uipc_socket.c revision 1.129 1 /* $NetBSD: uipc_socket.c,v 1.129 2006/11/01 10:17:59 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.129 2006/11/01 10:17:59 yamt Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size)
259 {
260 vaddr_t va, sva, eva;
261 vsize_t len;
262 paddr_t pa;
263 int i, npgs;
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 if (__predict_false(pgs == NULL)) {
271 pgs = alloca(npgs * sizeof(*pgs));
272
273 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
274 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
275 panic("sodoloanfree: va 0x%lx not mapped", va);
276 pgs[i] = PHYS_TO_VM_PAGE(pa);
277 }
278 }
279
280 pmap_kremove(sva, len);
281 pmap_update(pmap_kernel());
282 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
283 sokvafree(sva, len);
284 }
285
286 static size_t
287 sodopendfree()
288 {
289 int s;
290 size_t rv;
291
292 s = splvm();
293 simple_lock(&so_pendfree_slock);
294 rv = sodopendfreel();
295 simple_unlock(&so_pendfree_slock);
296 splx(s);
297
298 return rv;
299 }
300
301 /*
302 * sodopendfreel: free mbufs on "pendfree" list.
303 * unlock and relock so_pendfree_slock when freeing mbufs.
304 *
305 * => called with so_pendfree_slock held.
306 * => called at splvm.
307 */
308
309 static size_t
310 sodopendfreel()
311 {
312 size_t rv = 0;
313
314 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
315
316 for (;;) {
317 struct mbuf *m;
318 struct mbuf *next;
319
320 m = so_pendfree;
321 if (m == NULL)
322 break;
323 so_pendfree = NULL;
324 simple_unlock(&so_pendfree_slock);
325 /* XXX splx */
326
327 for (; m != NULL; m = next) {
328 next = m->m_next;
329
330 rv += m->m_ext.ext_size;
331 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
332 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
333 m->m_ext.ext_size);
334 pool_cache_put(&mbpool_cache, m);
335 }
336
337 /* XXX splvm */
338 simple_lock(&so_pendfree_slock);
339 }
340
341 return (rv);
342 }
343
344 void
345 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
346 {
347 int s;
348
349 if (m == NULL) {
350
351 /*
352 * called from MEXTREMOVE.
353 */
354
355 sodoloanfree(NULL, buf, size);
356 return;
357 }
358
359 /*
360 * postpone freeing mbuf.
361 *
362 * we can't do it in interrupt context
363 * because we need to put kva back to kernel_map.
364 */
365
366 s = splvm();
367 simple_lock(&so_pendfree_slock);
368 m->m_next = so_pendfree;
369 so_pendfree = m;
370 if (sokvawaiters)
371 wakeup(&socurkva);
372 simple_unlock(&so_pendfree_slock);
373 splx(s);
374 }
375
376 static long
377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
378 {
379 struct iovec *iov = uio->uio_iov;
380 vaddr_t sva, eva;
381 vsize_t len;
382 vaddr_t lva, va;
383 int npgs, i, error;
384
385 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
386 return (0);
387
388 if (iov->iov_len < (size_t) space)
389 space = iov->iov_len;
390 if (space > SOCK_LOAN_CHUNK)
391 space = SOCK_LOAN_CHUNK;
392
393 eva = round_page((vaddr_t) iov->iov_base + space);
394 sva = trunc_page((vaddr_t) iov->iov_base);
395 len = eva - sva;
396 npgs = len >> PAGE_SHIFT;
397
398 /* XXX KDASSERT */
399 KASSERT(npgs <= M_EXT_MAXPAGES);
400
401 lva = sokvaalloc(len, so);
402 if (lva == 0)
403 return 0;
404
405 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
406 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
407 if (error) {
408 sokvafree(lva, len);
409 return (0);
410 }
411
412 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
413 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
414 VM_PROT_READ);
415 pmap_update(pmap_kernel());
416
417 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
418
419 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
420 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
421
422 uio->uio_resid -= space;
423 /* uio_offset not updated, not set/used for write(2) */
424 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
425 uio->uio_iov->iov_len -= space;
426 if (uio->uio_iov->iov_len == 0) {
427 uio->uio_iov++;
428 uio->uio_iovcnt--;
429 }
430
431 return (space);
432 }
433
434 static int
435 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
436 {
437
438 KASSERT(ce == &sokva_reclaimerentry);
439 KASSERT(obj == NULL);
440
441 sodopendfree();
442 if (!vm_map_starved_p(kernel_map)) {
443 return CALLBACK_CHAIN_ABORT;
444 }
445 return CALLBACK_CHAIN_CONTINUE;
446 }
447
448 void
449 soinit(void)
450 {
451
452 /* Set the initial adjusted socket buffer size. */
453 if (sb_max_set(sb_max))
454 panic("bad initial sb_max value: %lu", sb_max);
455
456 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
457 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
458 }
459
460 /*
461 * Socket operation routines.
462 * These routines are called by the routines in
463 * sys_socket.c or from a system process, and
464 * implement the semantics of socket operations by
465 * switching out to the protocol specific routines.
