Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.134.2.1
      1 /*	$NetBSD: uipc_socket.c,v 1.134.2.1 2007/03/13 16:51:58 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.134.2.1 2007/03/13 16:51:58 ad Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 #include <sys/mutex.h>
     96 #include <sys/condvar.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    101     IPL_SOFTNET);
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern int	somaxconn;			/* patchable (XXX sysctl) */
    107 int		somaxconn = SOMAXCONN;
    108 
    109 #ifdef SOSEND_COUNTERS
    110 #include <sys/device.h>
    111 
    112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "loan big");
    114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "copy big");
    116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    117     NULL, "sosend", "copy small");
    118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "kva limit");
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    122 
    123 EVCNT_ATTACH_STATIC(sosend_loan_big);
    124 EVCNT_ATTACH_STATIC(sosend_copy_big);
    125 EVCNT_ATTACH_STATIC(sosend_copy_small);
    126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    127 #else
    128 
    129 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    130 
    131 #endif /* SOSEND_COUNTERS */
    132 
    133 static struct callback_entry sokva_reclaimerentry;
    134 
    135 #ifdef SOSEND_NO_LOAN
    136 int sock_loan_thresh = -1;
    137 #else
    138 int sock_loan_thresh = 4096;
    139 #endif
    140 
    141 static kmutex_t so_pendfree_lock;
    142 static struct mbuf *so_pendfree;
    143 
    144 #ifndef SOMAXKVA
    145 #define	SOMAXKVA (16 * 1024 * 1024)
    146 #endif
    147 int somaxkva = SOMAXKVA;
    148 static int socurkva;
    149 static kcondvar_t socurkva_cv;
    150 
    151 #define	SOCK_LOAN_CHUNK		65536
    152 
    153 static size_t sodopendfree(void);
    154 static size_t sodopendfreel(void);
    155 
    156 static vsize_t
    157 sokvareserve(struct socket *so, vsize_t len)
    158 {
    159 	int error;
    160 
    161 	mutex_enter(&so_pendfree_lock);
    162 	while (socurkva + len > somaxkva) {
    163 		size_t freed;
    164 
    165 		/*
    166 		 * try to do pendfree.
    167 		 */
    168 
    169 		freed = sodopendfreel();
    170 
    171 		/*
    172 		 * if some kva was freed, try again.
    173 		 */
    174 
    175 		if (freed)
    176 			continue;
    177 
    178 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    179 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    180 		if (error) {
    181 			len = 0;
    182 			break;
    183 		}
    184 	}
    185 	socurkva += len;
    186 	mutex_exit(&so_pendfree_lock);
    187 	return len;
    188 }
    189 
    190 static void
    191 sokvaunreserve(vsize_t len)
    192 {
    193 
    194 	mutex_enter(&so_pendfree_lock);
    195 	socurkva -= len;
    196 	cv_broadcast(&socurkva_cv);
    197 	mutex_exit(&so_pendfree_lock);
    198 }
    199 
    200 /*
    201  * sokvaalloc: allocate kva for loan.
    202  */
    203 
    204 vaddr_t
    205 sokvaalloc(vsize_t len, struct socket *so)
    206 {
    207 	vaddr_t lva;
    208 
    209 	/*
    210 	 * reserve kva.
    211 	 */
    212 
    213 	if (sokvareserve(so, len) == 0)
    214 		return 0;
    215 
    216 	/*
    217 	 * allocate kva.
    218 	 */
    219 
    220 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    221 	if (lva == 0) {
    222 		sokvaunreserve(len);
    223 		return (0);
    224 	}
    225 
    226 	return lva;
    227 }
    228 
    229 /*
    230  * sokvafree: free kva for loan.
    231  */
    232 
    233 void
    234 sokvafree(vaddr_t sva, vsize_t len)
    235 {
    236 
    237 	/*
    238 	 * free kva.
    239 	 */
    240 
    241 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    242 
    243 	/*
    244 	 * unreserve kva.
    245 	 */
    246 
    247 	sokvaunreserve(len);
    248 }
    249 
    250 static void
    251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    252 {
    253 	vaddr_t va, sva, eva;
    254 	vsize_t len;
    255 	paddr_t pa;
    256 	int i, npgs;
    257 
    258 	eva = round_page((vaddr_t) buf + size);
    259 	sva = trunc_page((vaddr_t) buf);
    260 	len = eva - sva;
    261 	npgs = len >> PAGE_SHIFT;
    262 
    263 	if (__predict_false(pgs == NULL)) {
    264 		pgs = alloca(npgs * sizeof(*pgs));
    265 
    266 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    267 			if (pmap_extract(pmap_kernel(), va, &pa) == false)
    268 				panic("sodoloanfree: va 0x%lx not mapped", va);
    269 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    270 		}
    271 	}
    272 
    273 	pmap_kremove(sva, len);
    274 	pmap_update(pmap_kernel());
    275 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    276 	sokvafree(sva, len);
    277 }
    278 
    279 static size_t
    280 sodopendfree()
    281 {
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 	rv = sodopendfreel();
    286 	mutex_exit(&so_pendfree_lock);
    287 
    288 	return rv;
    289 }
    290 
    291 /*
    292  * sodopendfreel: free mbufs on "pendfree" list.
    293  * unlock and relock so_pendfree_lock when freeing mbufs.
    294  *
    295  * => called with so_pendfree_lock held.
    296  */
    297 
    298 static size_t
    299 sodopendfreel()
    300 {
    301 	size_t rv = 0;
    302 
    303 	KASSERT(mutex_owned(&so_pendfree_lock));
    304 
    305 	for (;;) {
    306 		struct mbuf *m;
    307 		struct mbuf *next;
    308 
    309 		m = so_pendfree;
    310 		if (m == NULL)
    311 			break;
    312 		so_pendfree = NULL;
    313 		mutex_exit(&so_pendfree_lock);
    314 
    315 		for (; m != NULL; m = next) {
    316 			next = m->m_next;
    317 
    318 			rv += m->m_ext.ext_size;
    319 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    320 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    321 			    m->m_ext.ext_size);
    322 			pool_cache_put(&mbpool_cache, m);
    323 		}
    324 
    325 		mutex_enter(&so_pendfree_lock);
    326 	}
    327 
    328 	return (rv);
    329 }
    330 
    331 void
    332 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    333 {
    334 
    335 	if (m == NULL) {
    336 
    337 		/*
    338 		 * called from MEXTREMOVE.
    339 		 */
    340 
    341 		sodoloanfree(NULL, buf, size);
    342 		return;
    343 	}
    344 
    345 	/*
    346 	 * postpone freeing mbuf.
    347 	 *
    348 	 * we can't do it in interrupt context
    349 	 * because we need to put kva back to kernel_map.
