uipc_socket.c revision 1.135 1 /* $NetBSD: uipc_socket.c,v 1.135 2007/03/12 18:18:34 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.135 2007/03/12 18:18:34 ad Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95
96 #include <uvm/uvm.h>
97
98 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
99 IPL_SOFTNET);
100
101 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
102 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
103
104 extern int somaxconn; /* patchable (XXX sysctl) */
105 int somaxconn = SOMAXCONN;
106
107 #ifdef SOSEND_COUNTERS
108 #include <sys/device.h>
109
110 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "loan big");
112 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy big");
114 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy small");
116 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "kva limit");
118
119 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
120
121 EVCNT_ATTACH_STATIC(sosend_loan_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_big);
123 EVCNT_ATTACH_STATIC(sosend_copy_small);
124 EVCNT_ATTACH_STATIC(sosend_kvalimit);
125 #else
126
127 #define SOSEND_COUNTER_INCR(ev) /* nothing */
128
129 #endif /* SOSEND_COUNTERS */
130
131 static struct callback_entry sokva_reclaimerentry;
132
133 #ifdef SOSEND_NO_LOAN
134 int sock_loan_thresh = -1;
135 #else
136 int sock_loan_thresh = 4096;
137 #endif
138
139 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER;
140 static struct mbuf *so_pendfree;
141
142 #ifndef SOMAXKVA
143 #define SOMAXKVA (16 * 1024 * 1024)
144 #endif
145 int somaxkva = SOMAXKVA;
146 static int socurkva;
147 static int sokvawaiters;
148
149 #define SOCK_LOAN_CHUNK 65536
150
151 static size_t sodopendfree(void);
152 static size_t sodopendfreel(void);
153
154 static vsize_t
155 sokvareserve(struct socket *so, vsize_t len)
156 {
157 int s;
158 int error;
159
160 s = splvm();
161 simple_lock(&so_pendfree_slock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 sokvawaiters++;
180 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0,
181 &so_pendfree_slock);
182 sokvawaiters--;
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 simple_unlock(&so_pendfree_slock);
190 splx(s);
191 return len;
192 }
193
194 static void
195 sokvaunreserve(vsize_t len)
196 {
197 int s;
198
199 s = splvm();
200 simple_lock(&so_pendfree_slock);
201 socurkva -= len;
202 if (sokvawaiters)
203 wakeup(&socurkva);
204 simple_unlock(&so_pendfree_slock);
205 splx(s);
206 }
207
208 /*
209 * sokvaalloc: allocate kva for loan.
210 */
211
212 vaddr_t
213 sokvaalloc(vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 /*
218 * reserve kva.
219 */
220
221 if (sokvareserve(so, len) == 0)
222 return 0;
223
224 /*
225 * allocate kva.
226 */
227
228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
229 if (lva == 0) {
230 sokvaunreserve(len);
231 return (0);
232 }
233
234 return lva;
235 }
236
237 /*
238 * sokvafree: free kva for loan.
239 */
240
241 void
242 sokvafree(vaddr_t sva, vsize_t len)
243 {
244
245 /*
246 * free kva.
247 */
248
249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
250
251 /*
252 * unreserve kva.
253 */
254
255 sokvaunreserve(len);
256 }
257
258 static void
259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
260 {
261 vaddr_t va, sva, eva;
262 vsize_t len;
263 paddr_t pa;
264 int i, npgs;
265
266 eva = round_page((vaddr_t) buf + size);
267 sva = trunc_page((vaddr_t) buf);
268 len = eva - sva;
269 npgs = len >> PAGE_SHIFT;
270
271 if (__predict_false(pgs == NULL)) {
272 pgs = alloca(npgs * sizeof(*pgs));
273
274 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
275 if (pmap_extract(pmap_kernel(), va, &pa) == false)
276 panic("sodoloanfree: va 0x%lx not mapped", va);
277 pgs[i] = PHYS_TO_VM_PAGE(pa);
278 }
279 }
280
281 pmap_kremove(sva, len);
282 pmap_update(pmap_kernel());
283 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
284 sokvafree(sva, len);
285 }
286
287 static size_t
288 sodopendfree()
289 {
290 int s;
291 size_t rv;
292
293 s = splvm();
294 simple_lock(&so_pendfree_slock);
295 rv = sodopendfreel();
296 simple_unlock(&so_pendfree_slock);
297 splx(s);
298
299 return rv;
300 }
301
302 /*
303 * sodopendfreel: free mbufs on "pendfree" list.
304 * unlock and relock so_pendfree_slock when freeing mbufs.
305 *
306 * => called with so_pendfree_slock held.
307 * => called at splvm.
308 */
309
310 static size_t
311 sodopendfreel()
312 {
313 size_t rv = 0;
314
315 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock));
316
317 for (;;) {
318 struct mbuf *m;
319 struct mbuf *next;
320
321 m = so_pendfree;
322 if (m == NULL)
323 break;
324 so_pendfree = NULL;
325 simple_unlock(&so_pendfree_slock);
326 /* XXX splx */
327
328 for (; m != NULL; m = next) {
329 next = m->m_next;
330
331 rv += m->m_ext.ext_size;
332 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
333 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
334 m->m_ext.ext_size);
335 pool_cache_put(&mbpool_cache, m);
336 }
337
338 /* XXX splvm */
339 simple_lock(&so_pendfree_slock);
340 }
341
342 return (rv);
343 }
344
345 void
346 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
347 {
348 int s;
349
350 if (m == NULL) {
351
352 /*
353 * called from MEXTREMOVE.
354 */
355
356 sodoloanfree(NULL, buf, size);
357 return;
358 }
359
360 /*
361 * postpone freeing mbuf.
362 *
363 * we can't do it in interrupt context
364 * because we need to put kva back to kernel_map.
