Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.134.2.5
      1 /*	$NetBSD: uipc_socket.c,v 1.134.2.5 2007/09/01 12:56:49 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.134.2.5 2007/09/01 12:56:49 ad Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/malloc.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/domain.h>
     85 #include <sys/kernel.h>
     86 #include <sys/protosw.h>
     87 #include <sys/socket.h>
     88 #include <sys/socketvar.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/pool.h>
     92 #include <sys/event.h>
     93 #include <sys/poll.h>
     94 #include <sys/kauth.h>
     95 #include <sys/mutex.h>
     96 #include <sys/condvar.h>
     97 
     98 #include <uvm/uvm.h>
     99 
    100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    101     IPL_SOFTNET);
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern int	somaxconn;			/* patchable (XXX sysctl) */
    107 int		somaxconn = SOMAXCONN;
    108 
    109 #ifdef SOSEND_COUNTERS
    110 #include <sys/device.h>
    111 
    112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "loan big");
    114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "copy big");
    116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    117     NULL, "sosend", "copy small");
    118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "kva limit");
    120 
    121 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    122 
    123 EVCNT_ATTACH_STATIC(sosend_loan_big);
    124 EVCNT_ATTACH_STATIC(sosend_copy_big);
    125 EVCNT_ATTACH_STATIC(sosend_copy_small);
    126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    127 #else
    128 
    129 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    130 
    131 #endif /* SOSEND_COUNTERS */
    132 
    133 static struct callback_entry sokva_reclaimerentry;
    134 
    135 #ifdef SOSEND_NO_LOAN
    136 int sock_loan_thresh = -1;
    137 #else
    138 int sock_loan_thresh = 4096;
    139 #endif
    140 
    141 static kmutex_t so_pendfree_lock;
    142 static struct mbuf *so_pendfree;
    143 
    144 #ifndef SOMAXKVA
    145 #define	SOMAXKVA (16 * 1024 * 1024)
    146 #endif
    147 int somaxkva = SOMAXKVA;
    148 static int socurkva;
    149 static kcondvar_t socurkva_cv;
    150 
    151 #define	SOCK_LOAN_CHUNK		65536
    152 
    153 static size_t sodopendfree(void);
    154 static size_t sodopendfreel(void);
    155 
    156 static vsize_t
    157 sokvareserve(struct socket *so, vsize_t len)
    158 {
    159 	int error;
    160 
    161 	mutex_enter(&so_pendfree_lock);
    162 	while (socurkva + len > somaxkva) {
    163 		size_t freed;
    164 
    165 		/*
    166 		 * try to do pendfree.
    167 		 */
    168 
    169 		freed = sodopendfreel();
    170 
    171 		/*
    172 		 * if some kva was freed, try again.
    173 		 */
    174 
    175 		if (freed)
    176 			continue;
    177 
    178 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    179 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    180 		if (error) {
    181 			len = 0;
    182 			break;
    183 		}
    184 	}
    185 	socurkva += len;
    186 	mutex_exit(&so_pendfree_lock);
    187 	return len;
    188 }
    189 
    190 static void
    191 sokvaunreserve(vsize_t len)
    192 {
    193 
    194 	mutex_enter(&so_pendfree_lock);
    195 	socurkva -= len;
    196 	cv_broadcast(&socurkva_cv);
    197 	mutex_exit(&so_pendfree_lock);
    198 }
    199 
    200 /*
    201  * sokvaalloc: allocate kva for loan.
    202  */
    203 
    204 vaddr_t
    205 sokvaalloc(vsize_t len, struct socket *so)
    206 {
    207 	vaddr_t lva;
    208 
    209 	/*
    210 	 * reserve kva.
    211 	 */
    212 
    213 	if (sokvareserve(so, len) == 0)
    214 		return 0;
    215 
    216 	/*
    217 	 * allocate kva.
    218 	 */
    219 
    220 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    221 	if (lva == 0) {
    222 		sokvaunreserve(len);
    223 		return (0);
    224 	}
    225 
    226 	return lva;
    227 }
    228 
    229 /*
    230  * sokvafree: free kva for loan.
    231  */
    232 
    233 void
    234 sokvafree(vaddr_t sva, vsize_t len)
    235 {
    236 
    237 	/*
    238 	 * free kva.
    239 	 */
    240 
    241 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    242 
    243 	/*
    244 	 * unreserve kva.
    245 	 */
    246 
    247 	sokvaunreserve(len);
    248 }
    249 
    250 static void
    251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    252 {
    253 	vaddr_t va, sva, eva;
    254 	vsize_t len;
    255 	paddr_t pa;
    256 	int i, npgs;
    257 
    258 	eva = round_page((vaddr_t) buf + size);
    259 	sva = trunc_page((vaddr_t) buf);
    260 	len = eva - sva;
    261 	npgs = len >> PAGE_SHIFT;
    262 
    263 	if (__predict_false(pgs == NULL)) {
    264 		pgs = alloca(npgs * sizeof(*pgs));
    265 
    266 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    267 			if (pmap_extract(pmap_kernel(), va, &pa) == false)
    268 				panic("sodoloanfree: va 0x%lx not mapped", va);
    269 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    270 		}
    271 	}
    272 
    273 	pmap_kremove(sva, len);
    274 	pmap_update(pmap_kernel());
    275 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    276 	sokvafree(sva, len);
    277 }
    278 
    279 static size_t
    280 sodopendfree()
    281 {
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 	rv = sodopendfreel();
    286 	mutex_exit(&so_pendfree_lock);
    287 
    288 	return rv;
    289 }
    290 
    291 /*
    292  * sodopendfreel: free mbufs on "pendfree" list.
    293  * unlock and relock so_pendfree_lock when freeing mbufs.
    294  *
    295  * => called with so_pendfree_lock held.
    296  */
    297 
    298 static size_t
    299 sodopendfreel()
    300 {
    301 	struct mbuf *m, *next;
    302 	size_t rv = 0;
    303 
    304 	KASSERT(mutex_owned(&so_pendfree_lock));
    305 
    306 	while (so_pendfree != NULL) {
    307 		m = so_pendfree;
    308 		so_pendfree = NULL;
    309 		mutex_exit(&so_pendfree_lock);
    310 
    311 		for (; m != NULL; m = next) {
    312 			next = m->m_next;
    313 
    314 			rv += m->m_ext.ext_size;
    315 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    316 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    317 			    m->m_ext.ext_size);
    318 			pool_cache_put(mb_cache, m);
    319 		}
    320 
    321 		mutex_enter(&so_pendfree_lock);
    322 	}
    323 
    324 	return (rv);
    325 }
    326 
    327 void
    328 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    329 {
    330 
    331 	if (m == NULL) {
    332 
    333 		/*
    334 		 * called from MEXTREMOVE.
    335 		 */
    336 
    337 		sodoloanfree(NULL, buf, size);
    338 		return;
    339 	}
    340 
    341 	/*
    342 	 * postpone freeing mbuf.