466 */
467 /*ARGSUSED*/
468 int
469 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
470 {
471 const struct protosw *prp;
472 struct socket *so;
473 uid_t uid;
474 int error, s;
475
476 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
477 KAUTH_REQ_NETWORK_SOCKET_OPEN, (void *)(u_long)dom,
478 (void *)(u_long)type, (void *)(u_long)proto) != 0)
479 return (EPERM);
480
481 if (proto)
482 prp = pffindproto(dom, proto, type);
483 else
484 prp = pffindtype(dom, type);
485 if (prp == 0) {
486 /* no support for domain */
487 if (pffinddomain(dom) == 0)
488 return (EAFNOSUPPORT);
489 /* no support for socket type */
490 if (proto == 0 && type != 0)
491 return (EPROTOTYPE);
492 return (EPROTONOSUPPORT);
493 }
494 if (prp->pr_usrreq == 0)
495 return (EPROTONOSUPPORT);
496 if (prp->pr_type != type)
497 return (EPROTOTYPE);
498 s = splsoftnet();
499 so = pool_get(&socket_pool, PR_WAITOK);
500 memset((caddr_t)so, 0, sizeof(*so));
501 TAILQ_INIT(&so->so_q0);
502 TAILQ_INIT(&so->so_q);
503 so->so_type = type;
504 so->so_proto = prp;
505 so->so_send = sosend;
506 so->so_receive = soreceive;
507 #ifdef MBUFTRACE
508 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
509 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
510 so->so_mowner = &prp->pr_domain->dom_mowner;
511 #endif
512 if (l != NULL) {
513 uid = kauth_cred_geteuid(l->l_cred);
514 } else {
515 uid = 0;
516 }
517 so->so_uidinfo = uid_find(uid);
518 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
519 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
520 if (error) {
521 so->so_state |= SS_NOFDREF;
522 sofree(so);
523 splx(s);
524 return (error);
525 }
526 splx(s);
527 *aso = so;
528 return (0);
529 }
530
531 int
532 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
533 {
534 int s, error;
535
536 s = splsoftnet();
537 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
538 nam, (struct mbuf *)0, l);
539 splx(s);
540 return (error);
541 }
542
543 int
544 solisten(struct socket *so, int backlog)
545 {
546 int s, error;
547
548 s = splsoftnet();
549 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
550 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
551 if (error) {
552 splx(s);
553 return (error);
554 }
555 if (TAILQ_EMPTY(&so->so_q))
556 so->so_options |= SO_ACCEPTCONN;
557 if (backlog < 0)
558 backlog = 0;
559 so->so_qlimit = min(backlog, somaxconn);
560 splx(s);
561 return (0);
562 }
563
564 void
565 sofree(struct socket *so)
566 {
567
568 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
569 return;
570 if (so->so_head) {
571 /*
572 * We must not decommission a socket that's on the accept(2)
573 * queue. If we do, then accept(2) may hang after select(2)
574 * indicated that the listening socket was ready.
575 */
576 if (!soqremque(so, 0))
577 return;
578 }
579 if (so->so_rcv.sb_hiwat)
580 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
581 RLIM_INFINITY);
582 if (so->so_snd.sb_hiwat)
583 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
584 RLIM_INFINITY);
585 sbrelease(&so->so_snd, so);
586 sorflush(so);
587 pool_put(&socket_pool, so);
588 }
589
590 /*
591 * Close a socket on last file table reference removal.
592 * Initiate disconnect if connected.
593 * Free socket when disconnect complete.
594 */
595 int
596 soclose(struct socket *so)
597 {
598 struct socket *so2;
599 int s, error;
600
601 error = 0;
602 s = splsoftnet(); /* conservative */
603 if (so->so_options & SO_ACCEPTCONN) {
604 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
605 (void) soqremque(so2, 0);
606 (void) soabort(so2);
607 }
608 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
609 (void) soqremque(so2, 1);
610 (void) soabort(so2);
611 }
612 }
613 if (so->so_pcb == 0)
614 goto discard;
615 if (so->so_state & SS_ISCONNECTED) {
616 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
617 error = sodisconnect(so);
618 if (error)
619 goto drop;
620 }
621 if (so->so_options & SO_LINGER) {
622 if ((so->so_state & SS_ISDISCONNECTING) &&
623 (so->so_state & SS_NBIO))
624 goto drop;
625 while (so->so_state & SS_ISCONNECTED) {
626 error = tsleep((caddr_t)&so->so_timeo,
627 PSOCK | PCATCH, netcls,
628 so->so_linger * hz);
629 if (error)
630 break;
631 }
632 }
633 }
634 drop:
635 if (so->so_pcb) {
636 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
637 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
638 (struct lwp *)0);
639 if (error == 0)
640 error = error2;
641 }
642 discard:
643 if (so->so_state & SS_NOFDREF)
644 panic("soclose: NOFDREF");
645 so->so_state |= SS_NOFDREF;
646 sofree(so);
647 splx(s);
648 return (error);
649 }
650
651 /*
652 * Must be called at splsoftnet...
653 */
654 int
655 soabort(struct socket *so)
656 {
657
658 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
659 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
660 }
661
662 int
663 soaccept(struct socket *so, struct mbuf *nam)
664 {
665 int s, error;
666
667 error = 0;
668 s = splsoftnet();
669 if ((so->so_state & SS_NOFDREF) == 0)
670 panic("soaccept: !NOFDREF");
671 so->so_state &= ~SS_NOFDREF;
672 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
673 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
674 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
675 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
676 else
677 error = ECONNABORTED;
678
679 splx(s);
680 return (error);
681 }
682
683 int
684 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
685 {
686 int s, error;
687
688 if (so->so_options & SO_ACCEPTCONN)
689 return (EOPNOTSUPP);
690 s = splsoftnet();
691 /*
692 * If protocol is connection-based, can only connect once.
693 * Otherwise, if connected, try to disconnect first.
694 * This allows user to disconnect by connecting to, e.g.,
695 * a null address.
696 */
697 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
698 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
699 (error = sodisconnect(so))))
700 error = EISCONN;
701 else
702 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
703 (struct mbuf *)0, nam, (struct mbuf *)0, l);
704 splx(s);
705 return (error);
706 }
707
708 int
709 soconnect2(struct socket *so1, struct socket *so2)
710 {
711 int s, error;
712
713 s = splsoftnet();
714 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
715 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
716 (struct lwp *)0);
717 splx(s);
718 return (error);
719 }
720
721 int
722 sodisconnect(struct socket *so)
723 {
724 int s, error;
725
726 s = splsoftnet();
727 if ((so->so_state & SS_ISCONNECTED) == 0) {
728 error = ENOTCONN;
729 goto bad;
730 }
731 if (so->so_state & SS_ISDISCONNECTING) {
732 error = EALREADY;
733 goto bad;
734 }
735 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
736 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
737 (struct lwp *)0);
738 bad:
739 splx(s);
740 sodopendfree();
741 return (error);
742 }
743
744 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
745 /*
746 * Send on a socket.