365 */
366
367 s = splvm();
368 simple_lock(&so_pendfree_slock);
369 m->m_next = so_pendfree;
370 so_pendfree = m;
371 if (sokvawaiters)
372 wakeup(&socurkva);
373 simple_unlock(&so_pendfree_slock);
374 splx(s);
375 }
376
377 static long
378 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
379 {
380 struct iovec *iov = uio->uio_iov;
381 vaddr_t sva, eva;
382 vsize_t len;
383 vaddr_t lva, va;
384 int npgs, i, error;
385
386 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
387 return (0);
388
389 if (iov->iov_len < (size_t) space)
390 space = iov->iov_len;
391 if (space > SOCK_LOAN_CHUNK)
392 space = SOCK_LOAN_CHUNK;
393
394 eva = round_page((vaddr_t) iov->iov_base + space);
395 sva = trunc_page((vaddr_t) iov->iov_base);
396 len = eva - sva;
397 npgs = len >> PAGE_SHIFT;
398
399 /* XXX KDASSERT */
400 KASSERT(npgs <= M_EXT_MAXPAGES);
401
402 lva = sokvaalloc(len, so);
403 if (lva == 0)
404 return 0;
405
406 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
407 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
408 if (error) {
409 sokvafree(lva, len);
410 return (0);
411 }
412
413 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
414 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
415 VM_PROT_READ);
416 pmap_update(pmap_kernel());
417
418 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
419
420 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
421 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
422
423 uio->uio_resid -= space;
424 /* uio_offset not updated, not set/used for write(2) */
425 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
426 uio->uio_iov->iov_len -= space;
427 if (uio->uio_iov->iov_len == 0) {
428 uio->uio_iov++;
429 uio->uio_iovcnt--;
430 }
431
432 return (space);
433 }
434
435 static int
436 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
437 {
438
439 KASSERT(ce == &sokva_reclaimerentry);
440 KASSERT(obj == NULL);
441
442 sodopendfree();
443 if (!vm_map_starved_p(kernel_map)) {
444 return CALLBACK_CHAIN_ABORT;
445 }
446 return CALLBACK_CHAIN_CONTINUE;
447 }
448
449 void
450 soinit(void)
451 {
452
453 /* Set the initial adjusted socket buffer size. */
454 if (sb_max_set(sb_max))
455 panic("bad initial sb_max value: %lu", sb_max);
456
457 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
458 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
459 }
460
461 /*
462 * Socket operation routines.
463 * These routines are called by the routines in
464 * sys_socket.c or from a system process, and
465 * implement the semantics of socket operations by
466 * switching out to the protocol specific routines.
467 */
468 /*ARGSUSED*/
469 int
470 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
471 {
472 const struct protosw *prp;
473 struct socket *so;
474 uid_t uid;
475 int error, s;
476
477 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
478 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
479 KAUTH_ARG(proto));
480 if (error)
481 return (error);
482
483 if (proto)
484 prp = pffindproto(dom, proto, type);
485 else
486 prp = pffindtype(dom, type);
487 if (prp == 0) {
488 /* no support for domain */
489 if (pffinddomain(dom) == 0)
490 return (EAFNOSUPPORT);
491 /* no support for socket type */
492 if (proto == 0 && type != 0)
493 return (EPROTOTYPE);
494 return (EPROTONOSUPPORT);
495 }
496 if (prp->pr_usrreq == 0)
497 return (EPROTONOSUPPORT);
498 if (prp->pr_type != type)
499 return (EPROTOTYPE);
500 s = splsoftnet();
501 so = pool_get(&socket_pool, PR_WAITOK);
502 memset((void *)so, 0, sizeof(*so));
503 TAILQ_INIT(&so->so_q0);
504 TAILQ_INIT(&so->so_q);
505 so->so_type = type;
506 so->so_proto = prp;
507 so->so_send = sosend;
508 so->so_receive = soreceive;
509 #ifdef MBUFTRACE
510 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
511 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
512 so->so_mowner = &prp->pr_domain->dom_mowner;
513 #endif
514 if (l != NULL) {
515 uid = kauth_cred_geteuid(l->l_cred);
516 } else {
517 uid = 0;
518 }
519 so->so_uidinfo = uid_find(uid);
520 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
521 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
522 if (error) {
523 so->so_state |= SS_NOFDREF;
524 sofree(so);
525 splx(s);
526 return (error);
527 }
528 splx(s);
529 *aso = so;
530 return (0);
531 }
532
533 int
534 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
535 {
536 int s, error;
537
538 s = splsoftnet();
539 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
540 nam, (struct mbuf *)0, l);
541 splx(s);
542 return (error);
543 }
544
545 int
546 solisten(struct socket *so, int backlog)
547 {
548 int s, error;
549
550 s = splsoftnet();
551 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
552 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
553 if (error) {
554 splx(s);
555 return (error);
556 }
557 if (TAILQ_EMPTY(&so->so_q))
558 so->so_options |= SO_ACCEPTCONN;
559 if (backlog < 0)
560 backlog = 0;
561 so->so_qlimit = min(backlog, somaxconn);
562 splx(s);
563 return (0);
564 }
565
566 void
567 sofree(struct socket *so)
568 {
569
570 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
571 return;
572 if (so->so_head) {
573 /*
574 * We must not decommission a socket that's on the accept(2)
575 * queue. If we do, then accept(2) may hang after select(2)
576 * indicated that the listening socket was ready.
577 */
578 if (!soqremque(so, 0))
579 return;
580 }
581 if (so->so_rcv.sb_hiwat)
582 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
583 RLIM_INFINITY);
584 if (so->so_snd.sb_hiwat)
585 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
586 RLIM_INFINITY);
587 sbrelease(&so->so_snd, so);
588 sorflush(so);
589 pool_put(&socket_pool, so);
590 }
591
592 /*
593 * Close a socket on last file table reference removal.
594 * Initiate disconnect if connected.
595 * Free socket when disconnect complete.
596 */
597 int
598 soclose(struct socket *so)
599 {
600 struct socket *so2;
601 int s, error;
602
603 error = 0;
604 s = splsoftnet(); /* conservative */
605 if (so->so_options & SO_ACCEPTCONN) {
606 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
607 (void) soqremque(so2, 0);
608 (void) soabort(so2);
609 }
610 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
611 (void) soqremque(so2, 1);
612 (void) soabort(so2);
613 }
614 }
615 if (so->so_pcb == 0)
616 goto discard;
617 if (so->so_state & SS_ISCONNECTED) {
618 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
619 error = sodisconnect(so);
620 if (error)
621 goto drop;
622 }
623 if (so->so_options & SO_LINGER) {
624 if ((so->so_state & SS_ISDISCONNECTING) &&
625 (so->so_state & SS_NBIO))
626 goto drop;
627 while (so->so_state & SS_ISCONNECTED) {
628 error = tsleep((void *)&so->so_timeo,
629 PSOCK | PCATCH, netcls,
630 so->so_linger * hz);
631 if (error)
632 break;
633 }
634 }
635 }
636 drop:
637 if (so->so_pcb) {
638 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
639 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
640 (struct lwp *)0);
641 if (error == 0)
642 error = error2;
643 }
644 discard:
645 if (so->so_state & SS_NOFDREF)
646 panic("soclose: NOFDREF");
647 so->so_state |= SS_NOFDREF;
648 sofree(so);
649 splx(s);
650 return (error);
651 }
652
653 /*
654 * Must be called at splsoftnet...
