142 			orig_resid = 0;
   1143 			controlp = &(*controlp)->m_next;
   1144 		}
   1145 	}
   1146 
   1147 	/*
   1148 	 * If m is non-NULL, we have some data to read.  From now on,
   1149 	 * make sure to keep sb_lastrecord consistent when working on
   1150 	 * the last packet on the chain (nextrecord == NULL) and we
   1151 	 * change m->m_nextpkt.
   1152 	 */
   1153 	if (m) {
   1154 		if ((flags & MSG_PEEK) == 0) {
   1155 			m->m_nextpkt = nextrecord;
   1156 			/*
   1157 			 * If nextrecord == NULL (this is a single chain),
   1158 			 * then sb_lastrecord may not be valid here if m
   1159 			 * was changed earlier.
   1160 			 */
   1161 			if (nextrecord == NULL) {
   1162 				KASSERT(so->so_rcv.sb_mb == m);
   1163 				so->so_rcv.sb_lastrecord = m;
   1164 			}
   1165 		}
   1166 		type = m->m_type;
   1167 		if (type == MT_OOBDATA)
   1168 			flags |= MSG_OOB;
   1169 	} else {
   1170 		if ((flags & MSG_PEEK) == 0) {
   1171 			KASSERT(so->so_rcv.sb_mb == m);
   1172 			so->so_rcv.sb_mb = nextrecord;
   1173 			SB_EMPTY_FIXUP(&so->so_rcv);
   1174 		}
   1175 	}
   1176 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1177 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1178 
   1179 	moff = 0;
   1180 	offset = 0;
   1181 	while (m && uio->uio_resid > 0 && error == 0) {
   1182 		if (m->m_type == MT_OOBDATA) {
   1183 			if (type != MT_OOBDATA)
   1184 				break;
   1185 		} else if (type == MT_OOBDATA)
   1186 			break;
   1187 #ifdef DIAGNOSTIC
   1188 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1189 			panic("receive 3");
   1190 #endif
   1191 		so->so_state &= ~SS_RCVATMARK;
   1192 		len = uio->uio_resid;
   1193 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1194 			len = so->so_oobmark - offset;
   1195 		if (len > m->m_len - moff)
   1196 			len = m->m_len - moff;
   1197 		/*
   1198 		 * If mp is set, just pass back the mbufs.
   1199 		 * Otherwise copy them out via the uio, then free.
   1200 		 * Sockbuf must be consistent here (points to current mbuf,
   1201 		 * it points to next record) when we drop priority;
   1202 		 * we must note any additions to the sockbuf when we
   1203 		 * block interrupts again.
   1204 		 */
   1205 		if (mp == 0) {
   1206 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1207 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1208 			splx(s);
   1209 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
   1210 			s = splsoftnet();
   1211 			if (error) {
   1212 				/*
   1213 				 * If any part of the record has been removed
   1214 				 * (such as the MT_SONAME mbuf, which will
   1215 				 * happen when PR_ADDR, and thus also
   1216 				 * PR_ATOMIC, is set), then drop the entire
   1217 				 * record to maintain the atomicity of the
   1218 				 * receive operation.
   1219 				 *
   1220 				 * This avoids a later panic("receive 1a")
   1221 				 * when compiled with DIAGNOSTIC.
   1222 				 */
   1223 				if (m && mbuf_removed
   1224 				    && (pr->pr_flags & PR_ATOMIC))
   1225 					(void) sbdroprecord(&so->so_rcv);
   1226 
   1227 				goto release;
   1228 			}
   1229 		} else
   1230 			uio->uio_resid -= len;
   1231 		if (len == m->m_len - moff) {
   1232 			if (m->m_flags & M_EOR)
   1233 				flags |= MSG_EOR;
   1234 			if (flags & MSG_PEEK) {
   1235 				m = m->m_next;
   1236 				moff = 0;
   1237 			} else {
   1238 				nextrecord = m->m_nextpkt;
   1239 				sbfree(&so->so_rcv, m);
   1240 				if (mp) {
   1241 					*mp = m;
   1242 					mp = &m->m_next;
   1243 					so->so_rcv.sb_mb = m = m->m_next;
   1244 					*mp = (struct mbuf *)0;
   1245 				} else {
   1246 					MFREE(m, so->so_rcv.sb_mb);
   1247 					m = so->so_rcv.sb_mb;
   1248 				}
   1249 				/*
   1250 				 * If m != NULL, we also know that
   1251 				 * so->so_rcv.sb_mb != NULL.
