uipc_socket.c revision 1.136.2.1 1 /* $NetBSD: uipc_socket.c,v 1.136.2.1 2007/03/18 00:06:45 reinoud Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.136.2.1 2007/03/18 00:06:45 reinoud Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95 #include <sys/mutex.h>
96 #include <sys/condvar.h>
97
98 #include <uvm/uvm.h>
99
100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
101 IPL_SOFTNET);
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern int somaxconn; /* patchable (XXX sysctl) */
107 int somaxconn = SOMAXCONN;
108
109 #ifdef SOSEND_COUNTERS
110 #include <sys/device.h>
111
112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "loan big");
114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy big");
116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "copy small");
118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "kva limit");
120
121 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
122
123 EVCNT_ATTACH_STATIC(sosend_loan_big);
124 EVCNT_ATTACH_STATIC(sosend_copy_big);
125 EVCNT_ATTACH_STATIC(sosend_copy_small);
126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
127 #else
128
129 #define SOSEND_COUNTER_INCR(ev) /* nothing */
130
131 #endif /* SOSEND_COUNTERS */
132
133 static struct callback_entry sokva_reclaimerentry;
134
135 #ifdef SOSEND_NO_LOAN
136 int sock_loan_thresh = -1;
137 #else
138 int sock_loan_thresh = 4096;
139 #endif
140
141 static kmutex_t so_pendfree_lock;
142 static struct mbuf *so_pendfree;
143
144 #ifndef SOMAXKVA
145 #define SOMAXKVA (16 * 1024 * 1024)
146 #endif
147 int somaxkva = SOMAXKVA;
148 static int socurkva;
149 static kcondvar_t socurkva_cv;
150
151 #define SOCK_LOAN_CHUNK 65536
152
153 static size_t sodopendfree(void);
154 static size_t sodopendfreel(void);
155
156 static vsize_t
157 sokvareserve(struct socket *so, vsize_t len)
158 {
159 int error;
160
161 mutex_enter(&so_pendfree_lock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
180 if (error) {
181 len = 0;
182 break;
183 }
184 }
185 socurkva += len;
186 mutex_exit(&so_pendfree_lock);
187 return len;
188 }
189
190 static void
191 sokvaunreserve(vsize_t len)
192 {
193
194 mutex_enter(&so_pendfree_lock);
195 socurkva -= len;
196 cv_broadcast(&socurkva_cv);
197 mutex_exit(&so_pendfree_lock);
198 }
199
200 /*
201 * sokvaalloc: allocate kva for loan.
202 */
203
204 vaddr_t
205 sokvaalloc(vsize_t len, struct socket *so)
206 {
207 vaddr_t lva;
208
209 /*
210 * reserve kva.
211 */
212
213 if (sokvareserve(so, len) == 0)
214 return 0;
215
216 /*
217 * allocate kva.
218 */
219
220 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
221 if (lva == 0) {
222 sokvaunreserve(len);
223 return (0);
224 }
225
226 return lva;
227 }
228
229 /*
230 * sokvafree: free kva for loan.
231 */
232
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 /*
238 * free kva.
239 */
240
241 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
242
243 /*
244 * unreserve kva.
245 */
246
247 sokvaunreserve(len);
248 }
249
250 static void
251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
252 {
253 vaddr_t va, sva, eva;
254 vsize_t len;
255 paddr_t pa;
256 int i, npgs;
257
258 eva = round_page((vaddr_t) buf + size);
259 sva = trunc_page((vaddr_t) buf);
260 len = eva - sva;
261 npgs = len >> PAGE_SHIFT;
262
263 if (__predict_false(pgs == NULL)) {
264 pgs = alloca(npgs * sizeof(*pgs));
265
266 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
267 if (pmap_extract(pmap_kernel(), va, &pa) == false)
268 panic("sodoloanfree: va 0x%lx not mapped", va);
269 pgs[i] = PHYS_TO_VM_PAGE(pa);
270 }
271 }
272
273 pmap_kremove(sva, len);
274 pmap_update(pmap_kernel());
275 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
276 sokvafree(sva, len);
277 }
278
279 static size_t
280 sodopendfree()
281 {
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285 rv = sodopendfreel();
286 mutex_exit(&so_pendfree_lock);
287
288 return rv;
289 }
290
291 /*
292 * sodopendfreel: free mbufs on "pendfree" list.
293 * unlock and relock so_pendfree_lock when freeing mbufs.
294 *
295 * => called with so_pendfree_lock held.
296 */
297
298 static size_t
299 sodopendfreel()
300 {
301 struct mbuf *m, *next;
302 size_t rv = 0;
303 int s;
304
305 KASSERT(mutex_owned(&so_pendfree_lock));
306
307 while (so_pendfree != NULL) {
308 m = so_pendfree;
309 so_pendfree = NULL;
310 mutex_exit(&so_pendfree_lock);
311
312 for (; m != NULL; m = next) {
313 next = m->m_next;
314
315 rv += m->m_ext.ext_size;
316 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
317 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
318 m->m_ext.ext_size);
319 s = splvm();
320 pool_cache_put(&mbpool_cache, m);
321 splx(s);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 if (m == NULL) {
335
336 /*
337 * called from MEXTREMOVE.
338 */
339
340 sodoloanfree(NULL, buf, size);
341 return;
342 }
343
344 /*
345 * postpone freeing mbuf.
346 *
347 * we can't do it in interrupt context
348 * because we need to put kva back to kernel_map.