    350 	 */
    351 
    352 	mutex_enter(&so_pendfree_lock);
    353 	m->m_next = so_pendfree;
    354 	so_pendfree = m;
    355 	cv_broadcast(&socurkva_cv);
    356 	mutex_exit(&so_pendfree_lock);
    357 }
    358 
    359 static long
    360 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    361 {
    362 	struct iovec *iov = uio->uio_iov;
    363 	vaddr_t sva, eva;
    364 	vsize_t len;
    365 	vaddr_t lva, va;
    366 	int npgs, i, error;
    367 
    368 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    369 		return (0);
    370 
    371 	if (iov->iov_len < (size_t) space)
    372 		space = iov->iov_len;
    373 	if (space > SOCK_LOAN_CHUNK)
    374 		space = SOCK_LOAN_CHUNK;
    375 
    376 	eva = round_page((vaddr_t) iov->iov_base + space);
    377 	sva = trunc_page((vaddr_t) iov->iov_base);
    378 	len = eva - sva;
    379 	npgs = len >> PAGE_SHIFT;
    380 
    381 	/* XXX KDASSERT */
    382 	KASSERT(npgs <= M_EXT_MAXPAGES);
    383 
    384 	lva = sokvaalloc(len, so);
    385 	if (lva == 0)
    386 		return 0;
    387 
    388 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    389 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    390 	if (error) {
    391 		sokvafree(lva, len);
    392 		return (0);
    393 	}
    394 
    395 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    396 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    397 		    VM_PROT_READ);
    398 	pmap_update(pmap_kernel());
    399 
    400 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    401 
    402 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    403 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    404 
    405 	uio->uio_resid -= space;
    406 	/* uio_offset not updated, not set/used for write(2) */
    407 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    408 	uio->uio_iov->iov_len -= space;
    409 	if (uio->uio_iov->iov_len == 0) {
    410 		uio->uio_iov++;
    411 		uio->uio_iovcnt--;
    412 	}
    413 
    414 	return (space);
    415 }
    416 
    417 static int
    418 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    419 {
    420 
    421 	KASSERT(ce == &sokva_reclaimerentry);
    422 	KASSERT(obj == NULL);
    423 
    424 	sodopendfree();
    425 	if (!vm_map_starved_p(kernel_map)) {
    426 		return CALLBACK_CHAIN_ABORT;
    427 	}
    428 	return CALLBACK_CHAIN_CONTINUE;
    429 }
    430 
    431 void
    432 soinit(void)
    433 {
    434 
    435 	mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
    436 	cv_init(&socurkva_cv, "sokva");
    437 
    438 	/* Set the initial adjusted socket buffer size. */
    439 	if (sb_max_set(sb_max))
    440 		panic("bad initial sb_max value: %lu", sb_max);
    441 
    442 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    443 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    444 }
    445 
    446 /*
    447  * Socket operation routines.
    448  * These routines are called by the routines in
    449  * sys_socket.c or from a system process, and
    450  * implement the semantics of socket operations by
    451  * switching out to the protocol specific routines.
    452  */
    453 /*ARGSUSED*/
    454 int
    455 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    456 {
    457 	const struct protosw	*prp;
    458 	struct socket	*so;
    459 	uid_t		uid;
    460 	int		error, s;
    461 
    462 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    463 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    464 	    KAUTH_ARG(proto));
    465 	if (error)
    466 		return (error);
    467 
    468 	if (proto)
    469 		prp = pffindproto(dom, proto, type);
    470 	else
    471 		prp = pffindtype(dom, type);
    472 	if (prp == 0) {
    473 		/* no support for domain */
    474 		if (pffinddomain(dom) == 0)
    475 			return (EAFNOSUPPORT);
    476 		/* no support for socket type */
    477 		if (proto == 0 && type != 0)
    478 			return (EPROTOTYPE);
    479 		return (EPROTONOSUPPORT);
    480 	}
    481 	if (prp->pr_usrreq == 0)
    482 		return (EPROTONOSUPPORT);
    483 	if (prp->pr_type != type)
    484 		return (EPROTOTYPE);
    485 	s = splsoftnet();
    486 	so = pool_get(&socket_pool, PR_WAITOK);
    487 	memset((void *)so, 0, sizeof(*so));
    488 	TAILQ_INIT(&so->so_q0);
    489 	TAILQ_INIT(&so->so_q);
    490 	so->so_type = type;
    491 	so->so_proto = prp;
    492 	so->so_send = sosend;
    493 	so->so_receive = soreceive;
    494 #ifdef MBUFTRACE
    495 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    496 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    497 	so->so_mowner = &prp->pr_domain->dom_mowner;
    498 #endif
    499 	if (l != NULL) {
    500 		uid = kauth_cred_geteuid(l->l_cred);
    501 	} else {
    502 		uid = 0;
    503 	}
    504 	so->so_uidinfo = uid_find(uid);
    505 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
    506 	    (struct mbuf *)(long)proto, (struct mbuf *)0, l);
    507 	if (error) {
    508 		so->so_state |= SS_NOFDREF;
    509 		sofree(so);
    510 		splx(s);
    511 		return (error);
    512 	}
    513 	splx(s);
    514 	*aso = so;
    515 	return (0);
    516 }
    517 
    518 int
    519 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    520 {
    521 	int	s, error;
    522 
    523 	s = splsoftnet();
    524 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
    525 	    nam, (struct mbuf *)0, l);
    526 	splx(s);
    527 	return (error);
    528 }
    529 
    530 int
    531 solisten(struct socket *so, int backlog)
    532 {
    533 	int	s, error;
    534 
    535 	s = splsoftnet();
    536 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
    537 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    538 	if (error) {
    539 		splx(s);
    540 		return (error);
    541 	}
    542 	if (TAILQ_EMPTY(&so->so_q))
    543 		so->so_options |= SO_ACCEPTCONN;
    544 	if (backlog < 0)
    545 		backlog = 0;
    546 	so->so_qlimit = min(backlog, somaxconn);
    547 	splx(s);
    548 	return (0);
    549 }
    550 
    551 void
    552 sofree(struct socket *so)
    553 {
    554 
    555 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    556 		return;
    557 	if (so->so_head) {
    558 		/*
    559 		 * We must not decommission a socket that's on the accept(2)
    560 		 * queue.  If we do, then accept(2) may hang after select(2)
    561 		 * indicated that the listening socket was ready.
    562 		 */
    563 		if (!soqremque(so, 0))
    564 			return;
    565 	}
    566 	if (so->so_rcv.sb_hiwat)
    567 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    568 		    RLIM_INFINITY);
    569 	if (so->so_snd.sb_hiwat)
    570 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    571 		    RLIM_INFINITY);
    572 	sbrelease(&so->so_snd, so);
    573 	sorflush(so);
    574 	pool_put(&socket_pool, so);
    575 }
    576 
    577 /*
    578  * Close a socket on last file table reference removal.
    579  * Initiate disconnect if connected.
    580  * Free socket when disconnect complete.