    343 	 *
    344 	 * we can't do it in interrupt context
    345 	 * because we need to put kva back to kernel_map.
    346 	 */
    347 
    348 	mutex_enter(&so_pendfree_lock);
    349 	m->m_next = so_pendfree;
    350 	so_pendfree = m;
    351 	cv_broadcast(&socurkva_cv);
    352 	mutex_exit(&so_pendfree_lock);
    353 }
    354 
    355 static long
    356 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    357 {
    358 	struct iovec *iov = uio->uio_iov;
    359 	vaddr_t sva, eva;
    360 	vsize_t len;
    361 	vaddr_t lva, va;
    362 	int npgs, i, error;
    363 
    364 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    365 		return (0);
    366 
    367 	if (iov->iov_len < (size_t) space)
    368 		space = iov->iov_len;
    369 	if (space > SOCK_LOAN_CHUNK)
    370 		space = SOCK_LOAN_CHUNK;
    371 
    372 	eva = round_page((vaddr_t) iov->iov_base + space);
    373 	sva = trunc_page((vaddr_t) iov->iov_base);
    374 	len = eva - sva;
    375 	npgs = len >> PAGE_SHIFT;
    376 
    377 	/* XXX KDASSERT */
    378 	KASSERT(npgs <= M_EXT_MAXPAGES);
    379 
    380 	lva = sokvaalloc(len, so);
    381 	if (lva == 0)
    382 		return 0;
    383 
    384 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    385 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    386 	if (error) {
    387 		sokvafree(lva, len);
    388 		return (0);
    389 	}
    390 
    391 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    392 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    393 		    VM_PROT_READ);
    394 	pmap_update(pmap_kernel());
    395 
    396 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    397 
    398 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    399 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    400 
    401 	uio->uio_resid -= space;
    402 	/* uio_offset not updated, not set/used for write(2) */
    403 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    404 	uio->uio_iov->iov_len -= space;
    405 	if (uio->uio_iov->iov_len == 0) {
    406 		uio->uio_iov++;
    407 		uio->uio_iovcnt--;
    408 	}
    409 
    410 	return (space);
    411 }
    412 
    413 static int
    414 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    415 {
    416 
    417 	KASSERT(ce == &sokva_reclaimerentry);
    418 	KASSERT(obj == NULL);
    419 
    420 	sodopendfree();
    421 	if (!vm_map_starved_p(kernel_map)) {
    422 		return CALLBACK_CHAIN_ABORT;
    423 	}
    424 	return CALLBACK_CHAIN_CONTINUE;
    425 }
    426 
    427 void
    428 soinit(void)
    429 {
    430 
    431 	mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
    432 	cv_init(&socurkva_cv, "sokva");
    433 
    434 	/* Set the initial adjusted socket buffer size. */
    435 	if (sb_max_set(sb_max))
    436 		panic("bad initial sb_max value: %lu", sb_max);
    437 
    438 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    439 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    440 }
    441 
    442 /*
    443  * Socket operation routines.
    444  * These routines are called by the routines in
    445  * sys_socket.c or from a system process, and
    446  * implement the semantics of socket operations by
    447  * switching out to the protocol specific routines.
    448  */
    449 /*ARGSUSED*/
    450 int
    451 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    452 {
    453 	const struct protosw	*prp;
    454 	struct socket	*so;
    455 	uid_t		uid;
    456 	int		error, s;
    457 
    458 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    459 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    460 	    KAUTH_ARG(proto));
    461 	if (error != 0)
    462 		return error;
    463 
    464 	if (proto)
    465 		prp = pffindproto(dom, proto, type);
    466 	else
    467 		prp = pffindtype(dom, type);
    468 	if (prp == NULL) {
    469 		/* no support for domain */
    470 		if (pffinddomain(dom) == 0)
    471 			return EAFNOSUPPORT;
    472 		/* no support for socket type */
    473 		if (proto == 0 && type != 0)
    474 			return EPROTOTYPE;
    475 		return EPROTONOSUPPORT;
    476 	}
    477 	if (prp->pr_usrreq == NULL)
    478 		return EPROTONOSUPPORT;
    479 	if (prp->pr_type != type)
    480 		return EPROTOTYPE;
    481 	s = splsoftnet();
    482 	so = pool_get(&socket_pool, PR_WAITOK);
    483 	memset(so, 0, sizeof(*so));
    484 	TAILQ_INIT(&so->so_q0);
    485 	TAILQ_INIT(&so->so_q);
    486 	so->so_type = type;
    487 	so->so_proto = prp;
    488 	so->so_send = sosend;
    489 	so->so_receive = soreceive;
    490 #ifdef MBUFTRACE
    491 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    492 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    493 	so->so_mowner = &prp->pr_domain->dom_mowner;
    494 #endif
    495 	uid = kauth_cred_geteuid(l->l_cred);
    496 	so->so_uidinfo = uid_find(uid);
    497 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    498 	    (struct mbuf *)(long)proto, NULL, l);
    499 	if (error != 0) {
    500 		so->so_state |= SS_NOFDREF;
    501 		sofree(so);
    502 		splx(s);
    503 		return error;
    504 	}
    505 	splx(s);
    506 	*aso = so;
    507 	return 0;
    508 }
    509 
    510 int
    511 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    512 {
    513 	int	s, error;
    514 
    515 	s = splsoftnet();
    516 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    517 	splx(s);
    518 	return error;
    519 }
    520 
    521 int
    522 solisten(struct socket *so, int backlog)
    523 {
    524 	int	s, error;
    525 
    526 	s = splsoftnet();
    527 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    528 	    NULL, NULL, NULL);
    529 	if (error != 0) {
    530 		splx(s);
    531 		return error;
    532 	}
    533 	if (TAILQ_EMPTY(&so->so_q))
    534 		so->so_options |= SO_ACCEPTCONN;
    535 	if (backlog < 0)
    536 		backlog = 0;
    537 	so->so_qlimit = min(backlog, somaxconn);
    538 	splx(s);
    539 	return 0;
    540 }
    541 
    542 void
    543 sofree(struct socket *so)
    544 {
    545 
    546 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    547 		return;
    548 	if (so->so_head) {
    549 		/*
    550 		 * We must not decommission a socket that's on the accept(2)
    551 		 * queue.  If we do, then accept(2) may hang after select(2)
    552 		 * indicated that the listening socket was ready.
    553 		 */
    554 		if (!soqremque(so, 0))
    555 			return;
    556 	}
    557 	if (so->so_rcv.sb_hiwat)
    558 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    559 		    RLIM_INFINITY);
    560 	if (so->so_snd.sb_hiwat)
    561 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    562 		    RLIM_INFINITY);
    563 	sbrelease(&so->so_snd, so);
    564 	sorflush(so);
    565 	pool_put(&socket_pool, so);
    566 }
    567 
    568 /*
    569  * Close a socket on last file table reference removal.
    570  * Initiate disconnect if connected.
    571  * Free socket when disconnect complete.