747 * If send must go all at once and message is larger than
748 * send buffering, then hard error.
749 * Lock against other senders.
750 * If must go all at once and not enough room now, then
751 * inform user that this would block and do nothing.
752 * Otherwise, if nonblocking, send as much as possible.
753 * The data to be sent is described by "uio" if nonzero,
754 * otherwise by the mbuf chain "top" (which must be null
755 * if uio is not). Data provided in mbuf chain must be small
756 * enough to send all at once.
757 *
758 * Returns nonzero on error, timeout or signal; callers
759 * must check for short counts if EINTR/ERESTART are returned.
760 * Data and control buffers are freed on return.
761 */
762 int
763 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
764 struct mbuf *control, int flags, struct lwp *l)
765 {
766 struct mbuf **mp, *m;
767 struct proc *p;
768 long space, len, resid, clen, mlen;
769 int error, s, dontroute, atomic;
770
771 p = l->l_proc;
772 sodopendfree();
773
774 clen = 0;
775 atomic = sosendallatonce(so) || top;
776 if (uio)
777 resid = uio->uio_resid;
778 else
779 resid = top->m_pkthdr.len;
780 /*
781 * In theory resid should be unsigned.
782 * However, space must be signed, as it might be less than 0
783 * if we over-committed, and we must use a signed comparison
784 * of space and resid. On the other hand, a negative resid
785 * causes us to loop sending 0-length segments to the protocol.
786 */
787 if (resid < 0) {
788 error = EINVAL;
789 goto out;
790 }
791 dontroute =
792 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
793 (so->so_proto->pr_flags & PR_ATOMIC);
794 if (p)
795 p->p_stats->p_ru.ru_msgsnd++;
796 if (control)
797 clen = control->m_len;
798 #define snderr(errno) { error = errno; splx(s); goto release; }
799
800 restart:
801 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
802 goto out;
803 do {
804 s = splsoftnet();
805 if (so->so_state & SS_CANTSENDMORE)
806 snderr(EPIPE);
807 if (so->so_error) {
808 error = so->so_error;
809 so->so_error = 0;
810 splx(s);
811 goto release;
812 }
813 if ((so->so_state & SS_ISCONNECTED) == 0) {
814 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
815 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
816 !(resid == 0 && clen != 0))
817 snderr(ENOTCONN);
818 } else if (addr == 0)
819 snderr(EDESTADDRREQ);
820 }
821 space = sbspace(&so->so_snd);
822 if (flags & MSG_OOB)
823 space += 1024;
824 if ((atomic && resid > so->so_snd.sb_hiwat) ||
825 clen > so->so_snd.sb_hiwat)
826 snderr(EMSGSIZE);
827 if (space < resid + clen &&
828 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
829 if (so->so_state & SS_NBIO)
830 snderr(EWOULDBLOCK);
831 sbunlock(&so->so_snd);
832 error = sbwait(&so->so_snd);
833 splx(s);
834 if (error)
835 goto out;
836 goto restart;
837 }
838 splx(s);
839 mp = ⊤
840 space -= clen;
841 do {
842 if (uio == NULL) {
843 /*
844 * Data is prepackaged in "top".
845 */
846 resid = 0;
847 if (flags & MSG_EOR)
848 top->m_flags |= M_EOR;
849 } else do {
850 if (top == 0) {
851 m = m_gethdr(M_WAIT, MT_DATA);
852 mlen = MHLEN;
853 m->m_pkthdr.len = 0;
854 m->m_pkthdr.rcvif = (struct ifnet *)0;
855 } else {
856 m = m_get(M_WAIT, MT_DATA);
857 mlen = MLEN;
858 }
859 MCLAIM(m, so->so_snd.sb_mowner);
860 if (sock_loan_thresh >= 0 &&
861 uio->uio_iov->iov_len >= sock_loan_thresh &&
862 space >= sock_loan_thresh &&
863 (len = sosend_loan(so, uio, m,
864 space)) != 0) {
865 SOSEND_COUNTER_INCR(&sosend_loan_big);
866 space -= len;
867 goto have_data;
868 }
869 if (resid >= MINCLSIZE && space >= MCLBYTES) {
870 SOSEND_COUNTER_INCR(&sosend_copy_big);
871 m_clget(m, M_WAIT);
872 if ((m->m_flags & M_EXT) == 0)
873 goto nopages;
874 mlen = MCLBYTES;
875 if (atomic && top == 0) {
876 len = lmin(MCLBYTES - max_hdr,
877 resid);
878 m->m_data += max_hdr;
879 } else
880 len = lmin(MCLBYTES, resid);
881 space -= len;
882 } else {
883 nopages:
884 SOSEND_COUNTER_INCR(&sosend_copy_small);
885 len = lmin(lmin(mlen, resid), space);
886 space -= len;
887 /*
888 * For datagram protocols, leave room
889 * for protocol headers in first mbuf.