349 */
350
351 mutex_enter(&so_pendfree_lock);
352 m->m_next = so_pendfree;
353 so_pendfree = m;
354 cv_broadcast(&socurkva_cv);
355 mutex_exit(&so_pendfree_lock);
356 }
357
358 static long
359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
360 {
361 struct iovec *iov = uio->uio_iov;
362 vaddr_t sva, eva;
363 vsize_t len;
364 vaddr_t lva, va;
365 int npgs, i, error;
366
367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
368 return (0);
369
370 if (iov->iov_len < (size_t) space)
371 space = iov->iov_len;
372 if (space > SOCK_LOAN_CHUNK)
373 space = SOCK_LOAN_CHUNK;
374
375 eva = round_page((vaddr_t) iov->iov_base + space);
376 sva = trunc_page((vaddr_t) iov->iov_base);
377 len = eva - sva;
378 npgs = len >> PAGE_SHIFT;
379
380 /* XXX KDASSERT */
381 KASSERT(npgs <= M_EXT_MAXPAGES);
382
383 lva = sokvaalloc(len, so);
384 if (lva == 0)
385 return 0;
386
387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
389 if (error) {
390 sokvafree(lva, len);
391 return (0);
392 }
393
394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
396 VM_PROT_READ);
397 pmap_update(pmap_kernel());
398
399 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
400
401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
403
404 uio->uio_resid -= space;
405 /* uio_offset not updated, not set/used for write(2) */
406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
407 uio->uio_iov->iov_len -= space;
408 if (uio->uio_iov->iov_len == 0) {
409 uio->uio_iov++;
410 uio->uio_iovcnt--;
411 }
412
413 return (space);
414 }
415
416 static int
417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
418 {
419
420 KASSERT(ce == &sokva_reclaimerentry);
421 KASSERT(obj == NULL);
422
423 sodopendfree();
424 if (!vm_map_starved_p(kernel_map)) {
425 return CALLBACK_CHAIN_ABORT;
426 }
427 return CALLBACK_CHAIN_CONTINUE;
428 }
429
430 void
431 soinit(void)
432 {
433
434 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
435 cv_init(&socurkva_cv, "sokva");
436
437 /* Set the initial adjusted socket buffer size. */
438 if (sb_max_set(sb_max))
439 panic("bad initial sb_max value: %lu", sb_max);
440
441 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
442 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
443 }
444
445 /*
446 * Socket operation routines.
447 * These routines are called by the routines in
448 * sys_socket.c or from a system process, and
449 * implement the semantics of socket operations by
450 * switching out to the protocol specific routines.
451 */
452 /*ARGSUSED*/
453 int
454 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 uid_t uid;
459 int error, s;
460
461 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
462 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
463 KAUTH_ARG(proto));
464 if (error)
465 return (error);
466
467 if (proto)
468 prp = pffindproto(dom, proto, type);
469 else
470 prp = pffindtype(dom, type);
471 if (prp == 0) {
472 /* no support for domain */
473 if (pffinddomain(dom) == 0)
474 return (EAFNOSUPPORT);
475 /* no support for socket type */
476 if (proto == 0 && type != 0)
477 return (EPROTOTYPE);
478 return (EPROTONOSUPPORT);
479 }
480 if (prp->pr_usrreq == 0)
481 return (EPROTONOSUPPORT);
482 if (prp->pr_type != type)
483 return (EPROTOTYPE);
484 s = splsoftnet();
485 so = pool_get(&socket_pool, PR_WAITOK);
486 memset((void *)so, 0, sizeof(*so));
487 TAILQ_INIT(&so->so_q0);
488 TAILQ_INIT(&so->so_q);
489 so->so_type = type;
490 so->so_proto = prp;
491 so->so_send = sosend;
492 so->so_receive = soreceive;
493 #ifdef MBUFTRACE
494 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
495 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
496 so->so_mowner = &prp->pr_domain->dom_mowner;
497 #endif
498 if (l != NULL) {
499 uid = kauth_cred_geteuid(l->l_cred);
500 } else {
501 uid = 0;
502 }
503 so->so_uidinfo = uid_find(uid);
504 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
505 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
506 if (error) {
507 so->so_state |= SS_NOFDREF;
508 sofree(so);
509 splx(s);
510 return (error);
511 }
512 splx(s);
513 *aso = so;
514 return (0);
515 }
516
517 int
518 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
519 {
520 int s, error;
521
522 s = splsoftnet();
523 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
524 nam, (struct mbuf *)0, l);
525 splx(s);
526 return (error);
527 }
528
529 int
530 solisten(struct socket *so, int backlog)
531 {
532 int s, error;
533
534 s = splsoftnet();
535 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
536 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
537 if (error) {
538 splx(s);
539 return (error);
540 }
541 if (TAILQ_EMPTY(&so->so_q))
542 so->so_options |= SO_ACCEPTCONN;
543 if (backlog < 0)
544 backlog = 0;
545 so->so_qlimit = min(backlog, somaxconn);
546 splx(s);
547 return (0);
548 }
549
550 void
551 sofree(struct socket *so)
552 {
553
554 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
555 return;
556 if (so->so_head) {
557 /*
558 * We must not decommission a socket that's on the accept(2)
559 * queue. If we do, then accept(2) may hang after select(2)
560 * indicated that the listening socket was ready.
561 */
562 if (!soqremque(so, 0))
563 return;
564 }
565 if (so->so_rcv.sb_hiwat)
566 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
567 RLIM_INFINITY);
568 if (so->so_snd.sb_hiwat)
569 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
570 RLIM_INFINITY);
571 sbrelease(&so->so_snd, so);
572 sorflush(so);
573 pool_put(&socket_pool, so);
574 }
575
576 /*
577 * Close a socket on last file table reference removal.
578 * Initiate disconnect if connected.
579 * Free socket when disconnect complete.
580 */
581 int
582 soclose(struct socket *so)
583 {
584 struct socket *so2;
585 int s, error;
586
587 error = 0;
588 s = splsoftnet(); /* conservative */
589 if (so->so_options & SO_ACCEPTCONN) {
590 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
591 (void) soqremque(so2, 0);
592 (void) soabort(so2);
593 }
594 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
595 (void) soqremque(so2, 1);
596 (void) soabort(so2);
597 }
598 }
599 if (so->so_pcb == 0)
600 goto discard;
601 if (so->so_state & SS_ISCONNECTED) {
602 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
603 error = sodisconnect(so);
604 if (error)
605 goto drop;
606 }
607 if (so->so_options & SO_LINGER) {
608 if ((so->so_state & SS_ISDISCONNECTING) &&
609 (so->so_state & SS_NBIO))
610 goto drop;
611 while (so->so_state & SS_ISCONNECTED) {
612 error = tsleep((void *)&so->so_timeo,
613 PSOCK | PCATCH, netcls,
614 so->so_linger * hz);
615 if (error)
616 break;
617 }
618 }
619 }
620 drop:
621 if (so->so_pcb) {
622 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
623 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
624 (struct lwp *)0);
625 if (error == 0)
626 error = error2;
627 }
628 discard:
629 if (so->so_state & SS_NOFDREF)
630 panic("soclose: NOFDREF");
631 so->so_state |= SS_NOFDREF;
632 sofree(so);
633 splx(s);
634 return (error);
635 }
636
637 /*
638 * Must be called at splsoftnet...