    572  */
    573 int
    574 soclose(struct socket *so)
    575 {
    576 	struct socket	*so2;
    577 	int		s, error;
    578 
    579 	error = 0;
    580 	s = splsoftnet();		/* conservative */
    581 	if (so->so_options & SO_ACCEPTCONN) {
    582 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    583 			(void) soqremque(so2, 0);
    584 			(void) soabort(so2);
    585 		}
    586 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    587 			(void) soqremque(so2, 1);
    588 			(void) soabort(so2);
    589 		}
    590 	}
    591 	if (so->so_pcb == 0)
    592 		goto discard;
    593 	if (so->so_state & SS_ISCONNECTED) {
    594 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    595 			error = sodisconnect(so);
    596 			if (error)
    597 				goto drop;
    598 		}
    599 		if (so->so_options & SO_LINGER) {
    600 			if ((so->so_state & SS_ISDISCONNECTING) &&
    601 			    (so->so_state & SS_NBIO))
    602 				goto drop;
    603 			while (so->so_state & SS_ISCONNECTED) {
    604 				error = tsleep((void *)&so->so_timeo,
    605 					       PSOCK | PCATCH, netcls,
    606 					       so->so_linger * hz);
    607 				if (error)
    608 					break;
    609 			}
    610 		}
    611 	}
    612  drop:
    613 	if (so->so_pcb) {
    614 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    615 		    NULL, NULL, NULL, NULL);
    616 		if (error == 0)
    617 			error = error2;
    618 	}
    619  discard:
    620 	if (so->so_state & SS_NOFDREF)
    621 		panic("soclose: NOFDREF");
    622 	so->so_state |= SS_NOFDREF;
    623 	sofree(so);
    624 	splx(s);
    625 	return (error);
    626 }
    627 
    628 /*
    629  * Must be called at splsoftnet...
    630  */
    631 int
    632 soabort(struct socket *so)
    633 {
    634 	int error;
    635 
    636 	KASSERT(so->so_head == NULL);
    637 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    638 	    NULL, NULL, NULL);
    639 	if (error) {
    640 		sofree(so);
    641 	}
    642 	return error;
    643 }
    644 
    645 int
    646 soaccept(struct socket *so, struct mbuf *nam)
    647 {
    648 	int	s, error;
    649 
    650 	error = 0;
    651 	s = splsoftnet();
    652 	if ((so->so_state & SS_NOFDREF) == 0)
    653 		panic("soaccept: !NOFDREF");
    654 	so->so_state &= ~SS_NOFDREF;
    655 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    656 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    657 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    658 		    NULL, nam, NULL, NULL);
    659 	else
    660 		error = ECONNABORTED;
    661 
    662 	splx(s);
    663 	return (error);
    664 }
    665 
    666 int
    667 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    668 {
    669 	int		s, error;
    670 
    671 	if (so->so_options & SO_ACCEPTCONN)
    672 		return (EOPNOTSUPP);
    673 	s = splsoftnet();
    674 	/*
    675 	 * If protocol is connection-based, can only connect once.
    676 	 * Otherwise, if connected, try to disconnect first.
    677 	 * This allows user to disconnect by connecting to, e.g.,
    678 	 * a null address.
    679 	 */
    680 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    681 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    682 	    (error = sodisconnect(so))))
    683 		error = EISCONN;
    684 	else
    685 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    686 		    NULL, nam, NULL, l);
    687 	splx(s);
    688 	return (error);
    689 }
    690 
    691 int
    692 soconnect2(struct socket *so1, struct socket *so2)
    693 {
    694 	int	s, error;
    695 
    696 	s = splsoftnet();
    697 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    698 	    NULL, (struct mbuf *)so2, NULL, NULL);
    699 	splx(s);
    700 	return (error);
    701 }
    702 
    703 int
    704 sodisconnect(struct socket *so)
    705 {
    706 	int	s, error;
    707 
    708 	s = splsoftnet();
    709 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    710 		error = ENOTCONN;
    711 		goto bad;
    712 	}
    713 	if (so->so_state & SS_ISDISCONNECTING) {
    714 		error = EALREADY;
    715 		goto bad;
    716 	}
    717 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    718 	    NULL, NULL, NULL, NULL);
    719  bad:
    720 	splx(s);
    721 	sodopendfree();
    722 	return (error);
    723 }
    724 
    725 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    726 /*
    727  * Send on a socket.
    728  * If send must go all at once and message is larger than
    729  * send buffering, then hard error.
    730  * Lock against other senders.
    731  * If must go all at once and not enough room now, then
    732  * inform user that this would block and do nothing.
    733  * Otherwise, if nonblocking, send as much as possible.
    734  * The data to be sent is described by "uio" if nonzero,
    735  * otherwise by the mbuf chain "top" (which must be null
    736  * if uio is not).  Data provided in mbuf chain must be small
    737  * enough to send all at once.
    738  *
    739  * Returns nonzero on error, timeout or signal; callers
    740  * must check for short counts if EINTR/ERESTART are returned.
    741  * Data and control buffers are freed on return.
    742  */
    743 int
    744 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    745 	struct mbuf *control, int flags, struct lwp *l)
    746 {
    747 	struct mbuf	**mp, *m;
    748 	struct proc	*p;
    749 	long		space, len, resid, clen, mlen;
    750 	int		error, s, dontroute, atomic;
    751 
    752 	p = l->l_proc;
    753 	sodopendfree();
    754 
    755 	clen = 0;
    756 	atomic = sosendallatonce(so) || top;
    757 	if (uio)
    758 		resid = uio->uio_resid;
    759 	else
    760 		resid = top->m_pkthdr.len;
    761 	/*
    762 	 * In theory resid should be unsigned.
    763 	 * However, space must be signed, as it might be less than 0
    764 	 * if we over-committed, and we must use a signed comparison
    765 	 * of space and resid.  On the other hand, a negative resid
    766 	 * causes us to loop sending 0-length segments to the protocol.
    767 	 */
    768 	if (resid < 0) {
    769 		error = EINVAL;
    770 		goto out;
    771 	}
    772 	dontroute =
    773 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    774 	    (so->so_proto->pr_flags & PR_ATOMIC);
    775 	if (p)
    776 		p->p_stats->p_ru.ru_msgsnd++;
    777 	if (control)
    778 		clen = control->m_len;
    779 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    780 
    781  restart:
    782 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    783 		goto out;
    784 	do {
    785 		s = splsoftnet();
    786 		if (so->so_state & SS_CANTSENDMORE)
    787 			snderr(EPIPE);
    788 		if (so->so_error) {
    789 			error = so->so_error;
    790 			so->so_error = 0;
    791 			splx(s);
    792 			goto release;
    793 		}
    794 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    795 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    796 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    797 				    !(resid == 0 && clen != 0))
    798 					snderr(ENOTCONN);
    799 			} else if (addr == 0)
    800 				snderr(EDESTADDRREQ);
    801 		}
    802 		space = sbspace(&so->so_snd);
    803 		if (flags & MSG_OOB)
    804 			space += 1024;
    805 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    806 		    clen > so->so_snd.sb_hiwat)
    807 			snderr(EMSGSIZE);
    808 		if (space < resid + clen &&
    809 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    810 			if (so->so_state & SS_NBIO)
    811 				snderr(EWOULDBLOCK);
    812 			sbunlock(&so->so_snd);
    813 			error = sbwait(&so->so_snd);
    814 			splx(s);
    815 			if (error)
    816 				goto out;
    817 			goto restart;
    818 		}
    819 		splx(s);
    820 		mp = &top;
    821 		space -= clen;
    822 		do {
    823 			if (uio == NULL) {
    824 				/*
    825 				 * Data is prepackaged in "top".
