Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.134
      1 /*	$NetBSD: uipc_socket.c,v 1.134 2007/03/04 06:03:11 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.134 2007/03/04 06:03:11 christos Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 
     96 #include <uvm/uvm.h>
     97 
     98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL);
     99 
    100 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    101 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    102 
    103 extern int	somaxconn;			/* patchable (XXX sysctl) */
    104 int		somaxconn = SOMAXCONN;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #ifdef SOSEND_NO_LOAN
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static int sokvawaiters;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static vsize_t
    154 sokvareserve(struct socket *so, vsize_t len)
    155 {
    156 	int s;
    157 	int error;
    158 
    159 	s = splvm();
    160 	simple_lock(&so_pendfree_slock);
    161 	while (socurkva + len > somaxkva) {
    162 		size_t freed;
    163 
    164 		/*
    165 		 * try to do pendfree.
    166 		 */
    167 
    168 		freed = sodopendfreel();
    169 
    170 		/*
    171 		 * if some kva was freed, try again.
    172 		 */
    173 
    174 		if (freed)
    175 			continue;
    176 
    177 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    178 		sokvawaiters++;
    179 		error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
    180 		    &so_pendfree_slock);
    181 		sokvawaiters--;
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	simple_unlock(&so_pendfree_slock);
    189 	splx(s);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 	int s;
    197 
    198 	s = splvm();
    199 	simple_lock(&so_pendfree_slock);
    200 	socurkva -= len;
    201 	if (sokvawaiters)
    202 		wakeup(&socurkva);
    203 	simple_unlock(&so_pendfree_slock);
    204 	splx(s);
    205 }
    206 
    207 /*
    208  * sokvaalloc: allocate kva for loan.
    209  */
    210 
    211 vaddr_t
    212 sokvaalloc(vsize_t len, struct socket *so)
    213 {
    214 	vaddr_t lva;
    215 
    216 	/*
    217 	 * reserve kva.
    218 	 */
    219 
    220 	if (sokvareserve(so, len) == 0)
    221 		return 0;
    222 
    223 	/*
    224 	 * allocate kva.
    225 	 */
    226 
    227 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    228 	if (lva == 0) {
    229 		sokvaunreserve(len);
    230 		return (0);
    231 	}
    232 
    233 	return lva;
    234 }
    235 
    236 /*
    237  * sokvafree: free kva for loan.
    238  */
    239 
    240 void
    241 sokvafree(vaddr_t sva, vsize_t len)
    242 {
    243 
    244 	/*
    245 	 * free kva.
    246 	 */
    247 
    248 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    249 
    250 	/*
    251 	 * unreserve kva.
    252 	 */
    253 
    254 	sokvaunreserve(len);
    255 }
    256 
    257 static void
    258 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    259 {
    260 	vaddr_t va, sva, eva;
    261 	vsize_t len;
    262 	paddr_t pa;
    263 	int i, npgs;
    264 
    265 	eva = round_page((vaddr_t) buf + size);
    266 	sva = trunc_page((vaddr_t) buf);
    267 	len = eva - sva;
    268 	npgs = len >> PAGE_SHIFT;
    269 
    270 	if (__predict_false(pgs == NULL)) {
    271 		pgs = alloca(npgs * sizeof(*pgs));
    272 
    273 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    274 			if (pmap_extract(pmap_kernel(), va, &pa) == false)
    275 				panic("sodoloanfree: va 0x%lx not mapped", va);
    276 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    277 		}
    278 	}
    279 
    280 	pmap_kremove(sva, len);
    281 	pmap_update(pmap_kernel());
    282 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    283 	sokvafree(sva, len);
    284 }
    285 
    286 static size_t
    287 sodopendfree()
    288 {
    289 	int s;
    290 	size_t rv;
    291 
    292 	s = splvm();
    293 	simple_lock(&so_pendfree_slock);
    294 	rv = sodopendfreel();
    295 	simple_unlock(&so_pendfree_slock);
    296 	splx(s);
    297 
    298 	return rv;
    299 }
    300 
    301 /*
    302  * sodopendfreel: free mbufs on "pendfree" list.
    303  * unlock and relock so_pendfree_slock when freeing mbufs.
    304  *
    305  * => called with so_pendfree_slock held.
    306  * => called at splvm.
    307  */
    308 
    309 static size_t
    310 sodopendfreel()
    311 {
    312 	size_t rv = 0;
    313 
    314 	LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
    315 
    316 	for (;;) {
    317 		struct mbuf *m;
    318 		struct mbuf *next;
    319 
    320 		m = so_pendfree;
    321 		if (m == NULL)
    322 			break;
    323 		so_pendfree = NULL;
    324 		simple_unlock(&so_pendfree_slock);
    325 		/* XXX splx */
    326 
    327 		for (; m != NULL; m = next) {
    328 			next = m->m_next;
    329 
    330 			rv += m->m_ext.ext_size;
    331 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    332 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    333 			    m->m_ext.ext_size);
    334 			pool_cache_put(&mbpool_cache, m);
    335 		}
    336 
    337 		/* XXX splvm */
    338 		simple_lock(&so_pendfree_slock);
    339 	}
    340 
    341 	return (rv);
    342 }
    343 
    344 void
    345 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    346 {
    347 	int s;
    348 
    349 	if (m == NULL) {
    350 
    351 		/*
    352 		 * called from MEXTREMOVE.
    353 		 */
    354 
    355 		sodoloanfree(NULL, buf, size);
    356 		return;
    357 	}
    358 
    359 	/*
    360 	 * postpone freeing mbuf.
    361 	 *
    362 	 * we can't do it in interrupt context
    363 	 * because we need to put kva back to kernel_map.