639 */
640 int
641 soabort(struct socket *so)
642 {
643
644 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
645 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
646 }
647
648 int
649 soaccept(struct socket *so, struct mbuf *nam)
650 {
651 int s, error;
652
653 error = 0;
654 s = splsoftnet();
655 if ((so->so_state & SS_NOFDREF) == 0)
656 panic("soaccept: !NOFDREF");
657 so->so_state &= ~SS_NOFDREF;
658 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
659 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
660 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
661 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
662 else
663 error = ECONNABORTED;
664
665 splx(s);
666 return (error);
667 }
668
669 int
670 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
671 {
672 int s, error;
673
674 if (so->so_options & SO_ACCEPTCONN)
675 return (EOPNOTSUPP);
676 s = splsoftnet();
677 /*
678 * If protocol is connection-based, can only connect once.
679 * Otherwise, if connected, try to disconnect first.
680 * This allows user to disconnect by connecting to, e.g.,
681 * a null address.
682 */
683 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
684 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
685 (error = sodisconnect(so))))
686 error = EISCONN;
687 else
688 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
689 (struct mbuf *)0, nam, (struct mbuf *)0, l);
690 splx(s);
691 return (error);
692 }
693
694 int
695 soconnect2(struct socket *so1, struct socket *so2)
696 {
697 int s, error;
698
699 s = splsoftnet();
700 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
701 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
702 (struct lwp *)0);
703 splx(s);
704 return (error);
705 }
706
707 int
708 sodisconnect(struct socket *so)
709 {
710 int s, error;
711
712 s = splsoftnet();
713 if ((so->so_state & SS_ISCONNECTED) == 0) {
714 error = ENOTCONN;
715 goto bad;
716 }
717 if (so->so_state & SS_ISDISCONNECTING) {
718 error = EALREADY;
719 goto bad;
720 }
721 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
722 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
723 (struct lwp *)0);
724 bad:
725 splx(s);
726 sodopendfree();
727 return (error);
728 }
729
730 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
731 /*
732 * Send on a socket.
733 * If send must go all at once and message is larger than
734 * send buffering, then hard error.
735 * Lock against other senders.
736 * If must go all at once and not enough room now, then
737 * inform user that this would block and do nothing.
738 * Otherwise, if nonblocking, send as much as possible.
739 * The data to be sent is described by "uio" if nonzero,
740 * otherwise by the mbuf chain "top" (which must be null
741 * if uio is not). Data provided in mbuf chain must be small
742 * enough to send all at once.
743 *
744 * Returns nonzero on error, timeout or signal; callers
745 * must check for short counts if EINTR/ERESTART are returned.
746 * Data and control buffers are freed on return.
747 */
748 int
749 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
750 struct mbuf *control, int flags, struct lwp *l)
751 {
752 struct mbuf **mp, *m;
753 struct proc *p;
754 long space, len, resid, clen, mlen;
755 int error, s, dontroute, atomic;
756
757 p = l->l_proc;
758 sodopendfree();
759
760 clen = 0;
761 atomic = sosendallatonce(so) || top;
762 if (uio)
763 resid = uio->uio_resid;
764 else
765 resid = top->m_pkthdr.len;
766 /*
767 * In theory resid should be unsigned.
768 * However, space must be signed, as it might be less than 0
769 * if we over-committed, and we must use a signed comparison
770 * of space and resid. On the other hand, a negative resid
771 * causes us to loop sending 0-length segments to the protocol.
772 */
773 if (resid < 0) {
774 error = EINVAL;
775 goto out;
776 }
777 dontroute =
778 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
779 (so->so_proto->pr_flags & PR_ATOMIC);
780 if (p)
781 p->p_stats->p_ru.ru_msgsnd++;
782 if (control)
783 clen = control->m_len;
784 #define snderr(errno) { error = errno; splx(s); goto release; }
785
786 restart:
787 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
788 goto out;
789 do {
790 s = splsoftnet();
791 if (so->so_state & SS_CANTSENDMORE)
792 snderr(EPIPE);
793 if (so->so_error) {
794 error = so->so_error;
795 so->so_error = 0;
796 splx(s);
797 goto release;
798 }
799 if ((so->so_state & SS_ISCONNECTED) == 0) {
800 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
801 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
802 !(resid == 0 && clen != 0))
803 snderr(ENOTCONN);
804 } else if (addr == 0)
805 snderr(EDESTADDRREQ);
806 }
807 space = sbspace(&so->so_snd);
808 if (flags & MSG_OOB)
809 space += 1024;
810 if ((atomic && resid > so->so_snd.sb_hiwat) ||
811 clen > so->so_snd.sb_hiwat)
812 snderr(EMSGSIZE);
813 if (space < resid + clen &&
814 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
815 if (so->so_state & SS_NBIO)
816 snderr(EWOULDBLOCK);
817 sbunlock(&so->so_snd);
818 error = sbwait(&so->so_snd);
819 splx(s);
820 if (error)
821 goto out;
822 goto restart;
823 }
824 splx(s);
825 mp = ⊤
826 space -= clen;
827 do {
828 if (uio == NULL) {
829 /*
830 * Data is prepackaged in "top".