890 */
891 if (atomic && top == 0 && len < mlen)
892 MH_ALIGN(m, len);
893 }
894 error = uiomove(mtod(m, caddr_t), (int)len,
895 uio);
896 have_data:
897 resid = uio->uio_resid;
898 m->m_len = len;
899 *mp = m;
900 top->m_pkthdr.len += len;
901 if (error)
902 goto release;
903 mp = &m->m_next;
904 if (resid <= 0) {
905 if (flags & MSG_EOR)
906 top->m_flags |= M_EOR;
907 break;
908 }
909 } while (space > 0 && atomic);
910
911 s = splsoftnet();
912
913 if (so->so_state & SS_CANTSENDMORE)
914 snderr(EPIPE);
915
916 if (dontroute)
917 so->so_options |= SO_DONTROUTE;
918 if (resid > 0)
919 so->so_state |= SS_MORETOCOME;
920 error = (*so->so_proto->pr_usrreq)(so,
921 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
922 top, addr, control, curlwp); /* XXX */
923 if (dontroute)
924 so->so_options &= ~SO_DONTROUTE;
925 if (resid > 0)
926 so->so_state &= ~SS_MORETOCOME;
927 splx(s);
928
929 clen = 0;
930 control = 0;
931 top = 0;
932 mp = ⊤
933 if (error)
934 goto release;
935 } while (resid && space > 0);
936 } while (resid);
937
938 release:
939 sbunlock(&so->so_snd);
940 out:
941 if (top)
942 m_freem(top);
943 if (control)
944 m_freem(control);
945 return (error);
946 }
947
948 /*
949 * Implement receive operations on a socket.
950 * We depend on the way that records are added to the sockbuf
951 * by sbappend*. In particular, each record (mbufs linked through m_next)
952 * must begin with an address if the protocol so specifies,
953 * followed by an optional mbuf or mbufs containing ancillary data,
954 * and then zero or more mbufs of data.
955 * In order to avoid blocking network interrupts for the entire time here,
956 * we splx() while doing the actual copy to user space.
957 * Although the sockbuf is locked, new data may still be appended,
958 * and thus we must maintain consistency of the sockbuf during that time.
959 *
960 * The caller may receive the data as a single mbuf chain by supplying
961 * an mbuf **mp0 for use in returning the chain. The uio is then used
962 * only for the count in uio_resid.
963 */
964 int
965 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
966 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
967 {
968 struct lwp *l = curlwp;
969 struct mbuf *m, **mp;
970 int flags, len, error, s, offset, moff, type, orig_resid;
971 const struct protosw *pr;
972 struct mbuf *nextrecord;
973 int mbuf_removed = 0;
974
975 pr = so->so_proto;
976 mp = mp0;
977 type = 0;
978 orig_resid = uio->uio_resid;
979
980 if (paddr)
981 *paddr = 0;
982 if (controlp)
983 *controlp = 0;
984 if (flagsp)
985 flags = *flagsp &~ MSG_EOR;
986 else
987 flags = 0;
988
989 if ((flags & MSG_DONTWAIT) == 0)
990 sodopendfree();
991
992 if (flags & MSG_OOB) {
993 m = m_get(M_WAIT, MT_DATA);
994 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
995 (struct mbuf *)(long)(flags & MSG_PEEK),
996 (struct mbuf *)0, l);
997 if (error)
998 goto bad;
999 do {
1000 error = uiomove(mtod(m, caddr_t),
1001 (int) min(uio->uio_resid, m->m_len), uio);
1002 m = m_free(m);
1003 } while (uio->uio_resid && error == 0 && m);
1004 bad:
1005 if (m)
1006 m_freem(m);
1007 return (error);
1008 }
1009 if (mp)
1010 *mp = (struct mbuf *)0;
1011 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1012 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1013 (struct mbuf *)0, (struct mbuf *)0, l);
1014
1015 restart:
1016 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1017 return (error);
1018 s = splsoftnet();
1019
1020 m = so->so_rcv.sb_mb;
1021 /*
1022 * If we have less data than requested, block awaiting more
1023 * (subject to any timeout) if:
1024 * 1. the current count is less than the low water mark,
1025 * 2. MSG_WAITALL is set, and it is possible to do the entire
1026 * receive operation at once if we block (resid <= hiwat), or
1027 * 3. MSG_DONTWAIT is not set.
1028 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1029 * we have to do the receive in sections, and thus risk returning
1030 * a short count if a timeout or signal occurs after we start.
1031 */
1032 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1033 so->so_rcv.sb_cc < uio->uio_resid) &&
1034 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1035 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1036 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1037 #ifdef DIAGNOSTIC
1038 if (m == 0 && so->so_rcv.sb_cc)
1039 panic("receive 1");
1040 #endif
1041 if (so->so_error) {
1042 if (m)
1043 goto dontblock;
1044 error = so->so_error;
1045 if ((flags & MSG_PEEK) == 0)
1046 so->so_error = 0;
1047 goto release;
1048 }
1049 if (so->so_state & SS_CANTRCVMORE) {
1050 if (m)
1051 goto dontblock;
1052 else
1053 goto release;
1054 }
1055 for (; m; m = m->m_next)
1056 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1057 m = so->so_rcv.sb_mb;
1058 goto dontblock;
1059 }
1060 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1061 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1062 error = ENOTCONN;
1063 goto release;
1064 }
1065 if (uio->uio_resid == 0)
1066 goto release;
1067 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1068 error = EWOULDBLOCK;
1069 goto release;
1070 }
1071 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1072 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1073 sbunlock(&so->so_rcv);
1074 error = sbwait(&so->so_rcv);
1075 splx(s);
1076 if (error)
1077 return (error);
1078 goto restart;
1079 }
1080 dontblock:
1081 /*
1082 * On entry here, m points to the first record of the socket buffer.
1083 * While we process the initial mbufs containing address and control
1084 * info, we save a copy of m->m_nextpkt into nextrecord.