    826 				 */
    827 				resid = 0;
    828 				if (flags & MSG_EOR)
    829 					top->m_flags |= M_EOR;
    830 			} else do {
    831 				if (top == 0) {
    832 					m = m_gethdr(M_WAIT, MT_DATA);
    833 					mlen = MHLEN;
    834 					m->m_pkthdr.len = 0;
    835 					m->m_pkthdr.rcvif = NULL;
    836 				} else {
    837 					m = m_get(M_WAIT, MT_DATA);
    838 					mlen = MLEN;
    839 				}
    840 				MCLAIM(m, so->so_snd.sb_mowner);
    841 				if (sock_loan_thresh >= 0 &&
    842 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    843 				    space >= sock_loan_thresh &&
    844 				    (len = sosend_loan(so, uio, m,
    845 						       space)) != 0) {
    846 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    847 					space -= len;
    848 					goto have_data;
    849 				}
    850 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    851 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    852 					m_clget(m, M_WAIT);
    853 					if ((m->m_flags & M_EXT) == 0)
    854 						goto nopages;
    855 					mlen = MCLBYTES;
    856 					if (atomic && top == 0) {
    857 						len = lmin(MCLBYTES - max_hdr,
    858 						    resid);
    859 						m->m_data += max_hdr;
    860 					} else
    861 						len = lmin(MCLBYTES, resid);
    862 					space -= len;
    863 				} else {
    864  nopages:
    865 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    866 					len = lmin(lmin(mlen, resid), space);
    867 					space -= len;
    868 					/*
    869 					 * For datagram protocols, leave room
    870 					 * for protocol headers in first mbuf.
    871 					 */
    872 					if (atomic && top == 0 && len < mlen)
    873 						MH_ALIGN(m, len);
    874 				}
    875 				error = uiomove(mtod(m, void *), (int)len,
    876 				    uio);
    877  have_data:
    878 				resid = uio->uio_resid;
    879 				m->m_len = len;
    880 				*mp = m;
    881 				top->m_pkthdr.len += len;
    882 				if (error)
    883 					goto release;
    884 				mp = &m->m_next;
    885 				if (resid <= 0) {
    886 					if (flags & MSG_EOR)
    887 						top->m_flags |= M_EOR;
    888 					break;
    889 				}
    890 			} while (space > 0 && atomic);
    891 
    892 			s = splsoftnet();
    893 
    894 			if (so->so_state & SS_CANTSENDMORE)
    895 				snderr(EPIPE);
    896 
    897 			if (dontroute)
    898 				so->so_options |= SO_DONTROUTE;
    899 			if (resid > 0)
    900 				so->so_state |= SS_MORETOCOME;
    901 			error = (*so->so_proto->pr_usrreq)(so,
    902 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    903 			    top, addr, control, curlwp);	/* XXX */
    904 			if (dontroute)
    905 				so->so_options &= ~SO_DONTROUTE;
    906 			if (resid > 0)
    907 				so->so_state &= ~SS_MORETOCOME;
    908 			splx(s);
    909 
    910 			clen = 0;
    911 			control = 0;
    912 			top = 0;
    913 			mp = &top;
    914 			if (error)
    915 				goto release;
    916 		} while (resid && space > 0);
    917 	} while (resid);
    918 
    919  release:
    920 	sbunlock(&so->so_snd);
    921  out:
    922 	if (top)
    923 		m_freem(top);
    924 	if (control)
    925 		m_freem(control);
    926 	return (error);
    927 }
    928 
    929 /*
    930  * Implement receive operations on a socket.
    931  * We depend on the way that records are added to the sockbuf
    932  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    933  * must begin with an address if the protocol so specifies,
    934  * followed by an optional mbuf or mbufs containing ancillary data,
    935  * and then zero or more mbufs of data.
    936  * In order to avoid blocking network interrupts for the entire time here,
    937  * we splx() while doing the actual copy to user space.
    938  * Although the sockbuf is locked, new data may still be appended,
    939  * and thus we must maintain consistency of the sockbuf during that time.
    940  *
    941  * The caller may receive the data as a single mbuf chain by supplying
    942  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    943  * only for the count in uio_resid.
    944  */
    945 int
    946 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
    947 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
    948 {
    949 	struct lwp *l = curlwp;
    950 	struct mbuf	*m, **mp;
    951 	int		flags, len, error, s, offset, moff, type, orig_resid;
    952 	const struct protosw	*pr;
    953 	struct mbuf	*nextrecord;
    954 	int		mbuf_removed = 0;
    955 
    956 	pr = so->so_proto;
    957 	mp = mp0;
    958 	type = 0;
    959 	orig_resid = uio->uio_resid;
    960 
    961 	if (paddr)
    962 		*paddr = 0;
    963 	if (controlp)
    964 		*controlp = 0;
    965 	if (flagsp)
    966 		flags = *flagsp &~ MSG_EOR;
    967 	else
    968 		flags = 0;
    969 
    970 	if ((flags & MSG_DONTWAIT) == 0)
    971 		sodopendfree();
    972 
    973 	if (flags & MSG_OOB) {
    974 		m = m_get(M_WAIT, MT_DATA);
    975 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
    976 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
    977 		if (error)
    978 			goto bad;
    979 		do {
    980 			error = uiomove(mtod(m, void *),
    981 			    (int) min(uio->uio_resid, m->m_len), uio);
    982 			m = m_free(m);
    983 		} while (uio->uio_resid && error == 0 && m);
    984  bad:
    985 		if (m)
    986 			m_freem(m);
    987 		return (error);
    988 	}
    989 	if (mp)
    990 		*mp = NULL;
    991 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
    992 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
    993 
    994  restart:
    995 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
    996 		return (error);
    997 	s = splsoftnet();
    998 
    999 	m = so->so_rcv.sb_mb;
   1000 	/*
   1001 	 * If we have less data than requested, block awaiting more
   1002 	 * (subject to any timeout) if:
   1003 	 *   1. the current count is less than the low water mark,
   1004 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1005 	 *	receive operation at once if we block (resid <= hiwat), or
   1006 	 *   3. MSG_DONTWAIT is not set.
   1007 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1008 	 * we have to do the receive in sections, and thus risk returning
   1009 	 * a short count if a timeout or signal occurs after we start.