    581  */
    582 int
    583 soclose(struct socket *so)
    584 {
    585 	struct socket	*so2;
    586 	int		s, error;
    587 
    588 	error = 0;
    589 	s = splsoftnet();		/* conservative */
    590 	if (so->so_options & SO_ACCEPTCONN) {
    591 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    592 			(void) soqremque(so2, 0);
    593 			(void) soabort(so2);
    594 		}
    595 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    596 			(void) soqremque(so2, 1);
    597 			(void) soabort(so2);
    598 		}
    599 	}
    600 	if (so->so_pcb == 0)
    601 		goto discard;
    602 	if (so->so_state & SS_ISCONNECTED) {
    603 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    604 			error = sodisconnect(so);
    605 			if (error)
    606 				goto drop;
    607 		}
    608 		if (so->so_options & SO_LINGER) {
    609 			if ((so->so_state & SS_ISDISCONNECTING) &&
    610 			    (so->so_state & SS_NBIO))
    611 				goto drop;
    612 			while (so->so_state & SS_ISCONNECTED) {
    613 				error = tsleep((void *)&so->so_timeo,
    614 					       PSOCK | PCATCH, netcls,
    615 					       so->so_linger * hz);
    616 				if (error)
    617 					break;
    618 			}
    619 		}
    620 	}
    621  drop:
    622 	if (so->so_pcb) {
    623 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    624 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    625 		    (struct lwp *)0);
    626 		if (error == 0)
    627 			error = error2;
    628 	}
    629  discard:
    630 	if (so->so_state & SS_NOFDREF)
    631 		panic("soclose: NOFDREF");
    632 	so->so_state |= SS_NOFDREF;
    633 	sofree(so);
    634 	splx(s);
    635 	return (error);
    636 }
    637 
    638 /*
    639  * Must be called at splsoftnet...
    640  */
    641 int
    642 soabort(struct socket *so)
    643 {
    644 
    645 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
    646 	    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
    647 }
    648 
    649 int
    650 soaccept(struct socket *so, struct mbuf *nam)
    651 {
    652 	int	s, error;
    653 
    654 	error = 0;
    655 	s = splsoftnet();
    656 	if ((so->so_state & SS_NOFDREF) == 0)
    657 		panic("soaccept: !NOFDREF");
    658 	so->so_state &= ~SS_NOFDREF;
    659 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    660 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    661 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    662 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
    663 	else
    664 		error = ECONNABORTED;
    665 
    666 	splx(s);
    667 	return (error);
    668 }
    669 
    670 int
    671 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    672 {
    673 	int		s, error;
    674 
    675 	if (so->so_options & SO_ACCEPTCONN)
    676 		return (EOPNOTSUPP);
    677 	s = splsoftnet();
    678 	/*
    679 	 * If protocol is connection-based, can only connect once.
    680 	 * Otherwise, if connected, try to disconnect first.
    681 	 * This allows user to disconnect by connecting to, e.g.,
    682 	 * a null address.
    683 	 */
    684 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    685 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    686 	    (error = sodisconnect(so))))
    687 		error = EISCONN;
    688 	else
    689 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    690 		    (struct mbuf *)0, nam, (struct mbuf *)0, l);
    691 	splx(s);
    692 	return (error);
    693 }
    694 
    695 int
    696 soconnect2(struct socket *so1, struct socket *so2)
    697 {
    698 	int	s, error;
    699 
    700 	s = splsoftnet();
    701 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    702 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
    703 	    (struct lwp *)0);
    704 	splx(s);
    705 	return (error);
    706 }
    707 
    708 int
    709 sodisconnect(struct socket *so)
    710 {
    711 	int	s, error;
    712 
    713 	s = splsoftnet();
    714 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    715 		error = ENOTCONN;
    716 		goto bad;
    717 	}
    718 	if (so->so_state & SS_ISDISCONNECTING) {
    719 		error = EALREADY;
    720 		goto bad;
    721 	}
    722 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    723 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    724 	    (struct lwp *)0);
    725  bad:
    726 	splx(s);
    727 	sodopendfree();
    728 	return (error);
    729 }
    730 
    731 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    732 /*
    733  * Send on a socket.
    734  * If send must go all at once and message is larger than
    735  * send buffering, then hard error.
    736  * Lock against other senders.
    737  * If must go all at once and not enough room now, then
    738  * inform user that this would block and do nothing.
    739  * Otherwise, if nonblocking, send as much as possible.
    740  * The data to be sent is described by "uio" if nonzero,
    741  * otherwise by the mbuf chain "top" (which must be null
    742  * if uio is not).  Data provided in mbuf chain must be small
    743  * enough to send all at once.
    744  *
    745  * Returns nonzero on error, timeout or signal; callers
    746  * must check for short counts if EINTR/ERESTART are returned.
    747  * Data and control buffers are freed on return.
    748  */
    749 int
    750 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    751 	struct mbuf *control, int flags, struct lwp *l)
    752 {
    753 	struct mbuf	**mp, *m;
    754 	struct proc	*p;
    755 	long		space, len, resid, clen, mlen;
    756 	int		error, s, dontroute, atomic;
    757 
    758 	p = l->l_proc;
    759 	sodopendfree();
    760 
    761 	clen = 0;
    762 	atomic = sosendallatonce(so) || top;
    763 	if (uio)
    764 		resid = uio->uio_resid;
    765 	else
    766 		resid = top->m_pkthdr.len;
    767 	/*
    768 	 * In theory resid should be unsigned.
    769 	 * However, space must be signed, as it might be less than 0
    770 	 * if we over-committed, and we must use a signed comparison
    771 	 * of space and resid.  On the other hand, a negative resid
    772 	 * causes us to loop sending 0-length segments to the protocol.
    773 	 */
    774 	if (resid < 0) {
    775 		error = EINVAL;
    776 		goto out;
    777 	}
    778 	dontroute =
    779 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    780 	    (so->so_proto->pr_flags & PR_ATOMIC);
    781 	if (p)
    782 		p->p_stats->p_ru.ru_msgsnd++;
    783 	if (control)
    784 		clen = control->m_len;
    785 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    786 
    787  restart:
    788 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    789 		goto out;
    790 	do {
    791 		s = splsoftnet();
    792 		if (so->so_state & SS_CANTSENDMORE)
    793 			snderr(EPIPE);
    794 		if (so->so_error) {
    795 			error = so->so_error;
    796 			so->so_error = 0;
    797 			splx(s);
    798 			goto release;
    799 		}
    800 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    801 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    802 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    803 				    !(resid == 0 && clen != 0))
    804 					snderr(ENOTCONN);
    805 			} else if (addr == 0)
    806 				snderr(EDESTADDRREQ);
    807 		}
    808 		space = sbspace(&so->so_snd);
    809 		if (flags & MSG_OOB)
    810 			space += 1024;
    811 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    812 		    clen > so->so_snd.sb_hiwat)
    813 			snderr(EMSGSIZE);
    814 		if (space < resid + clen &&
    815 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    816 			if (so->so_state & SS_NBIO)
    817 				snderr(EWOULDBLOCK);
    818 			sbunlock(&so->so_snd);
    819 			error = sbwait(&so->so_snd);
    820 			splx(s);
    821 			if (error)
    822 				goto out;
    823 			goto restart;
    824 		}
    825 		splx(s);
    826 		mp = &top;
    827 		space -= clen;
    828 		do {
    829 			if (uio == NULL) {
    830 				/*
    831 				 * Data is prepackaged in "top".
