uipc_socket.c revision 1.134 1 /* $NetBSD: uipc_socket.c,v 1.134 2007/03/04 06:03:11 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.134 2007/03/04 06:03:11 christos Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
99
100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #ifdef SOSEND_NO_LOAN
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static int sokvawaiters;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int s;
157 int error;
158
159 s = splvm();
160 simple_lock(&so_pendfree_slock);
161 while (socurkva + len > somaxkva) {
162 size_t freed;
163
164 /*
165 * try to do pendfree.
166 */
167
168 freed = sodopendfreel();
169
170 /*
171 * if some kva was freed, try again.
172 */
173
174 if (freed)
175 continue;
176
177 SOSEND_COUNTER_INCR(&sosend_kvalimit);
178 sokvawaiters++;
179 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
180 &so_pendfree_slock);
181 sokvawaiters--;
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 simple_unlock(&so_pendfree_slock);
189 splx(s);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196 int s;
197
198 s = splvm();
199 simple_lock(&so_pendfree_slock);
200 socurkva -= len;
201 if (sokvawaiters)
202 wakeup(&socurkva);
203 simple_unlock(&so_pendfree_slock);
204 splx(s);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
259 {
260 vaddr_t va, sva, eva;
261 vsize_t len;
262 paddr_t pa;
263 int i, npgs;
264
265 eva = round_page((vaddr_t) buf + size);
266 sva = trunc_page((vaddr_t) buf);
267 len = eva - sva;
268 npgs = len >> PAGE_SHIFT;
269
270 if (__predict_false(pgs == NULL)) {
271 pgs = alloca(npgs * sizeof(*pgs));
272
273 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
274 if (pmap_extract(pmap_kernel(), va, &pa) == false)
275 panic("sodoloanfree: va 0x%lx not mapped", va);
276 pgs[i] = PHYS_TO_VM_PAGE(pa);
277 }
278 }
279
280 pmap_kremove(sva, len);
281 pmap_update(pmap_kernel());
282 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
283 sokvafree(sva, len);
284 }
285
286 static size_t
287 sodopendfree()
288 {
289 int s;
290 size_t rv;
291
292 s = splvm();
293 simple_lock(&so_pendfree_slock);
294 rv = sodopendfreel();
295 simple_unlock(&so_pendfree_slock);
296 splx(s);
297
298 return rv;
299 }
300
301 /*
302 * sodopendfreel: free mbufs on "pendfree" list.
303 * unlock and relock so_pendfree_slock when freeing mbufs.
304 *
305 * => called with so_pendfree_slock held.
306 * => called at splvm.
307 */
308
309 static size_t
310 sodopendfreel()
311 {
312 size_t rv = 0;
313
314 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
315
316 for (;;) {
317 struct mbuf *m;
318 struct mbuf *next;
319
320 m = so_pendfree;
321 if (m == NULL)
322 break;
323 so_pendfree = NULL;
324 simple_unlock(&so_pendfree_slock);
325 /* XXX splx */
326
327 for (; m != NULL; m = next) {
328 next = m->m_next;
329
330 rv += m->m_ext.ext_size;
331 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
332 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
333 m->m_ext.ext_size);
334 pool_cache_put(&mbpool_cache, m);
335 }
336
337 /* XXX splvm */
338 simple_lock(&so_pendfree_slock);
339 }
340
341 return (rv);
342 }
343
344 void
345 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
346 {
347 int s;
348
349 if (m == NULL) {
350
351 /*
352 * called from MEXTREMOVE.
353 */
354
355 sodoloanfree(NULL, buf, size);
356 return;
357 }
358
359 /*
360 * postpone freeing mbuf.
361 *
362 * we can't do it in interrupt context
363 * because we need to put kva back to kernel_map.
364 */
365
366 s = splvm();
367 simple_lock(&so_pendfree_slock);
368 m->m_next = so_pendfree;
369 so_pendfree = m;
370 if (sokvawaiters)
371 wakeup(&socurkva);
372 simple_unlock(&so_pendfree_slock);
373 splx(s);
374 }
375
376 static long
377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
378 {
379 struct iovec *iov = uio->uio_iov;
380 vaddr_t sva, eva;
381 vsize_t len;
382 vaddr_t lva, va;
383 int npgs, i, error;
384
385 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
386 return (0);
387
388 if (iov->iov_len < (size_t) space)
389 space = iov->iov_len;
390 if (space > SOCK_LOAN_CHUNK)
391 space = SOCK_LOAN_CHUNK;
392
393 eva = round_page((vaddr_t) iov->iov_base + space);
394 sva = trunc_page((vaddr_t) iov->iov_base);
395 len = eva - sva;
396 npgs = len >> PAGE_SHIFT;
397
398 /* XXX KDASSERT */
399 KASSERT(npgs <= M_EXT_MAXPAGES);
400
401 lva = sokvaalloc(len, so);
402 if (lva == 0)
403 return 0;
404
405 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
406 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
407 if (error) {
408 sokvafree(lva, len);
409 return (0);
410 }
411
412 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
413 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
414 VM_PROT_READ);
415 pmap_update(pmap_kernel());
416
417 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
418
419 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
420 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
421
422 uio->uio_resid -= space;
423 /* uio_offset not updated, not set/used for write(2) */
424 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
425 uio->uio_iov->iov_len -= space;
426 if (uio->uio_iov->iov_len == 0) {
427 uio->uio_iov++;
428 uio->uio_iovcnt--;
429 }
430
431 return (space);
432 }
433
434 static int
435 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
436 {
437
438 KASSERT(ce == &sokva_reclaimerentry);
439 KASSERT(obj == NULL);
440
441 sodopendfree();
442 if (!vm_map_starved_p(kernel_map)) {
443 return CALLBACK_CHAIN_ABORT;
444 }
445 return CALLBACK_CHAIN_CONTINUE;
446 }
447
448 void
449 soinit(void)
450 {
451
452 /* Set the initial adjusted socket buffer size. */
453 if (sb_max_set(sb_max))
454 panic("bad initial sb_max value: %lu", sb_max);
455
456 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
457 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
458 }
459
460 /*
461 * Socket operation routines.