    364 	 */
    365 
    366 	s = splvm();
    367 	simple_lock(&so_pendfree_slock);
    368 	m->m_next = so_pendfree;
    369 	so_pendfree = m;
    370 	if (sokvawaiters)
    371 		wakeup(&socurkva);
    372 	simple_unlock(&so_pendfree_slock);
    373 	splx(s);
    374 }
    375 
    376 static long
    377 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    378 {
    379 	struct iovec *iov = uio->uio_iov;
    380 	vaddr_t sva, eva;
    381 	vsize_t len;
    382 	vaddr_t lva, va;
    383 	int npgs, i, error;
    384 
    385 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    386 		return (0);
    387 
    388 	if (iov->iov_len < (size_t) space)
    389 		space = iov->iov_len;
    390 	if (space > SOCK_LOAN_CHUNK)
    391 		space = SOCK_LOAN_CHUNK;
    392 
    393 	eva = round_page((vaddr_t) iov->iov_base + space);
    394 	sva = trunc_page((vaddr_t) iov->iov_base);
    395 	len = eva - sva;
    396 	npgs = len >> PAGE_SHIFT;
    397 
    398 	/* XXX KDASSERT */
    399 	KASSERT(npgs <= M_EXT_MAXPAGES);
    400 
    401 	lva = sokvaalloc(len, so);
    402 	if (lva == 0)
    403 		return 0;
    404 
    405 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    406 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    407 	if (error) {
    408 		sokvafree(lva, len);
    409 		return (0);
    410 	}
    411 
    412 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    413 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    414 		    VM_PROT_READ);
    415 	pmap_update(pmap_kernel());
    416 
    417 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    418 
    419 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    420 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    421 
    422 	uio->uio_resid -= space;
    423 	/* uio_offset not updated, not set/used for write(2) */
    424 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    425 	uio->uio_iov->iov_len -= space;
    426 	if (uio->uio_iov->iov_len == 0) {
    427 		uio->uio_iov++;
    428 		uio->uio_iovcnt--;
    429 	}
    430 
    431 	return (space);
    432 }
    433 
    434 static int
    435 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    436 {
    437 
    438 	KASSERT(ce == &sokva_reclaimerentry);
    439 	KASSERT(obj == NULL);
    440 
    441 	sodopendfree();
    442 	if (!vm_map_starved_p(kernel_map)) {
    443 		return CALLBACK_CHAIN_ABORT;
    444 	}
    445 	return CALLBACK_CHAIN_CONTINUE;
    446 }
    447 
    448 void
    449 soinit(void)
    450 {
    451 
    452 	/* Set the initial adjusted socket buffer size. */
    453 	if (sb_max_set(sb_max))
    454 		panic("bad initial sb_max value: %lu", sb_max);
    455 
    456 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    457 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    458 }
    459 
    460 /*
    461  * Socket operation routines.
    462  * These routines are called by the routines in
    463  * sys_socket.c or from a system process, and
    464  * implement the semantics of socket operations by
    465  * switching out to the protocol specific routines.
    466  */
    467 /*ARGSUSED*/
    468 int
    469 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    470 {
    471 	const struct protosw	*prp;
    472 	struct socket	*so;
    473 	uid_t		uid;
    474 	int		error, s;
    475 
    476 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    477 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    478 	    KAUTH_ARG(proto));
    479 	if (error)
    480 		return (error);
    481 
    482 	if (proto)
    483 		prp = pffindproto(dom, proto, type);
    484 	else
    485 		prp = pffindtype(dom, type);
    486 	if (prp == 0) {
    487 		/* no support for domain */
    488 		if (pffinddomain(dom) == 0)
    489 			return (EAFNOSUPPORT);
    490 		/* no support for socket type */
    491 		if (proto == 0 && type != 0)
    492 			return (EPROTOTYPE);
    493 		return (EPROTONOSUPPORT);
    494 	}
    495 	if (prp->pr_usrreq == 0)
    496 		return (EPROTONOSUPPORT);
    497 	if (prp->pr_type != type)
    498 		return (EPROTOTYPE);
    499 	s = splsoftnet();
    500 	so = pool_get(&socket_pool, PR_WAITOK);
    501 	memset((void *)so, 0, sizeof(*so));
    502 	TAILQ_INIT(&so->so_q0);
    503 	TAILQ_INIT(&so->so_q);
    504 	so->so_type = type;
    505 	so->so_proto = prp;
    506 	so->so_send = sosend;
    507 	so->so_receive = soreceive;
    508 #ifdef MBUFTRACE
    509 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    510 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    511 	so->so_mowner = &prp->pr_domain->dom_mowner;
    512 #endif
    513 	if (l != NULL) {
    514 		uid = kauth_cred_geteuid(l->l_cred);
    515 	} else {
    516 		uid = 0;
    517 	}
    518 	so->so_uidinfo = uid_find(uid);
    519 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    520 	    (struct mbuf *)(long)proto, (struct mbuf *)0, l);
    521 	if (error) {
    522 		so->so_state |= SS_NOFDREF;
    523 		sofree(so);
    524 		splx(s);
    525 		return (error);
    526 	}
    527 	splx(s);
    528 	*aso = so;
    529 	return (0);
    530 }
    531 
    532 int
    533 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    534 {
    535 	int	s, error;
    536 
    537 	s = splsoftnet();
    538 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    539 	    nam, (struct mbuf *)0, l);
    540 	splx(s);
    541 	return (error);
    542 }
    543 
    544 int
    545 solisten(struct socket *so, int backlog)
    546 {
    547 	int	s, error;
    548 
    549 	s = splsoftnet();
    550 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    551 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    552 	if (error) {
    553 		splx(s);
    554 		return (error);
    555 	}
    556 	if (TAILQ_EMPTY(&so->so_q))
    557 		so->so_options |= SO_ACCEPTCONN;
    558 	if (backlog < 0)
    559 		backlog = 0;
    560 	so->so_qlimit = min(backlog, somaxconn);
    561 	splx(s);
    562 	return (0);
    563 }
    564 
    565 void
    566 sofree(struct socket *so)
    567 {
    568 
    569 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    570 		return;
    571 	if (so->so_head) {
    572 		/*
    573 		 * We must not decommission a socket that's on the accept(2)
    574 		 * queue.  If we do, then accept(2) may hang after select(2)
    575 		 * indicated that the listening socket was ready.
    576 		 */
    577 		if (!soqremque(so, 0))
    578 			return;
    579 	}
    580 	if (so->so_rcv.sb_hiwat)
    581 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    582 		    RLIM_INFINITY);
    583 	if (so->so_snd.sb_hiwat)
    584 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    585 		    RLIM_INFINITY);
    586 	sbrelease(&so->so_snd, so);
    587 	sorflush(so);
    588 	pool_put(&socket_pool, so);
    589 }
    590 
    591 /*
    592  * Close a socket on last file table reference removal.
    593  * Initiate disconnect if connected.
    594  * Free socket when disconnect complete.
    595  */
    596 int
    597 soclose(struct socket *so)
    598 {
    599 	struct socket	*so2;
    600 	int		s, error;
    601 
    602 	error = 0;
    603 	s = splsoftnet();		/* conservative */
    604 	if (so->so_options & SO_ACCEPTCONN) {
    605 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    606 			(void) soqremque(so2, 0);
    607 			(void) soabort(so2);
    608 		}
    609 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    610 			(void) soqremque(so2, 1);
    611 			(void) soabort(so2);
    612 		}
    613 	}
    614 	if (so->so_pcb == 0)
    615 		goto discard;
    616 	if (so->so_state & SS_ISCONNECTED) {
    617 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    618 			error = sodisconnect(so);
    619 			if (error)
    620 				goto drop;
    621 		}
    622 		if (so->so_options & SO_LINGER) {
    623 			if ((so->so_state & SS_ISDISCONNECTING) &&
    624 			    (so->so_state & SS_NBIO))
    625 				goto drop;
    626 			while (so->so_state & SS_ISCONNECTED) {
    627 				error = tsleep((void *)&so->so_timeo,
    628 					       PSOCK | PCATCH, netcls,
    629 					       so->so_linger * hz);
    630 				if (error)
    631 					break;
    632 			}
    633 		}
    634 	}
    635  drop:
    636 	if (so->so_pcb) {
    637 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    638 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    639 		    (struct lwp *)0);
    640 		if (error == 0)
    641 			error = error2;
    642 	}
    643  discard:
    644 	if (so->so_state & SS_NOFDREF)
    645 		panic("soclose: NOFDREF");
    646 	so->so_state |= SS_NOFDREF;
    647 	sofree(so);
    648 	splx(s);
    649 	return (error);
    650 }
    651 
    652 /*
    653  * Must be called at splsoftnet...