655 */
656 int
657 soabort(struct socket *so)
658 {
659
660 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
661 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
662 }
663
664 int
665 soaccept(struct socket *so, struct mbuf *nam)
666 {
667 int s, error;
668
669 error = 0;
670 s = splsoftnet();
671 if ((so->so_state & SS_NOFDREF) == 0)
672 panic("soaccept: !NOFDREF");
673 so->so_state &= ~SS_NOFDREF;
674 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
675 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
676 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
677 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
678 else
679 error = ECONNABORTED;
680
681 splx(s);
682 return (error);
683 }
684
685 int
686 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
687 {
688 int s, error;
689
690 if (so->so_options & SO_ACCEPTCONN)
691 return (EOPNOTSUPP);
692 s = splsoftnet();
693 /*
694 * If protocol is connection-based, can only connect once.
695 * Otherwise, if connected, try to disconnect first.
696 * This allows user to disconnect by connecting to, e.g.,
697 * a null address.
698 */
699 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
700 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
701 (error = sodisconnect(so))))
702 error = EISCONN;
703 else
704 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
705 (struct mbuf *)0, nam, (struct mbuf *)0, l);
706 splx(s);
707 return (error);
708 }
709
710 int
711 soconnect2(struct socket *so1, struct socket *so2)
712 {
713 int s, error;
714
715 s = splsoftnet();
716 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
717 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
718 (struct lwp *)0);
719 splx(s);
720 return (error);
721 }
722
723 int
724 sodisconnect(struct socket *so)
725 {
726 int s, error;
727
728 s = splsoftnet();
729 if ((so->so_state & SS_ISCONNECTED) == 0) {
730 error = ENOTCONN;
731 goto bad;
732 }
733 if (so->so_state & SS_ISDISCONNECTING) {
734 error = EALREADY;
735 goto bad;
736 }
737 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
738 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
739 (struct lwp *)0);
740 bad:
741 splx(s);
742 sodopendfree();
743 return (error);
744 }
745
746 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
747 /*
748 * Send on a socket.
749 * If send must go all at once and message is larger than
750 * send buffering, then hard error.
751 * Lock against other senders.
752 * If must go all at once and not enough room now, then
753 * inform user that this would block and do nothing.
754 * Otherwise, if nonblocking, send as much as possible.
755 * The data to be sent is described by "uio" if nonzero,
756 * otherwise by the mbuf chain "top" (which must be null
757 * if uio is not). Data provided in mbuf chain must be small
758 * enough to send all at once.
759 *
760 * Returns nonzero on error, timeout or signal; callers
761 * must check for short counts if EINTR/ERESTART are returned.
762 * Data and control buffers are freed on return.
763 */
764 int
765 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
766 struct mbuf *control, int flags, struct lwp *l)
767 {
768 struct mbuf **mp, *m;
769 struct proc *p;
770 long space, len, resid, clen, mlen;
771 int error, s, dontroute, atomic;
772
773 p = l->l_proc;
774 sodopendfree();
775
776 clen = 0;
777 atomic = sosendallatonce(so) || top;
778 if (uio)
779 resid = uio->uio_resid;
780 else
781 resid = top->m_pkthdr.len;
782 /*
783 * In theory resid should be unsigned.
784 * However, space must be signed, as it might be less than 0
785 * if we over-committed, and we must use a signed comparison
786 * of space and resid. On the other hand, a negative resid
787 * causes us to loop sending 0-length segments to the protocol.
788 */
789 if (resid < 0) {
790 error = EINVAL;
791 goto out;
792 }
793 dontroute =
794 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
795 (so->so_proto->pr_flags & PR_ATOMIC);
796 if (p)
797 p->p_stats->p_ru.ru_msgsnd++;
798 if (control)
799 clen = control->m_len;
800 #define snderr(errno) { error = errno; splx(s); goto release; }
801
802 restart:
803 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
804 goto out;
805 do {
806 s = splsoftnet();
807 if (so->so_state & SS_CANTSENDMORE)
808 snderr(EPIPE);
809 if (so->so_error) {
810 error = so->so_error;
811 so->so_error = 0;
812 splx(s);
813 goto release;
814 }
815 if ((so->so_state & SS_ISCONNECTED) == 0) {
816 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
817 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
818 !(resid == 0 && clen != 0))
819 snderr(ENOTCONN);
820 } else if (addr == 0)
821 snderr(EDESTADDRREQ);
822 }
823 space = sbspace(&so->so_snd);
824 if (flags & MSG_OOB)
825 space += 1024;
826 if ((atomic && resid > so->so_snd.sb_hiwat) ||
827 clen > so->so_snd.sb_hiwat)
828 snderr(EMSGSIZE);
829 if (space < resid + clen &&
830 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
831 if (so->so_state & SS_NBIO)
832 snderr(EWOULDBLOCK);
833 sbunlock(&so->so_snd);
834 error = sbwait(&so->so_snd);
835 splx(s);
836 if (error)
837 goto out;
838 goto restart;
839 }
840 splx(s);
841 mp = ⊤
842 space -= clen;
843 do {
844 if (uio == NULL) {
845 /*
846 * Data is prepackaged in "top".