1085 */
1086 if (l)
1087 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1088 KASSERT(m == so->so_rcv.sb_mb);
1089 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1090 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1091 nextrecord = m->m_nextpkt;
1092 if (pr->pr_flags & PR_ADDR) {
1093 #ifdef DIAGNOSTIC
1094 if (m->m_type != MT_SONAME)
1095 panic("receive 1a");
1096 #endif
1097 orig_resid = 0;
1098 if (flags & MSG_PEEK) {
1099 if (paddr)
1100 *paddr = m_copy(m, 0, m->m_len);
1101 m = m->m_next;
1102 } else {
1103 sbfree(&so->so_rcv, m);
1104 mbuf_removed = 1;
1105 if (paddr) {
1106 *paddr = m;
1107 so->so_rcv.sb_mb = m->m_next;
1108 m->m_next = 0;
1109 m = so->so_rcv.sb_mb;
1110 } else {
1111 MFREE(m, so->so_rcv.sb_mb);
1112 m = so->so_rcv.sb_mb;
1113 }
1114 }
1115 }
1116 while (m && m->m_type == MT_CONTROL && error == 0) {
1117 if (flags & MSG_PEEK) {
1118 if (controlp)
1119 *controlp = m_copy(m, 0, m->m_len);
1120 m = m->m_next;
1121 } else {
1122 sbfree(&so->so_rcv, m);
1123 mbuf_removed = 1;
1124 if (controlp) {
1125 struct domain *dom = pr->pr_domain;
1126 if (dom->dom_externalize && l &&
1127 mtod(m, struct cmsghdr *)->cmsg_type ==
1128 SCM_RIGHTS)
1129 error = (*dom->dom_externalize)(m, l);
1130 *controlp = m;
1131 so->so_rcv.sb_mb = m->m_next;
1132 m->m_next = 0;
1133 m = so->so_rcv.sb_mb;
1134 } else {
1135 /*
1136 * Dispose of any SCM_RIGHTS message that went
1137 * through the read path rather than recv.
1138 */
1139 if (pr->pr_domain->dom_dispose &&
1140 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1141 (*pr->pr_domain->dom_dispose)(m);
1142 MFREE(m, so->so_rcv.sb_mb);
1143 m = so->so_rcv.sb_mb;
1144 }
1145 }
1146 if (controlp) {
1147 orig_resid = 0;
1148 controlp = &(*controlp)->m_next;
1149 }
1150 }
1151
1152 /*
1153 * If m is non-NULL, we have some data to read. From now on,
1154 * make sure to keep sb_lastrecord consistent when working on
1155 * the last packet on the chain (nextrecord == NULL) and we
1156 * change m->m_nextpkt.
1157 */
1158 if (m) {
1159 if ((flags & MSG_PEEK) == 0) {
1160 m->m_nextpkt = nextrecord;
1161 /*
1162 * If nextrecord == NULL (this is a single chain),
1163 * then sb_lastrecord may not be valid here if m
1164 * was changed earlier.
1165 */
1166 if (nextrecord == NULL) {
1167 KASSERT(so->so_rcv.sb_mb == m);
1168 so->so_rcv.sb_lastrecord = m;
1169 }
1170 }
1171 type = m->m_type;
1172 if (type == MT_OOBDATA)
1173 flags |= MSG_OOB;
1174 } else {
1175 if ((flags & MSG_PEEK) == 0) {
1176 KASSERT(so->so_rcv.sb_mb == m);
1177 so->so_rcv.sb_mb = nextrecord;
1178 SB_EMPTY_FIXUP(&so->so_rcv);
1179 }
1180 }
1181 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1182 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1183
1184 moff = 0;
1185 offset = 0;
1186 while (m && uio->uio_resid > 0 && error == 0) {
1187 if (m->m_type == MT_OOBDATA) {
1188 if (type != MT_OOBDATA)
1189 break;
1190 } else if (type == MT_OOBDATA)
1191 break;
1192 #ifdef DIAGNOSTIC
1193 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1194 panic("receive 3");
1195 #endif
1196 so->so_state &= ~SS_RCVATMARK;
1197 len = uio->uio_resid;
1198 if (so->so_oobmark && len > so->so_oobmark - offset)
1199 len = so->so_oobmark - offset;
1200 if (len > m->m_len - moff)
1201 len = m->m_len - moff;
1202 /*
1203 * If mp is set, just pass back the mbufs.
1204 * Otherwise copy them out via the uio, then free.
1205 * Sockbuf must be consistent here (points to current mbuf,
1206 * it points to next record) when we drop priority;
1207 * we must note any additions to the sockbuf when we
1208 * block interrupts again.
1209 */
1210 if (mp == 0) {
1211 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1212 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1213 splx(s);
1214 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1215 s = splsoftnet();
1216 if (error) {
1217 /*
1218 * If any part of the record has been removed
1219 * (such as the MT_SONAME mbuf, which will
1220 * happen when PR_ADDR, and thus also
1221 * PR_ATOMIC, is set), then drop the entire
1222 * record to maintain the atomicity of the
1223 * receive operation.
1224 *
1225 * This avoids a later panic("receive 1a")
1226 * when compiled with DIAGNOSTIC.
1227 */
1228 if (m && mbuf_removed
1229 && (pr->pr_flags & PR_ATOMIC))
1230 (void) sbdroprecord(&so->so_rcv);
1231
1232 goto release;
1233 }
1234 } else
1235 uio->uio_resid -= len;
1236 if (len == m->m_len - moff) {
1237 if (m->m_flags & M_EOR)
1238 flags |= MSG_EOR;
1239 if (flags & MSG_PEEK) {
1240 m = m->m_next;
1241 moff = 0;
1242 } else {
1243 nextrecord = m->m_nextpkt;
1244 sbfree(&so->so_rcv, m);
1245 if (mp) {
1246 *mp = m;
1247 mp = &m->m_next;
1248 so->so_rcv.sb_mb = m = m->m_next;
1249 *mp = (struct mbuf *)0;
1250 } else {
1251 MFREE(m, so->so_rcv.sb_mb);
1252 m = so->so_rcv.sb_mb;
1253 }
1254 /*
1255 * If m != NULL, we also know that
1256 * so->so_rcv.sb_mb != NULL.