    654  */
    655 int
    656 soabort(struct socket *so)
    657 {
    658 
    659 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    660 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    661 }
    662 
    663 int
    664 soaccept(struct socket *so, struct mbuf *nam)
    665 {
    666 	int	s, error;
    667 
    668 	error = 0;
    669 	s = splsoftnet();
    670 	if ((so->so_state & SS_NOFDREF) == 0)
    671 		panic("soaccept: !NOFDREF");
    672 	so->so_state &= ~SS_NOFDREF;
    673 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    674 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    675 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    676 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
    677 	else
    678 		error = ECONNABORTED;
    679 
    680 	splx(s);
    681 	return (error);
    682 }
    683 
    684 int
    685 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    686 {
    687 	int		s, error;
    688 
    689 	if (so->so_options & SO_ACCEPTCONN)
    690 		return (EOPNOTSUPP);
    691 	s = splsoftnet();
    692 	/*
    693 	 * If protocol is connection-based, can only connect once.
    694 	 * Otherwise, if connected, try to disconnect first.
    695 	 * This allows user to disconnect by connecting to, e.g.,
    696 	 * a null address.
    697 	 */
    698 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    699 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    700 	    (error = sodisconnect(so))))
    701 		error = EISCONN;
    702 	else
    703 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    704 		    (struct mbuf *)0, nam, (struct mbuf *)0, l);
    705 	splx(s);
    706 	return (error);
    707 }
    708 
    709 int
    710 soconnect2(struct socket *so1, struct socket *so2)
    711 {
    712 	int	s, error;
    713 
    714 	s = splsoftnet();
    715 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    716 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    717 	    (struct lwp *)0);
    718 	splx(s);
    719 	return (error);
    720 }
    721 
    722 int
    723 sodisconnect(struct socket *so)
    724 {
    725 	int	s, error;
    726 
    727 	s = splsoftnet();
    728 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    729 		error = ENOTCONN;
    730 		goto bad;
    731 	}
    732 	if (so->so_state & SS_ISDISCONNECTING) {
    733 		error = EALREADY;
    734 		goto bad;
    735 	}
    736 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    737 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    738 	    (struct lwp *)0);
    739  bad:
    740 	splx(s);
    741 	sodopendfree();
    742 	return (error);
    743 }
    744 
    745 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    746 /*
    747  * Send on a socket.
    748  * If send must go all at once and message is larger than
    749  * send buffering, then hard error.
    750  * Lock against other senders.
    751  * If must go all at once and not enough room now, then
    752  * inform user that this would block and do nothing.
    753  * Otherwise, if nonblocking, send as much as possible.
    754  * The data to be sent is described by "uio" if nonzero,
    755  * otherwise by the mbuf chain "top" (which must be null
    756  * if uio is not).  Data provided in mbuf chain must be small
    757  * enough to send all at once.
    758  *
    759  * Returns nonzero on error, timeout or signal; callers
    760  * must check for short counts if EINTR/ERESTART are returned.
    761  * Data and control buffers are freed on return.
    762  */
    763 int
    764 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    765 	struct mbuf *control, int flags, struct lwp *l)
    766 {
    767 	struct mbuf	**mp, *m;
    768 	struct proc	*p;
    769 	long		space, len, resid, clen, mlen;
    770 	int		error, s, dontroute, atomic;
    771 
    772 	p = l->l_proc;
    773 	sodopendfree();
    774 
    775 	clen = 0;
    776 	atomic = sosendallatonce(so) || top;
    777 	if (uio)
    778 		resid = uio->uio_resid;
    779 	else
    780 		resid = top->m_pkthdr.len;
    781 	/*
    782 	 * In theory resid should be unsigned.
    783 	 * However, space must be signed, as it might be less than 0
    784 	 * if we over-committed, and we must use a signed comparison
    785 	 * of space and resid.  On the other hand, a negative resid
    786 	 * causes us to loop sending 0-length segments to the protocol.
    787 	 */
    788 	if (resid < 0) {
    789 		error = EINVAL;
    790 		goto out;
    791 	}
    792 	dontroute =
    793 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    794 	    (so->so_proto->pr_flags & PR_ATOMIC);
    795 	if (p)
    796 		p->p_stats->p_ru.ru_msgsnd++;
    797 	if (control)
    798 		clen = control->m_len;
    799 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    800 
    801  restart:
    802 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    803 		goto out;
    804 	do {
    805 		s = splsoftnet();
    806 		if (so->so_state & SS_CANTSENDMORE)
    807 			snderr(EPIPE);
    808 		if (so->so_error) {
    809 			error = so->so_error;
    810 			so->so_error = 0;
    811 			splx(s);
    812 			goto release;
    813 		}
    814 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    815 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    816 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    817 				    !(resid == 0 && clen != 0))
    818 					snderr(ENOTCONN);
    819 			} else if (addr == 0)
    820 				snderr(EDESTADDRREQ);
    821 		}
    822 		space = sbspace(&so->so_snd);
    823 		if (flags & MSG_OOB)
    824 			space += 1024;
    825 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    826 		    clen > so->so_snd.sb_hiwat)
    827 			snderr(EMSGSIZE);
    828 		if (space < resid + clen &&
    829 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    830 			if (so->so_state & SS_NBIO)
    831 				snderr(EWOULDBLOCK);
    832 			sbunlock(&so->so_snd);
    833 			error = sbwait(&so->so_snd);
    834 			splx(s);
    835 			if (error)
    836 				goto out;
    837 			goto restart;
    838 		}
    839 		splx(s);
    840 		mp = &top;
    841 		space -= clen;
    842 		do {
    843 			if (uio == NULL) {
    844 				/*
    845 				 * Data is prepackaged in "top".