    832 				 */
    833 				resid = 0;
    834 				if (flags & MSG_EOR)
    835 					top->m_flags |= M_EOR;
    836 			} else do {
    837 				if (top == 0) {
    838 					m = m_gethdr(M_WAIT, MT_DATA);
    839 					mlen = MHLEN;
    840 					m->m_pkthdr.len = 0;
    841 					m->m_pkthdr.rcvif = (struct ifnet *)0;
    842 				} else {
    843 					m = m_get(M_WAIT, MT_DATA);
    844 					mlen = MLEN;
    845 				}
    846 				MCLAIM(m, so->so_snd.sb_mowner);
    847 				if (sock_loan_thresh >= 0 &&
    848 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    849 				    space >= sock_loan_thresh &&
    850 				    (len = sosend_loan(so, uio, m,
    851 						       space)) != 0) {
    852 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    853 					space -= len;
    854 					goto have_data;
    855 				}
    856 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    857 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    858 					m_clget(m, M_WAIT);
    859 					if ((m->m_flags & M_EXT) == 0)
    860 						goto nopages;
    861 					mlen = MCLBYTES;
    862 					if (atomic && top == 0) {
    863 						len = lmin(MCLBYTES - max_hdr,
    864 						    resid);
    865 						m->m_data += max_hdr;
    866 					} else
    867 						len = lmin(MCLBYTES, resid);
    868 					space -= len;
    869 				} else {
    870  nopages:
    871 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    872 					len = lmin(lmin(mlen, resid), space);
    873 					space -= len;
    874 					/*
    875 					 * For datagram protocols, leave room
    876 					 * for protocol headers in first mbuf.
    877 					 */
    878 					if (atomic && top == 0 && len < mlen)
    879 						MH_ALIGN(m, len);
    880 				}
    881 				error = uiomove(mtod(m, void *), (int)len,
    882 				    uio);
    883  have_data:
    884 				resid = uio->uio_resid;
    885 				m->m_len = len;
    886 				*mp = m;
    887 				top->m_pkthdr.len += len;
    888 				if (error)
    889 					goto release;
    890 				mp = &m->m_next;
    891 				if (resid <= 0) {
    892 					if (flags & MSG_EOR)
    893 						top->m_flags |= M_EOR;
    894 					break;
    895 				}
    896 			} while (space > 0 && atomic);
    897 
    898 			s = splsoftnet();
    899 
    900 			if (so->so_state & SS_CANTSENDMORE)
    901 				snderr(EPIPE);
    902 
    903 			if (dontroute)
    904 				so->so_options |= SO_DONTROUTE;
    905 			if (resid > 0)
    906 				so->so_state |= SS_MORETOCOME;
    907 			error = (*so->so_proto->pr_usrreq)(so,
    908 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    909 			    top, addr, control, curlwp);	/* XXX */
    910 			if (dontroute)
    911 				so->so_options &= ~SO_DONTROUTE;
    912 			if (resid > 0)
    913 				so->so_state &= ~SS_MORETOCOME;
    914 			splx(s);
    915 
    916 			clen = 0;
    917 			control = 0;
    918 			top = 0;
    919 			mp = &top;
    920 			if (error)
    921 				goto release;
    922 		} while (resid && space > 0);
    923 	} while (resid);
    924 
    925  release:
    926 	sbunlock(&so->so_snd);
    927  out:
    928 	if (top)
    929 		m_freem(top);
    930 	if (control)
    931 		m_freem(control);
    932 	return (error);
    933 }
    934 
    935 /*
    936  * Implement receive operations on a socket.
    937  * We depend on the way that records are added to the sockbuf
    938  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    939  * must begin with an address if the protocol so specifies,
    940  * followed by an optional mbuf or mbufs containing ancillary data,
    941  * and then zero or more mbufs of data.
    942  * In order to avoid blocking network interrupts for the entire time here,
    943  * we splx() while doing the actual copy to user space.
    944  * Although the sockbuf is locked, new data may still be appended,
    945  * and thus we must maintain consistency of the sockbuf during that time.
    946  *
    947  * The caller may receive the data as a single mbuf chain by supplying
    948  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    949  * only for the count in uio_resid.
    950  */
    951 int
    952 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    953 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    954 {
    955 	struct lwp *l = curlwp;
    956 	struct mbuf	*m, **mp;
    957 	int		flags, len, error, s, offset, moff, type, orig_resid;
    958 	const struct protosw	*pr;
    959 	struct mbuf	*nextrecord;
    960 	int		mbuf_removed = 0;
    961 
    962 	pr = so->so_proto;
    963 	mp = mp0;
    964 	type = 0;
    965 	orig_resid = uio->uio_resid;
    966 
    967 	if (paddr)
    968 		*paddr = 0;
    969 	if (controlp)
    970 		*controlp = 0;
    971 	if (flagsp)
    972 		flags = *flagsp &~ MSG_EOR;
    973 	else
    974 		flags = 0;
    975 
    976 	if ((flags & MSG_DONTWAIT) == 0)
    977 		sodopendfree();
    978 
    979 	if (flags & MSG_OOB) {
    980 		m = m_get(M_WAIT, MT_DATA);
    981 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    982 		    (struct mbuf *)(long)(flags & MSG_PEEK),
    983 		    (struct mbuf *)0, l);
    984 		if (error)
    985 			goto bad;
    986 		do {
    987 			error = uiomove(mtod(m, void *),
    988 			    (int) min(uio->uio_resid, m->m_len), uio);
    989 			m = m_free(m);
    990 		} while (uio->uio_resid && error == 0 && m);
    991  bad:
    992 		if (m)
    993 			m_freem(m);
    994 		return (error);
    995 	}
    996 	if (mp)
    997 		*mp = (struct mbuf *)0;
    998 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    999 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1000 		    (struct mbuf *)0, (struct mbuf *)0, l);
   1001 
   1002  restart:
   1003 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1004 		return (error);
   1005 	s = splsoftnet();
   1006 
   1007 	m = so->so_rcv.sb_mb;
   1008 	/*
   1009 	 * If we have less data than requested, block awaiting more
   1010 	 * (subject to any timeout) if:
   1011 	 *   1. the current count is less than the low water mark,
   1012 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1013 	 *	receive operation at once if we block (resid <= hiwat), or
   1014 	 *   3. MSG_DONTWAIT is not set.
   1015 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1016 	 * we have to do the receive in sections, and thus risk returning
   1017 	 * a short count if a timeout or signal occurs after we start.
