uipc_socket.c revision 1.122.6.1 1 /* $NetBSD: uipc_socket.c,v 1.122.6.1 2006/10/22 06:07:11 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.122.6.1 2006/10/22 06:07:11 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so __unused, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
259 {
260 vaddr_t va, sva, eva;
261 vsize_t len;
262 paddr_t pa;
263 int i, npgs;
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 if (__predict_false(pgs == NULL)) {
271 pgs = alloca(npgs * sizeof(*pgs));
272
273 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
274 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
275 panic("sodoloanfree: va 0x%lx not mapped", va);
276 pgs[i] = PHYS_TO_VM_PAGE(pa);
277 }
278 }
279
280 pmap_kremove(sva, len);
281 pmap_update(pmap_kernel());
282 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
283 sokvafree(sva, len);
284 }
285
286 static size_t
287 sodopendfree()
288 {
289 int s;
290 size_t rv;
291
292 s = splvm();
293 simple_lock(&so_pendfree_slock);
294 rv = sodopendfreel();
295 simple_unlock(&so_pendfree_slock);
296 splx(s);
297
298 return rv;
299 }
300
301 /*
302 * sodopendfreel: free mbufs on "pendfree" list.
303 * unlock and relock so_pendfree_slock when freeing mbufs.
304 *
305 * => called with so_pendfree_slock held.
306 * => called at splvm.
307 */
308
309 static size_t
310 sodopendfreel()
311 {
312 size_t rv = 0;
313
314 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
315
316 for (;;) {
317 struct mbuf *m;
318 struct mbuf *next;
319
320 m = so_pendfree;
321 if (m == NULL)
322 break;
323 so_pendfree = NULL;
324 simple_unlock(&so_pendfree_slock);
325 /* XXX splx */
326
327 for (; m != NULL; m = next) {
328 next = m->m_next;
329
330 rv += m->m_ext.ext_size;
331 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
332 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
333 m->m_ext.ext_size);
334 pool_cache_put(&mbpool_cache, m);
335 }
336
337 /* XXX splvm */
338 simple_lock(&so_pendfree_slock);
339 }
340
341 return (rv);
342 }
343
344 void
345 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg __unused)
346 {
347 int s;
348
349 if (m == NULL) {
350
351 /*
352 * called from MEXTREMOVE.
353 */
354
355 sodoloanfree(NULL, buf, size);
356 return;
357 }
358
359 /*
360 * postpone freeing mbuf.
361 *
362 * we can't do it in interrupt context
363 * because we need to put kva back to kernel_map.
364 */
365
366 s = splvm();
367 simple_lock(&so_pendfree_slock);
368 m->m_next = so_pendfree;
369 so_pendfree = m;
370 if (sokvawaiters)
371 wakeup(&socurkva);
372 simple_unlock(&so_pendfree_slock);
373 splx(s);
374 }
375
376 static long
377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
378 {
379 struct iovec *iov = uio->uio_iov;
380 vaddr_t sva, eva;
381 vsize_t len;
382 vaddr_t lva, va;
383 int npgs, i, error;
384
385 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
386 return (0);
387
388 if (iov->iov_len < (size_t) space)
389 space = iov->iov_len;
390 if (space > SOCK_LOAN_CHUNK)
391 space = SOCK_LOAN_CHUNK;
392
393 eva = round_page((vaddr_t) iov->iov_base + space);
394 sva = trunc_page((vaddr_t) iov->iov_base);
395 len = eva - sva;
396 npgs = len >> PAGE_SHIFT;
397
398 /* XXX KDASSERT */
399 KASSERT(npgs <= M_EXT_MAXPAGES);
400
401 lva = sokvaalloc(len, so);
402 if (lva == 0)
403 return 0;
404
405 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
406 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
407 if (error) {
408 sokvafree(lva, len);
409 return (0);
410 }
411
412 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
413 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
414 VM_PROT_READ);
415 pmap_update(pmap_kernel());
416
417 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
418
419 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
420 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
421
422 uio->uio_resid -= space;
423 /* uio_offset not updated, not set/used for write(2) */
424 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
425 uio->uio_iov->iov_len -= space;
426 if (uio->uio_iov->iov_len == 0) {
427 uio->uio_iov++;
428 uio->uio_iovcnt--;
429 }
430
431 return (space);
432 }
433
434 static int
435 sokva_reclaim_callback(struct callback_entry *ce __unused, void *obj __unused,
436 void *arg __unused)
437 {
438
439 KASSERT(ce == &sokva_reclaimerentry);
440 KASSERT(obj == NULL);
441
442 sodopendfree();
443 if (!vm_map_starved_p(kernel_map)) {
444 return CALLBACK_CHAIN_ABORT;
445 }
446 return CALLBACK_CHAIN_CONTINUE;
447 }
448
449 void
450 soinit(void)
451 {
452
453 /* Set the initial adjusted socket buffer size. */
454 if (sb_max_set(sb_max))
455 panic("bad initial sb_max value: %lu", sb_max);
456
457 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
458 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
459 }
460
461 /*
462 * Socket operation routines.
463 * These routines are called by the routines in
464 * sys_socket.c or from a system process, and
465 * implement the semantics of socket operations by
466 * switching out to the protocol specific routines.