    846 				 */
    847 				resid = 0;
    848 				if (flags & MSG_EOR)
    849 					top->m_flags |= M_EOR;
    850 			} else do {
    851 				if (top == 0) {
    852 					m = m_gethdr(M_WAIT, MT_DATA);
    853 					mlen = MHLEN;
    854 					m->m_pkthdr.len = 0;
    855 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    856 				} else {
    857 					m = m_get(M_WAIT, MT_DATA);
    858 					mlen = MLEN;
    859 				}
    860 				MCLAIM(m, so->so_snd.sb_mowner);
    861 				if (sock_loan_thresh >= 0 &&
    862 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    863 				    space >= sock_loan_thresh &&
    864 				    (len = sosend_loan(so, uio, m,
    865 						       space)) != 0) {
    866 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    867 					space -= len;
    868 					goto have_data;
    869 				}
    870 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    871 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    872 					m_clget(m, M_WAIT);
    873 					if ((m->m_flags & M_EXT) == 0)
    874 						goto nopages;
    875 					mlen = MCLBYTES;
    876 					if (atomic && top == 0) {
    877 						len = lmin(MCLBYTES - max_hdr,
    878 						    resid);
    879 						m->m_data += max_hdr;
    880 					} else
    881 						len = lmin(MCLBYTES, resid);
    882 					space -= len;
    883 				} else {
    884  nopages:
    885 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    886 					len = lmin(lmin(mlen, resid), space);
    887 					space -= len;
    888 					/*
    889 					 * For datagram protocols, leave room
    890 					 * for protocol headers in first mbuf.
    891 					 */
    892 					if (atomic && top == 0 && len < mlen)
    893 						MH_ALIGN(m, len);
    894 				}
    895 				error = uiomove(mtod(m, void *), (int)len,
    896 				    uio);
    897  have_data:
    898 				resid = uio->uio_resid;
    899 				m->m_len = len;
    900 				*mp = m;
    901 				top->m_pkthdr.len += len;
    902 				if (error)
    903 					goto release;
    904 				mp = &m->m_next;
    905 				if (resid <= 0) {
    906 					if (flags & MSG_EOR)
    907 						top->m_flags |= M_EOR;
    908 					break;
    909 				}
    910 			} while (space > 0 && atomic);
    911 
    912 			s = splsoftnet();
    913 
    914 			if (so->so_state & SS_CANTSENDMORE)
    915 				snderr(EPIPE);
    916 
    917 			if (dontroute)
    918 				so->so_options |= SO_DONTROUTE;
    919 			if (resid > 0)
    920 				so->so_state |= SS_MORETOCOME;
    921 			error = (*so->so_proto->pr_usrreq)(so,
    922 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    923 			    top, addr, control, curlwp);	/* XXX */
    924 			if (dontroute)
    925 				so->so_options &= ~SO_DONTROUTE;
    926 			if (resid > 0)
    927 				so->so_state &= ~SS_MORETOCOME;
    928 			splx(s);
    929 
    930 			clen = 0;
    931 			control = 0;
    932 			top = 0;
    933 			mp = &top;
    934 			if (error)
    935 				goto release;
    936 		} while (resid && space > 0);
    937 	} while (resid);
    938 
    939  release:
    940 	sbunlock(&so->so_snd);
    941  out:
    942 	if (top)
    943 		m_freem(top);
    944 	if (control)
    945 		m_freem(control);
    946 	return (error);
    947 }
    948 
    949 /*
    950  * Implement receive operations on a socket.
    951  * We depend on the way that records are added to the sockbuf
    952  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    953  * must begin with an address if the protocol so specifies,
    954  * followed by an optional mbuf or mbufs containing ancillary data,
    955  * and then zero or more mbufs of data.
    956  * In order to avoid blocking network interrupts for the entire time here,
    957  * we splx() while doing the actual copy to user space.
    958  * Although the sockbuf is locked, new data may still be appended,
    959  * and thus we must maintain consistency of the sockbuf during that time.
    960  *
    961  * The caller may receive the data as a single mbuf chain by supplying
    962  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    963  * only for the count in uio_resid.
    964  */
    965 int
    966 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    967 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    968 {
    969 	struct lwp *l = curlwp;
    970 	struct mbuf	*m, **mp;
    971 	int		flags, len, error, s, offset, moff, type, orig_resid;
    972 	const struct protosw	*pr;
    973 	struct mbuf	*nextrecord;
    974 	int		mbuf_removed = 0;
    975 
    976 	pr = so->so_proto;
    977 	mp = mp0;
    978 	type = 0;
    979 	orig_resid = uio->uio_resid;
    980 
    981 	if (paddr)
    982 		*paddr = 0;
    983 	if (controlp)
    984 		*controlp = 0;
    985 	if (flagsp)
    986 		flags = *flagsp &~ MSG_EOR;
    987 	else
    988 		flags = 0;
    989 
    990 	if ((flags & MSG_DONTWAIT) == 0)
    991 		sodopendfree();
    992 
    993 	if (flags & MSG_OOB) {
    994 		m = m_get(M_WAIT, MT_DATA);
    995 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    996 		    (struct mbuf *)(long)(flags & MSG_PEEK),
    997 		    (struct mbuf *)0, l);
    998 		if (error)
    999 			goto bad;
   1000 		do {
   1001 			error = uiomove(mtod(m, void *),
   1002 			    (int) min(uio->uio_resid, m->m_len), uio);
   1003 			m = m_free(m);
   1004 		} while (uio->uio_resid && error == 0 && m);
   1005  bad:
   1006 		if (m)
   1007 			m_freem(m);
   1008 		return (error);
   1009 	}
   1010 	if (mp)
   1011 		*mp = (struct mbuf *)0;
   1012 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1013 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1014 		    (struct mbuf *)0, (struct mbuf *)0, l);
   1015 
   1016  restart:
   1017 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1018 		return (error);
   1019 	s = splsoftnet();
   1020 
   1021 	m = so->so_rcv.sb_mb;
   1022 	/*
   1023 	 * If we have less data than requested, block awaiting more
   1024 	 * (subject to any timeout) if:
   1025 	 *   1. the current count is less than the low water mark,
   1026 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1027 	 *	receive operation at once if we block (resid <= hiwat), or
   1028 	 *   3. MSG_DONTWAIT is not set.
   1029 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1030 	 * we have to do the receive in sections, and thus risk returning
   1031 	 * a short count if a timeout or signal occurs after we start.