   1018 	 */
   1019 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1020 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1021 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1022 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1023 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1024 #ifdef DIAGNOSTIC
   1025 		if (m == 0 && so->so_rcv.sb_cc)
   1026 			panic("receive 1");
   1027 #endif
   1028 		if (so->so_error) {
   1029 			if (m)
   1030 				goto dontblock;
   1031 			error = so->so_error;
   1032 			if ((flags & MSG_PEEK) == 0)
   1033 				so->so_error = 0;
   1034 			goto release;
   1035 		}
   1036 		if (so->so_state & SS_CANTRCVMORE) {
   1037 			if (m)
   1038 				goto dontblock;
   1039 			else
   1040 				goto release;
   1041 		}
   1042 		for (; m; m = m->m_next)
   1043 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1044 				m = so->so_rcv.sb_mb;
   1045 				goto dontblock;
   1046 			}
   1047 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1048 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1049 			error = ENOTCONN;
   1050 			goto release;
   1051 		}
   1052 		if (uio->uio_resid == 0)
   1053 			goto release;
   1054 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1055 			error = EWOULDBLOCK;
   1056 			goto release;
   1057 		}
   1058 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1059 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1060 		sbunlock(&so->so_rcv);
   1061 		error = sbwait(&so->so_rcv);
   1062 		splx(s);
   1063 		if (error)
   1064 			return (error);
   1065 		goto restart;
   1066 	}
   1067  dontblock:
   1068 	/*
   1069 	 * On entry here, m points to the first record of the socket buffer.
   1070 	 * While we process the initial mbufs containing address and control
   1071 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1072 	 */
   1073 	if (l)
   1074 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1075 	KASSERT(m == so->so_rcv.sb_mb);
   1076 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1077 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1078 	nextrecord = m->m_nextpkt;
   1079 	if (pr->pr_flags & PR_ADDR) {
   1080 #ifdef DIAGNOSTIC
   1081 		if (m->m_type != MT_SONAME)
   1082 			panic("receive 1a");
   1083 #endif
   1084 		orig_resid = 0;
   1085 		if (flags & MSG_PEEK) {
   1086 			if (paddr)
   1087 				*paddr = m_copy(m, 0, m->m_len);
   1088 			m = m->m_next;
   1089 		} else {
   1090 			sbfree(&so->so_rcv, m);
   1091 			mbuf_removed = 1;
   1092 			if (paddr) {
   1093 				*paddr = m;
   1094 				so->so_rcv.sb_mb = m->m_next;
   1095 				m->m_next = 0;
   1096 				m = so->so_rcv.sb_mb;
   1097 			} else {
   1098 				MFREE(m, so->so_rcv.sb_mb);
   1099 				m = so->so_rcv.sb_mb;
   1100 			}
   1101 		}
   1102 	}
   1103 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1104 		if (flags & MSG_PEEK) {
   1105 			if (controlp)
   1106 				*controlp = m_copy(m, 0, m->m_len);
   1107 			m = m->m_next;
   1108 		} else {
   1109 			sbfree(&so->so_rcv, m);
   1110 			mbuf_removed = 1;
   1111 			if (controlp) {
   1112 				struct domain *dom = pr->pr_domain;
   1113 				if (dom->dom_externalize && l &&
   1114 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1115 				    SCM_RIGHTS)
   1116 					error = (*dom->dom_externalize)(m, l);
   1117 				*controlp = m;
   1118 				so->so_rcv.sb_mb = m->m_next;
   1119 				m->m_next = 0;
   1120 				m = so->so_rcv.sb_mb;
   1121 			} else {
   1122 				/*
   1123 				 * Dispose of any SCM_RIGHTS message that went
   1124 				 * through the read path rather than recv.
   1125 				 */
   1126 				if (pr->pr_domain->dom_dispose &&
   1127 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1128 					(*pr->pr_domain->dom_dispose)(m);
   1129 				MFREE(m, so->so_rcv.sb_mb);
   1130 				m = so->so_rcv.sb_mb;
   1131 			}
   1132 		}
   1133 		if (controlp) {
   1134 			orig_resid = 0;
   1135 			controlp = &(*controlp)->m_next;
   1136 		}
   1137 	}
   1138 
   1139 	/*
   1140 	 * If m is non-NULL, we have some data to read.  From now on,
   1141 	 * make sure to keep sb_lastrecord consistent when working on
   1142 	 * the last packet on the chain (nextrecord == NULL) and we
   1143 	 * change m->m_nextpkt.
   1144 	 */
   1145 	if (m) {
   1146 		if ((flags & MSG_PEEK) == 0) {
   1147 			m->m_nextpkt = nextrecord;
   1148 			/*
   1149 			 * If nextrecord == NULL (this is a single chain),
   1150 			 * then sb_lastrecord may not be valid here if m
   1151 			 * was changed earlier.
   1152 			 */
   1153 			if (nextrecord == NULL) {
   1154 				KASSERT(so->so_rcv.sb_mb == m);
   1155 				so->so_rcv.sb_lastrecord = m;
   1156 			}
   1157 		}
   1158 		type = m->m_type;
   1159 		if (type == MT_OOBDATA)
   1160 			flags |= MSG_OOB;
   1161 	} else {
   1162 		if ((flags & MSG_PEEK) == 0) {
   1163 			KASSERT(so->so_rcv.sb_mb == m);
   1164 			so->so_rcv.sb_mb = nextrecord;
   1165 			SB_EMPTY_FIXUP(&so->so_rcv);
   1166 		}
   1167 	}
   1168 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1169 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1170 
   1171 	moff = 0;
   1172 	offset = 0;
   1173 	while (m && uio->uio_resid > 0 && error == 0) {
   1174 		if (m->m_type == MT_OOBDATA) {
   1175 			if (type != MT_OOBDATA)
   1176 				break;
   1177 		} else if (type == MT_OOBDATA)
   1178 			break;
   1179 #ifdef DIAGNOSTIC
   1180 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1181 			panic("receive 3");
   1182 #endif
   1183 		so->so_state &= ~SS_RCVATMARK;
   1184 		len = uio->uio_resid;
   1185 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1186 			len = so->so_oobmark - offset;
   1187 		if (len > m->m_len - moff)
   1188 			len = m->m_len - moff;
   1189 		/*
   1190 		 * If mp is set, just pass back the mbufs.
   1191 		 * Otherwise copy them out via the uio, then free.
   1192 		 * Sockbuf must be consistent here (points to current mbuf,
   1193 		 * it points to next record) when we drop priority;
   1194 		 * we must note any additions to the sockbuf when we
   1195 		 * block interrupts again.