   1010 	 */
   1011 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
   1012 	    so->so_rcv.sb_cc < uio->uio_resid) &&
   1013 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1014 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1015 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
   1016 #ifdef DIAGNOSTIC
   1017 		if (m == 0 && so->so_rcv.sb_cc)
   1018 			panic("receive 1");
   1019 #endif
   1020 		if (so->so_error) {
   1021 			if (m)
   1022 				goto dontblock;
   1023 			error = so->so_error;
   1024 			if ((flags & MSG_PEEK) == 0)
   1025 				so->so_error = 0;
   1026 			goto release;
   1027 		}
   1028 		if (so->so_state & SS_CANTRCVMORE) {
   1029 			if (m)
   1030 				goto dontblock;
   1031 			else
   1032 				goto release;
   1033 		}
   1034 		for (; m; m = m->m_next)
   1035 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1036 				m = so->so_rcv.sb_mb;
   1037 				goto dontblock;
   1038 			}
   1039 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1040 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1041 			error = ENOTCONN;
   1042 			goto release;
   1043 		}
   1044 		if (uio->uio_resid == 0)
   1045 			goto release;
   1046 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
   1047 			error = EWOULDBLOCK;
   1048 			goto release;
   1049 		}
   1050 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1051 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1052 		sbunlock(&so->so_rcv);
   1053 		error = sbwait(&so->so_rcv);
   1054 		splx(s);
   1055 		if (error)
   1056 			return (error);
   1057 		goto restart;
   1058 	}
   1059  dontblock:
   1060 	/*
   1061 	 * On entry here, m points to the first record of the socket buffer.
   1062 	 * While we process the initial mbufs containing address and control
   1063 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1064 	 */
   1065 	if (l)
   1066 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1067 	KASSERT(m == so->so_rcv.sb_mb);
   1068 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1069 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1070 	nextrecord = m->m_nextpkt;
   1071 	if (pr->pr_flags & PR_ADDR) {
   1072 #ifdef DIAGNOSTIC
   1073 		if (m->m_type != MT_SONAME)
   1074 			panic("receive 1a");
   1075 #endif
   1076 		orig_resid = 0;
   1077 		if (flags & MSG_PEEK) {
   1078 			if (paddr)
   1079 				*paddr = m_copy(m, 0, m->m_len);
   1080 			m = m->m_next;
   1081 		} else {
   1082 			sbfree(&so->so_rcv, m);
   1083 			mbuf_removed = 1;
   1084 			if (paddr) {
   1085 				*paddr = m;
   1086 				so->so_rcv.sb_mb = m->m_next;
   1087 				m->m_next = 0;
   1088 				m = so->so_rcv.sb_mb;
   1089 			} else {
   1090 				MFREE(m, so->so_rcv.sb_mb);
   1091 				m = so->so_rcv.sb_mb;
   1092 			}
   1093 		}
   1094 	}
   1095 	while (m && m->m_type == MT_CONTROL && error == 0) {
   1096 		if (flags & MSG_PEEK) {
   1097 			if (controlp)
   1098 				*controlp = m_copy(m, 0, m->m_len);
   1099 			m = m->m_next;
   1100 		} else {
   1101 			sbfree(&so->so_rcv, m);
   1102 			mbuf_removed = 1;
   1103 			if (controlp) {
   1104 				struct domain *dom = pr->pr_domain;
   1105 				if (dom->dom_externalize && l &&
   1106 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1107 				    SCM_RIGHTS)
   1108 					error = (*dom->dom_externalize)(m, l);
   1109 				*controlp = m;
   1110 				so->so_rcv.sb_mb = m->m_next;
   1111 				m->m_next = 0;
   1112 				m = so->so_rcv.sb_mb;
   1113 			} else {
   1114 				/*
   1115 				 * Dispose of any SCM_RIGHTS message that went
   1116 				 * through the read path rather than recv.
   1117 				 */
   1118 				if (pr->pr_domain->dom_dispose &&
   1119 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1120 					(*pr->pr_domain->dom_dispose)(m);
   1121 				MFREE(m, so->so_rcv.sb_mb);
   1122 				m = so->so_rcv.sb_mb;
   1123 			}
   1124 		}
   1125 		if (controlp) {
   1126 			orig_resid = 0;
   1127 			controlp = &(*controlp)->m_next;
   1128 		}
   1129 	}
   1130 
   1131 	/*
   1132 	 * If m is non-NULL, we have some data to read.  From now on,
   1133 	 * make sure to keep sb_lastrecord consistent when working on
   1134 	 * the last packet on the chain (nextrecord == NULL) and we
   1135 	 * change m->m_nextpkt.
   1136 	 */
   1137 	if (m) {
   1138 		if ((flags & MSG_PEEK) == 0) {
   1139 			m->m_nextpkt = nextrecord;
   1140 			/*
   1141 			 * If nextrecord == NULL (this is a single chain),
   1142 			 * then sb_lastrecord may not be valid here if m
   1143 			 * was changed earlier.
   1144 			 */
   1145 			if (nextrecord == NULL) {
   1146 				KASSERT(so->so_rcv.sb_mb == m);
   1147 				so->so_rcv.sb_lastrecord = m;
   1148 			}
   1149 		}
   1150 		type = m->m_type;
   1151 		if (type == MT_OOBDATA)
   1152 			flags |= MSG_OOB;
   1153 	} else {
   1154 		if ((flags & MSG_PEEK) == 0) {
   1155 			KASSERT(so->so_rcv.sb_mb == m);
   1156 			so->so_rcv.sb_mb = nextrecord;
   1157 			SB_EMPTY_FIXUP(&so->so_rcv);
   1158 		}
   1159 	}
   1160 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1161 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1162 
   1163 	moff = 0;
   1164 	offset = 0;
   1165 	while (m && uio->uio_resid > 0 && error == 0) {
   1166 		if (m->m_type == MT_OOBDATA) {
   1167 			if (type != MT_OOBDATA)
   1168 				break;
   1169 		} else if (type == MT_OOBDATA)
   1170 			break;
   1171 #ifdef DIAGNOSTIC
   1172 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1173 			panic("receive 3");
   1174 #endif
   1175 		so->so_state &= ~SS_RCVATMARK;
   1176 		len = uio->uio_resid;
   1177 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1178 			len = so->so_oobmark - offset;
   1179 		if (len > m->m_len - moff)
   1180 			len = m->m_len - moff;
   1181 		/*
   1182 		 * If mp is set, just pass back the mbufs.
   1183 		 * Otherwise copy them out via the uio, then free.
   1184 		 * Sockbuf must be consistent here (points to current mbuf,
   1185 		 * it points to next record) when we drop priority;
   1186 		 * we must note any additions to the sockbuf when we
   1187 		 * block interrupts again.
   1188 		 */
   1189 		if (mp == 0) {
   1190 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1191 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1192 			splx(s);
   1193 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1194 			s = splsoftnet();
   1195 			if (error) {
   1196 				/*
   1197 				 * If any part of the record has been removed
   1198 				 * (such as the MT_SONAME mbuf, which will
   1199 				 * happen when PR_ADDR, and thus also
   1200 				 * PR_ATOMIC, is set), then drop the entire
   1201 				 * record to maintain the atomicity of the
   1202 				 * receive operation.