   1032 	 */
   1033 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1034 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1035 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1036 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1037 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1038 #ifdef DIAGNOSTIC
   1039 		if (m == 0 && so->so_rcv.sb_cc)
   1040 			panic("receive 1");
   1041 #endif
   1042 		if (so->so_error) {
   1043 			if (m)
   1044 				goto dontblock;
   1045 			error = so->so_error;
   1046 			if ((flags & MSG_PEEK) == 0)
   1047 				so->so_error = 0;
   1048 			goto release;
   1049 		}
   1050 		if (so->so_state & SS_CANTRCVMORE) {
   1051 			if (m)
   1052 				goto dontblock;
   1053 			else
   1054 				goto release;
   1055 		}
   1056 		for (; m; m = m->m_next)
   1057 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1058 				m = so->so_rcv.sb_mb;
   1059 				goto dontblock;
   1060 			}
   1061 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1062 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1063 			error = ENOTCONN;
   1064 			goto release;
   1065 		}
   1066 		if (uio->uio_resid == 0)
   1067 			goto release;
   1068 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1069 			error = EWOULDBLOCK;
   1070 			goto release;
   1071 		}
   1072 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1073 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1074 		sbunlock(&so->so_rcv);
   1075 		error = sbwait(&so->so_rcv);
   1076 		splx(s);
   1077 		if (error)
   1078 			return (error);
   1079 		goto restart;
   1080 	}
   1081  dontblock:
   1082 	/*
   1083 	 * On entry here, m points to the first record of the socket buffer.
   1084 	 * While we process the initial mbufs containing address and control
   1085 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1086 	 */
   1087 	if (l)
   1088 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1089 	KASSERT(m == so->so_rcv.sb_mb);
   1090 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1091 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1092 	nextrecord = m->m_nextpkt;
   1093 	if (pr->pr_flags & PR_ADDR) {
   1094 #ifdef DIAGNOSTIC
   1095 		if (m->m_type != MT_SONAME)
   1096 			panic("receive 1a");
   1097 #endif
   1098 		orig_resid = 0;
   1099 		if (flags & MSG_PEEK) {
   1100 			if (paddr)
   1101 				*paddr = m_copy(m, 0, m->m_len);
   1102 			m = m->m_next;
   1103 		} else {
   1104 			sbfree(&so->so_rcv, m);
   1105 			mbuf_removed = 1;
   1106 			if (paddr) {
   1107 				*paddr = m;
   1108 				so->so_rcv.sb_mb = m->m_next;
   1109 				m->m_next = 0;
   1110 				m = so->so_rcv.sb_mb;
   1111 			} else {
   1112 				MFREE(m, so->so_rcv.sb_mb);
   1113 				m = so->so_rcv.sb_mb;
   1114 			}
   1115 		}
   1116 	}
   1117 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1118 		if (flags & MSG_PEEK) {
   1119 			if (controlp)
   1120 				*controlp = m_copy(m, 0, m->m_len);
   1121 			m = m->m_next;
   1122 		} else {
   1123 			sbfree(&so->so_rcv, m);
   1124 			mbuf_removed = 1;
   1125 			if (controlp) {
   1126 				struct domain *dom = pr->pr_domain;
   1127 				if (dom->dom_externalize && l &&
   1128 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1129 				    SCM_RIGHTS)
   1130 					error = (*dom->dom_externalize)(m, l);
   1131 				*controlp = m;
   1132 				so->so_rcv.sb_mb = m->m_next;
   1133 				m->m_next = 0;
   1134 				m = so->so_rcv.sb_mb;
   1135 			} else {
   1136 				/*
   1137 				 * Dispose of any SCM_RIGHTS message that went
   1138 				 * through the read path rather than recv.
   1139 				 */
   1140 				if (pr->pr_domain->dom_dispose &&
   1141 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1142 					(*pr->pr_domain->dom_dispose)(m);
   1143 				MFREE(m, so->so_rcv.sb_mb);
   1144 				m = so->so_rcv.sb_mb;
   1145 			}
   1146 		}
   1147 		if (controlp) {
   1148 			orig_resid = 0;
   1149 			controlp = &(*controlp)->m_next;
   1150 		}
   1151 	}
   1152 
   1153 	/*
   1154 	 * If m is non-NULL, we have some data to read.  From now on,
   1155 	 * make sure to keep sb_lastrecord consistent when working on
   1156 	 * the last packet on the chain (nextrecord == NULL) and we
   1157 	 * change m->m_nextpkt.
   1158 	 */
   1159 	if (m) {
   1160 		if ((flags & MSG_PEEK) == 0) {
   1161 			m->m_nextpkt = nextrecord;
   1162 			/*
   1163 			 * If nextrecord == NULL (this is a single chain),
   1164 			 * then sb_lastrecord may not be valid here if m
   1165 			 * was changed earlier.
   1166 			 */
   1167 			if (nextrecord == NULL) {
   1168 				KASSERT(so->so_rcv.sb_mb == m);
   1169 				so->so_rcv.sb_lastrecord = m;
   1170 			}
   1171 		}
   1172 		type = m->m_type;
   1173 		if (type == MT_OOBDATA)
   1174 			flags |= MSG_OOB;
   1175 	} else {
   1176 		if ((flags & MSG_PEEK) == 0) {
   1177 			KASSERT(so->so_rcv.sb_mb == m);
   1178 			so->so_rcv.sb_mb = nextrecord;
   1179 			SB_EMPTY_FIXUP(&so->so_rcv);
   1180 		}
   1181 	}
   1182 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1183 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1184 
   1185 	moff = 0;
   1186 	offset = 0;
   1187 	while (m && uio->uio_resid > 0 && error == 0) {
   1188 		if (m->m_type == MT_OOBDATA) {
   1189 			if (type != MT_OOBDATA)
   1190 				break;
   1191 		} else if (type == MT_OOBDATA)
   1192 			break;
   1193 #ifdef DIAGNOSTIC
   1194 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1195 			panic("receive 3");
   1196 #endif
   1197 		so->so_state &= ~SS_RCVATMARK;
   1198 		len = uio->uio_resid;
   1199 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1200 			len = so->so_oobmark - offset;
   1201 		if (len > m->m_len - moff)
   1202 			len = m->m_len - moff;
   1203 		/*
   1204 		 * If mp is set, just pass back the mbufs.
   1205 		 * Otherwise copy them out via the uio, then free.
   1206 		 * Sockbuf must be consistent here (points to current mbuf,
   1207 		 * it points to next record) when we drop priority;
   1208 		 * we must note any additions to the sockbuf when we
   1209 		 * block interrupts again.
   1210 		 */
   1211 		if (mp == 0) {
   1212 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1213 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1214 			splx(s);
   1215 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1216 			s = splsoftnet();
   1217 			if (error) {
   1218 				/*
   1219 				 * If any part of the record has been removed
   1220 				 * (such as the MT_SONAME mbuf, which will
   1221 				 * happen when PR_ADDR, and thus also
   1222 				 * PR_ATOMIC, is set), then drop the entire
   1223 				 * record to maintain the atomicity of the
   1224 				 * receive operation.
   1225 				 *
   1226 				 * This avoids a later panic("receive 1a")
   1227 				 * when compiled with DIAGNOSTIC.