   1196 		 */
   1197 		if (mp == 0) {
   1198 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1199 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1200 			splx(s);
   1201 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1202 			s = splsoftnet();
   1203 			if (error) {
   1204 				/*
   1205 				 * If any part of the record has been removed
   1206 				 * (such as the MT_SONAME mbuf, which will
   1207 				 * happen when PR_ADDR, and thus also
   1208 				 * PR_ATOMIC, is set), then drop the entire
   1209 				 * record to maintain the atomicity of the
   1210 				 * receive operation.
   1211 				 *
   1212 				 * This avoids a later panic("receive 1a")
   1213 				 * when compiled with DIAGNOSTIC.
   1214 				 */
   1215 				if (m && mbuf_removed
   1216 				    && (pr->pr_flags & PR_ATOMIC))
   1217 					(void) sbdroprecord(&so->so_rcv);
   1218 
   1219 				goto release;
   1220 			}
   1221 		} else
   1222 			uio->uio_resid -= len;
   1223 		if (len == m->m_len - moff) {
   1224 			if (m->m_flags & M_EOR)
   1225 				flags |= MSG_EOR;
   1226 			if (flags & MSG_PEEK) {
   1227 				m = m->m_next;
   1228 				moff = 0;
   1229 			} else {
   1230 				nextrecord = m->m_nextpkt;
   1231 				sbfree(&so->so_rcv, m);
   1232 				if (mp) {
   1233 					*mp = m;
   1234 					mp = &m->m_next;
   1235 					so->so_rcv.sb_mb = m = m->m_next;
   1236 					*mp = (struct mbuf *)0;
   1237 				} else {
   1238 					MFREE(m, so->so_rcv.sb_mb);
   1239 					m = so->so_rcv.sb_mb;
   1240 				}
   1241 				/*
   1242 				 * If m != NULL, we also know that
   1243 				 * so->so_rcv.sb_mb != NULL.
   1244 				 */
   1245 				KASSERT(so->so_rcv.sb_mb == m);
   1246 				if (m) {
   1247 					m->m_nextpkt = nextrecord;
   1248 					if (nextrecord == NULL)
   1249 						so->so_rcv.sb_lastrecord = m;
   1250 				} else {
   1251 					so->so_rcv.sb_mb = nextrecord;
   1252 					SB_EMPTY_FIXUP(&so->so_rcv);
   1253 				}
   1254 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1255 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1256 			}
   1257 		} else {
   1258 			if (flags & MSG_PEEK)
   1259 				moff += len;
   1260 			else {
   1261 				if (mp)
   1262 					*mp = m_copym(m, 0, len, M_WAIT);
   1263 				m->m_data += len;
   1264 				m->m_len -= len;
   1265 				so->so_rcv.sb_cc -= len;
   1266 			}
   1267 		}
   1268 		if (so->so_oobmark) {
   1269 			if ((flags & MSG_PEEK) == 0) {
   1270 				so->so_oobmark -= len;
   1271 				if (so->so_oobmark == 0) {
   1272 					so->so_state |= SS_RCVATMARK;
   1273 					break;
   1274 				}
   1275 			} else {
   1276 				offset += len;
   1277 				if (offset == so->so_oobmark)
   1278 					break;
   1279 			}
   1280 		}
   1281 		if (flags & MSG_EOR)
   1282 			break;
   1283 		/*
   1284 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1285 		 * we must not quit until "uio->uio_resid == 0" or an error
   1286 		 * termination.  If a signal/timeout occurs, return
   1287 		 * with a short count but without error.
   1288 		 * Keep sockbuf locked against other readers.
   1289 		 */
   1290 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1291 		    !sosendallatonce(so) && !nextrecord) {
   1292 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1293 				break;
   1294 			/*
   1295 			 * If we are peeking and the socket receive buffer is
   1296 			 * full, stop since we can't get more data to peek at.
   1297 			 */
   1298 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1299 				break;
   1300 			/*
   1301 			 * If we've drained the socket buffer, tell the
   1302 			 * protocol in case it needs to do something to
   1303 			 * get it filled again.
   1304 			 */
   1305 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1306 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1307 				    (struct mbuf *)0,
   1308 				    (struct mbuf *)(long)flags,
   1309 				    (struct mbuf *)0, l);
   1310 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1311 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1312 			error = sbwait(&so->so_rcv);
   1313 			if (error) {
   1314 				sbunlock(&so->so_rcv);
   1315 				splx(s);
   1316 				return (0);
   1317 			}
   1318 			if ((m = so->so_rcv.sb_mb) != NULL)
   1319 				nextrecord = m->m_nextpkt;
   1320 		}
   1321 	}
   1322 
   1323 	if (m && pr->pr_flags & PR_ATOMIC) {
   1324 		flags |= MSG_TRUNC;
   1325 		if ((flags & MSG_PEEK) == 0)
   1326 			(void) sbdroprecord(&so->so_rcv);
   1327 	}
   1328 	if ((flags & MSG_PEEK) == 0) {
   1329 		if (m == 0) {
   1330 			/*
   1331 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1332 			 * part makes sure sb_lastrecord is up-to-date if
   1333 			 * there is still data in the socket buffer.
   1334 			 */
   1335 			so->so_rcv.sb_mb = nextrecord;
   1336 			if (so->so_rcv.sb_mb == NULL) {
   1337 				so->so_rcv.sb_mbtail = NULL;
   1338 				so->so_rcv.sb_lastrecord = NULL;
   1339 			} else if (nextrecord->m_nextpkt == NULL)
   1340 				so->so_rcv.sb_lastrecord = nextrecord;
   1341 		}
   1342 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1343 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1344 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1345 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
   1346 			    (struct mbuf *)(long)flags, (struct mbuf *)0, l);
   1347 	}
   1348 	if (orig_resid == uio->uio_resid && orig_resid &&
   1349 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1350 		sbunlock(&so->so_rcv);
   1351 		splx(s);
   1352 		goto restart;
   1353 	}
   1354 
   1355 	if (flagsp)
   1356 		*flagsp |= flags;
   1357  release:
   1358 	sbunlock(&so->so_rcv);
   1359 	splx(s);
   1360 	return (error);
   1361 }
   1362 
   1363 int
   1364 soshutdown(struct socket *so, int how)
   1365 {
   1366 	const struct protosw	*pr;
   1367 
   1368 	pr = so->so_proto;
   1369 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1370 		return (EINVAL);
   1371 
   1372 	if (how == SHUT_RD || how == SHUT_RDWR)
   1373 		sorflush(so);
   1374 	if (how == SHUT_WR || how == SHUT_RDWR)
   1375 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
   1376 		    (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
   1377 	return (0);
   1378 }
   1379 
   1380 void
   1381 sorflush(struct socket *so)
   1382 {
   1383 	struct sockbuf	*sb, asb;
   1384 	const struct protosw	*pr;
   1385 	int		s;
   1386 
   1387 	sb = &so->so_rcv;
   1388 	pr = so->so_proto;
   1389 	sb->sb_flags |= SB_NOINTR;
   1390 	(void) sblock(sb, M_WAITOK);
   1391 	s = splnet();
   1392 	socantrcvmore(so);
   1393 	sbunlock(sb);
   1394 	asb = *sb;
   1395 	/*
   1396 	 * Clear most of the sockbuf structure, but leave some of the
   1397 	 * fields valid.