847 */
848 resid = 0;
849 if (flags & MSG_EOR)
850 top->m_flags |= M_EOR;
851 } else do {
852 if (top == 0) {
853 m = m_gethdr(M_WAIT, MT_DATA);
854 mlen = MHLEN;
855 m->m_pkthdr.len = 0;
856 m->m_pkthdr.rcvif = (struct ifnet *)0;
857 } else {
858 m = m_get(M_WAIT, MT_DATA);
859 mlen = MLEN;
860 }
861 MCLAIM(m, so->so_snd.sb_mowner);
862 if (sock_loan_thresh >= 0 &&
863 uio->uio_iov->iov_len >= sock_loan_thresh &&
864 space >= sock_loan_thresh &&
865 (len = sosend_loan(so, uio, m,
866 space)) != 0) {
867 SOSEND_COUNTER_INCR(&sosend_loan_big);
868 space -= len;
869 goto have_data;
870 }
871 if (resid >= MINCLSIZE && space >= MCLBYTES) {
872 SOSEND_COUNTER_INCR(&sosend_copy_big);
873 m_clget(m, M_WAIT);
874 if ((m->m_flags & M_EXT) == 0)
875 goto nopages;
876 mlen = MCLBYTES;
877 if (atomic && top == 0) {
878 len = lmin(MCLBYTES - max_hdr,
879 resid);
880 m->m_data += max_hdr;
881 } else
882 len = lmin(MCLBYTES, resid);
883 space -= len;
884 } else {
885 nopages:
886 SOSEND_COUNTER_INCR(&sosend_copy_small);
887 len = lmin(lmin(mlen, resid), space);
888 space -= len;
889 /*
890 * For datagram protocols, leave room
891 * for protocol headers in first mbuf.
892 */
893 if (atomic && top == 0 && len < mlen)
894 MH_ALIGN(m, len);
895 }
896 error = uiomove(mtod(m, void *), (int)len,
897 uio);
898 have_data:
899 resid = uio->uio_resid;
900 m->m_len = len;
901 *mp = m;
902 top->m_pkthdr.len += len;
903 if (error)
904 goto release;
905 mp = &m->m_next;
906 if (resid <= 0) {
907 if (flags & MSG_EOR)
908 top->m_flags |= M_EOR;
909 break;
910 }
911 } while (space > 0 && atomic);
912
913 s = splsoftnet();
914
915 if (so->so_state & SS_CANTSENDMORE)
916 snderr(EPIPE);
917
918 if (dontroute)
919 so->so_options |= SO_DONTROUTE;
920 if (resid > 0)
921 so->so_state |= SS_MORETOCOME;
922 error = (*so->so_proto->pr_usrreq)(so,
923 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
924 top, addr, control, curlwp); /* XXX */
925 if (dontroute)
926 so->so_options &= ~SO_DONTROUTE;
927 if (resid > 0)
928 so->so_state &= ~SS_MORETOCOME;
929 splx(s);
930
931 clen = 0;
932 control = 0;
933 top = 0;
934 mp = ⊤
935 if (error)
936 goto release;
937 } while (resid && space > 0);
938 } while (resid);
939
940 release:
941 sbunlock(&so->so_snd);
942 out:
943 if (top)
944 m_freem(top);
945 if (control)
946 m_freem(control);
947 return (error);
948 }
949
950 /*
951 * Implement receive operations on a socket.
952 * We depend on the way that records are added to the sockbuf
953 * by sbappend*. In particular, each record (mbufs linked through m_next)
954 * must begin with an address if the protocol so specifies,
955 * followed by an optional mbuf or mbufs containing ancillary data,
956 * and then zero or more mbufs of data.
957 * In order to avoid blocking network interrupts for the entire time here,
958 * we splx() while doing the actual copy to user space.
959 * Although the sockbuf is locked, new data may still be appended,
960 * and thus we must maintain consistency of the sockbuf during that time.
961 *
962 * The caller may receive the data as a single mbuf chain by supplying
963 * an mbuf **mp0 for use in returning the chain. The uio is then used
964 * only for the count in uio_resid.
965 */
966 int
967 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
968 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
969 {
970 struct lwp *l = curlwp;
971 struct mbuf *m, **mp;
972 int flags, len, error, s, offset, moff, type, orig_resid;
973 const struct protosw *pr;
974 struct mbuf *nextrecord;
975 int mbuf_removed = 0;
976
977 pr = so->so_proto;
978 mp = mp0;
979 type = 0;
980 orig_resid = uio->uio_resid;
981
982 if (paddr)
983 *paddr = 0;
984 if (controlp)
985 *controlp = 0;
986 if (flagsp)
987 flags = *flagsp &~ MSG_EOR;
988 else
989 flags = 0;
990
991 if ((flags & MSG_DONTWAIT) == 0)
992 sodopendfree();
993
994 if (flags & MSG_OOB) {
995 m = m_get(M_WAIT, MT_DATA);
996 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
997 (struct mbuf *)(long)(flags & MSG_PEEK),
998 (struct mbuf *)0, l);
999 if (error)
1000 goto bad;
1001 do {
1002 error = uiomove(mtod(m, void *),
1003 (int) min(uio->uio_resid, m->m_len), uio);
1004 m = m_free(m);
1005 } while (uio->uio_resid && error == 0 && m);
1006 bad:
1007 if (m)
1008 m_freem(m);
1009 return (error);
1010 }
1011 if (mp)
1012 *mp = (struct mbuf *)0;
1013 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1014 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1015 (struct mbuf *)0, (struct mbuf *)0, l);
1016
1017 restart:
1018 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1019 return (error);
1020 s = splsoftnet();
1021
1022 m = so->so_rcv.sb_mb;
1023 /*
1024 * If we have less data than requested, block awaiting more
1025 * (subject to any timeout) if:
1026 * 1. the current count is less than the low water mark,
1027 * 2. MSG_WAITALL is set, and it is possible to do the entire
1028 * receive operation at once if we block (resid <= hiwat), or
1029 * 3. MSG_DONTWAIT is not set.
1030 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1031 * we have to do the receive in sections, and thus risk returning
1032 * a short count if a timeout or signal occurs after we start.