   1203 				 *
   1204 				 * This avoids a later panic("receive 1a")
   1205 				 * when compiled with DIAGNOSTIC.
   1206 				 */
   1207 				if (m && mbuf_removed
   1208 				    && (pr->pr_flags & PR_ATOMIC))
   1209 					(void) sbdroprecord(&so->so_rcv);
   1210 
   1211 				goto release;
   1212 			}
   1213 		} else
   1214 			uio->uio_resid -= len;
   1215 		if (len == m->m_len - moff) {
   1216 			if (m->m_flags & M_EOR)
   1217 				flags |= MSG_EOR;
   1218 			if (flags & MSG_PEEK) {
   1219 				m = m->m_next;
   1220 				moff = 0;
   1221 			} else {
   1222 				nextrecord = m->m_nextpkt;
   1223 				sbfree(&so->so_rcv, m);
   1224 				if (mp) {
   1225 					*mp = m;
   1226 					mp = &m->m_next;
   1227 					so->so_rcv.sb_mb = m = m->m_next;
   1228 					*mp = NULL;
   1229 				} else {
   1230 					MFREE(m, so->so_rcv.sb_mb);
   1231 					m = so->so_rcv.sb_mb;
   1232 				}
   1233 				/*
   1234 				 * If m != NULL, we also know that
   1235 				 * so->so_rcv.sb_mb != NULL.
   1236 				 */
   1237 				KASSERT(so->so_rcv.sb_mb == m);
   1238 				if (m) {
   1239 					m->m_nextpkt = nextrecord;
   1240 					if (nextrecord == NULL)
   1241 						so->so_rcv.sb_lastrecord = m;
   1242 				} else {
   1243 					so->so_rcv.sb_mb = nextrecord;
   1244 					SB_EMPTY_FIXUP(&so->so_rcv);
   1245 				}
   1246 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1247 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1248 			}
   1249 		} else {
   1250 			if (flags & MSG_PEEK)
   1251 				moff += len;
   1252 			else {
   1253 				if (mp)
   1254 					*mp = m_copym(m, 0, len, M_WAIT);
   1255 				m->m_data += len;
   1256 				m->m_len -= len;
   1257 				so->so_rcv.sb_cc -= len;
   1258 			}
   1259 		}
   1260 		if (so->so_oobmark) {
   1261 			if ((flags & MSG_PEEK) == 0) {
   1262 				so->so_oobmark -= len;
   1263 				if (so->so_oobmark == 0) {
   1264 					so->so_state |= SS_RCVATMARK;
   1265 					break;
   1266 				}
   1267 			} else {
   1268 				offset += len;
   1269 				if (offset == so->so_oobmark)
   1270 					break;
   1271 			}
   1272 		}
   1273 		if (flags & MSG_EOR)
   1274 			break;
   1275 		/*
   1276 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1277 		 * we must not quit until "uio->uio_resid == 0" or an error
   1278 		 * termination.  If a signal/timeout occurs, return
   1279 		 * with a short count but without error.
   1280 		 * Keep sockbuf locked against other readers.
   1281 		 */
   1282 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
   1283 		    !sosendallatonce(so) && !nextrecord) {
   1284 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1285 				break;
   1286 			/*
   1287 			 * If we are peeking and the socket receive buffer is
   1288 			 * full, stop since we can't get more data to peek at.
   1289 			 */
   1290 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1291 				break;
   1292 			/*
   1293 			 * If we've drained the socket buffer, tell the
   1294 			 * protocol in case it needs to do something to
   1295 			 * get it filled again.
   1296 			 */
   1297 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1298 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1299 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1300 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1301 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1302 			error = sbwait(&so->so_rcv);
   1303 			if (error) {
   1304 				sbunlock(&so->so_rcv);
   1305 				splx(s);
   1306 				return (0);
   1307 			}
   1308 			if ((m = so->so_rcv.sb_mb) != NULL)
   1309 				nextrecord = m->m_nextpkt;
   1310 		}
   1311 	}
   1312 
   1313 	if (m && pr->pr_flags & PR_ATOMIC) {
   1314 		flags |= MSG_TRUNC;
   1315 		if ((flags & MSG_PEEK) == 0)
   1316 			(void) sbdroprecord(&so->so_rcv);
   1317 	}
   1318 	if ((flags & MSG_PEEK) == 0) {
   1319 		if (m == 0) {
   1320 			/*
   1321 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1322 			 * part makes sure sb_lastrecord is up-to-date if
   1323 			 * there is still data in the socket buffer.
   1324 			 */
   1325 			so->so_rcv.sb_mb = nextrecord;
   1326 			if (so->so_rcv.sb_mb == NULL) {
   1327 				so->so_rcv.sb_mbtail = NULL;
   1328 				so->so_rcv.sb_lastrecord = NULL;
   1329 			} else if (nextrecord->m_nextpkt == NULL)
   1330 				so->so_rcv.sb_lastrecord = nextrecord;
   1331 		}
   1332 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1333 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1334 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1335 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1336 			    (struct mbuf *)(long)flags, NULL, l);
   1337 	}
   1338 	if (orig_resid == uio->uio_resid && orig_resid &&
   1339 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1340 		sbunlock(&so->so_rcv);
   1341 		splx(s);
   1342 		goto restart;
   1343 	}
   1344 
   1345 	if (flagsp)
   1346 		*flagsp |= flags;
   1347  release:
   1348 	sbunlock(&so->so_rcv);
   1349 	splx(s);
   1350 	return (error);
   1351 }
   1352 
   1353 int
   1354 soshutdown(struct socket *so, int how)
   1355 {
   1356 	const struct protosw	*pr;
   1357 
   1358 	pr = so->so_proto;
   1359 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1360 		return (EINVAL);
   1361 
   1362 	if (how == SHUT_RD || how == SHUT_RDWR)
   1363 		sorflush(so);
   1364 	if (how == SHUT_WR || how == SHUT_RDWR)
   1365 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1366 		    NULL, NULL, NULL);
   1367 	return (0);
   1368 }
   1369 
   1370 void
   1371 sorflush(struct socket *so)
   1372 {
   1373 	struct sockbuf	*sb, asb;
   1374 	const struct protosw	*pr;
   1375 	int		s;
   1376 
   1377 	sb = &so->so_rcv;
   1378 	pr = so->so_proto;
   1379 	sb->sb_flags |= SB_NOINTR;
   1380 	(void) sblock(sb, M_WAITOK);
   1381 	s = splnet();
   1382 	socantrcvmore(so);
   1383 	sbunlock(sb);
   1384 	asb = *sb;
   1385 	/*
   1386 	 * Clear most of the sockbuf structure, but leave some of the
   1387 	 * fields valid.