   1398 	 */
   1399 	memset(&sb->sb_startzero, 0,
   1400 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1401 	splx(s);
   1402 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1403 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1404 	sbrelease(&asb, so);
   1405 }
   1406 
   1407 int
   1408 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1409 {
   1410 	int		error;
   1411 	struct mbuf	*m;
   1412 	struct linger	*l;
   1413 
   1414 	error = 0;
   1415 	m = m0;
   1416 	if (level != SOL_SOCKET) {
   1417 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1418 			return ((*so->so_proto->pr_ctloutput)
   1419 				  (PRCO_SETOPT, so, level, optname, &m0));
   1420 		error = ENOPROTOOPT;
   1421 	} else {
   1422 		switch (optname) {
   1423 
   1424 		case SO_LINGER:
   1425 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1426 				error = EINVAL;
   1427 				goto bad;
   1428 			}
   1429 			l = mtod(m, struct linger *);
   1430 			if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1431 			    l->l_linger > (INT_MAX / hz)) {
   1432 				error = EDOM;
   1433 				goto bad;
   1434 			}
   1435 			so->so_linger = l->l_linger;
   1436 			if (l->l_onoff)
   1437 				so->so_options |= SO_LINGER;
   1438 			else
   1439 				so->so_options &= ~SO_LINGER;
   1440 			break;
   1441 
   1442 		case SO_DEBUG:
   1443 		case SO_KEEPALIVE:
   1444 		case SO_DONTROUTE:
   1445 		case SO_USELOOPBACK:
   1446 		case SO_BROADCAST:
   1447 		case SO_REUSEADDR:
   1448 		case SO_REUSEPORT:
   1449 		case SO_OOBINLINE:
   1450 		case SO_TIMESTAMP:
   1451 			if (m == NULL || m->m_len < sizeof(int)) {
   1452 				error = EINVAL;
   1453 				goto bad;
   1454 			}
   1455 			if (*mtod(m, int *))
   1456 				so->so_options |= optname;
   1457 			else
   1458 				so->so_options &= ~optname;
   1459 			break;
   1460 
   1461 		case SO_SNDBUF:
   1462 		case SO_RCVBUF:
   1463 		case SO_SNDLOWAT:
   1464 		case SO_RCVLOWAT:
   1465 		    {
   1466 			int optval;
   1467 
   1468 			if (m == NULL || m->m_len < sizeof(int)) {
   1469 				error = EINVAL;
   1470 				goto bad;
   1471 			}
   1472 
   1473 			/*
   1474 			 * Values < 1 make no sense for any of these
   1475 			 * options, so disallow them.
   1476 			 */
   1477 			optval = *mtod(m, int *);
   1478 			if (optval < 1) {
   1479 				error = EINVAL;
   1480 				goto bad;
   1481 			}
   1482 
   1483 			switch (optname) {
   1484 
   1485 			case SO_SNDBUF:
   1486 			case SO_RCVBUF:
   1487 				if (sbreserve(optname == SO_SNDBUF ?
   1488 				    &so->so_snd : &so->so_rcv,
   1489 				    (u_long) optval, so) == 0) {
   1490 					error = ENOBUFS;
   1491 					goto bad;
   1492 				}
   1493 				break;
   1494 
   1495 			/*
   1496 			 * Make sure the low-water is never greater than
   1497 			 * the high-water.
   1498 			 */
   1499 			case SO_SNDLOWAT:
   1500 				so->so_snd.sb_lowat =
   1501 				    (optval > so->so_snd.sb_hiwat) ?
   1502 				    so->so_snd.sb_hiwat : optval;
   1503 				break;
   1504 			case SO_RCVLOWAT:
   1505 				so->so_rcv.sb_lowat =
   1506 				    (optval > so->so_rcv.sb_hiwat) ?
   1507 				    so->so_rcv.sb_hiwat : optval;
   1508 				break;
   1509 			}
   1510 			break;
   1511 		    }
   1512 
   1513 		case SO_SNDTIMEO:
   1514 		case SO_RCVTIMEO:
   1515 		    {
   1516 			struct timeval *tv;
   1517 			int val;
   1518 
   1519 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1520 				error = EINVAL;
   1521 				goto bad;
   1522 			}
   1523 			tv = mtod(m, struct timeval *);
   1524 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1525 				error = EDOM;
   1526 				goto bad;
   1527 			}
   1528 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1529 			if (val == 0 && tv->tv_usec != 0)
   1530 				val = 1;
   1531 
   1532 			switch (optname) {
   1533 
   1534 			case SO_SNDTIMEO:
   1535 				so->so_snd.sb_timeo = val;
   1536 				break;
   1537 			case SO_RCVTIMEO:
   1538 				so->so_rcv.sb_timeo = val;
   1539 				break;
   1540 			}
   1541 			break;
   1542 		    }
   1543 
   1544 		default:
   1545 			error = ENOPROTOOPT;
   1546 			break;
   1547 		}
   1548 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1549 			(void) ((*so->so_proto->pr_ctloutput)
   1550 				  (PRCO_SETOPT, so, level, optname, &m0));
   1551 			m = NULL;	/* freed by protocol */
   1552 		}
   1553 	}
   1554  bad:
   1555 	if (m)
   1556 		(void) m_free(m);
   1557 	return (error);
   1558 }
   1559 
   1560 int
   1561 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1562 {
   1563 	struct mbuf	*m;
   1564 
   1565 	if (level != SOL_SOCKET) {
   1566 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1567 			return ((*so->so_proto->pr_ctloutput)
   1568 				  (PRCO_GETOPT, so, level, optname, mp));
   1569 		} else
   1570 			return (ENOPROTOOPT);
   1571 	} else {
   1572 		m = m_get(M_WAIT, MT_SOOPTS);
   1573 		m->m_len = sizeof(int);
   1574 
   1575 		switch (optname) {
   1576 
   1577 		case SO_LINGER:
   1578 			m->m_len = sizeof(struct linger);
   1579 			mtod(m, struct linger *)->l_onoff =
   1580 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1581 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1582 			break;
   1583 
   1584 		case SO_USELOOPBACK:
   1585 		case SO_DONTROUTE:
   1586 		case SO_DEBUG:
   1587 		case SO_KEEPALIVE:
   1588 		case SO_REUSEADDR:
   1589 		case SO_REUSEPORT:
   1590 		case SO_BROADCAST:
   1591 		case SO_OOBINLINE:
   1592 		case SO_TIMESTAMP:
   1593 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1594 			break;
   1595 
   1596 		case SO_TYPE:
   1597 			*mtod(m, int *) = so->so_type;
   1598 			break;
   1599 
   1600 		case SO_ERROR:
   1601 			*mtod(m, int *) = so->so_error;
   1602 			so->so_error = 0;
   1603 			break;
   1604 
   1605 		case SO_SNDBUF:
   1606 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1607 			break;
   1608 
   1609 		case SO_RCVBUF:
   1610 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1611 			break;
   1612 
   1613 		case SO_SNDLOWAT:
   1614 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1615 			break;
   1616 
   1617 		case SO_RCVLOWAT:
   1618 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1619 			break;
   1620 
   1621 		case SO_SNDTIMEO:
   1622 		case SO_RCVTIMEO:
   1623 		    {
   1624 			int val = (optname == SO_SNDTIMEO ?