462 * These routines are called by the routines in
463 * sys_socket.c or from a system process, and
464 * implement the semantics of socket operations by
465 * switching out to the protocol specific routines.
466 */
467 /*ARGSUSED*/
468 int
469 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
470 {
471 const struct protosw *prp;
472 struct socket *so;
473 uid_t uid;
474 int error, s;
475
476 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
477 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
478 KAUTH_ARG(proto));
479 if (error)
480 return (error);
481
482 if (proto)
483 prp = pffindproto(dom, proto, type);
484 else
485 prp = pffindtype(dom, type);
486 if (prp == 0) {
487 /* no support for domain */
488 if (pffinddomain(dom) == 0)
489 return (EAFNOSUPPORT);
490 /* no support for socket type */
491 if (proto == 0 && type != 0)
492 return (EPROTOTYPE);
493 return (EPROTONOSUPPORT);
494 }
495 if (prp->pr_usrreq == 0)
496 return (EPROTONOSUPPORT);
497 if (prp->pr_type != type)
498 return (EPROTOTYPE);
499 s = splsoftnet();
500 so = pool_get(&socket_pool, PR_WAITOK);
501 memset((void *)so, 0, sizeof(*so));
502 TAILQ_INIT(&so->so_q0);
503 TAILQ_INIT(&so->so_q);
504 so->so_type = type;
505 so->so_proto = prp;
506 so->so_send = sosend;
507 so->so_receive = soreceive;
508 #ifdef MBUFTRACE
509 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
510 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
511 so->so_mowner = &prp->pr_domain->dom_mowner;
512 #endif
513 if (l != NULL) {
514 uid = kauth_cred_geteuid(l->l_cred);
515 } else {
516 uid = 0;
517 }
518 so->so_uidinfo = uid_find(uid);
519 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
520 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
521 if (error) {
522 so->so_state |= SS_NOFDREF;
523 sofree(so);
524 splx(s);
525 return (error);
526 }
527 splx(s);
528 *aso = so;
529 return (0);
530 }
531
532 int
533 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
534 {
535 int s, error;
536
537 s = splsoftnet();
538 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
539 nam, (struct mbuf *)0, l);
540 splx(s);
541 return (error);
542 }
543
544 int
545 solisten(struct socket *so, int backlog)
546 {
547 int s, error;
548
549 s = splsoftnet();
550 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
551 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
552 if (error) {
553 splx(s);
554 return (error);
555 }
556 if (TAILQ_EMPTY(&so->so_q))
557 so->so_options |= SO_ACCEPTCONN;
558 if (backlog < 0)
559 backlog = 0;
560 so->so_qlimit = min(backlog, somaxconn);
561 splx(s);
562 return (0);
563 }
564
565 void
566 sofree(struct socket *so)
567 {
568
569 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
570 return;
571 if (so->so_head) {
572 /*
573 * We must not decommission a socket that's on the accept(2)
574 * queue. If we do, then accept(2) may hang after select(2)
575 * indicated that the listening socket was ready.
576 */
577 if (!soqremque(so, 0))
578 return;
579 }
580 if (so->so_rcv.sb_hiwat)
581 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
582 RLIM_INFINITY);
583 if (so->so_snd.sb_hiwat)
584 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
585 RLIM_INFINITY);
586 sbrelease(&so->so_snd, so);
587 sorflush(so);
588 pool_put(&socket_pool, so);
589 }
590
591 /*
592 * Close a socket on last file table reference removal.
593 * Initiate disconnect if connected.
594 * Free socket when disconnect complete.
595 */
596 int
597 soclose(struct socket *so)
598 {
599 struct socket *so2;
600 int s, error;
601
602 error = 0;
603 s = splsoftnet(); /* conservative */
604 if (so->so_options & SO_ACCEPTCONN) {
605 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
606 (void) soqremque(so2, 0);
607 (void) soabort(so2);
608 }
609 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
610 (void) soqremque(so2, 1);
611 (void) soabort(so2);
612 }
613 }
614 if (so->so_pcb == 0)
615 goto discard;
616 if (so->so_state & SS_ISCONNECTED) {
617 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
618 error = sodisconnect(so);
619 if (error)
620 goto drop;
621 }
622 if (so->so_options & SO_LINGER) {
623 if ((so->so_state & SS_ISDISCONNECTING) &&
624 (so->so_state & SS_NBIO))
625 goto drop;
626 while (so->so_state & SS_ISCONNECTED) {
627 error = tsleep((void *)&so->so_timeo,
628 PSOCK | PCATCH, netcls,
629 so->so_linger * hz);
630 if (error)
631 break;
632 }
633 }
634 }
635 drop:
636 if (so->so_pcb) {
637 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
638 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
639 (struct lwp *)0);
640 if (error == 0)
641 error = error2;
642 }
643 discard:
644 if (so->so_state & SS_NOFDREF)
645 panic("soclose: NOFDREF");
646 so->so_state |= SS_NOFDREF;
647 sofree(so);
648 splx(s);
649 return (error);
650 }
651
652 /*
653 * Must be called at splsoftnet...
654 */
655 int
656 soabort(struct socket *so)
657 {
658
659 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
660 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
661 }
662
663 int
664 soaccept(struct socket *so, struct mbuf *nam)
665 {
666 int s, error;
667
668 error = 0;
669 s = splsoftnet();
670 if ((so->so_state & SS_NOFDREF) == 0)
671 panic("soaccept: !NOFDREF");
672 so->so_state &= ~SS_NOFDREF;
673 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
674 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
675 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
676 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
677 else
678 error = ECONNABORTED;
679
680 splx(s);
681 return (error);
682 }
683
684 int
685 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
686 {
687 int s, error;
688
689 if (so->so_options & SO_ACCEPTCONN)
690 return (EOPNOTSUPP);
691 s = splsoftnet();
692 /*
693 * If protocol is connection-based, can only connect once.
