uipc_socket.c revision 1.138 1 /* $NetBSD: uipc_socket.c,v 1.138 2007/04/03 23:44:53 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.138 2007/04/03 23:44:53 rmind Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95 #include <sys/mutex.h>
96 #include <sys/condvar.h>
97
98 #include <uvm/uvm.h>
99
100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
101 IPL_SOFTNET);
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern int somaxconn; /* patchable (XXX sysctl) */
107 int somaxconn = SOMAXCONN;
108
109 #ifdef SOSEND_COUNTERS
110 #include <sys/device.h>
111
112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "loan big");
114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy big");
116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "copy small");
118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "kva limit");
120
121 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
122
123 EVCNT_ATTACH_STATIC(sosend_loan_big);
124 EVCNT_ATTACH_STATIC(sosend_copy_big);
125 EVCNT_ATTACH_STATIC(sosend_copy_small);
126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
127 #else
128
129 #define SOSEND_COUNTER_INCR(ev) /* nothing */
130
131 #endif /* SOSEND_COUNTERS */
132
133 static struct callback_entry sokva_reclaimerentry;
134
135 #ifdef SOSEND_NO_LOAN
136 int sock_loan_thresh = -1;
137 #else
138 int sock_loan_thresh = 4096;
139 #endif
140
141 static kmutex_t so_pendfree_lock;
142 static struct mbuf *so_pendfree;
143
144 #ifndef SOMAXKVA
145 #define SOMAXKVA (16 * 1024 * 1024)
146 #endif
147 int somaxkva = SOMAXKVA;
148 static int socurkva;
149 static kcondvar_t socurkva_cv;
150
151 #define SOCK_LOAN_CHUNK 65536
152
153 static size_t sodopendfree(void);
154 static size_t sodopendfreel(void);
155
156 static vsize_t
157 sokvareserve(struct socket *so, vsize_t len)
158 {
159 int error;
160
161 mutex_enter(&so_pendfree_lock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
180 if (error) {
181 len = 0;
182 break;
183 }
184 }
185 socurkva += len;
186 mutex_exit(&so_pendfree_lock);
187 return len;
188 }
189
190 static void
191 sokvaunreserve(vsize_t len)
192 {
193
194 mutex_enter(&so_pendfree_lock);
195 socurkva -= len;
196 cv_broadcast(&socurkva_cv);
197 mutex_exit(&so_pendfree_lock);
198 }
199
200 /*
201 * sokvaalloc: allocate kva for loan.
202 */
203
204 vaddr_t
205 sokvaalloc(vsize_t len, struct socket *so)
206 {
207 vaddr_t lva;
208
209 /*
210 * reserve kva.
211 */
212
213 if (sokvareserve(so, len) == 0)
214 return 0;
215
216 /*
217 * allocate kva.
218 */
219
220 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
221 if (lva == 0) {
222 sokvaunreserve(len);
223 return (0);
224 }
225
226 return lva;
227 }
228
229 /*
230 * sokvafree: free kva for loan.
231 */
232
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 /*
238 * free kva.
239 */
240
241 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
242
243 /*
244 * unreserve kva.
245 */
246
247 sokvaunreserve(len);
248 }
249
250 static void
251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
252 {
253 vaddr_t va, sva, eva;
254 vsize_t len;
255 paddr_t pa;
256 int i, npgs;
257
258 eva = round_page((vaddr_t) buf + size);
259 sva = trunc_page((vaddr_t) buf);
260 len = eva - sva;
261 npgs = len >> PAGE_SHIFT;
262
263 if (__predict_false(pgs == NULL)) {
264 pgs = alloca(npgs * sizeof(*pgs));
265
266 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
267 if (pmap_extract(pmap_kernel(), va, &pa) == false)
268 panic("sodoloanfree: va 0x%lx not mapped", va);
269 pgs[i] = PHYS_TO_VM_PAGE(pa);
270 }
271 }
272
273 pmap_kremove(sva, len);
274 pmap_update(pmap_kernel());
275 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
276 sokvafree(sva, len);
277 }
278
279 static size_t
280 sodopendfree()
281 {
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285 rv = sodopendfreel();
286 mutex_exit(&so_pendfree_lock);
287
288 return rv;
289 }
290
291 /*
292 * sodopendfreel: free mbufs on "pendfree" list.
293 * unlock and relock so_pendfree_lock when freeing mbufs.