831 */
832 resid = 0;
833 if (flags & MSG_EOR)
834 top->m_flags |= M_EOR;
835 } else do {
836 if (top == 0) {
837 m = m_gethdr(M_WAIT, MT_DATA);
838 mlen = MHLEN;
839 m->m_pkthdr.len = 0;
840 m->m_pkthdr.rcvif = (struct ifnet *)0;
841 } else {
842 m = m_get(M_WAIT, MT_DATA);
843 mlen = MLEN;
844 }
845 MCLAIM(m, so->so_snd.sb_mowner);
846 if (sock_loan_thresh >= 0 &&
847 uio->uio_iov->iov_len >= sock_loan_thresh &&
848 space >= sock_loan_thresh &&
849 (len = sosend_loan(so, uio, m,
850 space)) != 0) {
851 SOSEND_COUNTER_INCR(&sosend_loan_big);
852 space -= len;
853 goto have_data;
854 }
855 if (resid >= MINCLSIZE && space >= MCLBYTES) {
856 SOSEND_COUNTER_INCR(&sosend_copy_big);
857 m_clget(m, M_WAIT);
858 if ((m->m_flags & M_EXT) == 0)
859 goto nopages;
860 mlen = MCLBYTES;
861 if (atomic && top == 0) {
862 len = lmin(MCLBYTES - max_hdr,
863 resid);
864 m->m_data += max_hdr;
865 } else
866 len = lmin(MCLBYTES, resid);
867 space -= len;
868 } else {
869 nopages:
870 SOSEND_COUNTER_INCR(&sosend_copy_small);
871 len = lmin(lmin(mlen, resid), space);
872 space -= len;
873 /*
874 * For datagram protocols, leave room
875 * for protocol headers in first mbuf.
876 */
877 if (atomic && top == 0 && len < mlen)
878 MH_ALIGN(m, len);
879 }
880 error = uiomove(mtod(m, void *), (int)len,
881 uio);
882 have_data:
883 resid = uio->uio_resid;
884 m->m_len = len;
885 *mp = m;
886 top->m_pkthdr.len += len;
887 if (error)
888 goto release;
889 mp = &m->m_next;
890 if (resid <= 0) {
891 if (flags & MSG_EOR)
892 top->m_flags |= M_EOR;
893 break;
894 }
895 } while (space > 0 && atomic);
896
897 s = splsoftnet();
898
899 if (so->so_state & SS_CANTSENDMORE)
900 snderr(EPIPE);
901
902 if (dontroute)
903 so->so_options |= SO_DONTROUTE;
904 if (resid > 0)
905 so->so_state |= SS_MORETOCOME;
906 error = (*so->so_proto->pr_usrreq)(so,
907 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
908 top, addr, control, curlwp); /* XXX */
909 if (dontroute)
910 so->so_options &= ~SO_DONTROUTE;
911 if (resid > 0)
912 so->so_state &= ~SS_MORETOCOME;
913 splx(s);
914
915 clen = 0;
916 control = 0;
917 top = 0;
918 mp = ⊤
919 if (error)
920 goto release;
921 } while (resid && space > 0);
922 } while (resid);
923
924 release:
925 sbunlock(&so->so_snd);
926 out:
927 if (top)
928 m_freem(top);
929 if (control)
930 m_freem(control);
931 return (error);
932 }
933
934 /*
935 * Implement receive operations on a socket.
936 * We depend on the way that records are added to the sockbuf
937 * by sbappend*. In particular, each record (mbufs linked through m_next)
938 * must begin with an address if the protocol so specifies,
939 * followed by an optional mbuf or mbufs containing ancillary data,
940 * and then zero or more mbufs of data.
941 * In order to avoid blocking network interrupts for the entire time here,
942 * we splx() while doing the actual copy to user space.
943 * Although the sockbuf is locked, new data may still be appended,
944 * and thus we must maintain consistency of the sockbuf during that time.
945 *
946 * The caller may receive the data as a single mbuf chain by supplying
947 * an mbuf **mp0 for use in returning the chain. The uio is then used
948 * only for the count in uio_resid.
949 */
950 int
951 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
952 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
953 {
954 struct lwp *l = curlwp;
955 struct mbuf *m, **mp;
956 int flags, len, error, s, offset, moff, type, orig_resid;
957 const struct protosw *pr;
958 struct mbuf *nextrecord;
959 int mbuf_removed = 0;
960
961 pr = so->so_proto;
962 mp = mp0;
963 type = 0;
964 orig_resid = uio->uio_resid;
965
966 if (paddr)
967 *paddr = 0;
968 if (controlp)
969 *controlp = 0;
970 if (flagsp)
971 flags = *flagsp &~ MSG_EOR;
972 else
973 flags = 0;
974
975 if ((flags & MSG_DONTWAIT) == 0)
976 sodopendfree();
977
978 if (flags & MSG_OOB) {
979 m = m_get(M_WAIT, MT_DATA);
980 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
981 (struct mbuf *)(long)(flags & MSG_PEEK),
982 (struct mbuf *)0, l);
983 if (error)
984 goto bad;
985 do {
986 error = uiomove(mtod(m, void *),
987 (int) min(uio->uio_resid, m->m_len), uio);
988 m = m_free(m);
989 } while (uio->uio_resid && error == 0 && m);
990 bad:
991 if (m)
992 m_freem(m);
993 return (error);
994 }
995 if (mp)
996 *mp = (struct mbuf *)0;
997 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
998 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
999 (struct mbuf *)0, (struct mbuf *)0, l);
1000
1001 restart:
1002 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1003 return (error);
1004 s = splsoftnet();
1005
1006 m = so->so_rcv.sb_mb;
1007 /*
1008 * If we have less data than requested, block awaiting more
1009 * (subject to any timeout) if:
1010 * 1. the current count is less than the low water mark,
1011 * 2. MSG_WAITALL is set, and it is possible to do the entire
1012 * receive operation at once if we block (resid <= hiwat), or
1013 * 3. MSG_DONTWAIT is not set.
1014 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1015 * we have to do the receive in sections, and thus risk returning
1016 * a short count if a timeout or signal occurs after we start.