694 * Otherwise, if connected, try to disconnect first.
695 * This allows user to disconnect by connecting to, e.g.,
696 * a null address.
697 */
698 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
699 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
700 (error = sodisconnect(so))))
701 error = EISCONN;
702 else
703 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
704 (struct mbuf *)0, nam, (struct mbuf *)0, l);
705 splx(s);
706 return (error);
707 }
708
709 int
710 soconnect2(struct socket *so1, struct socket *so2)
711 {
712 int s, error;
713
714 s = splsoftnet();
715 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
716 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
717 (struct lwp *)0);
718 splx(s);
719 return (error);
720 }
721
722 int
723 sodisconnect(struct socket *so)
724 {
725 int s, error;
726
727 s = splsoftnet();
728 if ((so->so_state & SS_ISCONNECTED) == 0) {
729 error = ENOTCONN;
730 goto bad;
731 }
732 if (so->so_state & SS_ISDISCONNECTING) {
733 error = EALREADY;
734 goto bad;
735 }
736 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
737 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
738 (struct lwp *)0);
739 bad:
740 splx(s);
741 sodopendfree();
742 return (error);
743 }
744
745 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
746 /*
747 * Send on a socket.
748 * If send must go all at once and message is larger than
749 * send buffering, then hard error.
750 * Lock against other senders.
751 * If must go all at once and not enough room now, then
752 * inform user that this would block and do nothing.
753 * Otherwise, if nonblocking, send as much as possible.
754 * The data to be sent is described by "uio" if nonzero,
755 * otherwise by the mbuf chain "top" (which must be null
756 * if uio is not). Data provided in mbuf chain must be small
757 * enough to send all at once.
758 *
759 * Returns nonzero on error, timeout or signal; callers
760 * must check for short counts if EINTR/ERESTART are returned.
761 * Data and control buffers are freed on return.
762 */
763 int
764 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
765 struct mbuf *control, int flags, struct lwp *l)
766 {
767 struct mbuf **mp, *m;
768 struct proc *p;
769 long space, len, resid, clen, mlen;
770 int error, s, dontroute, atomic;
771
772 p = l->l_proc;
773 sodopendfree();
774
775 clen = 0;
776 atomic = sosendallatonce(so) || top;
777 if (uio)
778 resid = uio->uio_resid;
779 else
780 resid = top->m_pkthdr.len;
781 /*
782 * In theory resid should be unsigned.
783 * However, space must be signed, as it might be less than 0
784 * if we over-committed, and we must use a signed comparison
785 * of space and resid. On the other hand, a negative resid
786 * causes us to loop sending 0-length segments to the protocol.
787 */
788 if (resid < 0) {
789 error = EINVAL;
790 goto out;
791 }
792 dontroute =
793 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
794 (so->so_proto->pr_flags & PR_ATOMIC);
795 if (p)
796 p->p_stats->p_ru.ru_msgsnd++;
797 if (control)
798 clen = control->m_len;
799 #define snderr(errno) { error = errno; splx(s); goto release; }
800
801 restart:
802 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
803 goto out;
804 do {
805 s = splsoftnet();
806 if (so->so_state & SS_CANTSENDMORE)
807 snderr(EPIPE);
808 if (so->so_error) {
809 error = so->so_error;
810 so->so_error = 0;
811 splx(s);
812 goto release;
813 }
814 if ((so->so_state & SS_ISCONNECTED) == 0) {
815 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
816 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
817 !(resid == 0 && clen != 0))
818 snderr(ENOTCONN);
819 } else if (addr == 0)
820 snderr(EDESTADDRREQ);
821 }
822 space = sbspace(&so->so_snd);
823 if (flags & MSG_OOB)
824 space += 1024;
825 if ((atomic && resid > so->so_snd.sb_hiwat) ||
826 clen > so->so_snd.sb_hiwat)
827 snderr(EMSGSIZE);
828 if (space < resid + clen &&
829 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
830 if (so->so_state & SS_NBIO)
831 snderr(EWOULDBLOCK);
832 sbunlock(&so->so_snd);
833 error = sbwait(&so->so_snd);
834 splx(s);
835 if (error)
836 goto out;
837 goto restart;
838 }
839 splx(s);
840 mp = ⊤
841 space -= clen;
842 do {
843 if (uio == NULL) {
844 /*
845 * Data is prepackaged in "top".
846 */
847 resid = 0;
848 if (flags & MSG_EOR)
849 top->m_flags |= M_EOR;
850 } else do {
851 if (top == 0) {
852 m = m_gethdr(M_WAIT, MT_DATA);
853 mlen = MHLEN;
854 m->m_pkthdr.len = 0;
855 m->m_pkthdr.rcvif = (struct ifnet *)0;
856 } else {
857 m = m_get(M_WAIT, MT_DATA);
858 mlen = MLEN;
859 }
860 MCLAIM(m, so->so_snd.sb_mowner);
861 if (sock_loan_thresh >= 0 &&
862 uio->uio_iov->iov_len >= sock_loan_thresh &&
863 space >= sock_loan_thresh &&
864 (len = sosend_loan(so, uio, m,
865 space)) != 0) {
866 SOSEND_COUNTER_INCR(&sosend_loan_big);
867 space -= len;
868 goto have_data;
869 }
870 if (resid >= MINCLSIZE && space >= MCLBYTES) {
871 SOSEND_COUNTER_INCR(&sosend_copy_big);
872 m_clget(m, M_WAIT);
873 if ((m->m_flags & M_EXT) == 0)
874 goto nopages;
875 mlen = MCLBYTES;
876 if (atomic && top == 0) {
877 len = lmin(MCLBYTES - max_hdr,
878 resid);
879 m->m_data += max_hdr;
880 } else
881 len = lmin(MCLBYTES, resid);
882 space -= len;
883 } else {
884 nopages:
885 SOSEND_COUNTER_INCR(&sosend_copy_small);
886 len = lmin(lmin(mlen, resid), space);
887 space -= len;
888 /*
889 * For datagram protocols, leave room
890 * for protocol headers in first mbuf.