   1625 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1626 
   1627 			m->m_len = sizeof(struct timeval);
   1628 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1629 			mtod(m, struct timeval *)->tv_usec =
   1630 			    (val % hz) * tick;
   1631 			break;
   1632 		    }
   1633 
   1634 		case SO_OVERFLOWED:
   1635 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1636 			break;
   1637 
   1638 		default:
   1639 			(void)m_free(m);
   1640 			return (ENOPROTOOPT);
   1641 		}
   1642 		*mp = m;
   1643 		return (0);
   1644 	}
   1645 }
   1646 
   1647 void
   1648 sohasoutofband(struct socket *so)
   1649 {
   1650 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1651 	selwakeup(&so->so_rcv.sb_sel);
   1652 }
   1653 
   1654 static void
   1655 filt_sordetach(struct knote *kn)
   1656 {
   1657 	struct socket	*so;
   1658 
   1659 	so = (struct socket *)kn->kn_fp->f_data;
   1660 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1661 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1662 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1663 }
   1664 
   1665 /*ARGSUSED*/
   1666 static int
   1667 filt_soread(struct knote *kn, long hint)
   1668 {
   1669 	struct socket	*so;
   1670 
   1671 	so = (struct socket *)kn->kn_fp->f_data;
   1672 	kn->kn_data = so->so_rcv.sb_cc;
   1673 	if (so->so_state & SS_CANTRCVMORE) {
   1674 		kn->kn_flags |= EV_EOF;
   1675 		kn->kn_fflags = so->so_error;
   1676 		return (1);
   1677 	}
   1678 	if (so->so_error)	/* temporary udp error */
   1679 		return (1);
   1680 	if (kn->kn_sfflags & NOTE_LOWAT)
   1681 		return (kn->kn_data >= kn->kn_sdata);
   1682 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1683 }
   1684 
   1685 static void
   1686 filt_sowdetach(struct knote *kn)
   1687 {
   1688 	struct socket	*so;
   1689 
   1690 	so = (struct socket *)kn->kn_fp->f_data;
   1691 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1692 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1693 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1694 }
   1695 
   1696 /*ARGSUSED*/
   1697 static int
   1698 filt_sowrite(struct knote *kn, long hint)
   1699 {
   1700 	struct socket	*so;
   1701 
   1702 	so = (struct socket *)kn->kn_fp->f_data;
   1703 	kn->kn_data = sbspace(&so->so_snd);
   1704 	if (so->so_state & SS_CANTSENDMORE) {
   1705 		kn->kn_flags |= EV_EOF;
   1706 		kn->kn_fflags = so->so_error;
   1707 		return (1);
   1708 	}
   1709 	if (so->so_error)	/* temporary udp error */
   1710 		return (1);
   1711 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1712 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1713 		return (0);
   1714 	if (kn->kn_sfflags & NOTE_LOWAT)
   1715 		return (kn->kn_data >= kn->kn_sdata);
   1716 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1717 }
   1718 
   1719 /*ARGSUSED*/
   1720 static int
   1721 filt_solisten(struct knote *kn, long hint)
   1722 {
   1723 	struct socket	*so;
   1724 
   1725 	so = (struct socket *)kn->kn_fp->f_data;
   1726 
   1727 	/*
   1728 	 * Set kn_data to number of incoming connections, not
   1729 	 * counting partial (incomplete) connections.
   1730 	 */
   1731 	kn->kn_data = so->so_qlen;
   1732 	return (kn->kn_data > 0);
   1733 }
   1734 
   1735 static const struct filterops solisten_filtops =
   1736 	{ 1, NULL, filt_sordetach, filt_solisten };
   1737 static const struct filterops soread_filtops =
   1738 	{ 1, NULL, filt_sordetach, filt_soread };
   1739 static const struct filterops sowrite_filtops =
   1740 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1741 
   1742 int
   1743 soo_kqfilter(struct file *fp, struct knote *kn)
   1744 {
   1745 	struct socket	*so;
   1746 	struct sockbuf	*sb;
   1747 
   1748 	so = (struct socket *)kn->kn_fp->f_data;
   1749 	switch (kn->kn_filter) {
   1750 	case EVFILT_READ:
   1751 		if (so->so_options & SO_ACCEPTCONN)
   1752 			kn->kn_fop = &solisten_filtops;
   1753 		else
   1754 			kn->kn_fop = &soread_filtops;
   1755 		sb = &so->so_rcv;
   1756 		break;
   1757 	case EVFILT_WRITE:
   1758 		kn->kn_fop = &sowrite_filtops;
   1759 		sb = &so->so_snd;
   1760 		break;
   1761 	default:
   1762 		return (1);
   1763 	}
   1764 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1765 	sb->sb_flags |= SB_KNOTE;
   1766 	return (0);
   1767 }
   1768 
   1769 #include <sys/sysctl.h>
   1770 
   1771 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1772 
   1773 /*
   1774  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1775  * value is not too small.
   1776  * (XXX should we maybe make sure it's not too large as well?)
   1777  */
   1778 static int
   1779 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1780 {
   1781 	int error, new_somaxkva;
   1782 	struct sysctlnode node;
   1783 
   1784 	new_somaxkva = somaxkva;
   1785 	node = *rnode;
   1786 	node.sysctl_data = &new_somaxkva;
   1787 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1788 	if (error || newp == NULL)
   1789 		return (error);
   1790 
   1791 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1792 		return (EINVAL);
   1793 
   1794 	mutex_enter(&so_pendfree_lock);
   1795 	somaxkva = new_somaxkva;
   1796 	cv_broadcast(&socurkva_cv);
   1797 	mutex_exit(&so_pendfree_lock);
   1798 
   1799 	return (error);
   1800 }
   1801 
   1802 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1803 {
   1804 
   1805 	sysctl_createv(clog, 0, NULL, NULL,
   1806 		       CTLFLAG_PERMANENT,
   1807 		       CTLTYPE_NODE, "kern", NULL,
   1808 		       NULL, 0, NULL, 0,
   1809 		       CTL_KERN, CTL_EOL);
   1810 
   1811 	sysctl_createv(clog, 0, NULL, NULL,
   1812 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1813 		       CTLTYPE_INT, "somaxkva",
   1814 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1815 				    "used for socket buffers"),
   1816 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1817 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1818 }
   1819