1033 */
1034 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1035 so->so_rcv.sb_cc < uio->uio_resid) &&
1036 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1037 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1038 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1039 #ifdef DIAGNOSTIC
1040 if (m == 0 && so->so_rcv.sb_cc)
1041 panic("receive 1");
1042 #endif
1043 if (so->so_error) {
1044 if (m)
1045 goto dontblock;
1046 error = so->so_error;
1047 if ((flags & MSG_PEEK) == 0)
1048 so->so_error = 0;
1049 goto release;
1050 }
1051 if (so->so_state & SS_CANTRCVMORE) {
1052 if (m)
1053 goto dontblock;
1054 else
1055 goto release;
1056 }
1057 for (; m; m = m->m_next)
1058 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1059 m = so->so_rcv.sb_mb;
1060 goto dontblock;
1061 }
1062 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1063 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1064 error = ENOTCONN;
1065 goto release;
1066 }
1067 if (uio->uio_resid == 0)
1068 goto release;
1069 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1070 error = EWOULDBLOCK;
1071 goto release;
1072 }
1073 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1074 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1075 sbunlock(&so->so_rcv);
1076 error = sbwait(&so->so_rcv);
1077 splx(s);
1078 if (error)
1079 return (error);
1080 goto restart;
1081 }
1082 dontblock:
1083 /*
1084 * On entry here, m points to the first record of the socket buffer.
1085 * While we process the initial mbufs containing address and control
1086 * info, we save a copy of m->m_nextpkt into nextrecord.
1087 */
1088 if (l)
1089 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1090 KASSERT(m == so->so_rcv.sb_mb);
1091 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1092 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1093 nextrecord = m->m_nextpkt;
1094 if (pr->pr_flags & PR_ADDR) {
1095 #ifdef DIAGNOSTIC
1096 if (m->m_type != MT_SONAME)
1097 panic("receive 1a");
1098 #endif
1099 orig_resid = 0;
1100 if (flags & MSG_PEEK) {
1101 if (paddr)
1102 *paddr = m_copy(m, 0, m->m_len);
1103 m = m->m_next;
1104 } else {
1105 sbfree(&so->so_rcv, m);
1106 mbuf_removed = 1;
1107 if (paddr) {
1108 *paddr = m;
1109 so->so_rcv.sb_mb = m->m_next;
1110 m->m_next = 0;
1111 m = so->so_rcv.sb_mb;
1112 } else {
1113 MFREE(m, so->so_rcv.sb_mb);
1114 m = so->so_rcv.sb_mb;
1115 }
1116 }
1117 }
1118 while (m && m->m_type == MT_CONTROL && error == 0) {
1119 if (flags & MSG_PEEK) {
1120 if (controlp)
1121 *controlp = m_copy(m, 0, m->m_len);
1122 m = m->m_next;
1123 } else {
1124 sbfree(&so->so_rcv, m);
1125 mbuf_removed = 1;
1126 if (controlp) {
1127 struct domain *dom = pr->pr_domain;
1128 if (dom->dom_externalize && l &&
1129 mtod(m, struct cmsghdr *)->cmsg_type ==
1130 SCM_RIGHTS)
1131 error = (*dom->dom_externalize)(m, l);
1132 *controlp = m;
1133 so->so_rcv.sb_mb = m->m_next;
1134 m->m_next = 0;
1135 m = so->so_rcv.sb_mb;
1136 } else {
1137 /*
1138 * Dispose of any SCM_RIGHTS message that went
1139 * through the read path rather than recv.
1140 */
1141 if (pr->pr_domain->dom_dispose &&
1142 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1143 (*pr->pr_domain->dom_dispose)(m);
1144 MFREE(m, so->so_rcv.sb_mb);
1145 m = so->so_rcv.sb_mb;
1146 }
1147 }
1148 if (controlp) {
1149 orig_resid = 0;
1150 controlp = &(*controlp)->m_next;
1151 }
1152 }
1153
1154 /*
1155 * If m is non-NULL, we have some data to read. From now on,
1156 * make sure to keep sb_lastrecord consistent when working on
1157 * the last packet on the chain (nextrecord == NULL) and we
1158 * change m->m_nextpkt.
1159 */
1160 if (m) {
1161 if ((flags & MSG_PEEK) == 0) {
1162 m->m_nextpkt = nextrecord;
1163 /*
1164 * If nextrecord == NULL (this is a single chain),
1165 * then sb_lastrecord may not be valid here if m
1166 * was changed earlier.
1167 */
1168 if (nextrecord == NULL) {
1169 KASSERT(so->so_rcv.sb_mb == m);
1170 so->so_rcv.sb_lastrecord = m;
1171 }
1172 }
1173 type = m->m_type;
1174 if (type == MT_OOBDATA)
1175 flags |= MSG_OOB;
1176 } else {
1177 if ((flags & MSG_PEEK) == 0) {
1178 KASSERT(so->so_rcv.sb_mb == m);
1179 so->so_rcv.sb_mb = nextrecord;
1180 SB_EMPTY_FIXUP(&so->so_rcv);
1181 }
1182 }
1183 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1184 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1185
1186 moff = 0;
1187 offset = 0;
1188 while (m && uio->uio_resid > 0 && error == 0) {
1189 if (m->m_type == MT_OOBDATA) {
1190 if (type != MT_OOBDATA)
1191 break;
1192 } else if (type == MT_OOBDATA)
1193 break;
1194 #ifdef DIAGNOSTIC
1195 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1196 panic("receive 3");
1197 #endif
1198 so->so_state &= ~SS_RCVATMARK;
1199 len = uio->uio_resid;
1200 if (so->so_oobmark && len > so->so_oobmark - offset)
1201 len = so->so_oobmark - offset;
1202 if (len > m->m_len - moff)
1203 len = m->m_len - moff;
1204 /*
1205 * If mp is set, just pass back the mbufs.
1206 * Otherwise copy them out via the uio, then free.
1207 * Sockbuf must be consistent here (points to current mbuf,
1208 * it points to next record) when we drop priority;
1209 * we must note any additions to the sockbuf when we
1210 * block interrupts again.
1211 */
1212 if (mp == 0) {
1213 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1214 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1215 splx(s);
1216 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1217 s = splsoftnet();
1218 if (error) {
1219 /*
1220 * If any part of the record has been removed
1221 * (such as the MT_SONAME mbuf, which will
1222 * happen when PR_ADDR, and thus also
1223 * PR_ATOMIC, is set), then drop the entire
1224 * record to maintain the atomicity of the
1225 * receive operation.
1226 *
1227 * This avoids a later panic("receive 1a")
1228 * when compiled with DIAGNOSTIC.