1017 */
1018 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1019 so->so_rcv.sb_cc < uio->uio_resid) &&
1020 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1021 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1022 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1023 #ifdef DIAGNOSTIC
1024 if (m == 0 && so->so_rcv.sb_cc)
1025 panic("receive 1");
1026 #endif
1027 if (so->so_error) {
1028 if (m)
1029 goto dontblock;
1030 error = so->so_error;
1031 if ((flags & MSG_PEEK) == 0)
1032 so->so_error = 0;
1033 goto release;
1034 }
1035 if (so->so_state & SS_CANTRCVMORE) {
1036 if (m)
1037 goto dontblock;
1038 else
1039 goto release;
1040 }
1041 for (; m; m = m->m_next)
1042 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1043 m = so->so_rcv.sb_mb;
1044 goto dontblock;
1045 }
1046 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1047 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1048 error = ENOTCONN;
1049 goto release;
1050 }
1051 if (uio->uio_resid == 0)
1052 goto release;
1053 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1054 error = EWOULDBLOCK;
1055 goto release;
1056 }
1057 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1058 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1059 sbunlock(&so->so_rcv);
1060 error = sbwait(&so->so_rcv);
1061 splx(s);
1062 if (error)
1063 return (error);
1064 goto restart;
1065 }
1066 dontblock:
1067 /*
1068 * On entry here, m points to the first record of the socket buffer.
1069 * While we process the initial mbufs containing address and control
1070 * info, we save a copy of m->m_nextpkt into nextrecord.
1071 */
1072 if (l)
1073 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1074 KASSERT(m == so->so_rcv.sb_mb);
1075 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1076 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1077 nextrecord = m->m_nextpkt;
1078 if (pr->pr_flags & PR_ADDR) {
1079 #ifdef DIAGNOSTIC
1080 if (m->m_type != MT_SONAME)
1081 panic("receive 1a");
1082 #endif
1083 orig_resid = 0;
1084 if (flags & MSG_PEEK) {
1085 if (paddr)
1086 *paddr = m_copy(m, 0, m->m_len);
1087 m = m->m_next;
1088 } else {
1089 sbfree(&so->so_rcv, m);
1090 mbuf_removed = 1;
1091 if (paddr) {
1092 *paddr = m;
1093 so->so_rcv.sb_mb = m->m_next;
1094 m->m_next = 0;
1095 m = so->so_rcv.sb_mb;
1096 } else {
1097 MFREE(m, so->so_rcv.sb_mb);
1098 m = so->so_rcv.sb_mb;
1099 }
1100 }
1101 }
1102 while (m && m->m_type == MT_CONTROL && error == 0) {
1103 if (flags & MSG_PEEK) {
1104 if (controlp)
1105 *controlp = m_copy(m, 0, m->m_len);
1106 m = m->m_next;
1107 } else {
1108 sbfree(&so->so_rcv, m);
1109 mbuf_removed = 1;
1110 if (controlp) {
1111 struct domain *dom = pr->pr_domain;
1112 if (dom->dom_externalize && l &&
1113 mtod(m, struct cmsghdr *)->cmsg_type ==
1114 SCM_RIGHTS)
1115 error = (*dom->dom_externalize)(m, l);
1116 *controlp = m;
1117 so->so_rcv.sb_mb = m->m_next;
1118 m->m_next = 0;
1119 m = so->so_rcv.sb_mb;
1120 } else {
1121 /*
1122 * Dispose of any SCM_RIGHTS message that went
1123 * through the read path rather than recv.
1124 */
1125 if (pr->pr_domain->dom_dispose &&
1126 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1127 (*pr->pr_domain->dom_dispose)(m);
1128 MFREE(m, so->so_rcv.sb_mb);
1129 m = so->so_rcv.sb_mb;
1130 }
1131 }
1132 if (controlp) {
1133 orig_resid = 0;
1134 controlp = &(*controlp)->m_next;
1135 }
1136 }
1137
1138 /*
1139 * If m is non-NULL, we have some data to read. From now on,
1140 * make sure to keep sb_lastrecord consistent when working on
1141 * the last packet on the chain (nextrecord == NULL) and we
1142 * change m->m_nextpkt.
1143 */
1144 if (m) {
1145 if ((flags & MSG_PEEK) == 0) {
1146 m->m_nextpkt = nextrecord;
1147 /*
1148 * If nextrecord == NULL (this is a single chain),
1149 * then sb_lastrecord may not be valid here if m
1150 * was changed earlier.
1151 */
1152 if (nextrecord == NULL) {
1153 KASSERT(so->so_rcv.sb_mb == m);
1154 so->so_rcv.sb_lastrecord = m;
1155 }
1156 }
1157 type = m->m_type;
1158 if (type == MT_OOBDATA)
1159 flags |= MSG_OOB;
1160 } else {
1161 if ((flags & MSG_PEEK) == 0) {
1162 KASSERT(so->so_rcv.sb_mb == m);
1163 so->so_rcv.sb_mb = nextrecord;
1164 SB_EMPTY_FIXUP(&so->so_rcv);
1165 }
1166 }
1167 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1168 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1169
1170 moff = 0;
1171 offset = 0;
1172 while (m && uio->uio_resid > 0 && error == 0) {
1173 if (m->m_type == MT_OOBDATA) {
1174 if (type != MT_OOBDATA)
1175 break;
1176 } else if (type == MT_OOBDATA)
1177 break;
1178 #ifdef DIAGNOSTIC
1179 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1180 panic("receive 3");
1181 #endif
1182 so->so_state &= ~SS_RCVATMARK;
1183 len = uio->uio_resid;
1184 if (so->so_oobmark && len > so->so_oobmark - offset)
1185 len = so->so_oobmark - offset;
1186 if (len > m->m_len - moff)
1187 len = m->m_len - moff;
1188 /*
1189 * If mp is set, just pass back the mbufs.
1190 * Otherwise copy them out via the uio, then free.
1191 * Sockbuf must be consistent here (points to current mbuf,
1192 * it points to next record) when we drop priority;
1193 * we must note any additions to the sockbuf when we
1194 * block interrupts again.
1195 */
1196 if (mp == 0) {
1197 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1198 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1199 splx(s);
1200 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1201 s = splsoftnet();
1202 if (error) {
1203 /*
1204 * If any part of the record has been removed
1205 * (such as the MT_SONAME mbuf, which will
1206 * happen when PR_ADDR, and thus also
1207 * PR_ATOMIC, is set), then drop the entire
1208 * record to maintain the atomicity of the
1209 * receive operation.
1210 *
1211 * This avoids a later panic("receive 1a")
1212 * when compiled with DIAGNOSTIC.