   1252 				 */
   1253 				KASSERT(so->so_rcv.sb_mb == m);
   1254 				if (m) {
   1255 					m->m_nextpkt = nextrecord;
   1256 					if (nextrecord == NULL)
   1257 						so->so_rcv.sb_lastrecord = m;
   1258 				} else {
   1259 					so->so_rcv.sb_mb = nextrecord;
   1260 					SB_EMPTY_FIXUP(&so->so_rcv);
   1261 				}
   1262 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1263 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1264 			}
   1265 		} else {
   1266 			if (flags & MSG_PEEK)
   1267 				moff += len;
   1268 			else {
   1269 				if (mp)
   1270 					*mp = m_copym(m, 0, len, M_WAIT);
   1271 				m->m_data += len;
   1272 				m->m_len -= len;
   1273 				so->so_rcv.sb_cc -= len;
   1274 			}
   1275 		}
   1276 		if (so->so_oobmark) {
   1277 			if ((flags & MSG_PEEK) == 0) {
   1278 				so->so_oobmark -= len;
   1279 				if (so->so_oobmark == 0) {
   1280 					so->so_state |= SS_RCVATMARK;
   1281 					break;
   1282 				}
   1283 			} else {
   1284 				offset += len;
   1285 				if (offset == so->so_oobmark)
   1286 					break;
   1287 			}
   1288 		}
   1289 		if (flags & MSG_EOR)
   1290 			break;
   1291 		/*
   1292 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1293 		 * we must not quit until "uio->uio_resid == 0" or an error
   1294 		 * termination.  If a signal/timeout occurs, return
   1295 		 * with a short count but without error.
   1296 		 * Keep sockbuf locked against other readers.
   1297 		 */
   1298 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1299 		    !sosendallatonce(so) && !nextrecord) {
   1300 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1301 				break;
   1302 			/*
   1303 			 * If we are peeking and the socket receive buffer is
   1304 			 * full, stop since we can't get more data to peek at.
   1305 			 */
   1306 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1307 				break;
   1308 			/*
   1309 			 * If we've drained the socket buffer, tell the
   1310 			 * protocol in case it needs to do something to
   1311 			 * get it filled again.
   1312 			 */
   1313 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1314 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1315 				    (struct mbuf *)0,
   1316 				    (struct mbuf *)(long)flags,
   1317 				    (struct mbuf *)0, l);
   1318 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1319 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1320 			error = sbwait(&so->so_rcv);
   1321 			if (error) {
   1322 				sbunlock(&so->so_rcv);
   1323 				splx(s);
   1324 				return (0);
   1325 			}
   1326 			if ((m = so->so_rcv.sb_mb) != NULL)
   1327 				nextrecord = m->m_nextpkt;
   1328 		}
   1329 	}
   1330 
   1331 	if (m && pr->pr_flags & PR_ATOMIC) {
   1332 		flags |= MSG_TRUNC;
   1333 		if ((flags & MSG_PEEK) == 0)
   1334 			(void) sbdroprecord(&so->so_rcv);
   1335 	}
   1336 	if ((flags & MSG_PEEK) == 0) {
   1337 		if (m == 0) {
   1338 			/*
   1339 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1340 			 * part makes sure sb_lastrecord is up-to-date if
   1341 			 * there is still data in the socket buffer.