891 */
892 if (atomic && top == 0 && len < mlen)
893 MH_ALIGN(m, len);
894 }
895 error = uiomove(mtod(m, void *), (int)len,
896 uio);
897 have_data:
898 resid = uio->uio_resid;
899 m->m_len = len;
900 *mp = m;
901 top->m_pkthdr.len += len;
902 if (error)
903 goto release;
904 mp = &m->m_next;
905 if (resid <= 0) {
906 if (flags & MSG_EOR)
907 top->m_flags |= M_EOR;
908 break;
909 }
910 } while (space > 0 && atomic);
911
912 s = splsoftnet();
913
914 if (so->so_state & SS_CANTSENDMORE)
915 snderr(EPIPE);
916
917 if (dontroute)
918 so->so_options |= SO_DONTROUTE;
919 if (resid > 0)
920 so->so_state |= SS_MORETOCOME;
921 error = (*so->so_proto->pr_usrreq)(so,
922 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
923 top, addr, control, curlwp); /* XXX */
924 if (dontroute)
925 so->so_options &= ~SO_DONTROUTE;
926 if (resid > 0)
927 so->so_state &= ~SS_MORETOCOME;
928 splx(s);
929
930 clen = 0;
931 control = 0;
932 top = 0;
933 mp = ⊤
934 if (error)
935 goto release;
936 } while (resid && space > 0);
937 } while (resid);
938
939 release:
940 sbunlock(&so->so_snd);
941 out:
942 if (top)
943 m_freem(top);
944 if (control)
945 m_freem(control);
946 return (error);
947 }
948
949 /*
950 * Implement receive operations on a socket.
951 * We depend on the way that records are added to the sockbuf
952 * by sbappend*. In particular, each record (mbufs linked through m_next)
953 * must begin with an address if the protocol so specifies,
954 * followed by an optional mbuf or mbufs containing ancillary data,
955 * and then zero or more mbufs of data.
956 * In order to avoid blocking network interrupts for the entire time here,
957 * we splx() while doing the actual copy to user space.
958 * Although the sockbuf is locked, new data may still be appended,
959 * and thus we must maintain consistency of the sockbuf during that time.
960 *
961 * The caller may receive the data as a single mbuf chain by supplying
962 * an mbuf **mp0 for use in returning the chain. The uio is then used
963 * only for the count in uio_resid.
964 */
965 int
966 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
967 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
968 {
969 struct lwp *l = curlwp;
970 struct mbuf *m, **mp;
971 int flags, len, error, s, offset, moff, type, orig_resid;
972 const struct protosw *pr;
973 struct mbuf *nextrecord;
974 int mbuf_removed = 0;
975
976 pr = so->so_proto;
977 mp = mp0;
978 type = 0;
979 orig_resid = uio->uio_resid;
980
981 if (paddr)
982 *paddr = 0;
983 if (controlp)
984 *controlp = 0;
985 if (flagsp)
986 flags = *flagsp &~ MSG_EOR;
987 else
988 flags = 0;
989
990 if ((flags & MSG_DONTWAIT) == 0)
991 sodopendfree();
992
993 if (flags & MSG_OOB) {
994 m = m_get(M_WAIT, MT_DATA);
995 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
996 (struct mbuf *)(long)(flags & MSG_PEEK),
997 (struct mbuf *)0, l);
998 if (error)
999 goto bad;
1000 do {
1001 error = uiomove(mtod(m, void *),
1002 (int) min(uio->uio_resid, m->m_len), uio);
1003 m = m_free(m);
1004 } while (uio->uio_resid && error == 0 && m);
1005 bad:
1006 if (m)
1007 m_freem(m);
1008 return (error);
1009 }
1010 if (mp)
1011 *mp = (struct mbuf *)0;
1012 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1013 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1014 (struct mbuf *)0, (struct mbuf *)0, l);
1015
1016 restart:
1017 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1018 return (error);
1019 s = splsoftnet();
1020
1021 m = so->so_rcv.sb_mb;
1022 /*
1023 * If we have less data than requested, block awaiting more
1024 * (subject to any timeout) if:
1025 * 1. the current count is less than the low water mark,
1026 * 2. MSG_WAITALL is set, and it is possible to do the entire
1027 * receive operation at once if we block (resid <= hiwat), or
1028 * 3. MSG_DONTWAIT is not set.
1029 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1030 * we have to do the receive in sections, and thus risk returning
1031 * a short count if a timeout or signal occurs after we start.
1032 */
1033 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1034 so->so_rcv.sb_cc < uio->uio_resid) &&
1035 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1036 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1037 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1038 #ifdef DIAGNOSTIC
1039 if (m == 0 && so->so_rcv.sb_cc)
1040 panic("receive 1");
1041 #endif
1042 if (so->so_error) {
1043 if (m)
1044 goto dontblock;
1045 error = so->so_error;
1046 if ((flags & MSG_PEEK) == 0)
1047 so->so_error = 0;
1048 goto release;
1049 }
1050 if (so->so_state & SS_CANTRCVMORE) {
1051 if (m)
1052 goto dontblock;
1053 else
1054 goto release;
1055 }
1056 for (; m; m = m->m_next)
1057 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1058 m = so->so_rcv.sb_mb;
1059 goto dontblock;
1060 }
1061 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1062 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1063 error = ENOTCONN;
1064 goto release;
1065 }
1066 if (uio->uio_resid == 0)
1067 goto release;
1068 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1069 error = EWOULDBLOCK;
1070 goto release;
1071 }
1072 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1073 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1074 sbunlock(&so->so_rcv);
1075 error = sbwait(&so->so_rcv);
1076 splx(s);
1077 if (error)
1078 return (error);
1079 goto restart;
1080 }
1081 dontblock:
1082 /*
1083 * On entry here, m points to the first record of the socket buffer.
1084 * While we process the initial mbufs containing address and control
1085 * info, we save a copy of m->m_nextpkt into nextrecord.