   1228 				 */
   1229 				if (m && mbuf_removed
   1230 				    && (pr->pr_flags & PR_ATOMIC))
   1231 					(void) sbdroprecord(&so->so_rcv);
   1232 
   1233 				goto release;
   1234 			}
   1235 		} else
   1236 			uio->uio_resid -= len;
   1237 		if (len == m->m_len - moff) {
   1238 			if (m->m_flags & M_EOR)
   1239 				flags |= MSG_EOR;
   1240 			if (flags & MSG_PEEK) {
   1241 				m = m->m_next;
   1242 				moff = 0;
   1243 			} else {
   1244 				nextrecord = m->m_nextpkt;
   1245 				sbfree(&so->so_rcv, m);
   1246 				if (mp) {
   1247 					*mp = m;
   1248 					mp = &m->m_next;
   1249 					so->so_rcv.sb_mb = m = m->m_next;
   1250 					*mp = (struct mbuf *)0;
   1251 				} else {
   1252 					MFREE(m, so->so_rcv.sb_mb);
   1253 					m = so->so_rcv.sb_mb;
   1254 				}
   1255 				/*
   1256 				 * If m != NULL, we also know that
   1257 				 * so->so_rcv.sb_mb != NULL.
   1258 				 */
   1259 				KASSERT(so->so_rcv.sb_mb == m);
   1260 				if (m) {
   1261 					m->m_nextpkt = nextrecord;
   1262 					if (nextrecord == NULL)
   1263 						so->so_rcv.sb_lastrecord = m;
   1264 				} else {
   1265 					so->so_rcv.sb_mb = nextrecord;
   1266 					SB_EMPTY_FIXUP(&so->so_rcv);
   1267 				}
   1268 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1269 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1270 			}
   1271 		} else {
   1272 			if (flags & MSG_PEEK)
   1273 				moff += len;
   1274 			else {
   1275 				if (mp)
   1276 					*mp = m_copym(m, 0, len, M_WAIT);
   1277 				m->m_data += len;
   1278 				m->m_len -= len;
   1279 				so->so_rcv.sb_cc -= len;
   1280 			}
   1281 		}
   1282 		if (so->so_oobmark) {
   1283 			if ((flags & MSG_PEEK) == 0) {
   1284 				so->so_oobmark -= len;
   1285 				if (so->so_oobmark == 0) {
   1286 					so->so_state |= SS_RCVATMARK;
   1287 					break;
   1288 				}
   1289 			} else {
   1290 				offset += len;
   1291 				if (offset == so->so_oobmark)
   1292 					break;
   1293 			}
   1294 		}
   1295 		if (flags & MSG_EOR)
   1296 			break;
   1297 		/*
   1298 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1299 		 * we must not quit until "uio->uio_resid == 0" or an error
   1300 		 * termination.  If a signal/timeout occurs, return
   1301 		 * with a short count but without error.
   1302 		 * Keep sockbuf locked against other readers.
   1303 		 */
   1304 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1305 		    !sosendallatonce(so) && !nextrecord) {
   1306 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1307 				break;
   1308 			/*
   1309 			 * If we are peeking and the socket receive buffer is
   1310 			 * full, stop since we can't get more data to peek at.
   1311 			 */
   1312 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1313 				break;
   1314 			/*
   1315 			 * If we've drained the socket buffer, tell the
   1316 			 * protocol in case it needs to do something to
   1317 			 * get it filled again.
   1318 			 */
   1319 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1320 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1321 				    (struct mbuf *)0,
   1322 				    (struct mbuf *)(long)flags,
   1323 				    (struct mbuf *)0, l);
   1324 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1325 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1326 			error = sbwait(&so->so_rcv);
   1327 			if (error) {
   1328 				sbunlock(&so->so_rcv);
   1329 				splx(s);
   1330 				return (0);
   1331 			}
   1332 			if ((m = so->so_rcv.sb_mb) != NULL)
   1333 				nextrecord = m->m_nextpkt;
   1334 		}
   1335 	}
   1336 
   1337 	if (m && pr->pr_flags & PR_ATOMIC) {
   1338 		flags |= MSG_TRUNC;
   1339 		if ((flags & MSG_PEEK) == 0)
   1340 			(void) sbdroprecord(&so->so_rcv);
   1341 	}
   1342 	if ((flags & MSG_PEEK) == 0) {
   1343 		if (m == 0) {
   1344 			/*
   1345 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1346 			 * part makes sure sb_lastrecord is up-to-date if
   1347 			 * there is still data in the socket buffer.
   1348 			 */
   1349 			so->so_rcv.sb_mb = nextrecord;
   1350 			if (so->so_rcv.sb_mb == NULL) {
   1351 				so->so_rcv.sb_mbtail = NULL;
   1352 				so->so_rcv.sb_lastrecord = NULL;
   1353 			} else if (nextrecord->m_nextpkt == NULL)
   1354 				so->so_rcv.sb_lastrecord = nextrecord;
   1355 		}
   1356 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1357 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1358 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1359 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1360 			    (struct mbuf *)(long)flags, (struct mbuf *)0, l);
   1361 	}
   1362 	if (orig_resid == uio->uio_resid && orig_resid &&
   1363 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1364 		sbunlock(&so->so_rcv);
   1365 		splx(s);
   1366 		goto restart;
   1367 	}
   1368 
   1369 	if (flagsp)
   1370 		*flagsp |= flags;
   1371  release:
   1372 	sbunlock(&so->so_rcv);
   1373 	splx(s);
   1374 	return (error);
   1375 }
   1376 
   1377 int
   1378 soshutdown(struct socket *so, int how)
   1379 {
   1380 	const struct protosw	*pr;
   1381 
   1382 	pr = so->so_proto;
   1383 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1384 		return (EINVAL);
   1385 
   1386 	if (how == SHUT_RD || how == SHUT_RDWR)
   1387 		sorflush(so);
   1388 	if (how == SHUT_WR || how == SHUT_RDWR)
   1389 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1390 		    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
   1391 	return (0);
   1392 }
   1393 
   1394 void
   1395 sorflush(struct socket *so)
   1396 {
   1397 	struct sockbuf	*sb, asb;
   1398 	const struct protosw	*pr;
   1399 	int		s;
   1400 
   1401 	sb = &so->so_rcv;
   1402 	pr = so->so_proto;
   1403 	sb->sb_flags |= SB_NOINTR;
   1404 	(void) sblock(sb, M_WAITOK);
   1405 	s = splnet();
   1406 	socantrcvmore(so);
   1407 	sbunlock(sb);
   1408 	asb = *sb;
   1409 	/*
   1410 	 * Clear most of the sockbuf structure, but leave some of the
   1411 	 * fields valid.