1257 */
1258 KASSERT(so->so_rcv.sb_mb == m);
1259 if (m) {
1260 m->m_nextpkt = nextrecord;
1261 if (nextrecord == NULL)
1262 so->so_rcv.sb_lastrecord = m;
1263 } else {
1264 so->so_rcv.sb_mb = nextrecord;
1265 SB_EMPTY_FIXUP(&so->so_rcv);
1266 }
1267 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1268 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1269 }
1270 } else {
1271 if (flags & MSG_PEEK)
1272 moff += len;
1273 else {
1274 if (mp)
1275 *mp = m_copym(m, 0, len, M_WAIT);
1276 m->m_data += len;
1277 m->m_len -= len;
1278 so->so_rcv.sb_cc -= len;
1279 }
1280 }
1281 if (so->so_oobmark) {
1282 if ((flags & MSG_PEEK) == 0) {
1283 so->so_oobmark -= len;
1284 if (so->so_oobmark == 0) {
1285 so->so_state |= SS_RCVATMARK;
1286 break;
1287 }
1288 } else {
1289 offset += len;
1290 if (offset == so->so_oobmark)
1291 break;
1292 }
1293 }
1294 if (flags & MSG_EOR)
1295 break;
1296 /*
1297 * If the MSG_WAITALL flag is set (for non-atomic socket),
1298 * we must not quit until "uio->uio_resid == 0" or an error
1299 * termination. If a signal/timeout occurs, return
1300 * with a short count but without error.
1301 * Keep sockbuf locked against other readers.
1302 */
1303 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1304 !sosendallatonce(so) && !nextrecord) {
1305 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1306 break;
1307 /*
1308 * If we are peeking and the socket receive buffer is
1309 * full, stop since we can't get more data to peek at.
1310 */
1311 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1312 break;
1313 /*
1314 * If we've drained the socket buffer, tell the
1315 * protocol in case it needs to do something to
1316 * get it filled again.
1317 */
1318 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1319 (*pr->pr_usrreq)(so, PRU_RCVD,
1320 (struct mbuf *)0,
1321 (struct mbuf *)(long)flags,
1322 (struct mbuf *)0, l);
1323 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1324 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1325 error = sbwait(&so->so_rcv);
1326 if (error) {
1327 sbunlock(&so->so_rcv);
1328 splx(s);
1329 return (0);
1330 }
1331 if ((m = so->so_rcv.sb_mb) != NULL)
1332 nextrecord = m->m_nextpkt;
1333 }
1334 }
1335
1336 if (m && pr->pr_flags & PR_ATOMIC) {
1337 flags |= MSG_TRUNC;
1338 if ((flags & MSG_PEEK) == 0)
1339 (void) sbdroprecord(&so->so_rcv);
1340 }
1341 if ((flags & MSG_PEEK) == 0) {
1342 if (m == 0) {
1343 /*
1344 * First part is an inline SB_EMPTY_FIXUP(). Second
1345 * part makes sure sb_lastrecord is up-to-date if
1346 * there is still data in the socket buffer.
1347 */
1348 so->so_rcv.sb_mb = nextrecord;
1349 if (so->so_rcv.sb_mb == NULL) {
1350 so->so_rcv.sb_mbtail = NULL;
1351 so->so_rcv.sb_lastrecord = NULL;
1352 } else if (nextrecord->m_nextpkt == NULL)
1353 so->so_rcv.sb_lastrecord = nextrecord;
1354 }
1355 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1356 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1357 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1358 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1359 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1360 }
1361 if (orig_resid == uio->uio_resid && orig_resid &&
1362 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1363 sbunlock(&so->so_rcv);
1364 splx(s);
1365 goto restart;
1366 }
1367
1368 if (flagsp)
1369 *flagsp |= flags;
1370 release:
1371 sbunlock(&so->so_rcv);
1372 splx(s);
1373 return (error);
1374 }
1375
1376 int
1377 soshutdown(struct socket *so, int how)
1378 {
1379 const struct protosw *pr;
1380
1381 pr = so->so_proto;
1382 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1383 return (EINVAL);
1384
1385 if (how == SHUT_RD || how == SHUT_RDWR)
1386 sorflush(so);
1387 if (how == SHUT_WR || how == SHUT_RDWR)
1388 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1389 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1390 return (0);
1391 }
1392
1393 void
1394 sorflush(struct socket *so)
1395 {
1396 struct sockbuf *sb, asb;
1397 const struct protosw *pr;
1398 int s;
1399
1400 sb = &so->so_rcv;
1401 pr = so->so_proto;
1402 sb->sb_flags |= SB_NOINTR;
1403 (void) sblock(sb, M_WAITOK);
1404 s = splnet();
1405 socantrcvmore(so);
1406 sbunlock(sb);
1407 asb = *sb;
1408 /*
1409 * Clear most of the sockbuf structure, but leave some of the
1410 * fields valid.
1411 */
1412 memset(&sb->sb_startzero, 0,
1413 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1414 splx(s);
1415 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1416 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1417 sbrelease(&asb, so);
1418 }
1419
1420 int
1421 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1422 {
1423 int error;
1424 struct mbuf *m;
1425
1426 error = 0;
1427 m = m0;
1428 if (level != SOL_SOCKET) {
1429 if (so->so_proto && so->so_proto->pr_ctloutput)
1430 return ((*so->so_proto->pr_ctloutput)
1431 (PRCO_SETOPT, so, level, optname, &m0));
1432 error = ENOPROTOOPT;
1433 } else {
1434 switch (optname) {
1435
1436 case SO_LINGER:
1437 if (m == NULL || m->m_len != sizeof(struct linger)) {
1438 error = EINVAL;
1439 goto bad;
1440 }
1441 if (mtod(m, struct linger *)->l_linger < 0 ||
1442 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) {
1443 error = EDOM;
1444 goto bad;
1445 }
1446 so->so_linger = mtod(m, struct linger *)->l_linger;
1447 /* fall thru... */
1448
1449 case SO_DEBUG:
1450 case SO_KEEPALIVE:
1451 case SO_DONTROUTE:
1452 case SO_USELOOPBACK:
1453 case SO_BROADCAST:
1454 case SO_REUSEADDR:
1455 case SO_REUSEPORT:
1456 case SO_OOBINLINE:
1457 case SO_TIMESTAMP:
1458 if (m == NULL || m->m_len < sizeof(int)) {
1459 error = EINVAL;
1460 goto bad;
1461 }
1462 if (*mtod(m, int *))
1463 so->so_options |= optname;
1464 else
1465 so->so_options &= ~optname;
1466 break;
1467
1468 case SO_SNDBUF:
1469 case SO_RCVBUF:
1470 case SO_SNDLOWAT:
1471 case SO_RCVLOWAT:
1472 {
1473 int optval;
1474
1475 if (m == NULL || m->m_len < sizeof(int)) {
1476 error = EINVAL;
1477 goto bad;
1478 }
1479
1480 /*
1481 * Values < 1 make no sense for any of these
1482 * options, so disallow them.