294 *
295 * => called with so_pendfree_lock held.
296 */
297
298 static size_t
299 sodopendfreel()
300 {
301 struct mbuf *m, *next;
302 size_t rv = 0;
303 int s;
304
305 KASSERT(mutex_owned(&so_pendfree_lock));
306
307 while (so_pendfree != NULL) {
308 m = so_pendfree;
309 so_pendfree = NULL;
310 mutex_exit(&so_pendfree_lock);
311
312 for (; m != NULL; m = next) {
313 next = m->m_next;
314
315 rv += m->m_ext.ext_size;
316 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
317 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
318 m->m_ext.ext_size);
319 s = splvm();
320 pool_cache_put(&mbpool_cache, m);
321 splx(s);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 if (m == NULL) {
335
336 /*
337 * called from MEXTREMOVE.
338 */
339
340 sodoloanfree(NULL, buf, size);
341 return;
342 }
343
344 /*
345 * postpone freeing mbuf.
346 *
347 * we can't do it in interrupt context
348 * because we need to put kva back to kernel_map.
349 */
350
351 mutex_enter(&so_pendfree_lock);
352 m->m_next = so_pendfree;
353 so_pendfree = m;
354 cv_broadcast(&socurkva_cv);
355 mutex_exit(&so_pendfree_lock);
356 }
357
358 static long
359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
360 {
361 struct iovec *iov = uio->uio_iov;
362 vaddr_t sva, eva;
363 vsize_t len;
364 vaddr_t lva, va;
365 int npgs, i, error;
366
367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
368 return (0);
369
370 if (iov->iov_len < (size_t) space)
371 space = iov->iov_len;
372 if (space > SOCK_LOAN_CHUNK)
373 space = SOCK_LOAN_CHUNK;
374
375 eva = round_page((vaddr_t) iov->iov_base + space);
376 sva = trunc_page((vaddr_t) iov->iov_base);
377 len = eva - sva;
378 npgs = len >> PAGE_SHIFT;
379
380 /* XXX KDASSERT */
381 KASSERT(npgs <= M_EXT_MAXPAGES);
382
383 lva = sokvaalloc(len, so);
384 if (lva == 0)
385 return 0;
386
387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
389 if (error) {
390 sokvafree(lva, len);
391 return (0);
392 }
393
394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
396 VM_PROT_READ);
397 pmap_update(pmap_kernel());
398
399 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
400
401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
403
404 uio->uio_resid -= space;
405 /* uio_offset not updated, not set/used for write(2) */
406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
407 uio->uio_iov->iov_len -= space;
408 if (uio->uio_iov->iov_len == 0) {
409 uio->uio_iov++;
410 uio->uio_iovcnt--;
411 }
412
413 return (space);
414 }
415
416 static int
417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
418 {
419
420 KASSERT(ce == &sokva_reclaimerentry);
421 KASSERT(obj == NULL);
422
423 sodopendfree();
424 if (!vm_map_starved_p(kernel_map)) {
425 return CALLBACK_CHAIN_ABORT;
426 }
427 return CALLBACK_CHAIN_CONTINUE;
428 }
429
430 void
431 soinit(void)
432 {
433
434 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
435 cv_init(&socurkva_cv, "sokva");
436
437 /* Set the initial adjusted socket buffer size. */
438 if (sb_max_set(sb_max))
439 panic("bad initial sb_max value: %lu", sb_max);
440
441 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
442 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
443 }
444
445 /*
446 * Socket operation routines.
447 * These routines are called by the routines in
448 * sys_socket.c or from a system process, and
449 * implement the semantics of socket operations by
450 * switching out to the protocol specific routines.