467 */
468 /*ARGSUSED*/
469 int
470 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
471 {
472 const struct protosw *prp;
473 struct socket *so;
474 uid_t uid;
475 int error, s;
476
477 if (proto)
478 prp = pffindproto(dom, proto, type);
479 else
480 prp = pffindtype(dom, type);
481 if (prp == 0) {
482 /* no support for domain */
483 if (pffinddomain(dom) == 0)
484 return (EAFNOSUPPORT);
485 /* no support for socket type */
486 if (proto == 0 && type != 0)
487 return (EPROTOTYPE);
488 return (EPROTONOSUPPORT);
489 }
490 if (prp->pr_usrreq == 0)
491 return (EPROTONOSUPPORT);
492 if (prp->pr_type != type)
493 return (EPROTOTYPE);
494 s = splsoftnet();
495 so = pool_get(&socket_pool, PR_WAITOK);
496 memset((caddr_t)so, 0, sizeof(*so));
497 TAILQ_INIT(&so->so_q0);
498 TAILQ_INIT(&so->so_q);
499 so->so_type = type;
500 so->so_proto = prp;
501 so->so_send = sosend;
502 so->so_receive = soreceive;
503 #ifdef MBUFTRACE
504 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
505 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
506 so->so_mowner = &prp->pr_domain->dom_mowner;
507 #endif
508 if (l != NULL) {
509 uid = kauth_cred_geteuid(l->l_cred);
510 } else {
511 uid = 0;
512 }
513 so->so_uidinfo = uid_find(uid);
514 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
515 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
516 if (error) {
517 so->so_state |= SS_NOFDREF;
518 sofree(so);
519 splx(s);
520 return (error);
521 }
522 splx(s);
523 *aso = so;
524 return (0);
525 }
526
527 int
528 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
529 {
530 int s, error;
531
532 s = splsoftnet();
533 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
534 nam, (struct mbuf *)0, l);
535 splx(s);
536 return (error);
537 }
538
539 int
540 solisten(struct socket *so, int backlog)
541 {
542 int s, error;
543
544 s = splsoftnet();
545 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
546 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
547 if (error) {
548 splx(s);
549 return (error);
550 }
551 if (TAILQ_EMPTY(&so->so_q))
552 so->so_options |= SO_ACCEPTCONN;
553 if (backlog < 0)
554 backlog = 0;
555 so->so_qlimit = min(backlog, somaxconn);
556 splx(s);
557 return (0);
558 }
559
560 void
561 sofree(struct socket *so)
562 {
563
564 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
565 return;
566 if (so->so_head) {
567 /*
568 * We must not decommission a socket that's on the accept(2)
569 * queue. If we do, then accept(2) may hang after select(2)
570 * indicated that the listening socket was ready.
571 */
572 if (!soqremque(so, 0))
573 return;
574 }
575 if (so->so_rcv.sb_hiwat)
576 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
577 RLIM_INFINITY);
578 if (so->so_snd.sb_hiwat)
579 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
580 RLIM_INFINITY);
581 sbrelease(&so->so_snd, so);
582 sorflush(so);
583 pool_put(&socket_pool, so);
584 }
585
586 /*
587 * Close a socket on last file table reference removal.
588 * Initiate disconnect if connected.
589 * Free socket when disconnect complete.
590 */
591 int
592 soclose(struct socket *so)
593 {
594 struct socket *so2;
595 int s, error;
596
597 error = 0;
598 s = splsoftnet(); /* conservative */
599 if (so->so_options & SO_ACCEPTCONN) {
600 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
601 (void) soqremque(so2, 0);
602 (void) soabort(so2);
603 }
604 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
605 (void) soqremque(so2, 1);
606 (void) soabort(so2);
607 }
608 }
609 if (so->so_pcb == 0)
610 goto discard;
611 if (so->so_state & SS_ISCONNECTED) {
612 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
613 error = sodisconnect(so);
614 if (error)
615 goto drop;
616 }
617 if (so->so_options & SO_LINGER) {
618 if ((so->so_state & SS_ISDISCONNECTING) &&
619 (so->so_state & SS_NBIO))
620 goto drop;
621 while (so->so_state & SS_ISCONNECTED) {
622 error = tsleep((caddr_t)&so->so_timeo,
623 PSOCK | PCATCH, netcls,
624 so->so_linger * hz);
625 if (error)
626 break;
627 }
628 }
629 }
630 drop:
631 if (so->so_pcb) {
632 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
633 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
634 (struct lwp *)0);
635 if (error == 0)
636 error = error2;
637 }
638 discard:
639 if (so->so_state & SS_NOFDREF)
640 panic("soclose: NOFDREF");
641 so->so_state |= SS_NOFDREF;
642 sofree(so);
643 splx(s);
644 return (error);
645 }
646
647 /*
648 * Must be called at splsoftnet...
649 */
650 int
651 soabort(struct socket *so)
652 {
653
654 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
655 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
656 }
657
658 int
659 soaccept(struct socket *so, struct mbuf *nam)
660 {
661 int s, error;
662
663 error = 0;
664 s = splsoftnet();
665 if ((so->so_state & SS_NOFDREF) == 0)
666 panic("soaccept: !NOFDREF");
667 so->so_state &= ~SS_NOFDREF;
668 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
669 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
670 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
671 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
672 else
673 error = ECONNABORTED;
674
675 splx(s);
676 return (error);
677 }
678
679 int
680 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
681 {
682 int s, error;
683
684 if (so->so_options & SO_ACCEPTCONN)
685 return (EOPNOTSUPP);
686 s = splsoftnet();
687 /*
688 * If protocol is connection-based, can only connect once.
689 * Otherwise, if connected, try to disconnect first.
690 * This allows user to disconnect by connecting to, e.g.,
691 * a null address.
692 */
693 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
694 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
695 (error = sodisconnect(so))))
696 error = EISCONN;
697 else
698 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
699 (struct mbuf *)0, nam, (struct mbuf *)0, l);
700 splx(s);
701 return (error);
702 }
703
704 int
705 soconnect2(struct socket *so1, struct socket *so2)
706 {
707 int s, error;
708
709 s = splsoftnet();
710 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
711 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
712 (struct lwp *)0);
713 splx(s);
714 return (error);
715 }
716
717 int
718 sodisconnect(struct socket *so)
719 {
720 int s, error;
721
722 s = splsoftnet();
723 if ((so->so_state & SS_ISCONNECTED) == 0) {
724 error = ENOTCONN;
725 goto bad;
726 }
727 if (so->so_state & SS_ISDISCONNECTING) {
728 error = EALREADY;
729 goto bad;
730 }
731 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
732 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
733 (struct lwp *)0);
734 bad:
735 splx(s);
736 sodopendfree();
737 return (error);
738 }
739
740 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
741 /*
742 * Send on a socket.