1483 */
1484 optval = *mtod(m, int *);
1485 if (optval < 1) {
1486 error = EINVAL;
1487 goto bad;
1488 }
1489
1490 switch (optname) {
1491
1492 case SO_SNDBUF:
1493 case SO_RCVBUF:
1494 if (sbreserve(optname == SO_SNDBUF ?
1495 &so->so_snd : &so->so_rcv,
1496 (u_long) optval, so) == 0) {
1497 error = ENOBUFS;
1498 goto bad;
1499 }
1500 break;
1501
1502 /*
1503 * Make sure the low-water is never greater than
1504 * the high-water.
1505 */
1506 case SO_SNDLOWAT:
1507 so->so_snd.sb_lowat =
1508 (optval > so->so_snd.sb_hiwat) ?
1509 so->so_snd.sb_hiwat : optval;
1510 break;
1511 case SO_RCVLOWAT:
1512 so->so_rcv.sb_lowat =
1513 (optval > so->so_rcv.sb_hiwat) ?
1514 so->so_rcv.sb_hiwat : optval;
1515 break;
1516 }
1517 break;
1518 }
1519
1520 case SO_SNDTIMEO:
1521 case SO_RCVTIMEO:
1522 {
1523 struct timeval *tv;
1524 int val;
1525
1526 if (m == NULL || m->m_len < sizeof(*tv)) {
1527 error = EINVAL;
1528 goto bad;
1529 }
1530 tv = mtod(m, struct timeval *);
1531 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1532 error = EDOM;
1533 goto bad;
1534 }
1535 val = tv->tv_sec * hz + tv->tv_usec / tick;
1536 if (val == 0 && tv->tv_usec != 0)
1537 val = 1;
1538
1539 switch (optname) {
1540
1541 case SO_SNDTIMEO:
1542 so->so_snd.sb_timeo = val;
1543 break;
1544 case SO_RCVTIMEO:
1545 so->so_rcv.sb_timeo = val;
1546 break;
1547 }
1548 break;
1549 }
1550
1551 default:
1552 error = ENOPROTOOPT;
1553 break;
1554 }
1555 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1556 (void) ((*so->so_proto->pr_ctloutput)
1557 (PRCO_SETOPT, so, level, optname, &m0));
1558 m = NULL; /* freed by protocol */
1559 }
1560 }
1561 bad:
1562 if (m)
1563 (void) m_free(m);
1564 return (error);
1565 }
1566
1567 int
1568 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1569 {
1570 struct mbuf *m;
1571
1572 if (level != SOL_SOCKET) {
1573 if (so->so_proto && so->so_proto->pr_ctloutput) {
1574 return ((*so->so_proto->pr_ctloutput)
1575 (PRCO_GETOPT, so, level, optname, mp));
1576 } else
1577 return (ENOPROTOOPT);
1578 } else {
1579 m = m_get(M_WAIT, MT_SOOPTS);
1580 m->m_len = sizeof(int);
1581
1582 switch (optname) {
1583
1584 case SO_LINGER:
1585 m->m_len = sizeof(struct linger);
1586 mtod(m, struct linger *)->l_onoff =
1587 so->so_options & SO_LINGER;
1588 mtod(m, struct linger *)->l_linger = so->so_linger;
1589 break;
1590
1591 case SO_USELOOPBACK:
1592 case SO_DONTROUTE:
1593 case SO_DEBUG:
1594 case SO_KEEPALIVE:
1595 case SO_REUSEADDR:
1596 case SO_REUSEPORT:
1597 case SO_BROADCAST:
1598 case SO_OOBINLINE:
1599 case SO_TIMESTAMP:
1600 *mtod(m, int *) = so->so_options & optname;
1601 break;
1602
1603 case SO_TYPE:
1604 *mtod(m, int *) = so->so_type;
1605 break;
1606
1607 case SO_ERROR:
1608 *mtod(m, int *) = so->so_error;
1609 so->so_error = 0;
1610 break;
1611
1612 case SO_SNDBUF:
1613 *mtod(m, int *) = so->so_snd.sb_hiwat;
1614 break;
1615
1616 case SO_RCVBUF:
1617 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1618 break;
1619
1620 case SO_SNDLOWAT:
1621 *mtod(m, int *) = so->so_snd.sb_lowat;
1622 break;
1623
1624 case SO_RCVLOWAT:
1625 *mtod(m, int *) = so->so_rcv.sb_lowat;
1626 break;
1627
1628 case SO_SNDTIMEO:
1629 case SO_RCVTIMEO:
1630 {
1631 int val = (optname == SO_SNDTIMEO ?