451 */
452 /*ARGSUSED*/
453 int
454 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 uid_t uid;
459 int error, s;
460
461 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
462 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
463 KAUTH_ARG(proto));
464 if (error)
465 return (error);
466
467 if (proto)
468 prp = pffindproto(dom, proto, type);
469 else
470 prp = pffindtype(dom, type);
471 if (prp == 0) {
472 /* no support for domain */
473 if (pffinddomain(dom) == 0)
474 return (EAFNOSUPPORT);
475 /* no support for socket type */
476 if (proto == 0 && type != 0)
477 return (EPROTOTYPE);
478 return (EPROTONOSUPPORT);
479 }
480 if (prp->pr_usrreq == 0)
481 return (EPROTONOSUPPORT);
482 if (prp->pr_type != type)
483 return (EPROTOTYPE);
484 s = splsoftnet();
485 so = pool_get(&socket_pool, PR_WAITOK);
486 memset((void *)so, 0, sizeof(*so));
487 TAILQ_INIT(&so->so_q0);
488 TAILQ_INIT(&so->so_q);
489 so->so_type = type;
490 so->so_proto = prp;
491 so->so_send = sosend;
492 so->so_receive = soreceive;
493 #ifdef MBUFTRACE
494 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
495 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
496 so->so_mowner = &prp->pr_domain->dom_mowner;
497 #endif
498 uid = kauth_cred_geteuid(l->l_cred);
499 so->so_uidinfo = uid_find(uid);
500 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
501 (struct mbuf *)(long)proto, (struct mbuf *)0, l);
502 if (error) {
503 so->so_state |= SS_NOFDREF;
504 sofree(so);
505 splx(s);
506 return (error);
507 }
508 splx(s);
509 *aso = so;
510 return (0);
511 }
512
513 int
514 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
515 {
516 int s, error;
517
518 s = splsoftnet();
519 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
520 nam, (struct mbuf *)0, l);
521 splx(s);
522 return (error);
523 }
524
525 int
526 solisten(struct socket *so, int backlog)
527 {
528 int s, error;
529
530 s = splsoftnet();
531 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
532 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
533 if (error) {
534 splx(s);
535 return (error);
536 }
537 if (TAILQ_EMPTY(&so->so_q))
538 so->so_options |= SO_ACCEPTCONN;
539 if (backlog < 0)
540 backlog = 0;
541 so->so_qlimit = min(backlog, somaxconn);
542 splx(s);
543 return (0);
544 }
545
546 void
547 sofree(struct socket *so)
548 {
549
550 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
551 return;
552 if (so->so_head) {
553 /*
554 * We must not decommission a socket that's on the accept(2)
555 * queue. If we do, then accept(2) may hang after select(2)
556 * indicated that the listening socket was ready.
557 */
558 if (!soqremque(so, 0))
559 return;
560 }
561 if (so->so_rcv.sb_hiwat)
562 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
563 RLIM_INFINITY);
564 if (so->so_snd.sb_hiwat)
565 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
566 RLIM_INFINITY);
567 sbrelease(&so->so_snd, so);
568 sorflush(so);
569 pool_put(&socket_pool, so);
570 }
571
572 /*
573 * Close a socket on last file table reference removal.
574 * Initiate disconnect if connected.
575 * Free socket when disconnect complete.
576 */
577 int
578 soclose(struct socket *so)
579 {
580 struct socket *so2;
581 int s, error;
582
583 error = 0;
584 s = splsoftnet(); /* conservative */
585 if (so->so_options & SO_ACCEPTCONN) {
586 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
587 (void) soqremque(so2, 0);
588 (void) soabort(so2);
589 }
590 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
591 (void) soqremque(so2, 1);
592 (void) soabort(so2);
593 }
594 }
595 if (so->so_pcb == 0)
596 goto discard;
597 if (so->so_state & SS_ISCONNECTED) {
598 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
599 error = sodisconnect(so);
600 if (error)
601 goto drop;
602 }
603 if (so->so_options & SO_LINGER) {
604 if ((so->so_state & SS_ISDISCONNECTING) &&
605 (so->so_state & SS_NBIO))
606 goto drop;
607 while (so->so_state & SS_ISCONNECTED) {
608 error = tsleep((void *)&so->so_timeo,
609 PSOCK | PCATCH, netcls,
610 so->so_linger * hz);
611 if (error)
612 break;
613 }
614 }
615 }
616 drop:
617 if (so->so_pcb) {
618 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
619 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
620 (struct lwp *)0);
621 if (error == 0)
622 error = error2;
623 }
624 discard:
625 if (so->so_state & SS_NOFDREF)
626 panic("soclose: NOFDREF");
627 so->so_state |= SS_NOFDREF;
628 sofree(so);
629 splx(s);
630 return (error);
631 }
632
633 /*
634 * Must be called at splsoftnet...