1086 */
1087 if (l)
1088 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1089 KASSERT(m == so->so_rcv.sb_mb);
1090 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1091 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1092 nextrecord = m->m_nextpkt;
1093 if (pr->pr_flags & PR_ADDR) {
1094 #ifdef DIAGNOSTIC
1095 if (m->m_type != MT_SONAME)
1096 panic("receive 1a");
1097 #endif
1098 orig_resid = 0;
1099 if (flags & MSG_PEEK) {
1100 if (paddr)
1101 *paddr = m_copy(m, 0, m->m_len);
1102 m = m->m_next;
1103 } else {
1104 sbfree(&so->so_rcv, m);
1105 mbuf_removed = 1;
1106 if (paddr) {
1107 *paddr = m;
1108 so->so_rcv.sb_mb = m->m_next;
1109 m->m_next = 0;
1110 m = so->so_rcv.sb_mb;
1111 } else {
1112 MFREE(m, so->so_rcv.sb_mb);
1113 m = so->so_rcv.sb_mb;
1114 }
1115 }
1116 }
1117 while (m && m->m_type == MT_CONTROL && error == 0) {
1118 if (flags & MSG_PEEK) {
1119 if (controlp)
1120 *controlp = m_copy(m, 0, m->m_len);
1121 m = m->m_next;
1122 } else {
1123 sbfree(&so->so_rcv, m);
1124 mbuf_removed = 1;
1125 if (controlp) {
1126 struct domain *dom = pr->pr_domain;
1127 if (dom->dom_externalize && l &&
1128 mtod(m, struct cmsghdr *)->cmsg_type ==
1129 SCM_RIGHTS)
1130 error = (*dom->dom_externalize)(m, l);
1131 *controlp = m;
1132 so->so_rcv.sb_mb = m->m_next;
1133 m->m_next = 0;
1134 m = so->so_rcv.sb_mb;
1135 } else {
1136 /*
1137 * Dispose of any SCM_RIGHTS message that went
1138 * through the read path rather than recv.
1139 */
1140 if (pr->pr_domain->dom_dispose &&
1141 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1142 (*pr->pr_domain->dom_dispose)(m);
1143 MFREE(m, so->so_rcv.sb_mb);
1144 m = so->so_rcv.sb_mb;
1145 }
1146 }
1147 if (controlp) {
1148 orig_resid = 0;
1149 controlp = &(*controlp)->m_next;
1150 }
1151 }
1152
1153 /*
1154 * If m is non-NULL, we have some data to read. From now on,
1155 * make sure to keep sb_lastrecord consistent when working on
1156 * the last packet on the chain (nextrecord == NULL) and we
1157 * change m->m_nextpkt.
1158 */
1159 if (m) {
1160 if ((flags & MSG_PEEK) == 0) {
1161 m->m_nextpkt = nextrecord;
1162 /*
1163 * If nextrecord == NULL (this is a single chain),
1164 * then sb_lastrecord may not be valid here if m
1165 * was changed earlier.
1166 */
1167 if (nextrecord == NULL) {
1168 KASSERT(so->so_rcv.sb_mb == m);
1169 so->so_rcv.sb_lastrecord = m;
1170 }
1171 }
1172 type = m->m_type;
1173 if (type == MT_OOBDATA)
1174 flags |= MSG_OOB;
1175 } else {
1176 if ((flags & MSG_PEEK) == 0) {
1177 KASSERT(so->so_rcv.sb_mb == m);
1178 so->so_rcv.sb_mb = nextrecord;
1179 SB_EMPTY_FIXUP(&so->so_rcv);
1180 }
1181 }
1182 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1183 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1184
1185 moff = 0;
1186 offset = 0;
1187 while (m && uio->uio_resid > 0 && error == 0) {
1188 if (m->m_type == MT_OOBDATA) {
1189 if (type != MT_OOBDATA)
1190 break;
1191 } else if (type == MT_OOBDATA)
1192 break;
1193 #ifdef DIAGNOSTIC
1194 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1195 panic("receive 3");
1196 #endif
1197 so->so_state &= ~SS_RCVATMARK;
1198 len = uio->uio_resid;
1199 if (so->so_oobmark && len > so->so_oobmark - offset)
1200 len = so->so_oobmark - offset;
1201 if (len > m->m_len - moff)
1202 len = m->m_len - moff;
1203 /*
1204 * If mp is set, just pass back the mbufs.
1205 * Otherwise copy them out via the uio, then free.
1206 * Sockbuf must be consistent here (points to current mbuf,
1207 * it points to next record) when we drop priority;
1208 * we must note any additions to the sockbuf when we
1209 * block interrupts again.
1210 */
1211 if (mp == 0) {
1212 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1213 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1214 splx(s);
1215 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1216 s = splsoftnet();
1217 if (error) {
1218 /*
1219 * If any part of the record has been removed
1220 * (such as the MT_SONAME mbuf, which will
1221 * happen when PR_ADDR, and thus also
1222 * PR_ATOMIC, is set), then drop the entire
1223 * record to maintain the atomicity of the
1224 * receive operation.
1225 *
1226 * This avoids a later panic("receive 1a")
1227 * when compiled with DIAGNOSTIC.
1228 */
1229 if (m && mbuf_removed
1230 && (pr->pr_flags & PR_ATOMIC))
1231 (void) sbdroprecord(&so->so_rcv);
1232
1233 goto release;
1234 }
1235 } else
1236 uio->uio_resid -= len;
1237 if (len == m->m_len - moff) {
1238 if (m->m_flags & M_EOR)
1239 flags |= MSG_EOR;
1240 if (flags & MSG_PEEK) {
1241 m = m->m_next;
1242 moff = 0;
1243 } else {
1244 nextrecord = m->m_nextpkt;
1245 sbfree(&so->so_rcv, m);
1246 if (mp) {
1247 *mp = m;
1248 mp = &m->m_next;
1249 so->so_rcv.sb_mb = m = m->m_next;
1250 *mp = (struct mbuf *)0;
1251 } else {
1252 MFREE(m, so->so_rcv.sb_mb);
1253 m = so->so_rcv.sb_mb;
1254 }
1255 /*
1256 * If m != NULL, we also know that
1257 * so->so_rcv.sb_mb != NULL.