   1342 			 */
   1343 			so->so_rcv.sb_mb = nextrecord;
   1344 			if (so->so_rcv.sb_mb == NULL) {
   1345 				so->so_rcv.sb_mbtail = NULL;
   1346 				so->so_rcv.sb_lastrecord = NULL;
   1347 			} else if (nextrecord->m_nextpkt == NULL)
   1348 				so->so_rcv.sb_lastrecord = nextrecord;
   1349 		}
   1350 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1351 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1352 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1353 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1354 			    (struct mbuf *)(long)flags, (struct mbuf *)0, l);
   1355 	}
   1356 	if (orig_resid == uio->uio_resid && orig_resid &&
   1357 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1358 		sbunlock(&so->so_rcv);
   1359 		splx(s);
   1360 		goto restart;
   1361 	}
   1362 
   1363 	if (flagsp)
   1364 		*flagsp |= flags;
   1365  release:
   1366 	sbunlock(&so->so_rcv);
   1367 	splx(s);
   1368 	return (error);
   1369 }
   1370 
   1371 int
   1372 soshutdown(struct socket *so, int how)
   1373 {
   1374 	const struct protosw	*pr;
   1375 
   1376 	pr = so->so_proto;
   1377 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1378 		return (EINVAL);
   1379 
   1380 	if (how == SHUT_RD || how == SHUT_RDWR)
   1381 		sorflush(so);
   1382 	if (how == SHUT_WR || how == SHUT_RDWR)
   1383 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1384 		    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
   1385 	return (0);
   1386 }
   1387 
   1388 void
   1389 sorflush(struct socket *so)
   1390 {
   1391 	struct sockbuf	*sb, asb;
   1392 	const struct protosw	*pr;
   1393 	int		s;
   1394 
   1395 	sb = &so->so_rcv;
   1396 	pr = so->so_proto;
   1397 	sb->sb_flags |= SB_NOINTR;
   1398 	(void) sblock(sb, M_WAITOK);
   1399 	s = splnet();
   1400 	socantrcvmore(so);
   1401 	sbunlock(sb);
   1402 	asb = *sb;
   1403 	/*
   1404 	 * Clear most of the sockbuf structure, but leave some of the
   1405 	 * fields valid.
   1406 	 */
   1407 	memset(&sb->sb_startzero, 0,
   1408 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1409 	splx(s);
   1410 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1411 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1412 	sbrelease(&asb, so);
   1413 }
   1414 
   1415 int
   1416 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1417 {
   1418 	int		error;
   1419 	struct mbuf	*m;
   1420 
   1421 	error = 0;
   1422 	m = m0;
   1423 	if (level != SOL_SOCKET) {
   1424 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1425 			return ((*so->so_proto->pr_ctloutput)
   1426 				  (PRCO_SETOPT, so, level, optname, &m0));
   1427 		error = ENOPROTOOPT;
   1428 	} else {
   1429 		switch (optname) {
   1430 
   1431 		case SO_LINGER:
   1432 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1433 				error = EINVAL;
   1434 				goto bad;
   1435 			}
   1436 			if (mtod(m, struct linger *)->l_linger < 0 ||
   1437 			    mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
   1438 				error = EDOM;
   1439 				goto bad;
   1440 			}
   1441 			so->so_linger = mtod(m, struct linger *)->l_linger;
   1442 			/* fall thru... */
   1443 
   1444 		case SO_DEBUG:
   1445 		case SO_KEEPALIVE:
   1446 		case SO_DONTROUTE:
   1447 		case SO_USELOOPBACK:
   1448 		case SO_BROADCAST:
   1449 		case SO_REUSEADDR:
   1450 		case SO_REUSEPORT:
   1451 		case SO_OOBINLINE:
   1452 		case SO_TIMESTAMP:
   1453 			if (m == NULL || m->m_len < sizeof(int)) {
   1454 				error = EINVAL;
   1455 				goto bad;
   1456 			}
   1457 			if (*mtod(m, int *))
   1458 				so->so_options |= optname;
   1459 			else
   1460 				so->so_options &= ~optname;
   1461 			break;
   1462 
   1463 		case SO_SNDBUF:
   1464 		case SO_RCVBUF:
   1465 		case SO_SNDLOWAT:
   1466 		case SO_RCVLOWAT:
   1467 		    {
   1468 			int optval;
   1469 
   1470 			if (m == NULL || m->m_len < sizeof(int)) {
   1471 				error = EINVAL;
   1472 				goto bad;
   1473 			}
   1474 
   1475 			/*
   1476 			 * Values < 1 make no sense for any of these
   1477 			 * options, so disallow them.