743 * If send must go all at once and message is larger than
744 * send buffering, then hard error.
745 * Lock against other senders.
746 * If must go all at once and not enough room now, then
747 * inform user that this would block and do nothing.
748 * Otherwise, if nonblocking, send as much as possible.
749 * The data to be sent is described by "uio" if nonzero,
750 * otherwise by the mbuf chain "top" (which must be null
751 * if uio is not). Data provided in mbuf chain must be small
752 * enough to send all at once.
753 *
754 * Returns nonzero on error, timeout or signal; callers
755 * must check for short counts if EINTR/ERESTART are returned.
756 * Data and control buffers are freed on return.
757 */
758 int
759 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
760 struct mbuf *control, int flags, struct lwp *l)
761 {
762 struct mbuf **mp, *m;
763 struct proc *p;
764 long space, len, resid, clen, mlen;
765 int error, s, dontroute, atomic;
766
767 p = l->l_proc;
768 sodopendfree();
769
770 clen = 0;
771 atomic = sosendallatonce(so) || top;
772 if (uio)
773 resid = uio->uio_resid;
774 else
775 resid = top->m_pkthdr.len;
776 /*
777 * In theory resid should be unsigned.
778 * However, space must be signed, as it might be less than 0
779 * if we over-committed, and we must use a signed comparison
780 * of space and resid. On the other hand, a negative resid
781 * causes us to loop sending 0-length segments to the protocol.
782 */
783 if (resid < 0) {
784 error = EINVAL;
785 goto out;
786 }
787 dontroute =
788 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
789 (so->so_proto->pr_flags & PR_ATOMIC);
790 if (p)
791 p->p_stats->p_ru.ru_msgsnd++;
792 if (control)
793 clen = control->m_len;
794 #define snderr(errno) { error = errno; splx(s); goto release; }
795
796 restart:
797 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
798 goto out;
799 do {
800 s = splsoftnet();
801 if (so->so_state & SS_CANTSENDMORE)
802 snderr(EPIPE);
803 if (so->so_error) {
804 error = so->so_error;
805 so->so_error = 0;
806 splx(s);
807 goto release;
808 }
809 if ((so->so_state & SS_ISCONNECTED) == 0) {
810 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
811 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
812 !(resid == 0 && clen != 0))
813 snderr(ENOTCONN);
814 } else if (addr == 0)
815 snderr(EDESTADDRREQ);
816 }
817 space = sbspace(&so->so_snd);
818 if (flags & MSG_OOB)
819 space += 1024;
820 if ((atomic && resid > so->so_snd.sb_hiwat) ||
821 clen > so->so_snd.sb_hiwat)
822 snderr(EMSGSIZE);
823 if (space < resid + clen &&
824 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
825 if (so->so_state & SS_NBIO)
826 snderr(EWOULDBLOCK);
827 sbunlock(&so->so_snd);
828 error = sbwait(&so->so_snd);
829 splx(s);
830 if (error)
831 goto out;
832 goto restart;
833 }
834 splx(s);
835 mp = ⊤
836 space -= clen;
837 do {
838 if (uio == NULL) {
839 /*
840 * Data is prepackaged in "top".
841 */
842 resid = 0;
843 if (flags & MSG_EOR)
844 top->m_flags |= M_EOR;
845 } else do {
846 if (top == 0) {
847 m = m_gethdr(M_WAIT, MT_DATA);
848 mlen = MHLEN;
849 m->m_pkthdr.len = 0;
850 m->m_pkthdr.rcvif = (struct ifnet *)0;
851 } else {
852 m = m_get(M_WAIT, MT_DATA);
853 mlen = MLEN;
854 }
855 MCLAIM(m, so->so_snd.sb_mowner);
856 if (sock_loan_thresh >= 0 &&
857 uio->uio_iov->iov_len >= sock_loan_thresh &&
858 space >= sock_loan_thresh &&
859 (len = sosend_loan(so, uio, m,
860 space)) != 0) {
861 SOSEND_COUNTER_INCR(&sosend_loan_big);
862 space -= len;
863 goto have_data;
864 }
865 if (resid >= MINCLSIZE && space >= MCLBYTES) {
866 SOSEND_COUNTER_INCR(&sosend_copy_big);
867 m_clget(m, M_WAIT);
868 if ((m->m_flags & M_EXT) == 0)
869 goto nopages;
870 mlen = MCLBYTES;
871 if (atomic && top == 0) {
872 len = lmin(MCLBYTES - max_hdr,
873 resid);
874 m->m_data += max_hdr;
875 } else
876 len = lmin(MCLBYTES, resid);
877 space -= len;
878 } else {
879 nopages:
880 SOSEND_COUNTER_INCR(&sosend_copy_small);
881 len = lmin(lmin(mlen, resid), space);
882 space -= len;
883 /*
884 * For datagram protocols, leave room
885 * for protocol headers in first mbuf.