   1412 	 */
   1413 	memset(&sb->sb_startzero, 0,
   1414 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1415 	splx(s);
   1416 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1417 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1418 	sbrelease(&asb, so);
   1419 }
   1420 
   1421 int
   1422 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1423 {
   1424 	int		error;
   1425 	struct mbuf	*m;
   1426 	struct linger	*l;
   1427 
   1428 	error = 0;
   1429 	m = m0;
   1430 	if (level != SOL_SOCKET) {
   1431 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1432 			return ((*so->so_proto->pr_ctloutput)
   1433 				  (PRCO_SETOPT, so, level, optname, &m0));
   1434 		error = ENOPROTOOPT;
   1435 	} else {
   1436 		switch (optname) {
   1437 
   1438 		case SO_LINGER:
   1439 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1440 				error = EINVAL;
   1441 				goto bad;
   1442 			}
   1443 			l = mtod(m, struct linger *);
   1444 			if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1445 			    l->l_linger > (INT_MAX / hz)) {
   1446 				error = EDOM;
   1447 				goto bad;
   1448 			}
   1449 			so->so_linger = l->l_linger;
   1450 			if (l->l_onoff)
   1451 				so->so_options |= SO_LINGER;
   1452 			else
   1453 				so->so_options &= ~SO_LINGER;
   1454 			break;
   1455 
   1456 		case SO_DEBUG:
   1457 		case SO_KEEPALIVE:
   1458 		case SO_DONTROUTE:
   1459 		case SO_USELOOPBACK:
   1460 		case SO_BROADCAST:
   1461 		case SO_REUSEADDR:
   1462 		case SO_REUSEPORT:
   1463 		case SO_OOBINLINE:
   1464 		case SO_TIMESTAMP:
   1465 			if (m == NULL || m->m_len < sizeof(int)) {
   1466 				error = EINVAL;
   1467 				goto bad;
   1468 			}
   1469 			if (*mtod(m, int *))
   1470 				so->so_options |= optname;
   1471 			else
   1472 				so->so_options &= ~optname;
   1473 			break;
   1474 
   1475 		case SO_SNDBUF:
   1476 		case SO_RCVBUF:
   1477 		case SO_SNDLOWAT:
   1478 		case SO_RCVLOWAT:
   1479 		    {
   1480 			int optval;
   1481 
   1482 			if (m == NULL || m->m_len < sizeof(int)) {
   1483 				error = EINVAL;
   1484 				goto bad;
   1485 			}
   1486 
   1487 			/*
   1488 			 * Values < 1 make no sense for any of these
   1489 			 * options, so disallow them.
   1490 			 */
   1491 			optval = *mtod(m, int *);
   1492 			if (optval < 1) {
   1493 				error = EINVAL;
   1494 				goto bad;
   1495 			}
   1496 
   1497 			switch (optname) {
   1498 
   1499 			case SO_SNDBUF:
   1500 			case SO_RCVBUF:
   1501 				if (sbreserve(optname == SO_SNDBUF ?
   1502 				    &so->so_snd : &so->so_rcv,
   1503 				    (u_long) optval, so) == 0) {
   1504 					error = ENOBUFS;
   1505 					goto bad;
   1506 				}
   1507 				break;
   1508 
   1509 			/*
   1510 			 * Make sure the low-water is never greater than
   1511 			 * the high-water.
   1512 			 */
   1513 			case SO_SNDLOWAT:
   1514 				so->so_snd.sb_lowat =
   1515 				    (optval > so->so_snd.sb_hiwat) ?
   1516 				    so->so_snd.sb_hiwat : optval;
   1517 				break;
   1518 			case SO_RCVLOWAT:
   1519 				so->so_rcv.sb_lowat =
   1520 				    (optval > so->so_rcv.sb_hiwat) ?
   1521 				    so->so_rcv.sb_hiwat : optval;
   1522 				break;
   1523 			}
   1524 			break;
   1525 		    }
   1526 
   1527 		case SO_SNDTIMEO:
   1528 		case SO_RCVTIMEO:
   1529 		    {
   1530 			struct timeval *tv;
   1531 			int val;
   1532 
   1533 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1534 				error = EINVAL;
   1535 				goto bad;
   1536 			}
   1537 			tv = mtod(m, struct timeval *);
   1538 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1539 				error = EDOM;
   1540 				goto bad;
   1541 			}
   1542 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1543 			if (val == 0 && tv->tv_usec != 0)
   1544 				val = 1;
   1545 
   1546 			switch (optname) {
   1547 
   1548 			case SO_SNDTIMEO:
   1549 				so->so_snd.sb_timeo = val;
   1550 				break;
   1551 			case SO_RCVTIMEO:
   1552 				so->so_rcv.sb_timeo = val;
   1553 				break;
   1554 			}
   1555 			break;
   1556 		    }
   1557 
   1558 		default:
   1559 			error = ENOPROTOOPT;
   1560 			break;
   1561 		}
   1562 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1563 			(void) ((*so->so_proto->pr_ctloutput)
   1564 				  (PRCO_SETOPT, so, level, optname, &m0));
   1565 			m = NULL;	/* freed by protocol */
   1566 		}
   1567 	}
   1568  bad:
   1569 	if (m)
   1570 		(void) m_free(m);
   1571 	return (error);
   1572 }
   1573 
   1574 int
   1575 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1576 {
   1577 	struct mbuf	*m;
   1578 
   1579 	if (level != SOL_SOCKET) {
   1580 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1581 			return ((*so->so_proto->pr_ctloutput)
   1582 				  (PRCO_GETOPT, so, level, optname, mp));
   1583 		} else
   1584 			return (ENOPROTOOPT);
   1585 	} else {
   1586 		m = m_get(M_WAIT, MT_SOOPTS);
   1587 		m->m_len = sizeof(int);
   1588 
   1589 		switch (optname) {
   1590 
   1591 		case SO_LINGER:
   1592 			m->m_len = sizeof(struct linger);
   1593 			mtod(m, struct linger *)->l_onoff =
   1594 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1595 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1596 			break;
   1597 
   1598 		case SO_USELOOPBACK:
   1599 		case SO_DONTROUTE:
   1600 		case SO_DEBUG:
   1601 		case SO_KEEPALIVE:
   1602 		case SO_REUSEADDR:
   1603 		case SO_REUSEPORT:
   1604 		case SO_BROADCAST:
   1605 		case SO_OOBINLINE:
   1606 		case SO_TIMESTAMP:
   1607 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1608 			break;
   1609 
   1610 		case SO_TYPE:
   1611 			*mtod(m, int *) = so->so_type;
   1612 			break;
   1613 
   1614 		case SO_ERROR:
   1615 			*mtod(m, int *) = so->so_error;
   1616 			so->so_error = 0;
   1617 			break;
   1618 
   1619 		case SO_SNDBUF:
   1620 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1621 			break;
   1622 
   1623 		case SO_RCVBUF:
   1624 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1625 			break;
   1626 
   1627 		case SO_SNDLOWAT:
   1628 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1629 			break;
   1630 
   1631 		case SO_RCVLOWAT:
   1632 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1633 			break;
   1634 
   1635 		case SO_SNDTIMEO:
   1636 		case SO_RCVTIMEO:
   1637 		    {
   1638 			int val = (optname == SO_SNDTIMEO ?