1258 */
1259 KASSERT(so->so_rcv.sb_mb == m);
1260 if (m) {
1261 m->m_nextpkt = nextrecord;
1262 if (nextrecord == NULL)
1263 so->so_rcv.sb_lastrecord = m;
1264 } else {
1265 so->so_rcv.sb_mb = nextrecord;
1266 SB_EMPTY_FIXUP(&so->so_rcv);
1267 }
1268 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1269 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1270 }
1271 } else {
1272 if (flags & MSG_PEEK)
1273 moff += len;
1274 else {
1275 if (mp)
1276 *mp = m_copym(m, 0, len, M_WAIT);
1277 m->m_data += len;
1278 m->m_len -= len;
1279 so->so_rcv.sb_cc -= len;
1280 }
1281 }
1282 if (so->so_oobmark) {
1283 if ((flags & MSG_PEEK) == 0) {
1284 so->so_oobmark -= len;
1285 if (so->so_oobmark == 0) {
1286 so->so_state |= SS_RCVATMARK;
1287 break;
1288 }
1289 } else {
1290 offset += len;
1291 if (offset == so->so_oobmark)
1292 break;
1293 }
1294 }
1295 if (flags & MSG_EOR)
1296 break;
1297 /*
1298 * If the MSG_WAITALL flag is set (for non-atomic socket),
1299 * we must not quit until "uio->uio_resid == 0" or an error
1300 * termination. If a signal/timeout occurs, return
1301 * with a short count but without error.
1302 * Keep sockbuf locked against other readers.
1303 */
1304 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1305 !sosendallatonce(so) && !nextrecord) {
1306 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1307 break;
1308 /*
1309 * If we are peeking and the socket receive buffer is
1310 * full, stop since we can't get more data to peek at.
1311 */
1312 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1313 break;
1314 /*
1315 * If we've drained the socket buffer, tell the
1316 * protocol in case it needs to do something to
1317 * get it filled again.
1318 */
1319 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1320 (*pr->pr_usrreq)(so, PRU_RCVD,
1321 (struct mbuf *)0,
1322 (struct mbuf *)(long)flags,
1323 (struct mbuf *)0, l);
1324 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1325 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1326 error = sbwait(&so->so_rcv);
1327 if (error) {
1328 sbunlock(&so->so_rcv);
1329 splx(s);
1330 return (0);
1331 }
1332 if ((m = so->so_rcv.sb_mb) != NULL)
1333 nextrecord = m->m_nextpkt;
1334 }
1335 }
1336
1337 if (m && pr->pr_flags & PR_ATOMIC) {
1338 flags |= MSG_TRUNC;
1339 if ((flags & MSG_PEEK) == 0)
1340 (void) sbdroprecord(&so->so_rcv);
1341 }
1342 if ((flags & MSG_PEEK) == 0) {
1343 if (m == 0) {
1344 /*
1345 * First part is an inline SB_EMPTY_FIXUP(). Second
1346 * part makes sure sb_lastrecord is up-to-date if
1347 * there is still data in the socket buffer.
1348 */
1349 so->so_rcv.sb_mb = nextrecord;
1350 if (so->so_rcv.sb_mb == NULL) {
1351 so->so_rcv.sb_mbtail = NULL;
1352 so->so_rcv.sb_lastrecord = NULL;
1353 } else if (nextrecord->m_nextpkt == NULL)
1354 so->so_rcv.sb_lastrecord = nextrecord;
1355 }
1356 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1357 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1358 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1359 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1360 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1361 }
1362 if (orig_resid == uio->uio_resid && orig_resid &&
1363 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1364 sbunlock(&so->so_rcv);
1365 splx(s);
1366 goto restart;
1367 }
1368
1369 if (flagsp)
1370 *flagsp |= flags;
1371 release:
1372 sbunlock(&so->so_rcv);
1373 splx(s);
1374 return (error);
1375 }
1376
1377 int
1378 soshutdown(struct socket *so, int how)
1379 {
1380 const struct protosw *pr;
1381
1382 pr = so->so_proto;
1383 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1384 return (EINVAL);
1385
1386 if (how == SHUT_RD || how == SHUT_RDWR)
1387 sorflush(so);
1388 if (how == SHUT_WR || how == SHUT_RDWR)
1389 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1390 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1391 return (0);
1392 }
1393
1394 void
1395 sorflush(struct socket *so)
1396 {
1397 struct sockbuf *sb, asb;
1398 const struct protosw *pr;
1399 int s;
1400
1401 sb = &so->so_rcv;
1402 pr = so->so_proto;
1403 sb->sb_flags |= SB_NOINTR;
1404 (void) sblock(sb, M_WAITOK);
1405 s = splnet();
1406 socantrcvmore(so);
1407 sbunlock(sb);
1408 asb = *sb;
1409 /*
1410 * Clear most of the sockbuf structure, but leave some of the
1411 * fields valid.