886 */
887 if (atomic && top == 0 && len < mlen)
888 MH_ALIGN(m, len);
889 }
890 error = uiomove(mtod(m, caddr_t), (int)len,
891 uio);
892 have_data:
893 resid = uio->uio_resid;
894 m->m_len = len;
895 *mp = m;
896 top->m_pkthdr.len += len;
897 if (error)
898 goto release;
899 mp = &m->m_next;
900 if (resid <= 0) {
901 if (flags & MSG_EOR)
902 top->m_flags |= M_EOR;
903 break;
904 }
905 } while (space > 0 && atomic);
906
907 s = splsoftnet();
908
909 if (so->so_state & SS_CANTSENDMORE)
910 snderr(EPIPE);
911
912 if (dontroute)
913 so->so_options |= SO_DONTROUTE;
914 if (resid > 0)
915 so->so_state |= SS_MORETOCOME;
916 error = (*so->so_proto->pr_usrreq)(so,
917 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
918 top, addr, control, curlwp); /* XXX */
919 if (dontroute)
920 so->so_options &= ~SO_DONTROUTE;
921 if (resid > 0)
922 so->so_state &= ~SS_MORETOCOME;
923 splx(s);
924
925 clen = 0;
926 control = 0;
927 top = 0;
928 mp = ⊤
929 if (error)
930 goto release;
931 } while (resid && space > 0);
932 } while (resid);
933
934 release:
935 sbunlock(&so->so_snd);
936 out:
937 if (top)
938 m_freem(top);
939 if (control)
940 m_freem(control);
941 return (error);
942 }
943
944 /*
945 * Implement receive operations on a socket.
946 * We depend on the way that records are added to the sockbuf
947 * by sbappend*. In particular, each record (mbufs linked through m_next)
948 * must begin with an address if the protocol so specifies,
949 * followed by an optional mbuf or mbufs containing ancillary data,
950 * and then zero or more mbufs of data.
951 * In order to avoid blocking network interrupts for the entire time here,
952 * we splx() while doing the actual copy to user space.
953 * Although the sockbuf is locked, new data may still be appended,
954 * and thus we must maintain consistency of the sockbuf during that time.
955 *
956 * The caller may receive the data as a single mbuf chain by supplying
957 * an mbuf **mp0 for use in returning the chain. The uio is then used
958 * only for the count in uio_resid.
959 */
960 int
961 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
962 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
963 {
964 struct lwp *l = curlwp;
965 struct mbuf *m, **mp;
966 int flags, len, error, s, offset, moff, type, orig_resid;
967 const struct protosw *pr;
968 struct mbuf *nextrecord;
969 int mbuf_removed = 0;
970
971 pr = so->so_proto;
972 mp = mp0;
973 type = 0;
974 orig_resid = uio->uio_resid;
975
976 if (paddr)
977 *paddr = 0;
978 if (controlp)
979 *controlp = 0;
980 if (flagsp)
981 flags = *flagsp &~ MSG_EOR;
982 else
983 flags = 0;
984
985 if ((flags & MSG_DONTWAIT) == 0)
986 sodopendfree();
987
988 if (flags & MSG_OOB) {
989 m = m_get(M_WAIT, MT_DATA);
990 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
991 (struct mbuf *)(long)(flags & MSG_PEEK),
992 (struct mbuf *)0, l);
993 if (error)
994 goto bad;
995 do {
996 error = uiomove(mtod(m, caddr_t),
997 (int) min(uio->uio_resid, m->m_len), uio);
998 m = m_free(m);
999 } while (uio->uio_resid && error == 0 && m);
1000 bad:
1001 if (m)
1002 m_freem(m);
1003 return (error);
1004 }
1005 if (mp)
1006 *mp = (struct mbuf *)0;
1007 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1008 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1009 (struct mbuf *)0, (struct mbuf *)0, l);
1010
1011 restart:
1012 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1013 return (error);
1014 s = splsoftnet();
1015
1016 m = so->so_rcv.sb_mb;
1017 /*
1018 * If we have less data than requested, block awaiting more
1019 * (subject to any timeout) if:
1020 * 1. the current count is less than the low water mark,
1021 * 2. MSG_WAITALL is set, and it is possible to do the entire
1022 * receive operation at once if we block (resid <= hiwat), or
1023 * 3. MSG_DONTWAIT is not set.
1024 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1025 * we have to do the receive in sections, and thus risk returning
1026 * a short count if a timeout or signal occurs after we start.
1027 */
1028 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1029 so->so_rcv.sb_cc < uio->uio_resid) &&
1030 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1031 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1032 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1033 #ifdef DIAGNOSTIC
1034 if (m == 0 && so->so_rcv.sb_cc)
1035 panic("receive 1");
1036 #endif
1037 if (so->so_error) {
1038 if (m)
1039 goto dontblock;
1040 error = so->so_error;
1041 if ((flags & MSG_PEEK) == 0)
1042 so->so_error = 0;
1043 goto release;
1044 }
1045 if (so->so_state & SS_CANTRCVMORE) {
1046 if (m)
1047 goto dontblock;
1048 else
1049 goto release;
1050 }
1051 for (; m; m = m->m_next)
1052 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1053 m = so->so_rcv.sb_mb;
1054 goto dontblock;
1055 }
1056 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1057 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1058 error = ENOTCONN;
1059 goto release;
1060 }
1061 if (uio->uio_resid == 0)
1062 goto release;
1063 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1064 error = EWOULDBLOCK;
1065 goto release;
1066 }
1067 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1068 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1069 sbunlock(&so->so_rcv);
1070 error = sbwait(&so->so_rcv);
1071 splx(s);
1072 if (error)
1073 return (error);
1074 goto restart;
1075 }
1076 dontblock:
1077 /*
1078 * On entry here, m points to the first record of the socket buffer.
1079 * While we process the initial mbufs containing address and control
1080 * info, we save a copy of m->m_nextpkt into nextrecord.