   1388 	 */
   1389 	memset(&sb->sb_startzero, 0,
   1390 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1391 	splx(s);
   1392 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1393 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1394 	sbrelease(&asb, so);
   1395 }
   1396 
   1397 int
   1398 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
   1399 {
   1400 	int		error;
   1401 	struct mbuf	*m;
   1402 	struct linger	*l;
   1403 	struct sockbuf	*sb;
   1404 
   1405 	error = 0;
   1406 	m = m0;
   1407 	if (level != SOL_SOCKET) {
   1408 		if (so->so_proto && so->so_proto->pr_ctloutput)
   1409 			return ((*so->so_proto->pr_ctloutput)
   1410 				  (PRCO_SETOPT, so, level, optname, &m0));
   1411 		error = ENOPROTOOPT;
   1412 	} else {
   1413 		switch (optname) {
   1414 
   1415 		case SO_LINGER:
   1416 			if (m == NULL || m->m_len != sizeof(struct linger)) {
   1417 				error = EINVAL;
   1418 				goto bad;
   1419 			}
   1420 			l = mtod(m, struct linger *);
   1421 			if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1422 			    l->l_linger > (INT_MAX / hz)) {
   1423 				error = EDOM;
   1424 				goto bad;
   1425 			}
   1426 			so->so_linger = l->l_linger;
   1427 			if (l->l_onoff)
   1428 				so->so_options |= SO_LINGER;
   1429 			else
   1430 				so->so_options &= ~SO_LINGER;
   1431 			break;
   1432 
   1433 		case SO_DEBUG:
   1434 		case SO_KEEPALIVE:
   1435 		case SO_DONTROUTE:
   1436 		case SO_USELOOPBACK:
   1437 		case SO_BROADCAST:
   1438 		case SO_REUSEADDR:
   1439 		case SO_REUSEPORT:
   1440 		case SO_OOBINLINE:
   1441 		case SO_TIMESTAMP:
   1442 			if (m == NULL || m->m_len < sizeof(int)) {
   1443 				error = EINVAL;
   1444 				goto bad;
   1445 			}
   1446 			if (*mtod(m, int *))
   1447 				so->so_options |= optname;
   1448 			else
   1449 				so->so_options &= ~optname;
   1450 			break;
   1451 
   1452 		case SO_SNDBUF:
   1453 		case SO_RCVBUF:
   1454 		case SO_SNDLOWAT:
   1455 		case SO_RCVLOWAT:
   1456 		    {
   1457 			int optval;
   1458 
   1459 			if (m == NULL || m->m_len < sizeof(int)) {
   1460 				error = EINVAL;
   1461 				goto bad;
   1462 			}
   1463 
   1464 			/*
   1465 			 * Values < 1 make no sense for any of these
   1466 			 * options, so disallow them.
   1467 			 */
   1468 			optval = *mtod(m, int *);
   1469 			if (optval < 1) {
   1470 				error = EINVAL;
   1471 				goto bad;
   1472 			}
   1473 
   1474 			switch (optname) {
   1475 
   1476 			case SO_SNDBUF:
   1477 			case SO_RCVBUF:
   1478 				sb = (optname == SO_SNDBUF) ?
   1479 				    &so->so_snd : &so->so_rcv;
   1480 				if (sbreserve(sb, (u_long)optval, so) == 0) {
   1481 					error = ENOBUFS;
   1482 					goto bad;
   1483 				}
   1484 				sb->sb_flags &= ~SB_AUTOSIZE;
   1485 				break;
   1486 
   1487 			/*
   1488 			 * Make sure the low-water is never greater than
   1489 			 * the high-water.
   1490 			 */
   1491 			case SO_SNDLOWAT:
   1492 				so->so_snd.sb_lowat =
   1493 				    (optval > so->so_snd.sb_hiwat) ?
   1494 				    so->so_snd.sb_hiwat : optval;
   1495 				break;
   1496 			case SO_RCVLOWAT:
   1497 				so->so_rcv.sb_lowat =
   1498 				    (optval > so->so_rcv.sb_hiwat) ?
   1499 				    so->so_rcv.sb_hiwat : optval;
   1500 				break;
   1501 			}
   1502 			break;
   1503 		    }
   1504 
   1505 		case SO_SNDTIMEO:
   1506 		case SO_RCVTIMEO:
   1507 		    {
   1508 			struct timeval *tv;
   1509 			int val;
   1510 
   1511 			if (m == NULL || m->m_len < sizeof(*tv)) {
   1512 				error = EINVAL;
   1513 				goto bad;
   1514 			}
   1515 			tv = mtod(m, struct timeval *);
   1516 			if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
   1517 				error = EDOM;
   1518 				goto bad;
   1519 			}
   1520 			val = tv->tv_sec * hz + tv->tv_usec / tick;
   1521 			if (val == 0 && tv->tv_usec != 0)
   1522 				val = 1;
   1523 
   1524 			switch (optname) {
   1525 
   1526 			case SO_SNDTIMEO:
   1527 				so->so_snd.sb_timeo = val;
   1528 				break;
   1529 			case SO_RCVTIMEO:
   1530 				so->so_rcv.sb_timeo = val;
   1531 				break;
   1532 			}
   1533 			break;
   1534 		    }
   1535 
   1536 		default:
   1537 			error = ENOPROTOOPT;
   1538 			break;
   1539 		}
   1540 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
   1541 			(void) ((*so->so_proto->pr_ctloutput)
   1542 				  (PRCO_SETOPT, so, level, optname, &m0));
   1543 			m = NULL;	/* freed by protocol */
   1544 		}
   1545 	}
   1546  bad:
   1547 	if (m)
   1548 		(void) m_free(m);
   1549 	return (error);
   1550 }
   1551 
   1552 int
   1553 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1554 {
   1555 	struct mbuf	*m;
   1556 
   1557 	if (level != SOL_SOCKET) {
   1558 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1559 			return ((*so->so_proto->pr_ctloutput)
   1560 				  (PRCO_GETOPT, so, level, optname, mp));
   1561 		} else
   1562 			return (ENOPROTOOPT);
   1563 	} else {
   1564 		m = m_get(M_WAIT, MT_SOOPTS);
   1565 		m->m_len = sizeof(int);
   1566 
   1567 		switch (optname) {
   1568 
   1569 		case SO_LINGER:
   1570 			m->m_len = sizeof(struct linger);
   1571 			mtod(m, struct linger *)->l_onoff =
   1572 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1573 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1574 			break;
   1575 
   1576 		case SO_USELOOPBACK:
   1577 		case SO_DONTROUTE:
   1578 		case SO_DEBUG:
   1579 		case SO_KEEPALIVE:
   1580 		case SO_REUSEADDR:
   1581 		case SO_REUSEPORT:
   1582 		case SO_BROADCAST:
   1583 		case SO_OOBINLINE:
   1584 		case SO_TIMESTAMP:
   1585 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1586 			break;
   1587 
   1588 		case SO_TYPE:
   1589 			*mtod(m, int *) = so->so_type;
   1590 			break;
   1591 
   1592 		case SO_ERROR:
   1593 			*mtod(m, int *) = so->so_error;
   1594 			so->so_error = 0;
   1595 			break;
   1596 
   1597 		case SO_SNDBUF:
   1598 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1599 			break;
   1600 
   1601 		case SO_RCVBUF:
   1602 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1603 			break;
   1604 
   1605 		case SO_SNDLOWAT:
   1606 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1607 			break;
   1608 
   1609 		case SO_RCVLOWAT:
   1610 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1611 			break;
   1612 
   1613 		case SO_SNDTIMEO:
   1614 		case SO_RCVTIMEO:
   1615 		    {
   1616 			int val = (optname == SO_SNDTIMEO ?