1229 */
1230 if (m && mbuf_removed
1231 && (pr->pr_flags & PR_ATOMIC))
1232 (void) sbdroprecord(&so->so_rcv);
1233
1234 goto release;
1235 }
1236 } else
1237 uio->uio_resid -= len;
1238 if (len == m->m_len - moff) {
1239 if (m->m_flags & M_EOR)
1240 flags |= MSG_EOR;
1241 if (flags & MSG_PEEK) {
1242 m = m->m_next;
1243 moff = 0;
1244 } else {
1245 nextrecord = m->m_nextpkt;
1246 sbfree(&so->so_rcv, m);
1247 if (mp) {
1248 *mp = m;
1249 mp = &m->m_next;
1250 so->so_rcv.sb_mb = m = m->m_next;
1251 *mp = (struct mbuf *)0;
1252 } else {
1253 MFREE(m, so->so_rcv.sb_mb);
1254 m = so->so_rcv.sb_mb;
1255 }
1256 /*
1257 * If m != NULL, we also know that
1258 * so->so_rcv.sb_mb != NULL.
1259 */
1260 KASSERT(so->so_rcv.sb_mb == m);
1261 if (m) {
1262 m->m_nextpkt = nextrecord;
1263 if (nextrecord == NULL)
1264 so->so_rcv.sb_lastrecord = m;
1265 } else {
1266 so->so_rcv.sb_mb = nextrecord;
1267 SB_EMPTY_FIXUP(&so->so_rcv);
1268 }
1269 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1270 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1271 }
1272 } else {
1273 if (flags & MSG_PEEK)
1274 moff += len;
1275 else {
1276 if (mp)
1277 *mp = m_copym(m, 0, len, M_WAIT);
1278 m->m_data += len;
1279 m->m_len -= len;
1280 so->so_rcv.sb_cc -= len;
1281 }
1282 }
1283 if (so->so_oobmark) {
1284 if ((flags & MSG_PEEK) == 0) {
1285 so->so_oobmark -= len;
1286 if (so->so_oobmark == 0) {
1287 so->so_state |= SS_RCVATMARK;
1288 break;
1289 }
1290 } else {
1291 offset += len;
1292 if (offset == so->so_oobmark)
1293 break;
1294 }
1295 }
1296 if (flags & MSG_EOR)
1297 break;
1298 /*
1299 * If the MSG_WAITALL flag is set (for non-atomic socket),
1300 * we must not quit until "uio->uio_resid == 0" or an error
1301 * termination. If a signal/timeout occurs, return
1302 * with a short count but without error.
1303 * Keep sockbuf locked against other readers.
1304 */
1305 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1306 !sosendallatonce(so) && !nextrecord) {
1307 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1308 break;
1309 /*
1310 * If we are peeking and the socket receive buffer is
1311 * full, stop since we can't get more data to peek at.
1312 */
1313 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1314 break;
1315 /*
1316 * If we've drained the socket buffer, tell the
1317 * protocol in case it needs to do something to
1318 * get it filled again.
1319 */
1320 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1321 (*pr->pr_usrreq)(so, PRU_RCVD,
1322 (struct mbuf *)0,
1323 (struct mbuf *)(long)flags,
1324 (struct mbuf *)0, l);
1325 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1326 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1327 error = sbwait(&so->so_rcv);
1328 if (error) {
1329 sbunlock(&so->so_rcv);
1330 splx(s);
1331 return (0);
1332 }
1333 if ((m = so->so_rcv.sb_mb) != NULL)
1334 nextrecord = m->m_nextpkt;
1335 }
1336 }
1337
1338 if (m && pr->pr_flags & PR_ATOMIC) {
1339 flags |= MSG_TRUNC;
1340 if ((flags & MSG_PEEK) == 0)
1341 (void) sbdroprecord(&so->so_rcv);
1342 }
1343 if ((flags & MSG_PEEK) == 0) {
1344 if (m == 0) {
1345 /*
1346 * First part is an inline SB_EMPTY_FIXUP(). Second
1347 * part makes sure sb_lastrecord is up-to-date if
1348 * there is still data in the socket buffer.
1349 */
1350 so->so_rcv.sb_mb = nextrecord;
1351 if (so->so_rcv.sb_mb == NULL) {
1352 so->so_rcv.sb_mbtail = NULL;
1353 so->so_rcv.sb_lastrecord = NULL;
1354 } else if (nextrecord->m_nextpkt == NULL)
1355 so->so_rcv.sb_lastrecord = nextrecord;
1356 }
1357 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1358 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1359 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1360 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1361 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1362 }
1363 if (orig_resid == uio->uio_resid && orig_resid &&
1364 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1365 sbunlock(&so->so_rcv);
1366 splx(s);
1367 goto restart;
1368 }
1369
1370 if (flagsp)
1371 *flagsp |= flags;
1372 release:
1373 sbunlock(&so->so_rcv);
1374 splx(s);
1375 return (error);
1376 }
1377
1378 int
1379 soshutdown(struct socket *so, int how)
1380 {
1381 const struct protosw *pr;
1382
1383 pr = so->so_proto;
1384 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1385 return (EINVAL);
1386
1387 if (how == SHUT_RD || how == SHUT_RDWR)
1388 sorflush(so);
1389 if (how == SHUT_WR || how == SHUT_RDWR)
1390 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1391 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1392 return (0);
1393 }
1394
1395 void
1396 sorflush(struct socket *so)
1397 {
1398 struct sockbuf *sb, asb;
1399 const struct protosw *pr;
1400 int s;
1401
1402 sb = &so->so_rcv;
1403 pr = so->so_proto;
1404 sb->sb_flags |= SB_NOINTR;
1405 (void) sblock(sb, M_WAITOK);
1406 s = splnet();
1407 socantrcvmore(so);
1408 sbunlock(sb);
1409 asb = *sb;
1410 /*
1411 * Clear most of the sockbuf structure, but leave some of the
1412 * fields valid.