1081 */
1082 if (l)
1083 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1084 KASSERT(m == so->so_rcv.sb_mb);
1085 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1086 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1087 nextrecord = m->m_nextpkt;
1088 if (pr->pr_flags & PR_ADDR) {
1089 #ifdef DIAGNOSTIC
1090 if (m->m_type != MT_SONAME)
1091 panic("receive 1a");
1092 #endif
1093 orig_resid = 0;
1094 if (flags & MSG_PEEK) {
1095 if (paddr)
1096 *paddr = m_copy(m, 0, m->m_len);
1097 m = m->m_next;
1098 } else {
1099 sbfree(&so->so_rcv, m);
1100 mbuf_removed = 1;
1101 if (paddr) {
1102 *paddr = m;
1103 so->so_rcv.sb_mb = m->m_next;
1104 m->m_next = 0;
1105 m = so->so_rcv.sb_mb;
1106 } else {
1107 MFREE(m, so->so_rcv.sb_mb);
1108 m = so->so_rcv.sb_mb;
1109 }
1110 }
1111 }
1112 while (m && m->m_type == MT_CONTROL && error == 0) {
1113 if (flags & MSG_PEEK) {
1114 if (controlp)
1115 *controlp = m_copy(m, 0, m->m_len);
1116 m = m->m_next;
1117 } else {
1118 sbfree(&so->so_rcv, m);
1119 mbuf_removed = 1;
1120 if (controlp) {
1121 struct domain *dom = pr->pr_domain;
1122 if (dom->dom_externalize && l &&
1123 mtod(m, struct cmsghdr *)->cmsg_type ==
1124 SCM_RIGHTS)
1125 error = (*dom->dom_externalize)(m, l);
1126 *controlp = m;
1127 so->so_rcv.sb_mb = m->m_next;
1128 m->m_next = 0;
1129 m = so->so_rcv.sb_mb;
1130 } else {
1131 /*
1132 * Dispose of any SCM_RIGHTS message that went
1133 * through the read path rather than recv.
1134 */
1135 if (pr->pr_domain->dom_dispose &&
1136 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1137 (*pr->pr_domain->dom_dispose)(m);
1138 MFREE(m, so->so_rcv.sb_mb);
1139 m = so->so_rcv.sb_mb;
1140 }
1141 }
1142 if (controlp) {
1143 orig_resid = 0;
1144 controlp = &(*controlp)->m_next;
1145 }
1146 }
1147
1148 /*
1149 * If m is non-NULL, we have some data to read. From now on,
1150 * make sure to keep sb_lastrecord consistent when working on
1151 * the last packet on the chain (nextrecord == NULL) and we
1152 * change m->m_nextpkt.
1153 */
1154 if (m) {
1155 if ((flags & MSG_PEEK) == 0) {
1156 m->m_nextpkt = nextrecord;
1157 /*
1158 * If nextrecord == NULL (this is a single chain),
1159 * then sb_lastrecord may not be valid here if m
1160 * was changed earlier.
1161 */
1162 if (nextrecord == NULL) {
1163 KASSERT(so->so_rcv.sb_mb == m);
1164 so->so_rcv.sb_lastrecord = m;
1165 }
1166 }
1167 type = m->m_type;
1168 if (type == MT_OOBDATA)
1169 flags |= MSG_OOB;
1170 } else {
1171 if ((flags & MSG_PEEK) == 0) {
1172 KASSERT(so->so_rcv.sb_mb == m);
1173 so->so_rcv.sb_mb = nextrecord;
1174 SB_EMPTY_FIXUP(&so->so_rcv);
1175 }
1176 }
1177 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1178 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1179
1180 moff = 0;
1181 offset = 0;
1182 while (m && uio->uio_resid > 0 && error == 0) {
1183 if (m->m_type == MT_OOBDATA) {
1184 if (type != MT_OOBDATA)
1185 break;
1186 } else if (type == MT_OOBDATA)
1187 break;
1188 #ifdef DIAGNOSTIC
1189 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1190 panic("receive 3");
1191 #endif
1192 so->so_state &= ~SS_RCVATMARK;
1193 len = uio->uio_resid;
1194 if (so->so_oobmark && len > so->so_oobmark - offset)
1195 len = so->so_oobmark - offset;
1196 if (len > m->m_len - moff)
1197 len = m->m_len - moff;
1198 /*
1199 * If mp is set, just pass back the mbufs.
1200 * Otherwise copy them out via the uio, then free.
1201 * Sockbuf must be consistent here (points to current mbuf,
1202 * it points to next record) when we drop priority;
1203 * we must note any additions to the sockbuf when we
1204 * block interrupts again.
1205 */
1206 if (mp == 0) {
1207 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1208 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1209 splx(s);
1210 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1211 s = splsoftnet();
1212 if (error) {
1213 /*
1214 * If any part of the record has been removed
1215 * (such as the MT_SONAME mbuf, which will
1216 * happen when PR_ADDR, and thus also
1217 * PR_ATOMIC, is set), then drop the entire
1218 * record to maintain the atomicity of the
1219 * receive operation.
1220 *
1221 * This avoids a later panic("receive 1a")
1222 * when compiled with DIAGNOSTIC.
1223 */
1224 if (m && mbuf_removed
1225 && (pr->pr_flags & PR_ATOMIC))
1226 (void) sbdroprecord(&so->so_rcv);
1227
1228 goto release;
1229 }
1230 } else
1231 uio->uio_resid -= len;
1232 if (len == m->m_len - moff) {
1233 if (m->m_flags & M_EOR)
1234 flags |= MSG_EOR;
1235 if (flags & MSG_PEEK) {
1236 m = m->m_next;
1237 moff = 0;
1238 } else {
1239 nextrecord = m->m_nextpkt;
1240 sbfree(&so->so_rcv, m);
1241 if (mp) {
1242 *mp = m;
1243 mp = &m->m_next;
1244 so->so_rcv.sb_mb = m = m->m_next;
1245 *mp = (struct mbuf *)0;
1246 } else {
1247 MFREE(m, so->so_rcv.sb_mb);
1248 m = so->so_rcv.sb_mb;
1249 }
1250 /*
1251 * If m != NULL, we also know that
1252 * so->so_rcv.sb_mb != NULL.