   1617 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1618 
   1619 			m->m_len = sizeof(struct timeval);
   1620 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1621 			mtod(m, struct timeval *)->tv_usec =
   1622 			    (val % hz) * tick;
   1623 			break;
   1624 		    }
   1625 
   1626 		case SO_OVERFLOWED:
   1627 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1628 			break;
   1629 
   1630 		default:
   1631 			(void)m_free(m);
   1632 			return (ENOPROTOOPT);
   1633 		}
   1634 		*mp = m;
   1635 		return (0);
   1636 	}
   1637 }
   1638 
   1639 void
   1640 sohasoutofband(struct socket *so)
   1641 {
   1642 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1643 	selwakeup(&so->so_rcv.sb_sel);
   1644 }
   1645 
   1646 static void
   1647 filt_sordetach(struct knote *kn)
   1648 {
   1649 	struct socket	*so;
   1650 
   1651 	so = (struct socket *)kn->kn_fp->f_data;
   1652 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1653 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1654 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1655 }
   1656 
   1657 /*ARGSUSED*/
   1658 static int
   1659 filt_soread(struct knote *kn, long hint)
   1660 {
   1661 	struct socket	*so;
   1662 
   1663 	so = (struct socket *)kn->kn_fp->f_data;
   1664 	kn->kn_data = so->so_rcv.sb_cc;
   1665 	if (so->so_state & SS_CANTRCVMORE) {
   1666 		kn->kn_flags |= EV_EOF;
   1667 		kn->kn_fflags = so->so_error;
   1668 		return (1);
   1669 	}
   1670 	if (so->so_error)	/* temporary udp error */
   1671 		return (1);
   1672 	if (kn->kn_sfflags & NOTE_LOWAT)
   1673 		return (kn->kn_data >= kn->kn_sdata);
   1674 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1675 }
   1676 
   1677 static void
   1678 filt_sowdetach(struct knote *kn)
   1679 {
   1680 	struct socket	*so;
   1681 
   1682 	so = (struct socket *)kn->kn_fp->f_data;
   1683 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1684 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1685 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1686 }
   1687 
   1688 /*ARGSUSED*/
   1689 static int
   1690 filt_sowrite(struct knote *kn, long hint)
   1691 {
   1692 	struct socket	*so;
   1693 
   1694 	so = (struct socket *)kn->kn_fp->f_data;
   1695 	kn->kn_data = sbspace(&so->so_snd);
   1696 	if (so->so_state & SS_CANTSENDMORE) {
   1697 		kn->kn_flags |= EV_EOF;
   1698 		kn->kn_fflags = so->so_error;
   1699 		return (1);
   1700 	}
   1701 	if (so->so_error)	/* temporary udp error */
   1702 		return (1);
   1703 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1704 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1705 		return (0);
   1706 	if (kn->kn_sfflags & NOTE_LOWAT)
   1707 		return (kn->kn_data >= kn->kn_sdata);
   1708 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1709 }
   1710 
   1711 /*ARGSUSED*/
   1712 static int
   1713 filt_solisten(struct knote *kn, long hint)
   1714 {
   1715 	struct socket	*so;
   1716 
   1717 	so = (struct socket *)kn->kn_fp->f_data;
   1718 
   1719 	/*
   1720 	 * Set kn_data to number of incoming connections, not
   1721 	 * counting partial (incomplete) connections.
   1722 	 */
   1723 	kn->kn_data = so->so_qlen;
   1724 	return (kn->kn_data > 0);
   1725 }
   1726 
   1727 static const struct filterops solisten_filtops =
   1728 	{ 1, NULL, filt_sordetach, filt_solisten };
   1729 static const struct filterops soread_filtops =
   1730 	{ 1, NULL, filt_sordetach, filt_soread };
   1731 static const struct filterops sowrite_filtops =
   1732 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1733 
   1734 int
   1735 soo_kqfilter(struct file *fp, struct knote *kn)
   1736 {
   1737 	struct socket	*so;
   1738 	struct sockbuf	*sb;
   1739 
   1740 	so = (struct socket *)kn->kn_fp->f_data;
   1741 	switch (kn->kn_filter) {
   1742 	case EVFILT_READ:
   1743 		if (so->so_options & SO_ACCEPTCONN)
   1744 			kn->kn_fop = &solisten_filtops;
   1745 		else
   1746 			kn->kn_fop = &soread_filtops;
   1747 		sb = &so->so_rcv;
   1748 		break;
   1749 	case EVFILT_WRITE:
   1750 		kn->kn_fop = &sowrite_filtops;
   1751 		sb = &so->so_snd;
   1752 		break;
   1753 	default:
   1754 		return (1);
   1755 	}
   1756 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1757 	sb->sb_flags |= SB_KNOTE;
   1758 	return (0);
   1759 }
   1760 
   1761 #include <sys/sysctl.h>
   1762 
   1763 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1764 
   1765 /*
   1766  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1767  * value is not too small.
   1768  * (XXX should we maybe make sure it's not too large as well?)
   1769  */
   1770 static int
   1771 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1772 {
   1773 	int error, new_somaxkva;
   1774 	struct sysctlnode node;
   1775 
   1776 	new_somaxkva = somaxkva;
   1777 	node = *rnode;
   1778 	node.sysctl_data = &new_somaxkva;
   1779 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1780 	if (error || newp == NULL)
   1781 		return (error);
   1782 
   1783 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1784 		return (EINVAL);
   1785 
   1786 	mutex_enter(&so_pendfree_lock);
   1787 	somaxkva = new_somaxkva;
   1788 	cv_broadcast(&socurkva_cv);
   1789 	mutex_exit(&so_pendfree_lock);
   1790 
   1791 	return (error);
   1792 }
   1793 
   1794 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1795 {
   1796 
   1797 	sysctl_createv(clog, 0, NULL, NULL,
   1798 		       CTLFLAG_PERMANENT,
   1799 		       CTLTYPE_NODE, "kern", NULL,
   1800 		       NULL, 0, NULL, 0,
   1801 		       CTL_KERN, CTL_EOL);
   1802 
   1803 	sysctl_createv(clog, 0, NULL, NULL,
   1804 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1805 		       CTLTYPE_INT, "somaxkva",
   1806 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1807 				    "used for socket buffers"),
   1808 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1809 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1810 }
   1811