1413 */
1414 memset(&sb->sb_startzero, 0,
1415 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1416 splx(s);
1417 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1418 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1419 sbrelease(&asb, so);
1420 }
1421
1422 int
1423 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1424 {
1425 int error;
1426 struct mbuf *m;
1427 struct linger *l;
1428
1429 error = 0;
1430 m = m0;
1431 if (level != SOL_SOCKET) {
1432 if (so->so_proto && so->so_proto->pr_ctloutput)
1433 return ((*so->so_proto->pr_ctloutput)
1434 (PRCO_SETOPT, so, level, optname, &m0));
1435 error = ENOPROTOOPT;
1436 } else {
1437 switch (optname) {
1438
1439 case SO_LINGER:
1440 if (m == NULL || m->m_len != sizeof(struct linger)) {
1441 error = EINVAL;
1442 goto bad;
1443 }
1444 l = mtod(m, struct linger *);
1445 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1446 l->l_linger > (INT_MAX / hz)) {
1447 error = EDOM;
1448 goto bad;
1449 }
1450 so->so_linger = l->l_linger;
1451 if (l->l_onoff)
1452 so->so_options |= SO_LINGER;
1453 else
1454 so->so_options &= ~SO_LINGER;
1455 break;
1456
1457 case SO_DEBUG:
1458 case SO_KEEPALIVE:
1459 case SO_DONTROUTE:
1460 case SO_USELOOPBACK:
1461 case SO_BROADCAST:
1462 case SO_REUSEADDR:
1463 case SO_REUSEPORT:
1464 case SO_OOBINLINE:
1465 case SO_TIMESTAMP:
1466 if (m == NULL || m->m_len < sizeof(int)) {
1467 error = EINVAL;
1468 goto bad;
1469 }
1470 if (*mtod(m, int *))
1471 so->so_options |= optname;
1472 else
1473 so->so_options &= ~optname;
1474 break;
1475
1476 case SO_SNDBUF:
1477 case SO_RCVBUF:
1478 case SO_SNDLOWAT:
1479 case SO_RCVLOWAT:
1480 {
1481 int optval;
1482
1483 if (m == NULL || m->m_len < sizeof(int)) {
1484 error = EINVAL;
1485 goto bad;
1486 }
1487
1488 /*
1489 * Values < 1 make no sense for any of these
1490 * options, so disallow them.
1491 */
1492 optval = *mtod(m, int *);
1493 if (optval < 1) {
1494 error = EINVAL;
1495 goto bad;
1496 }
1497
1498 switch (optname) {
1499
1500 case SO_SNDBUF:
1501 case SO_RCVBUF:
1502 if (sbreserve(optname == SO_SNDBUF ?
1503 &so->so_snd : &so->so_rcv,
1504 (u_long) optval, so) == 0) {
1505 error = ENOBUFS;
1506 goto bad;
1507 }
1508 break;
1509
1510 /*
1511 * Make sure the low-water is never greater than
1512 * the high-water.
1513 */
1514 case SO_SNDLOWAT:
1515 so->so_snd.sb_lowat =
1516 (optval > so->so_snd.sb_hiwat) ?
1517 so->so_snd.sb_hiwat : optval;
1518 break;
1519 case SO_RCVLOWAT:
1520 so->so_rcv.sb_lowat =
1521 (optval > so->so_rcv.sb_hiwat) ?
1522 so->so_rcv.sb_hiwat : optval;
1523 break;
1524 }
1525 break;
1526 }
1527
1528 case SO_SNDTIMEO:
1529 case SO_RCVTIMEO:
1530 {
1531 struct timeval *tv;
1532 int val;
1533
1534 if (m == NULL || m->m_len < sizeof(*tv)) {
1535 error = EINVAL;
1536 goto bad;
1537 }
1538 tv = mtod(m, struct timeval *);
1539 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1540 error = EDOM;
1541 goto bad;
1542 }
1543 val = tv->tv_sec * hz + tv->tv_usec / tick;
1544 if (val == 0 && tv->tv_usec != 0)
1545 val = 1;
1546
1547 switch (optname) {
1548
1549 case SO_SNDTIMEO:
1550 so->so_snd.sb_timeo = val;
1551 break;
1552 case SO_RCVTIMEO:
1553 so->so_rcv.sb_timeo = val;
1554 break;
1555 }
1556 break;
1557 }
1558
1559 default:
1560 error = ENOPROTOOPT;
1561 break;
1562 }
1563 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1564 (void) ((*so->so_proto->pr_ctloutput)
1565 (PRCO_SETOPT, so, level, optname, &m0));
1566 m = NULL; /* freed by protocol */
1567 }
1568 }
1569 bad:
1570 if (m)
1571 (void) m_free(m);
1572 return (error);
1573 }
1574
1575 int
1576 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1577 {
1578 struct mbuf *m;
1579
1580 if (level != SOL_SOCKET) {
1581 if (so->so_proto && so->so_proto->pr_ctloutput) {
1582 return ((*so->so_proto->pr_ctloutput)
1583 (PRCO_GETOPT, so, level, optname, mp));
1584 } else
1585 return (ENOPROTOOPT);
1586 } else {
1587 m = m_get(M_WAIT, MT_SOOPTS);
1588 m->m_len = sizeof(int);
1589
1590 switch (optname) {
1591
1592 case SO_LINGER:
1593 m->m_len = sizeof(struct linger);
1594 mtod(m, struct linger *)->l_onoff =
1595 (so->so_options & SO_LINGER) ? 1 : 0;
1596 mtod(m, struct linger *)->l_linger = so->so_linger;
1597 break;
1598
1599 case SO_USELOOPBACK:
1600 case SO_DONTROUTE:
1601 case SO_DEBUG:
1602 case SO_KEEPALIVE:
1603 case SO_REUSEADDR:
1604 case SO_REUSEPORT:
1605 case SO_BROADCAST:
1606 case SO_OOBINLINE:
1607 case SO_TIMESTAMP:
1608 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1609 break;
1610
1611 case SO_TYPE:
1612 *mtod(m, int *) = so->so_type;
1613 break;
1614
1615 case SO_ERROR:
1616 *mtod(m, int *) = so->so_error;
1617 so->so_error = 0;
1618 break;
1619
1620 case SO_SNDBUF:
1621 *mtod(m, int *) = so->so_snd.sb_hiwat;
1622 break;
1623
1624 case SO_RCVBUF:
1625 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1626 break;
1627
1628 case SO_SNDLOWAT:
1629 *mtod(m, int *) = so->so_snd.sb_lowat;
1630 break;
1631
1632 case SO_RCVLOWAT:
1633 *mtod(m, int *) = so->so_rcv.sb_lowat;
1634 break;
1635
1636 case SO_SNDTIMEO:
1637 case SO_RCVTIMEO:
1638 {
1639 int val = (optname == SO_SNDTIMEO ?