1253 */
1254 KASSERT(so->so_rcv.sb_mb == m);
1255 if (m) {
1256 m->m_nextpkt = nextrecord;
1257 if (nextrecord == NULL)
1258 so->so_rcv.sb_lastrecord = m;
1259 } else {
1260 so->so_rcv.sb_mb = nextrecord;
1261 SB_EMPTY_FIXUP(&so->so_rcv);
1262 }
1263 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1264 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1265 }
1266 } else {
1267 if (flags & MSG_PEEK)
1268 moff += len;
1269 else {
1270 if (mp)
1271 *mp = m_copym(m, 0, len, M_WAIT);
1272 m->m_data += len;
1273 m->m_len -= len;
1274 so->so_rcv.sb_cc -= len;
1275 }
1276 }
1277 if (so->so_oobmark) {
1278 if ((flags & MSG_PEEK) == 0) {
1279 so->so_oobmark -= len;
1280 if (so->so_oobmark == 0) {
1281 so->so_state |= SS_RCVATMARK;
1282 break;
1283 }
1284 } else {
1285 offset += len;
1286 if (offset == so->so_oobmark)
1287 break;
1288 }
1289 }
1290 if (flags & MSG_EOR)
1291 break;
1292 /*
1293 * If the MSG_WAITALL flag is set (for non-atomic socket),
1294 * we must not quit until "uio->uio_resid == 0" or an error
1295 * termination. If a signal/timeout occurs, return
1296 * with a short count but without error.
1297 * Keep sockbuf locked against other readers.
1298 */
1299 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1300 !sosendallatonce(so) && !nextrecord) {
1301 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1302 break;
1303 /*
1304 * If we are peeking and the socket receive buffer is
1305 * full, stop since we can't get more data to peek at.
1306 */
1307 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1308 break;
1309 /*
1310 * If we've drained the socket buffer, tell the
1311 * protocol in case it needs to do something to
1312 * get it filled again.
1313 */
1314 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1315 (*pr->pr_usrreq)(so, PRU_RCVD,
1316 (struct mbuf *)0,
1317 (struct mbuf *)(long)flags,
1318 (struct mbuf *)0, l);
1319 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1320 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1321 error = sbwait(&so->so_rcv);
1322 if (error) {
1323 sbunlock(&so->so_rcv);
1324 splx(s);
1325 return (0);
1326 }
1327 if ((m = so->so_rcv.sb_mb) != NULL)
1328 nextrecord = m->m_nextpkt;
1329 }
1330 }
1331
1332 if (m && pr->pr_flags & PR_ATOMIC) {
1333 flags |= MSG_TRUNC;
1334 if ((flags & MSG_PEEK) == 0)
1335 (void) sbdroprecord(&so->so_rcv);
1336 }
1337 if ((flags & MSG_PEEK) == 0) {
1338 if (m == 0) {
1339 /*
1340 * First part is an inline SB_EMPTY_FIXUP(). Second
1341 * part makes sure sb_lastrecord is up-to-date if
1342 * there is still data in the socket buffer.
1343 */
1344 so->so_rcv.sb_mb = nextrecord;
1345 if (so->so_rcv.sb_mb == NULL) {
1346 so->so_rcv.sb_mbtail = NULL;
1347 so->so_rcv.sb_lastrecord = NULL;
1348 } else if (nextrecord->m_nextpkt == NULL)
1349 so->so_rcv.sb_lastrecord = nextrecord;
1350 }
1351 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1352 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1353 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1354 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1355 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1356 }
1357 if (orig_resid == uio->uio_resid && orig_resid &&
1358 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1359 sbunlock(&so->so_rcv);
1360 splx(s);
1361 goto restart;
1362 }
1363
1364 if (flagsp)
1365 *flagsp |= flags;
1366 release:
1367 sbunlock(&so->so_rcv);
1368 splx(s);
1369 return (error);
1370 }
1371
1372 int
1373 soshutdown(struct socket *so, int how)
1374 {
1375 const struct protosw *pr;
1376
1377 pr = so->so_proto;
1378 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1379 return (EINVAL);
1380
1381 if (how == SHUT_RD || how == SHUT_RDWR)
1382 sorflush(so);
1383 if (how == SHUT_WR || how == SHUT_RDWR)
1384 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1385 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1386 return (0);
1387 }
1388
1389 void
1390 sorflush(struct socket *so)
1391 {
1392 struct sockbuf *sb, asb;
1393 const struct protosw *pr;
1394 int s;
1395
1396 sb = &so->so_rcv;
1397 pr = so->so_proto;
1398 sb->sb_flags |= SB_NOINTR;
1399 (void) sblock(sb, M_WAITOK);
1400 s = splnet();
1401 socantrcvmore(so);
1402 sbunlock(sb);
1403 asb = *sb;
1404 /*
1405 * Clear most of the sockbuf structure, but leave some of the
1406 * fields valid.
1407 */
1408 memset(&sb->sb_startzero, 0,
1409 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1410 splx(s);
1411 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1412 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1413 sbrelease(&asb, so);
1414 }
1415
1416 int
1417 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1418 {
1419 int error;
1420 struct mbuf *m;
1421
1422 error = 0;
1423 m = m0;
1424 if (level != SOL_SOCKET) {
1425 if (so->so_proto && so->so_proto->pr_ctloutput)
1426 return ((*so->so_proto->pr_ctloutput)
1427 (PRCO_SETOPT, so, level, optname, &m0));
1428 error = ENOPROTOOPT;
1429 } else {
1430 switch (optname) {
1431
1432 case SO_LINGER:
1433 if (m == NULL || m->m_len != sizeof(struct linger)) {
1434 error = EINVAL;
1435 goto bad;
1436 }
1437 if (mtod(m, struct linger *)->l_linger < 0 ||
1438 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1439 error = EDOM;
1440 goto bad;
1441 }
1442 so->so_linger = mtod(m, struct linger *)->l_linger;
1443 /* fall thru... */
1444
1445 case SO_DEBUG:
1446 case SO_KEEPALIVE:
1447 case SO_DONTROUTE:
1448 case SO_USELOOPBACK:
1449 case SO_BROADCAST:
1450 case SO_REUSEADDR:
1451 case SO_REUSEPORT:
1452 case SO_OOBINLINE:
1453 case SO_TIMESTAMP:
1454 if (m == NULL || m->m_len < sizeof(int)) {
1455 error = EINVAL;
1456 goto bad;
1457 }
1458 if (*mtod(m, int *))
1459 so->so_options |= optname;
1460 else
1461 so->so_options &= ~optname;
1462 break;
1463
1464 case SO_SNDBUF:
1465 case SO_RCVBUF:
1466 case SO_SNDLOWAT:
1467 case SO_RCVLOWAT:
1468 {
1469 int optval;
1470
1471 if (m == NULL || m->m_len < sizeof(int)) {
1472 error = EINVAL;
1473 goto bad;
1474 }
1475
1476 /*
1477 * Values < 1 make no sense for any of these
1478 * options, so disallow them.