   1478 			 */
   1479 			optval = *mtod(m, int *);
   1480 			if (optval < 1) {
   1481 				error = EINVAL;
   1482 				goto bad;
   1483 			}
   1484 
   1485 			switch (optname) {
   1486 
   1487 			case SO_SNDBUF:
   1488 			case SO_RCVBUF:
   1489 				if (sbreserve(optname == SO_SNDBUF ?
   1490 				    &so->so_snd : &so->so_rcv,
   1491 				    (u_long) optval, so) == 0) {
   1492 					error = ENOBUFS;
   1493 					goto bad;
   1494 				}
   1495 				break;
   1496 
   1497 			/*
   1498 			 * Make sure the low-water is never greater than
   1499 			 * the high-water.
   1500 			 */
   1501 			case SO_SNDLOWAT:
   1502 				so->so_snd.sb_lowat =
   1503 				    (optval > so->so_snd.sb_hiwat) ?
   1504 				    so->so_snd.sb_hiwat : optval;
   1505 				break;
   1506 			case SO_RCVLOWAT:
   1507 				so->so_rcv.sb_lowat =
   1508 				    (optval > so->so_rcv.sb_hiwat) ?
   1509 				    so->so_rcv.sb_hiwat : optval;
   1510 				break;
   1511 			}
   1512 			break;
   1513 		    }
   1514 
   1515 		case SO_SNDTIMEO:
   1516 		case SO_RCVTIMEO:
   1517 		    {
   1518 			struct timeval *tv;
   1519 			int val;
   1520 
   1521 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1522 				error = EINVAL;
   1523 				goto bad;
   1524 			}
   1525 			tv = mtod(m, struct timeval *);
   1526 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1527 				error = EDOM;
   1528 				goto bad;
   1529 			}
   1530 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1531 			if (val == 0 && tv->tv_usec != 0)
   1532 				val = 1;
   1533 
   1534 			switch (optname) {
   1535 
   1536 			case SO_SNDTIMEO:
   1537 				so->so_snd.sb_timeo = val;
   1538 				break;
   1539 			case SO_RCVTIMEO:
   1540 				so->so_rcv.sb_timeo = val;
   1541 				break;
   1542 			}
   1543 			break;
   1544 		    }
   1545 
   1546 		default:
   1547 			error = ENOPROTOOPT;
   1548 			break;
   1549 		}
   1550 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1551 			(void) ((*so->so_proto->pr_ctloutput)
   1552 				  (PRCO_SETOPT, so, level, optname, &m0));
   1553 			m = NULL;	/* freed by protocol */
   1554 		}
   1555 	}
   1556  bad:
   1557 	if (m)
   1558 		(void) m_free(m);
   1559 	return (error);
   1560 }
   1561 
   1562 int
   1563 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1564 {
   1565 	struct mbuf	*m;
   1566 
   1567 	if (level != SOL_SOCKET) {
   1568 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1569 			return ((*so->so_proto->pr_ctloutput)
   1570 				  (PRCO_GETOPT, so, level, optname, mp));
   1571 		} else
   1572 			return (ENOPROTOOPT);
   1573 	} else {
   1574 		m = m_get(M_WAIT, MT_SOOPTS);
   1575 		m->m_len = sizeof(int);
   1576 
   1577 		switch (optname) {
   1578 
   1579 		case SO_LINGER:
   1580 			m->m_len = sizeof(struct linger);
   1581 			mtod(m, struct linger *)->l_onoff =
   1582 				so->so_options & SO_LINGER;
   1583 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1584 			break;
   1585 
   1586 		case SO_USELOOPBACK:
   1587 		case SO_DONTROUTE:
   1588 		case SO_DEBUG:
   1589 		case SO_KEEPALIVE:
   1590 		case SO_REUSEADDR:
   1591 		case SO_REUSEPORT:
   1592 		case SO_BROADCAST:
   1593 		case SO_OOBINLINE:
   1594 		case SO_TIMESTAMP:
   1595 			*mtod(m, int *) = so->so_options & optname;
   1596 			break;
   1597 
   1598 		case SO_TYPE:
   1599 			*mtod(m, int *) = so->so_type;
   1600 			break;
   1601 
   1602 		case SO_ERROR:
   1603 			*mtod(m, int *) = so->so_error;
   1604 			so->so_error = 0;
   1605 			break;
   1606 
   1607 		case SO_SNDBUF:
   1608 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1609 			break;