1213 */
1214 if (m && mbuf_removed
1215 && (pr->pr_flags & PR_ATOMIC))
1216 (void) sbdroprecord(&so->so_rcv);
1217
1218 goto release;
1219 }
1220 } else
1221 uio->uio_resid -= len;
1222 if (len == m->m_len - moff) {
1223 if (m->m_flags & M_EOR)
1224 flags |= MSG_EOR;
1225 if (flags & MSG_PEEK) {
1226 m = m->m_next;
1227 moff = 0;
1228 } else {
1229 nextrecord = m->m_nextpkt;
1230 sbfree(&so->so_rcv, m);
1231 if (mp) {
1232 *mp = m;
1233 mp = &m->m_next;
1234 so->so_rcv.sb_mb = m = m->m_next;
1235 *mp = (struct mbuf *)0;
1236 } else {
1237 MFREE(m, so->so_rcv.sb_mb);
1238 m = so->so_rcv.sb_mb;
1239 }
1240 /*
1241 * If m != NULL, we also know that
1242 * so->so_rcv.sb_mb != NULL.
1243 */
1244 KASSERT(so->so_rcv.sb_mb == m);
1245 if (m) {
1246 m->m_nextpkt = nextrecord;
1247 if (nextrecord == NULL)
1248 so->so_rcv.sb_lastrecord = m;
1249 } else {
1250 so->so_rcv.sb_mb = nextrecord;
1251 SB_EMPTY_FIXUP(&so->so_rcv);
1252 }
1253 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1254 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1255 }
1256 } else {
1257 if (flags & MSG_PEEK)
1258 moff += len;
1259 else {
1260 if (mp)
1261 *mp = m_copym(m, 0, len, M_WAIT);
1262 m->m_data += len;
1263 m->m_len -= len;
1264 so->so_rcv.sb_cc -= len;
1265 }
1266 }
1267 if (so->so_oobmark) {
1268 if ((flags & MSG_PEEK) == 0) {
1269 so->so_oobmark -= len;
1270 if (so->so_oobmark == 0) {
1271 so->so_state |= SS_RCVATMARK;
1272 break;
1273 }
1274 } else {
1275 offset += len;
1276 if (offset == so->so_oobmark)
1277 break;
1278 }
1279 }
1280 if (flags & MSG_EOR)
1281 break;
1282 /*
1283 * If the MSG_WAITALL flag is set (for non-atomic socket),
1284 * we must not quit until "uio->uio_resid == 0" or an error
1285 * termination. If a signal/timeout occurs, return
1286 * with a short count but without error.
1287 * Keep sockbuf locked against other readers.
1288 */
1289 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1290 !sosendallatonce(so) && !nextrecord) {
1291 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1292 break;
1293 /*
1294 * If we are peeking and the socket receive buffer is
1295 * full, stop since we can't get more data to peek at.
1296 */
1297 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1298 break;
1299 /*
1300 * If we've drained the socket buffer, tell the
1301 * protocol in case it needs to do something to
1302 * get it filled again.
1303 */
1304 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1305 (*pr->pr_usrreq)(so, PRU_RCVD,
1306 (struct mbuf *)0,
1307 (struct mbuf *)(long)flags,
1308 (struct mbuf *)0, l);
1309 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1310 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1311 error = sbwait(&so->so_rcv);
1312 if (error) {
1313 sbunlock(&so->so_rcv);
1314 splx(s);
1315 return (0);
1316 }
1317 if ((m = so->so_rcv.sb_mb) != NULL)
1318 nextrecord = m->m_nextpkt;
1319 }
1320 }
1321
1322 if (m && pr->pr_flags & PR_ATOMIC) {
1323 flags |= MSG_TRUNC;
1324 if ((flags & MSG_PEEK) == 0)
1325 (void) sbdroprecord(&so->so_rcv);
1326 }
1327 if ((flags & MSG_PEEK) == 0) {
1328 if (m == 0) {
1329 /*
1330 * First part is an inline SB_EMPTY_FIXUP(). Second
1331 * part makes sure sb_lastrecord is up-to-date if
1332 * there is still data in the socket buffer.
1333 */
1334 so->so_rcv.sb_mb = nextrecord;
1335 if (so->so_rcv.sb_mb == NULL) {
1336 so->so_rcv.sb_mbtail = NULL;
1337 so->so_rcv.sb_lastrecord = NULL;
1338 } else if (nextrecord->m_nextpkt == NULL)
1339 so->so_rcv.sb_lastrecord = nextrecord;
1340 }
1341 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1342 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1343 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1344 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1345 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1346 }
1347 if (orig_resid == uio->uio_resid && orig_resid &&
1348 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1349 sbunlock(&so->so_rcv);
1350 splx(s);
1351 goto restart;
1352 }
1353
1354 if (flagsp)
1355 *flagsp |= flags;
1356 release:
1357 sbunlock(&so->so_rcv);
1358 splx(s);
1359 return (error);
1360 }
1361
1362 int
1363 soshutdown(struct socket *so, int how)
1364 {
1365 const struct protosw *pr;
1366
1367 pr = so->so_proto;
1368 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1369 return (EINVAL);
1370
1371 if (how == SHUT_RD || how == SHUT_RDWR)
1372 sorflush(so);
1373 if (how == SHUT_WR || how == SHUT_RDWR)
1374 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1375 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1376 return (0);
1377 }
1378
1379 void
1380 sorflush(struct socket *so)
1381 {
1382 struct sockbuf *sb, asb;
1383 const struct protosw *pr;
1384 int s;
1385
1386 sb = &so->so_rcv;
1387 pr = so->so_proto;
1388 sb->sb_flags |= SB_NOINTR;
1389 (void) sblock(sb, M_WAITOK);
1390 s = splnet();
1391 socantrcvmore(so);
1392 sbunlock(sb);
1393 asb = *sb;
1394 /*
1395 * Clear most of the sockbuf structure, but leave some of the
1396 * fields valid.