   1639 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1640 
   1641 			m->m_len = sizeof(struct timeval);
   1642 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1643 			mtod(m, struct timeval *)->tv_usec =
   1644 			    (val % hz) * tick;
   1645 			break;
   1646 		    }
   1647 
   1648 		case SO_OVERFLOWED:
   1649 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1650 			break;
   1651 
   1652 		default:
   1653 			(void)m_free(m);
   1654 			return (ENOPROTOOPT);
   1655 		}
   1656 		*mp = m;
   1657 		return (0);
   1658 	}
   1659 }
   1660 
   1661 void
   1662 sohasoutofband(struct socket *so)
   1663 {
   1664 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1665 	selwakeup(&so->so_rcv.sb_sel);
   1666 }
   1667 
   1668 static void
   1669 filt_sordetach(struct knote *kn)
   1670 {
   1671 	struct socket	*so;
   1672 
   1673 	so = (struct socket *)kn->kn_fp->f_data;
   1674 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1675 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1676 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1677 }
   1678 
   1679 /*ARGSUSED*/
   1680 static int
   1681 filt_soread(struct knote *kn, long hint)
   1682 {
   1683 	struct socket	*so;
   1684 
   1685 	so = (struct socket *)kn->kn_fp->f_data;
   1686 	kn->kn_data = so->so_rcv.sb_cc;
   1687 	if (so->so_state & SS_CANTRCVMORE) {
   1688 		kn->kn_flags |= EV_EOF;
   1689 		kn->kn_fflags = so->so_error;
   1690 		return (1);
   1691 	}
   1692 	if (so->so_error)	/* temporary udp error */
   1693 		return (1);
   1694 	if (kn->kn_sfflags & NOTE_LOWAT)
   1695 		return (kn->kn_data >= kn->kn_sdata);
   1696 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1697 }
   1698 
   1699 static void
   1700 filt_sowdetach(struct knote *kn)
   1701 {
   1702 	struct socket	*so;
   1703 
   1704 	so = (struct socket *)kn->kn_fp->f_data;
   1705 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1706 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1707 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1708 }
   1709 
   1710 /*ARGSUSED*/
   1711 static int
   1712 filt_sowrite(struct knote *kn, long hint)
   1713 {
   1714 	struct socket	*so;
   1715 
   1716 	so = (struct socket *)kn->kn_fp->f_data;
   1717 	kn->kn_data = sbspace(&so->so_snd);
   1718 	if (so->so_state & SS_CANTSENDMORE) {
   1719 		kn->kn_flags |= EV_EOF;
   1720 		kn->kn_fflags = so->so_error;
   1721 		return (1);
   1722 	}
   1723 	if (so->so_error)	/* temporary udp error */
   1724 		return (1);
   1725 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1726 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1727 		return (0);
   1728 	if (kn->kn_sfflags & NOTE_LOWAT)
   1729 		return (kn->kn_data >= kn->kn_sdata);
   1730 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1731 }
   1732 
   1733 /*ARGSUSED*/
   1734 static int
   1735 filt_solisten(struct knote *kn, long hint)
   1736 {
   1737 	struct socket	*so;
   1738 
   1739 	so = (struct socket *)kn->kn_fp->f_data;
   1740 
   1741 	/*
   1742 	 * Set kn_data to number of incoming connections, not
   1743 	 * counting partial (incomplete) connections.
   1744 	 */
   1745 	kn->kn_data = so->so_qlen;
   1746 	return (kn->kn_data > 0);
   1747 }
   1748 
   1749 static const struct filterops solisten_filtops =
   1750 	{ 1, NULL, filt_sordetach, filt_solisten };
   1751 static const struct filterops soread_filtops =
   1752 	{ 1, NULL, filt_sordetach, filt_soread };
   1753 static const struct filterops sowrite_filtops =
   1754 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1755 
   1756 int
   1757 soo_kqfilter(struct file *fp, struct knote *kn)
   1758 {
   1759 	struct socket	*so;
   1760 	struct sockbuf	*sb;
   1761 
   1762 	so = (struct socket *)kn->kn_fp->f_data;
   1763 	switch (kn->kn_filter) {
   1764 	case EVFILT_READ:
   1765 		if (so->so_options & SO_ACCEPTCONN)
   1766 			kn->kn_fop = &solisten_filtops;
   1767 		else
   1768 			kn->kn_fop = &soread_filtops;
   1769 		sb = &so->so_rcv;
   1770 		break;
   1771 	case EVFILT_WRITE:
   1772 		kn->kn_fop = &sowrite_filtops;
   1773 		sb = &so->so_snd;
   1774 		break;
   1775 	default:
   1776 		return (1);
   1777 	}
   1778 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1779 	sb->sb_flags |= SB_KNOTE;
   1780 	return (0);
   1781 }
   1782 
   1783 #include <sys/sysctl.h>
   1784 
   1785 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1786 
   1787 /*
   1788  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1789  * value is not too small.
   1790  * (XXX should we maybe make sure it's not too large as well?)
   1791  */
   1792 static int
   1793 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1794 {
   1795 	int error, new_somaxkva;
   1796 	struct sysctlnode node;
   1797 	int s;
   1798 
   1799 	new_somaxkva = somaxkva;
   1800 	node = *rnode;
   1801 	node.sysctl_data = &new_somaxkva;
   1802 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1803 	if (error || newp == NULL)
   1804 		return (error);
   1805 
   1806 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1807 		return (EINVAL);
   1808 
   1809 	s = splvm();
   1810 	simple_lock(&so_pendfree_slock);
   1811 	somaxkva = new_somaxkva;
   1812 	wakeup(&socurkva);
   1813 	simple_unlock(&so_pendfree_slock);
   1814 	splx(s);
   1815 
   1816 	return (error);
   1817 }
   1818 
   1819 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1820 {
   1821 
   1822 	sysctl_createv(clog, 0, NULL, NULL,
   1823 		       CTLFLAG_PERMANENT,
   1824 		       CTLTYPE_NODE, "kern", NULL,
   1825 		       NULL, 0, NULL, 0,
   1826 		       CTL_KERN, CTL_EOL);
   1827 
   1828 	sysctl_createv(clog, 0, NULL, NULL,
   1829 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1830 		       CTLTYPE_INT, "somaxkva",
   1831 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1832 				    "used for socket buffers"),
   1833 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1834 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1835 }
   1836