1640 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1641
1642 m->m_len = sizeof(struct timeval);
1643 mtod(m, struct timeval *)->tv_sec = val / hz;
1644 mtod(m, struct timeval *)->tv_usec =
1645 (val % hz) * tick;
1646 break;
1647 }
1648
1649 case SO_OVERFLOWED:
1650 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1651 break;
1652
1653 default:
1654 (void)m_free(m);
1655 return (ENOPROTOOPT);
1656 }
1657 *mp = m;
1658 return (0);
1659 }
1660 }
1661
1662 void
1663 sohasoutofband(struct socket *so)
1664 {
1665 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1666 selwakeup(&so->so_rcv.sb_sel);
1667 }
1668
1669 static void
1670 filt_sordetach(struct knote *kn)
1671 {
1672 struct socket *so;
1673
1674 so = (struct socket *)kn->kn_fp->f_data;
1675 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1676 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1677 so->so_rcv.sb_flags &= ~SB_KNOTE;
1678 }
1679
1680 /*ARGSUSED*/
1681 static int
1682 filt_soread(struct knote *kn, long hint)
1683 {
1684 struct socket *so;
1685
1686 so = (struct socket *)kn->kn_fp->f_data;
1687 kn->kn_data = so->so_rcv.sb_cc;
1688 if (so->so_state & SS_CANTRCVMORE) {
1689 kn->kn_flags |= EV_EOF;
1690 kn->kn_fflags = so->so_error;
1691 return (1);
1692 }
1693 if (so->so_error) /* temporary udp error */
1694 return (1);
1695 if (kn->kn_sfflags & NOTE_LOWAT)
1696 return (kn->kn_data >= kn->kn_sdata);
1697 return (kn->kn_data >= so->so_rcv.sb_lowat);
1698 }
1699
1700 static void
1701 filt_sowdetach(struct knote *kn)
1702 {
1703 struct socket *so;
1704
1705 so = (struct socket *)kn->kn_fp->f_data;
1706 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1707 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1708 so->so_snd.sb_flags &= ~SB_KNOTE;
1709 }
1710
1711 /*ARGSUSED*/
1712 static int
1713 filt_sowrite(struct knote *kn, long hint)
1714 {
1715 struct socket *so;
1716
1717 so = (struct socket *)kn->kn_fp->f_data;
1718 kn->kn_data = sbspace(&so->so_snd);
1719 if (so->so_state & SS_CANTSENDMORE) {
1720 kn->kn_flags |= EV_EOF;
1721 kn->kn_fflags = so->so_error;
1722 return (1);
1723 }
1724 if (so->so_error) /* temporary udp error */
1725 return (1);
1726 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1727 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1728 return (0);
1729 if (kn->kn_sfflags & NOTE_LOWAT)
1730 return (kn->kn_data >= kn->kn_sdata);
1731 return (kn->kn_data >= so->so_snd.sb_lowat);
1732 }
1733
1734 /*ARGSUSED*/
1735 static int
1736 filt_solisten(struct knote *kn, long hint)
1737 {
1738 struct socket *so;
1739
1740 so = (struct socket *)kn->kn_fp->f_data;
1741
1742 /*
1743 * Set kn_data to number of incoming connections, not
1744 * counting partial (incomplete) connections.
1745 */
1746 kn->kn_data = so->so_qlen;
1747 return (kn->kn_data > 0);
1748 }
1749
1750 static const struct filterops solisten_filtops =
1751 { 1, NULL, filt_sordetach, filt_solisten };
1752 static const struct filterops soread_filtops =
1753 { 1, NULL, filt_sordetach, filt_soread };
1754 static const struct filterops sowrite_filtops =
1755 { 1, NULL, filt_sowdetach, filt_sowrite };
1756
1757 int
1758 soo_kqfilter(struct file *fp, struct knote *kn)
1759 {
1760 struct socket *so;
1761 struct sockbuf *sb;
1762
1763 so = (struct socket *)kn->kn_fp->f_data;
1764 switch (kn->kn_filter) {
1765 case EVFILT_READ:
1766 if (so->so_options & SO_ACCEPTCONN)
1767 kn->kn_fop = &solisten_filtops;
1768 else
1769 kn->kn_fop = &soread_filtops;
1770 sb = &so->so_rcv;
1771 break;
1772 case EVFILT_WRITE:
1773 kn->kn_fop = &sowrite_filtops;
1774 sb = &so->so_snd;
1775 break;
1776 default:
1777 return (1);
1778 }
1779 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1780 sb->sb_flags |= SB_KNOTE;
1781 return (0);
1782 }
1783
1784 #include <sys/sysctl.h>
1785
1786 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1787
1788 /*
1789 * sysctl helper routine for kern.somaxkva. ensures that the given
1790 * value is not too small.
1791 * (XXX should we maybe make sure it's not too large as well?)
1792 */
1793 static int
1794 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1795 {
1796 int error, new_somaxkva;
1797 struct sysctlnode node;
1798 int s;
1799
1800 new_somaxkva = somaxkva;
1801 node = *rnode;
1802 node.sysctl_data = &new_somaxkva;
1803 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1804 if (error || newp == NULL)
1805 return (error);
1806
1807 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1808 return (EINVAL);
1809
1810 s = splvm();
1811 simple_lock(&so_pendfree_slock);
1812 somaxkva = new_somaxkva;
1813 wakeup(&socurkva);
1814 simple_unlock(&so_pendfree_slock);
1815 splx(s);
1816
1817 return (error);
1818 }
1819
1820 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1821 {
1822
1823 sysctl_createv(clog, 0, NULL, NULL,
1824 CTLFLAG_PERMANENT,
1825 CTLTYPE_NODE, "kern", NULL,
1826 NULL, 0, NULL, 0,
1827 CTL_KERN, CTL_EOL);
1828
1829 sysctl_createv(clog, 0, NULL, NULL,
1830 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1831 CTLTYPE_INT, "somaxkva",
1832 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1833 "used for socket buffers"),
1834 sysctl_kern_somaxkva, 0, NULL, 0,
1835 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1836 }
1837