1397 */
1398 memset(&sb->sb_startzero, 0,
1399 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1400 splx(s);
1401 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1402 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1403 sbrelease(&asb, so);
1404 }
1405
1406 int
1407 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1408 {
1409 int error;
1410 struct mbuf *m;
1411 struct linger *l;
1412
1413 error = 0;
1414 m = m0;
1415 if (level != SOL_SOCKET) {
1416 if (so->so_proto && so->so_proto->pr_ctloutput)
1417 return ((*so->so_proto->pr_ctloutput)
1418 (PRCO_SETOPT, so, level, optname, &m0));
1419 error = ENOPROTOOPT;
1420 } else {
1421 switch (optname) {
1422
1423 case SO_LINGER:
1424 if (m == NULL || m->m_len != sizeof(struct linger)) {
1425 error = EINVAL;
1426 goto bad;
1427 }
1428 l = mtod(m, struct linger *);
1429 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1430 l->l_linger > (INT_MAX / hz)) {
1431 error = EDOM;
1432 goto bad;
1433 }
1434 so->so_linger = l->l_linger;
1435 if (l->l_onoff)
1436 so->so_options |= SO_LINGER;
1437 else
1438 so->so_options &= ~SO_LINGER;
1439 break;
1440
1441 case SO_DEBUG:
1442 case SO_KEEPALIVE:
1443 case SO_DONTROUTE:
1444 case SO_USELOOPBACK:
1445 case SO_BROADCAST:
1446 case SO_REUSEADDR:
1447 case SO_REUSEPORT:
1448 case SO_OOBINLINE:
1449 case SO_TIMESTAMP:
1450 if (m == NULL || m->m_len < sizeof(int)) {
1451 error = EINVAL;
1452 goto bad;
1453 }
1454 if (*mtod(m, int *))
1455 so->so_options |= optname;
1456 else
1457 so->so_options &= ~optname;
1458 break;
1459
1460 case SO_SNDBUF:
1461 case SO_RCVBUF:
1462 case SO_SNDLOWAT:
1463 case SO_RCVLOWAT:
1464 {
1465 int optval;
1466
1467 if (m == NULL || m->m_len < sizeof(int)) {
1468 error = EINVAL;
1469 goto bad;
1470 }
1471
1472 /*
1473 * Values < 1 make no sense for any of these
1474 * options, so disallow them.
1475 */
1476 optval = *mtod(m, int *);
1477 if (optval < 1) {
1478 error = EINVAL;
1479 goto bad;
1480 }
1481
1482 switch (optname) {
1483
1484 case SO_SNDBUF:
1485 case SO_RCVBUF:
1486 if (sbreserve(optname == SO_SNDBUF ?
1487 &so->so_snd : &so->so_rcv,
1488 (u_long) optval, so) == 0) {
1489 error = ENOBUFS;
1490 goto bad;
1491 }
1492 break;
1493
1494 /*
1495 * Make sure the low-water is never greater than
1496 * the high-water.
1497 */
1498 case SO_SNDLOWAT:
1499 so->so_snd.sb_lowat =
1500 (optval > so->so_snd.sb_hiwat) ?
1501 so->so_snd.sb_hiwat : optval;
1502 break;
1503 case SO_RCVLOWAT:
1504 so->so_rcv.sb_lowat =
1505 (optval > so->so_rcv.sb_hiwat) ?
1506 so->so_rcv.sb_hiwat : optval;
1507 break;
1508 }
1509 break;
1510 }
1511
1512 case SO_SNDTIMEO:
1513 case SO_RCVTIMEO:
1514 {
1515 struct timeval *tv;
1516 int val;
1517
1518 if (m == NULL || m->m_len < sizeof(*tv)) {
1519 error = EINVAL;
1520 goto bad;
1521 }
1522 tv = mtod(m, struct timeval *);
1523 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1524 error = EDOM;
1525 goto bad;
1526 }
1527 val = tv->tv_sec * hz + tv->tv_usec / tick;
1528 if (val == 0 && tv->tv_usec != 0)
1529 val = 1;
1530
1531 switch (optname) {
1532
1533 case SO_SNDTIMEO:
1534 so->so_snd.sb_timeo = val;
1535 break;
1536 case SO_RCVTIMEO:
1537 so->so_rcv.sb_timeo = val;
1538 break;
1539 }
1540 break;
1541 }
1542
1543 default:
1544 error = ENOPROTOOPT;
1545 break;
1546 }
1547 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1548 (void) ((*so->so_proto->pr_ctloutput)
1549 (PRCO_SETOPT, so, level, optname, &m0));
1550 m = NULL; /* freed by protocol */
1551 }
1552 }
1553 bad:
1554 if (m)
1555 (void) m_free(m);
1556 return (error);
1557 }
1558
1559 int
1560 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1561 {
1562 struct mbuf *m;
1563
1564 if (level != SOL_SOCKET) {
1565 if (so->so_proto && so->so_proto->pr_ctloutput) {
1566 return ((*so->so_proto->pr_ctloutput)
1567 (PRCO_GETOPT, so, level, optname, mp));
1568 } else
1569 return (ENOPROTOOPT);
1570 } else {
1571 m = m_get(M_WAIT, MT_SOOPTS);
1572 m->m_len = sizeof(int);
1573
1574 switch (optname) {
1575
1576 case SO_LINGER:
1577 m->m_len = sizeof(struct linger);
1578 mtod(m, struct linger *)->l_onoff =
1579 (so->so_options & SO_LINGER) ? 1 : 0;
1580 mtod(m, struct linger *)->l_linger = so->so_linger;
1581 break;
1582
1583 case SO_USELOOPBACK:
1584 case SO_DONTROUTE:
1585 case SO_DEBUG:
1586 case SO_KEEPALIVE:
1587 case SO_REUSEADDR:
1588 case SO_REUSEPORT:
1589 case SO_BROADCAST:
1590 case SO_OOBINLINE:
1591 case SO_TIMESTAMP:
1592 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1593 break;
1594
1595 case SO_TYPE:
1596 *mtod(m, int *) = so->so_type;
1597 break;
1598
1599 case SO_ERROR:
1600 *mtod(m, int *) = so->so_error;
1601 so->so_error = 0;
1602 break;
1603
1604 case SO_SNDBUF:
1605 *mtod(m, int *) = so->so_snd.sb_hiwat;
1606 break;
1607
1608 case SO_RCVBUF:
1609 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1610 break;
1611
1612 case SO_SNDLOWAT:
1613 *mtod(m, int *) = so->so_snd.sb_lowat;
1614 break;
1615
1616 case SO_RCVLOWAT:
1617 *mtod(m, int *) = so->so_rcv.sb_lowat;
1618 break;
1619
1620 case SO_SNDTIMEO:
1621 case SO_RCVTIMEO:
1622 {
1623 int val = (optname == SO_SNDTIMEO ?