1412 */
1413 memset(&sb->sb_startzero, 0,
1414 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1415 splx(s);
1416 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1417 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1418 sbrelease(&asb, so);
1419 }
1420
1421 int
1422 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1423 {
1424 int error;
1425 struct mbuf *m;
1426 struct linger *l;
1427
1428 error = 0;
1429 m = m0;
1430 if (level != SOL_SOCKET) {
1431 if (so->so_proto && so->so_proto->pr_ctloutput)
1432 return ((*so->so_proto->pr_ctloutput)
1433 (PRCO_SETOPT, so, level, optname, &m0));
1434 error = ENOPROTOOPT;
1435 } else {
1436 switch (optname) {
1437
1438 case SO_LINGER:
1439 if (m == NULL || m->m_len != sizeof(struct linger)) {
1440 error = EINVAL;
1441 goto bad;
1442 }
1443 l = mtod(m, struct linger *);
1444 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1445 l->l_linger > (INT_MAX / hz)) {
1446 error = EDOM;
1447 goto bad;
1448 }
1449 so->so_linger = l->l_linger;
1450 if (l->l_onoff)
1451 so->so_options |= SO_LINGER;
1452 else
1453 so->so_options &= ~SO_LINGER;
1454 break;
1455
1456 case SO_DEBUG:
1457 case SO_KEEPALIVE:
1458 case SO_DONTROUTE:
1459 case SO_USELOOPBACK:
1460 case SO_BROADCAST:
1461 case SO_REUSEADDR:
1462 case SO_REUSEPORT:
1463 case SO_OOBINLINE:
1464 case SO_TIMESTAMP:
1465 if (m == NULL || m->m_len < sizeof(int)) {
1466 error = EINVAL;
1467 goto bad;
1468 }
1469 if (*mtod(m, int *))
1470 so->so_options |= optname;
1471 else
1472 so->so_options &= ~optname;
1473 break;
1474
1475 case SO_SNDBUF:
1476 case SO_RCVBUF:
1477 case SO_SNDLOWAT:
1478 case SO_RCVLOWAT:
1479 {
1480 int optval;
1481
1482 if (m == NULL || m->m_len < sizeof(int)) {
1483 error = EINVAL;
1484 goto bad;
1485 }
1486
1487 /*
1488 * Values < 1 make no sense for any of these
1489 * options, so disallow them.
1490 */
1491 optval = *mtod(m, int *);
1492 if (optval < 1) {
1493 error = EINVAL;
1494 goto bad;
1495 }
1496
1497 switch (optname) {
1498
1499 case SO_SNDBUF:
1500 case SO_RCVBUF:
1501 if (sbreserve(optname == SO_SNDBUF ?
1502 &so->so_snd : &so->so_rcv,
1503 (u_long) optval, so) == 0) {
1504 error = ENOBUFS;
1505 goto bad;
1506 }
1507 break;
1508
1509 /*
1510 * Make sure the low-water is never greater than
1511 * the high-water.
1512 */
1513 case SO_SNDLOWAT:
1514 so->so_snd.sb_lowat =
1515 (optval > so->so_snd.sb_hiwat) ?
1516 so->so_snd.sb_hiwat : optval;
1517 break;
1518 case SO_RCVLOWAT:
1519 so->so_rcv.sb_lowat =
1520 (optval > so->so_rcv.sb_hiwat) ?
1521 so->so_rcv.sb_hiwat : optval;
1522 break;
1523 }
1524 break;
1525 }
1526
1527 case SO_SNDTIMEO:
1528 case SO_RCVTIMEO:
1529 {
1530 struct timeval *tv;
1531 int val;
1532
1533 if (m == NULL || m->m_len < sizeof(*tv)) {
1534 error = EINVAL;
1535 goto bad;
1536 }
1537 tv = mtod(m, struct timeval *);
1538 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1539 error = EDOM;
1540 goto bad;
1541 }
1542 val = tv->tv_sec * hz + tv->tv_usec / tick;
1543 if (val == 0 && tv->tv_usec != 0)
1544 val = 1;
1545
1546 switch (optname) {
1547
1548 case SO_SNDTIMEO:
1549 so->so_snd.sb_timeo = val;
1550 break;
1551 case SO_RCVTIMEO:
1552 so->so_rcv.sb_timeo = val;
1553 break;
1554 }
1555 break;
1556 }
1557
1558 default:
1559 error = ENOPROTOOPT;
1560 break;
1561 }
1562 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1563 (void) ((*so->so_proto->pr_ctloutput)
1564 (PRCO_SETOPT, so, level, optname, &m0));
1565 m = NULL; /* freed by protocol */
1566 }
1567 }
1568 bad:
1569 if (m)
1570 (void) m_free(m);
1571 return (error);
1572 }
1573
1574 int
1575 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1576 {
1577 struct mbuf *m;
1578
1579 if (level != SOL_SOCKET) {
1580 if (so->so_proto && so->so_proto->pr_ctloutput) {
1581 return ((*so->so_proto->pr_ctloutput)
1582 (PRCO_GETOPT, so, level, optname, mp));
1583 } else
1584 return (ENOPROTOOPT);
1585 } else {
1586 m = m_get(M_WAIT, MT_SOOPTS);
1587 m->m_len = sizeof(int);
1588
1589 switch (optname) {
1590
1591 case SO_LINGER:
1592 m->m_len = sizeof(struct linger);
1593 mtod(m, struct linger *)->l_onoff =
1594 (so->so_options & SO_LINGER) ? 1 : 0;
1595 mtod(m, struct linger *)->l_linger = so->so_linger;
1596 break;
1597
1598 case SO_USELOOPBACK:
1599 case SO_DONTROUTE:
1600 case SO_DEBUG:
1601 case SO_KEEPALIVE:
1602 case SO_REUSEADDR:
1603 case SO_REUSEPORT:
1604 case SO_BROADCAST:
1605 case SO_OOBINLINE:
1606 case SO_TIMESTAMP:
1607 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1608 break;
1609
1610 case SO_TYPE:
1611 *mtod(m, int *) = so->so_type;
1612 break;
1613
1614 case SO_ERROR:
1615 *mtod(m, int *) = so->so_error;
1616 so->so_error = 0;
1617 break;
1618
1619 case SO_SNDBUF:
1620 *mtod(m, int *) = so->so_snd.sb_hiwat;
1621 break;
1622
1623 case SO_RCVBUF:
1624 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1625 break;
1626
1627 case SO_SNDLOWAT:
1628 *mtod(m, int *) = so->so_snd.sb_lowat;
1629 break;
1630
1631 case SO_RCVLOWAT:
1632 *mtod(m, int *) = so->so_rcv.sb_lowat;
1633 break;
1634
1635 case SO_SNDTIMEO:
1636 case SO_RCVTIMEO:
1637 {
1638 int val = (optname == SO_SNDTIMEO ?