1479 */
1480 optval = *mtod(m, int *);
1481 if (optval < 1) {
1482 error = EINVAL;
1483 goto bad;
1484 }
1485
1486 switch (optname) {
1487
1488 case SO_SNDBUF:
1489 case SO_RCVBUF:
1490 if (sbreserve(optname == SO_SNDBUF ?
1491 &so->so_snd : &so->so_rcv,
1492 (u_long) optval, so) == 0) {
1493 error = ENOBUFS;
1494 goto bad;
1495 }
1496 break;
1497
1498 /*
1499 * Make sure the low-water is never greater than
1500 * the high-water.
1501 */
1502 case SO_SNDLOWAT:
1503 so->so_snd.sb_lowat =
1504 (optval > so->so_snd.sb_hiwat) ?
1505 so->so_snd.sb_hiwat : optval;
1506 break;
1507 case SO_RCVLOWAT:
1508 so->so_rcv.sb_lowat =
1509 (optval > so->so_rcv.sb_hiwat) ?
1510 so->so_rcv.sb_hiwat : optval;
1511 break;
1512 }
1513 break;
1514 }
1515
1516 case SO_SNDTIMEO:
1517 case SO_RCVTIMEO:
1518 {
1519 struct timeval *tv;
1520 int val;
1521
1522 if (m == NULL || m->m_len < sizeof(*tv)) {
1523 error = EINVAL;
1524 goto bad;
1525 }
1526 tv = mtod(m, struct timeval *);
1527 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1528 error = EDOM;
1529 goto bad;
1530 }
1531 val = tv->tv_sec * hz + tv->tv_usec / tick;
1532 if (val == 0 && tv->tv_usec != 0)
1533 val = 1;
1534
1535 switch (optname) {
1536
1537 case SO_SNDTIMEO:
1538 so->so_snd.sb_timeo = val;
1539 break;
1540 case SO_RCVTIMEO:
1541 so->so_rcv.sb_timeo = val;
1542 break;
1543 }
1544 break;
1545 }
1546
1547 default:
1548 error = ENOPROTOOPT;
1549 break;
1550 }
1551 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1552 (void) ((*so->so_proto->pr_ctloutput)
1553 (PRCO_SETOPT, so, level, optname, &m0));
1554 m = NULL; /* freed by protocol */
1555 }
1556 }
1557 bad:
1558 if (m)
1559 (void) m_free(m);
1560 return (error);
1561 }
1562
1563 int
1564 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1565 {
1566 struct mbuf *m;
1567
1568 if (level != SOL_SOCKET) {
1569 if (so->so_proto && so->so_proto->pr_ctloutput) {
1570 return ((*so->so_proto->pr_ctloutput)
1571 (PRCO_GETOPT, so, level, optname, mp));
1572 } else
1573 return (ENOPROTOOPT);
1574 } else {
1575 m = m_get(M_WAIT, MT_SOOPTS);
1576 m->m_len = sizeof(int);
1577
1578 switch (optname) {
1579
1580 case SO_LINGER:
1581 m->m_len = sizeof(struct linger);
1582 mtod(m, struct linger *)->l_onoff =
1583 so->so_options & SO_LINGER;
1584 mtod(m, struct linger *)->l_linger = so->so_linger;
1585 break;
1586
1587 case SO_USELOOPBACK:
1588 case SO_DONTROUTE:
1589 case SO_DEBUG:
1590 case SO_KEEPALIVE:
1591 case SO_REUSEADDR:
1592 case SO_REUSEPORT:
1593 case SO_BROADCAST:
1594 case SO_OOBINLINE:
1595 case SO_TIMESTAMP:
1596 *mtod(m, int *) = so->so_options & optname;
1597 break;
1598
1599 case SO_TYPE:
1600 *mtod(m, int *) = so->so_type;
1601 break;
1602
1603 case SO_ERROR:
1604 *mtod(m, int *) = so->so_error;
1605 so->so_error = 0;
1606 break;
1607
1608 case SO_SNDBUF:
1609 *mtod(m, int *) = so->so_snd.sb_hiwat;
1610 break;
1611
1612 case SO_RCVBUF:
1613 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1614 break;
1615
1616 case SO_SNDLOWAT:
1617 *mtod(m, int *) = so->so_snd.sb_lowat;
1618 break;
1619
1620 case SO_RCVLOWAT:
1621 *mtod(m, int *) = so->so_rcv.sb_lowat;
1622 break;
1623
1624 case SO_SNDTIMEO:
1625 case SO_RCVTIMEO:
1626 {
1627 int val = (optname == SO_SNDTIMEO ?