1632 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1633
1634 m->m_len = sizeof(struct timeval);
1635 mtod(m, struct timeval *)->tv_sec = val / hz;
1636 mtod(m, struct timeval *)->tv_usec =
1637 (val % hz) * tick;
1638 break;
1639 }
1640
1641 case SO_OVERFLOWED:
1642 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1643 break;
1644
1645 default:
1646 (void)m_free(m);
1647 return (ENOPROTOOPT);
1648 }
1649 *mp = m;
1650 return (0);
1651 }
1652 }
1653
1654 void
1655 sohasoutofband(struct socket *so)
1656 {
1657 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1658 selwakeup(&so->so_rcv.sb_sel);
1659 }
1660
1661 static void
1662 filt_sordetach(struct knote *kn)
1663 {
1664 struct socket *so;
1665
1666 so = (struct socket *)kn->kn_fp->f_data;
1667 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1668 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1669 so->so_rcv.sb_flags &= ~SB_KNOTE;
1670 }
1671
1672 /*ARGSUSED*/
1673 static int
1674 filt_soread(struct knote *kn, long hint)
1675 {
1676 struct socket *so;
1677
1678 so = (struct socket *)kn->kn_fp->f_data;
1679 kn->kn_data = so->so_rcv.sb_cc;
1680 if (so->so_state & SS_CANTRCVMORE) {
1681 kn->kn_flags |= EV_EOF;
1682 kn->kn_fflags = so->so_error;
1683 return (1);
1684 }
1685 if (so->so_error) /* temporary udp error */
1686 return (1);
1687 if (kn->kn_sfflags & NOTE_LOWAT)
1688 return (kn->kn_data >= kn->kn_sdata);
1689 return (kn->kn_data >= so->so_rcv.sb_lowat);
1690 }
1691
1692 static void
1693 filt_sowdetach(struct knote *kn)
1694 {
1695 struct socket *so;
1696
1697 so = (struct socket *)kn->kn_fp->f_data;
1698 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1699 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1700 so->so_snd.sb_flags &= ~SB_KNOTE;
1701 }
1702
1703 /*ARGSUSED*/
1704 static int
1705 filt_sowrite(struct knote *kn, long hint)
1706 {
1707 struct socket *so;
1708
1709 so = (struct socket *)kn->kn_fp->f_data;
1710 kn->kn_data = sbspace(&so->so_snd);
1711 if (so->so_state & SS_CANTSENDMORE) {
1712 kn->kn_flags |= EV_EOF;
1713 kn->kn_fflags = so->so_error;
1714 return (1);
1715 }
1716 if (so->so_error) /* temporary udp error */
1717 return (1);
1718 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1719 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1720 return (0);
1721 if (kn->kn_sfflags & NOTE_LOWAT)
1722 return (kn->kn_data >= kn->kn_sdata);
1723 return (kn->kn_data >= so->so_snd.sb_lowat);
1724 }
1725
1726 /*ARGSUSED*/
1727 static int
1728 filt_solisten(struct knote *kn, long hint)
1729 {
1730 struct socket *so;
1731
1732 so = (struct socket *)kn->kn_fp->f_data;
1733
1734 /*
1735 * Set kn_data to number of incoming connections, not
1736 * counting partial (incomplete) connections.
1737 */
1738 kn->kn_data = so->so_qlen;
1739 return (kn->kn_data > 0);
1740 }
1741
1742 static const struct filterops solisten_filtops =
1743 { 1, NULL, filt_sordetach, filt_solisten };
1744 static const struct filterops soread_filtops =
1745 { 1, NULL, filt_sordetach, filt_soread };
1746 static const struct filterops sowrite_filtops =
1747 { 1, NULL, filt_sowdetach, filt_sowrite };
1748
1749 int
1750 soo_kqfilter(struct file *fp, struct knote *kn)
1751 {
1752 struct socket *so;
1753 struct sockbuf *sb;
1754
1755 so = (struct socket *)kn->kn_fp->f_data;
1756 switch (kn->kn_filter) {
1757 case EVFILT_READ:
1758 if (so->so_options & SO_ACCEPTCONN)
1759 kn->kn_fop = &solisten_filtops;
1760 else
1761 kn->kn_fop = &soread_filtops;
1762 sb = &so->so_rcv;
1763 break;
1764 case EVFILT_WRITE:
1765 kn->kn_fop = &sowrite_filtops;
1766 sb = &so->so_snd;
1767 break;
1768 default:
1769 return (1);
1770 }
1771 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1772 sb->sb_flags |= SB_KNOTE;
1773 return (0);
1774 }
1775
1776 #include <sys/sysctl.h>
1777
1778 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1779
1780 /*
1781 * sysctl helper routine for kern.somaxkva. ensures that the given
1782 * value is not too small.
1783 * (XXX should we maybe make sure it's not too large as well?)
1784 */
1785 static int
1786 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1787 {
1788 int error, new_somaxkva;
1789 struct sysctlnode node;
1790 int s;
1791
1792 new_somaxkva = somaxkva;
1793 node = *rnode;
1794 node.sysctl_data = &new_somaxkva;
1795 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1796 if (error || newp == NULL)
1797 return (error);
1798
1799 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1800 return (EINVAL);
1801
1802 s = splvm();
1803 simple_lock(&so_pendfree_slock);
1804 somaxkva = new_somaxkva;
1805 wakeup(&socurkva);
1806 simple_unlock(&so_pendfree_slock);
1807 splx(s);
1808
1809 return (error);
1810 }
1811
1812 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1813 {
1814
1815 sysctl_createv(clog, 0, NULL, NULL,
1816 CTLFLAG_PERMANENT,
1817 CTLTYPE_NODE, "kern", NULL,
1818 NULL, 0, NULL, 0,
1819 CTL_KERN, CTL_EOL);
1820
1821 sysctl_createv(clog, 0, NULL, NULL,
1822 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 CTLTYPE_INT, "somaxkva",
1824 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1825 "used for socket buffers"),
1826 sysctl_kern_somaxkva, 0, NULL, 0,
1827 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1828 }
1829