1624 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1625
1626 m->m_len = sizeof(struct timeval);
1627 mtod(m, struct timeval *)->tv_sec = val / hz;
1628 mtod(m, struct timeval *)->tv_usec =
1629 (val % hz) * tick;
1630 break;
1631 }
1632
1633 case SO_OVERFLOWED:
1634 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1635 break;
1636
1637 default:
1638 (void)m_free(m);
1639 return (ENOPROTOOPT);
1640 }
1641 *mp = m;
1642 return (0);
1643 }
1644 }
1645
1646 void
1647 sohasoutofband(struct socket *so)
1648 {
1649 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1650 selwakeup(&so->so_rcv.sb_sel);
1651 }
1652
1653 static void
1654 filt_sordetach(struct knote *kn)
1655 {
1656 struct socket *so;
1657
1658 so = (struct socket *)kn->kn_fp->f_data;
1659 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1660 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1661 so->so_rcv.sb_flags &= ~SB_KNOTE;
1662 }
1663
1664 /*ARGSUSED*/
1665 static int
1666 filt_soread(struct knote *kn, long hint)
1667 {
1668 struct socket *so;
1669
1670 so = (struct socket *)kn->kn_fp->f_data;
1671 kn->kn_data = so->so_rcv.sb_cc;
1672 if (so->so_state & SS_CANTRCVMORE) {
1673 kn->kn_flags |= EV_EOF;
1674 kn->kn_fflags = so->so_error;
1675 return (1);
1676 }
1677 if (so->so_error) /* temporary udp error */
1678 return (1);
1679 if (kn->kn_sfflags & NOTE_LOWAT)
1680 return (kn->kn_data >= kn->kn_sdata);
1681 return (kn->kn_data >= so->so_rcv.sb_lowat);
1682 }
1683
1684 static void
1685 filt_sowdetach(struct knote *kn)
1686 {
1687 struct socket *so;
1688
1689 so = (struct socket *)kn->kn_fp->f_data;
1690 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1691 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1692 so->so_snd.sb_flags &= ~SB_KNOTE;
1693 }
1694
1695 /*ARGSUSED*/
1696 static int
1697 filt_sowrite(struct knote *kn, long hint)
1698 {
1699 struct socket *so;
1700
1701 so = (struct socket *)kn->kn_fp->f_data;
1702 kn->kn_data = sbspace(&so->so_snd);
1703 if (so->so_state & SS_CANTSENDMORE) {
1704 kn->kn_flags |= EV_EOF;
1705 kn->kn_fflags = so->so_error;
1706 return (1);
1707 }
1708 if (so->so_error) /* temporary udp error */
1709 return (1);
1710 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1711 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1712 return (0);
1713 if (kn->kn_sfflags & NOTE_LOWAT)
1714 return (kn->kn_data >= kn->kn_sdata);
1715 return (kn->kn_data >= so->so_snd.sb_lowat);
1716 }
1717
1718 /*ARGSUSED*/
1719 static int
1720 filt_solisten(struct knote *kn, long hint)
1721 {
1722 struct socket *so;
1723
1724 so = (struct socket *)kn->kn_fp->f_data;
1725
1726 /*
1727 * Set kn_data to number of incoming connections, not
1728 * counting partial (incomplete) connections.
1729 */
1730 kn->kn_data = so->so_qlen;
1731 return (kn->kn_data > 0);
1732 }
1733
1734 static const struct filterops solisten_filtops =
1735 { 1, NULL, filt_sordetach, filt_solisten };
1736 static const struct filterops soread_filtops =
1737 { 1, NULL, filt_sordetach, filt_soread };
1738 static const struct filterops sowrite_filtops =
1739 { 1, NULL, filt_sowdetach, filt_sowrite };
1740
1741 int
1742 soo_kqfilter(struct file *fp, struct knote *kn)
1743 {
1744 struct socket *so;
1745 struct sockbuf *sb;
1746
1747 so = (struct socket *)kn->kn_fp->f_data;
1748 switch (kn->kn_filter) {
1749 case EVFILT_READ:
1750 if (so->so_options & SO_ACCEPTCONN)
1751 kn->kn_fop = &solisten_filtops;
1752 else
1753 kn->kn_fop = &soread_filtops;
1754 sb = &so->so_rcv;
1755 break;
1756 case EVFILT_WRITE:
1757 kn->kn_fop = &sowrite_filtops;
1758 sb = &so->so_snd;
1759 break;
1760 default:
1761 return (1);
1762 }
1763 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1764 sb->sb_flags |= SB_KNOTE;
1765 return (0);
1766 }
1767
1768 #include <sys/sysctl.h>
1769
1770 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1771
1772 /*
1773 * sysctl helper routine for kern.somaxkva. ensures that the given
1774 * value is not too small.
1775 * (XXX should we maybe make sure it's not too large as well?)
1776 */
1777 static int
1778 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1779 {
1780 int error, new_somaxkva;
1781 struct sysctlnode node;
1782
1783 new_somaxkva = somaxkva;
1784 node = *rnode;
1785 node.sysctl_data = &new_somaxkva;
1786 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1787 if (error || newp == NULL)
1788 return (error);
1789
1790 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1791 return (EINVAL);
1792
1793 mutex_enter(&so_pendfree_lock);
1794 somaxkva = new_somaxkva;
1795 cv_broadcast(&socurkva_cv);
1796 mutex_exit(&so_pendfree_lock);
1797
1798 return (error);
1799 }
1800
1801 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1802 {
1803
1804 sysctl_createv(clog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT,
1806 CTLTYPE_NODE, "kern", NULL,
1807 NULL, 0, NULL, 0,
1808 CTL_KERN, CTL_EOL);
1809
1810 sysctl_createv(clog, 0, NULL, NULL,
1811 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1812 CTLTYPE_INT, "somaxkva",
1813 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1814 "used for socket buffers"),
1815 sysctl_kern_somaxkva, 0, NULL, 0,
1816 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1817 }
1818