   1610 
   1611 		case SO_RCVBUF:
   1612 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1613 			break;
   1614 
   1615 		case SO_SNDLOWAT:
   1616 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1617 			break;
   1618 
   1619 		case SO_RCVLOWAT:
   1620 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1621 			break;
   1622 
   1623 		case SO_SNDTIMEO:
   1624 		case SO_RCVTIMEO:
   1625 		    {
   1626 			int val = (optname == SO_SNDTIMEO ?
   1627 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1628 
   1629 			m->m_len = sizeof(struct timeval);
   1630 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1631 			mtod(m, struct timeval *)->tv_usec =
   1632 			    (val % hz) * tick;
   1633 			break;
   1634 		    }
   1635 
   1636 		case SO_OVERFLOWED:
   1637 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1638 			break;
   1639 
   1640 		default:
   1641 			(void)m_free(m);
   1642 			return (ENOPROTOOPT);
   1643 		}
   1644 		*mp = m;
   1645 		return (0);
   1646 	}
   1647 }
   1648 
   1649 void
   1650 sohasoutofband(struct socket *so)
   1651 {
   1652 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1653 	selwakeup(&so->so_rcv.sb_sel);
   1654 }
   1655 
   1656 static void
   1657 filt_sordetach(struct knote *kn)
   1658 {
   1659 	struct socket	*so;
   1660 
   1661 	so = (struct socket *)kn->kn_fp->f_data;
   1662 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1663 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1664 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1665 }
   1666 
   1667 /*ARGSUSED*/
   1668 static int
   1669 filt_soread(struct knote *kn, long hint)
   1670 {
   1671 	struct socket	*so;
   1672 
   1673 	so = (struct socket *)kn->kn_fp->f_data;
   1674 	kn->kn_data = so->so_rcv.sb_cc;
   1675 	if (so->so_state & SS_CANTRCVMORE) {
   1676 		kn->kn_flags |= EV_EOF;
   1677 		kn->kn_fflags = so->so_error;
   1678 		return (1);
   1679 	}
   1680 	if (so->so_error)	/* temporary udp error */
   1681 		return (1);
   1682 	if (kn->kn_sfflags & NOTE_LOWAT)
   1683 		return (kn->kn_data >= kn->kn_sdata);
   1684 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1685 }
   1686 
   1687 static void
   1688 filt_sowdetach(struct knote *kn)
   1689 {
   1690 	struct socket	*so;
   1691 
   1692 	so = (struct socket *)kn->kn_fp->f_data;
   1693 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1694 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1695 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1696 }
   1697 
   1698 /*ARGSUSED*/
   1699 static int
   1700 filt_sowrite(struct knote *kn, long hint)
   1701 {
   1702 	struct socket	*so;
   1703 
   1704 	so = (struct socket *)kn->kn_fp->f_data;
   1705 	kn->kn_data = sbspace(&so->so_snd);
   1706 	if (so->so_state & SS_CANTSENDMORE) {
   1707 		kn->kn_flags |= EV_EOF;
   1708 		kn->kn_fflags = so->so_error;
   1709 		return (1);
   1710 	}
   1711 	if (so->so_error)	/* temporary udp error */
   1712 		return (1);
   1713 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1714 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1715 		return (0);
   1716 	if (kn->kn_sfflags & NOTE_LOWAT)
   1717 		return (kn->kn_data >= kn->kn_sdata);
   1718 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1719 }
   1720 
   1721 /*ARGSUSED*/
   1722 static int
   1723 filt_solisten(struct knote *kn, long hint)
   1724 {
   1725 	struct socket	*so;
   1726 
   1727 	so = (struct socket *)kn->kn_fp->f_data;
   1728 
   1729 	/*
   1730 	 * Set kn_data to number of incoming connections, not
   1731 	 * counting partial (incomplete) connections.