1639 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1640
1641 m->m_len = sizeof(struct timeval);
1642 mtod(m, struct timeval *)->tv_sec = val / hz;
1643 mtod(m, struct timeval *)->tv_usec =
1644 (val % hz) * tick;
1645 break;
1646 }
1647
1648 case SO_OVERFLOWED:
1649 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1650 break;
1651
1652 default:
1653 (void)m_free(m);
1654 return (ENOPROTOOPT);
1655 }
1656 *mp = m;
1657 return (0);
1658 }
1659 }
1660
1661 void
1662 sohasoutofband(struct socket *so)
1663 {
1664 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1665 selwakeup(&so->so_rcv.sb_sel);
1666 }
1667
1668 static void
1669 filt_sordetach(struct knote *kn)
1670 {
1671 struct socket *so;
1672
1673 so = (struct socket *)kn->kn_fp->f_data;
1674 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1675 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1676 so->so_rcv.sb_flags &= ~SB_KNOTE;
1677 }
1678
1679 /*ARGSUSED*/
1680 static int
1681 filt_soread(struct knote *kn, long hint)
1682 {
1683 struct socket *so;
1684
1685 so = (struct socket *)kn->kn_fp->f_data;
1686 kn->kn_data = so->so_rcv.sb_cc;
1687 if (so->so_state & SS_CANTRCVMORE) {
1688 kn->kn_flags |= EV_EOF;
1689 kn->kn_fflags = so->so_error;
1690 return (1);
1691 }
1692 if (so->so_error) /* temporary udp error */
1693 return (1);
1694 if (kn->kn_sfflags & NOTE_LOWAT)
1695 return (kn->kn_data >= kn->kn_sdata);
1696 return (kn->kn_data >= so->so_rcv.sb_lowat);
1697 }
1698
1699 static void
1700 filt_sowdetach(struct knote *kn)
1701 {
1702 struct socket *so;
1703
1704 so = (struct socket *)kn->kn_fp->f_data;
1705 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1706 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1707 so->so_snd.sb_flags &= ~SB_KNOTE;
1708 }
1709
1710 /*ARGSUSED*/
1711 static int
1712 filt_sowrite(struct knote *kn, long hint)
1713 {
1714 struct socket *so;
1715
1716 so = (struct socket *)kn->kn_fp->f_data;
1717 kn->kn_data = sbspace(&so->so_snd);
1718 if (so->so_state & SS_CANTSENDMORE) {
1719 kn->kn_flags |= EV_EOF;
1720 kn->kn_fflags = so->so_error;
1721 return (1);
1722 }
1723 if (so->so_error) /* temporary udp error */
1724 return (1);
1725 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1726 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1727 return (0);
1728 if (kn->kn_sfflags & NOTE_LOWAT)
1729 return (kn->kn_data >= kn->kn_sdata);
1730 return (kn->kn_data >= so->so_snd.sb_lowat);
1731 }
1732
1733 /*ARGSUSED*/
1734 static int
1735 filt_solisten(struct knote *kn, long hint)
1736 {
1737 struct socket *so;
1738
1739 so = (struct socket *)kn->kn_fp->f_data;
1740
1741 /*
1742 * Set kn_data to number of incoming connections, not
1743 * counting partial (incomplete) connections.
1744 */
1745 kn->kn_data = so->so_qlen;
1746 return (kn->kn_data > 0);
1747 }
1748
1749 static const struct filterops solisten_filtops =
1750 { 1, NULL, filt_sordetach, filt_solisten };
1751 static const struct filterops soread_filtops =
1752 { 1, NULL, filt_sordetach, filt_soread };
1753 static const struct filterops sowrite_filtops =
1754 { 1, NULL, filt_sowdetach, filt_sowrite };
1755
1756 int
1757 soo_kqfilter(struct file *fp, struct knote *kn)
1758 {
1759 struct socket *so;
1760 struct sockbuf *sb;
1761
1762 so = (struct socket *)kn->kn_fp->f_data;
1763 switch (kn->kn_filter) {
1764 case EVFILT_READ:
1765 if (so->so_options & SO_ACCEPTCONN)
1766 kn->kn_fop = &solisten_filtops;
1767 else
1768 kn->kn_fop = &soread_filtops;
1769 sb = &so->so_rcv;
1770 break;
1771 case EVFILT_WRITE:
1772 kn->kn_fop = &sowrite_filtops;
1773 sb = &so->so_snd;
1774 break;
1775 default:
1776 return (1);
1777 }
1778 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1779 sb->sb_flags |= SB_KNOTE;
1780 return (0);
1781 }
1782
1783 #include <sys/sysctl.h>
1784
1785 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1786
1787 /*
1788 * sysctl helper routine for kern.somaxkva. ensures that the given
1789 * value is not too small.
1790 * (XXX should we maybe make sure it's not too large as well?)
1791 */
1792 static int
1793 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1794 {
1795 int error, new_somaxkva;
1796 struct sysctlnode node;
1797 int s;
1798
1799 new_somaxkva = somaxkva;
1800 node = *rnode;
1801 node.sysctl_data = &new_somaxkva;
1802 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1803 if (error || newp == NULL)
1804 return (error);
1805
1806 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1807 return (EINVAL);
1808
1809 s = splvm();
1810 simple_lock(&so_pendfree_slock);
1811 somaxkva = new_somaxkva;
1812 wakeup(&socurkva);
1813 simple_unlock(&so_pendfree_slock);
1814 splx(s);
1815
1816 return (error);
1817 }
1818
1819 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1820 {
1821
1822 sysctl_createv(clog, 0, NULL, NULL,
1823 CTLFLAG_PERMANENT,
1824 CTLTYPE_NODE, "kern", NULL,
1825 NULL, 0, NULL, 0,
1826 CTL_KERN, CTL_EOL);
1827
1828 sysctl_createv(clog, 0, NULL, NULL,
1829 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1830 CTLTYPE_INT, "somaxkva",
1831 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1832 "used for socket buffers"),
1833 sysctl_kern_somaxkva, 0, NULL, 0,
1834 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1835 }
1836