1628 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1629
1630 m->m_len = sizeof(struct timeval);
1631 mtod(m, struct timeval *)->tv_sec = val / hz;
1632 mtod(m, struct timeval *)->tv_usec =
1633 (val % hz) * tick;
1634 break;
1635 }
1636
1637 case SO_OVERFLOWED:
1638 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1639 break;
1640
1641 default:
1642 (void)m_free(m);
1643 return (ENOPROTOOPT);
1644 }
1645 *mp = m;
1646 return (0);
1647 }
1648 }
1649
1650 void
1651 sohasoutofband(struct socket *so)
1652 {
1653 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1654 selwakeup(&so->so_rcv.sb_sel);
1655 }
1656
1657 static void
1658 filt_sordetach(struct knote *kn)
1659 {
1660 struct socket *so;
1661
1662 so = (struct socket *)kn->kn_fp->f_data;
1663 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1664 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1665 so->so_rcv.sb_flags &= ~SB_KNOTE;
1666 }
1667
1668 /*ARGSUSED*/
1669 static int
1670 filt_soread(struct knote *kn, long hint __unused)
1671 {
1672 struct socket *so;
1673
1674 so = (struct socket *)kn->kn_fp->f_data;
1675 kn->kn_data = so->so_rcv.sb_cc;
1676 if (so->so_state & SS_CANTRCVMORE) {
1677 kn->kn_flags |= EV_EOF;
1678 kn->kn_fflags = so->so_error;
1679 return (1);
1680 }
1681 if (so->so_error) /* temporary udp error */
1682 return (1);
1683 if (kn->kn_sfflags & NOTE_LOWAT)
1684 return (kn->kn_data >= kn->kn_sdata);
1685 return (kn->kn_data >= so->so_rcv.sb_lowat);
1686 }
1687
1688 static void
1689 filt_sowdetach(struct knote *kn)
1690 {
1691 struct socket *so;
1692
1693 so = (struct socket *)kn->kn_fp->f_data;
1694 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1695 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1696 so->so_snd.sb_flags &= ~SB_KNOTE;
1697 }
1698
1699 /*ARGSUSED*/
1700 static int
1701 filt_sowrite(struct knote *kn, long hint __unused)
1702 {
1703 struct socket *so;
1704
1705 so = (struct socket *)kn->kn_fp->f_data;
1706 kn->kn_data = sbspace(&so->so_snd);
1707 if (so->so_state & SS_CANTSENDMORE) {
1708 kn->kn_flags |= EV_EOF;
1709 kn->kn_fflags = so->so_error;
1710 return (1);
1711 }
1712 if (so->so_error) /* temporary udp error */
1713 return (1);
1714 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1715 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1716 return (0);
1717 if (kn->kn_sfflags & NOTE_LOWAT)
1718 return (kn->kn_data >= kn->kn_sdata);
1719 return (kn->kn_data >= so->so_snd.sb_lowat);
1720 }
1721
1722 /*ARGSUSED*/
1723 static int
1724 filt_solisten(struct knote *kn, long hint __unused)
1725 {
1726 struct socket *so;
1727
1728 so = (struct socket *)kn->kn_fp->f_data;
1729
1730 /*
1731 * Set kn_data to number of incoming connections, not
1732 * counting partial (incomplete) connections.
1733 */
1734 kn->kn_data = so->so_qlen;
1735 return (kn->kn_data > 0);
1736 }
1737
1738 static const struct filterops solisten_filtops =
1739 { 1, NULL, filt_sordetach, filt_solisten };
1740 static const struct filterops soread_filtops =
1741 { 1, NULL, filt_sordetach, filt_soread };
1742 static const struct filterops sowrite_filtops =
1743 { 1, NULL, filt_sowdetach, filt_sowrite };
1744
1745 int
1746 soo_kqfilter(struct file *fp __unused, struct knote *kn)
1747 {
1748 struct socket *so;
1749 struct sockbuf *sb;
1750
1751 so = (struct socket *)kn->kn_fp->f_data;
1752 switch (kn->kn_filter) {
1753 case EVFILT_READ:
1754 if (so->so_options & SO_ACCEPTCONN)
1755 kn->kn_fop = &solisten_filtops;
1756 else
1757 kn->kn_fop = &soread_filtops;
1758 sb = &so->so_rcv;
1759 break;
1760 case EVFILT_WRITE:
1761 kn->kn_fop = &sowrite_filtops;
1762 sb = &so->so_snd;
1763 break;
1764 default:
1765 return (1);
1766 }
1767 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1768 sb->sb_flags |= SB_KNOTE;
1769 return (0);
1770 }
1771
1772 #include <sys/sysctl.h>
1773
1774 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1775
1776 /*
1777 * sysctl helper routine for kern.somaxkva. ensures that the given
1778 * value is not too small.
1779 * (XXX should we maybe make sure it's not too large as well?)
1780 */
1781 static int
1782 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1783 {
1784 int error, new_somaxkva;
1785 struct sysctlnode node;
1786 int s;
1787
1788 new_somaxkva = somaxkva;
1789 node = *rnode;
1790 node.sysctl_data = &new_somaxkva;
1791 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1792 if (error || newp == NULL)
1793 return (error);
1794
1795 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1796 return (EINVAL);
1797
1798 s = splvm();
1799 simple_lock(&so_pendfree_slock);
1800 somaxkva = new_somaxkva;
1801 wakeup(&socurkva);
1802 simple_unlock(&so_pendfree_slock);
1803 splx(s);
1804
1805 return (error);
1806 }
1807
1808 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1809 {
1810
1811 sysctl_createv(clog, 0, NULL, NULL,
1812 CTLFLAG_PERMANENT,
1813 CTLTYPE_NODE, "kern", NULL,
1814 NULL, 0, NULL, 0,
1815 CTL_KERN, CTL_EOL);
1816
1817 sysctl_createv(clog, 0, NULL, NULL,
1818 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1819 CTLTYPE_INT, "somaxkva",
1820 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1821 "used for socket buffers"),
1822 sysctl_kern_somaxkva, 0, NULL, 0,
1823 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1824 }
1825