   1732 	 */
   1733 	kn->kn_data = so->so_qlen;
   1734 	return (kn->kn_data > 0);
   1735 }
   1736 
   1737 static const struct filterops solisten_filtops =
   1738 	{ 1, NULL, filt_sordetach, filt_solisten };
   1739 static const struct filterops soread_filtops =
   1740 	{ 1, NULL, filt_sordetach, filt_soread };
   1741 static const struct filterops sowrite_filtops =
   1742 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1743 
   1744 int
   1745 soo_kqfilter(struct file *fp, struct knote *kn)
   1746 {
   1747 	struct socket	*so;
   1748 	struct sockbuf	*sb;
   1749 
   1750 	so = (struct socket *)kn->kn_fp->f_data;
   1751 	switch (kn->kn_filter) {
   1752 	case EVFILT_READ:
   1753 		if (so->so_options & SO_ACCEPTCONN)
   1754 			kn->kn_fop = &solisten_filtops;
   1755 		else
   1756 			kn->kn_fop = &soread_filtops;
   1757 		sb = &so->so_rcv;
   1758 		break;
   1759 	case EVFILT_WRITE:
   1760 		kn->kn_fop = &sowrite_filtops;
   1761 		sb = &so->so_snd;
   1762 		break;
   1763 	default:
   1764 		return (1);
   1765 	}
   1766 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1767 	sb->sb_flags |= SB_KNOTE;
   1768 	return (0);
   1769 }
   1770 
   1771 #include <sys/sysctl.h>
   1772 
   1773 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1774 
   1775 /*
   1776  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1777  * value is not too small.
   1778  * (XXX should we maybe make sure it's not too large as well?)
   1779  */
   1780 static int
   1781 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1782 {
   1783 	int error, new_somaxkva;
   1784 	struct sysctlnode node;
   1785 	int s;
   1786 
   1787 	new_somaxkva = somaxkva;
   1788 	node = *rnode;
   1789 	node.sysctl_data = &new_somaxkva;
   1790 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1791 	if (error || newp == NULL)
   1792 		return (error);
   1793 
   1794 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1795 		return (EINVAL);
   1796 
   1797 	s = splvm();
   1798 	simple_lock(&so_pendfree_slock);
   1799 	somaxkva = new_somaxkva;
   1800 	wakeup(&socurkva);
   1801 	simple_unlock(&so_pendfree_slock);
   1802 	splx(s);
   1803 
   1804 	return (error);
   1805 }
   1806 
   1807 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1808 {
   1809 
   1810 	sysctl_createv(clog, 0, NULL, NULL,
   1811 		       CTLFLAG_PERMANENT,
   1812 		       CTLTYPE_NODE, "kern", NULL,
   1813 		       NULL, 0, NULL, 0,
   1814 		       CTL_KERN, CTL_EOL);
   1815 
   1816 	sysctl_createv(clog, 0, NULL, NULL,
   1817 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1818 		       CTLTYPE_INT, "somaxkva",
   1819 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1820 				    "used for socket buffers"),
   1821 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1822 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1823 }
   1824