635 */
636 int
637 soabort(struct socket *so)
638 {
639
640 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
641 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
642 }
643
644 int
645 soaccept(struct socket *so, struct mbuf *nam)
646 {
647 int s, error;
648
649 error = 0;
650 s = splsoftnet();
651 if ((so->so_state & SS_NOFDREF) == 0)
652 panic("soaccept: !NOFDREF");
653 so->so_state &= ~SS_NOFDREF;
654 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
655 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
656 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
657 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0);
658 else
659 error = ECONNABORTED;
660
661 splx(s);
662 return (error);
663 }
664
665 int
666 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
667 {
668 int s, error;
669
670 if (so->so_options & SO_ACCEPTCONN)
671 return (EOPNOTSUPP);
672 s = splsoftnet();
673 /*
674 * If protocol is connection-based, can only connect once.
675 * Otherwise, if connected, try to disconnect first.
676 * This allows user to disconnect by connecting to, e.g.,
677 * a null address.
678 */
679 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
680 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
681 (error = sodisconnect(so))))
682 error = EISCONN;
683 else
684 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
685 (struct mbuf *)0, nam, (struct mbuf *)0, l);
686 splx(s);
687 return (error);
688 }
689
690 int
691 soconnect2(struct socket *so1, struct socket *so2)
692 {
693 int s, error;
694
695 s = splsoftnet();
696 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
697 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
698 (struct lwp *)0);
699 splx(s);
700 return (error);
701 }
702
703 int
704 sodisconnect(struct socket *so)
705 {
706 int s, error;
707
708 s = splsoftnet();
709 if ((so->so_state & SS_ISCONNECTED) == 0) {
710 error = ENOTCONN;
711 goto bad;
712 }
713 if (so->so_state & SS_ISDISCONNECTING) {
714 error = EALREADY;
715 goto bad;
716 }
717 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
718 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
719 (struct lwp *)0);
720 bad:
721 splx(s);
722 sodopendfree();
723 return (error);
724 }
725
726 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
727 /*
728 * Send on a socket.
729 * If send must go all at once and message is larger than
730 * send buffering, then hard error.
731 * Lock against other senders.
732 * If must go all at once and not enough room now, then
733 * inform user that this would block and do nothing.
734 * Otherwise, if nonblocking, send as much as possible.
735 * The data to be sent is described by "uio" if nonzero,
736 * otherwise by the mbuf chain "top" (which must be null
737 * if uio is not). Data provided in mbuf chain must be small
738 * enough to send all at once.
739 *
740 * Returns nonzero on error, timeout or signal; callers
741 * must check for short counts if EINTR/ERESTART are returned.
742 * Data and control buffers are freed on return.
743 */
744 int
745 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
746 struct mbuf *control, int flags, struct lwp *l)
747 {
748 struct mbuf **mp, *m;
749 struct proc *p;
750 long space, len, resid, clen, mlen;
751 int error, s, dontroute, atomic;
752
753 p = l->l_proc;
754 sodopendfree();
755
756 clen = 0;
757 atomic = sosendallatonce(so) || top;
758 if (uio)
759 resid = uio->uio_resid;
760 else
761 resid = top->m_pkthdr.len;
762 /*
763 * In theory resid should be unsigned.
764 * However, space must be signed, as it might be less than 0
765 * if we over-committed, and we must use a signed comparison
766 * of space and resid. On the other hand, a negative resid
767 * causes us to loop sending 0-length segments to the protocol.
768 */
769 if (resid < 0) {
770 error = EINVAL;
771 goto out;
772 }
773 dontroute =
774 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
775 (so->so_proto->pr_flags & PR_ATOMIC);
776 if (p)
777 p->p_stats->p_ru.ru_msgsnd++;
778 if (control)
779 clen = control->m_len;
780 #define snderr(errno) { error = errno; splx(s); goto release; }
781
782 restart:
783 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
784 goto out;
785 do {
786 s = splsoftnet();
787 if (so->so_state & SS_CANTSENDMORE)
788 snderr(EPIPE);
789 if (so->so_error) {
790 error = so->so_error;
791 so->so_error = 0;
792 splx(s);
793 goto release;
794 }
795 if ((so->so_state & SS_ISCONNECTED) == 0) {
796 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
797 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
798 !(resid == 0 && clen != 0))
799 snderr(ENOTCONN);
800 } else if (addr == 0)
801 snderr(EDESTADDRREQ);
802 }
803 space = sbspace(&so->so_snd);
804 if (flags & MSG_OOB)
805 space += 1024;
806 if ((atomic && resid > so->so_snd.sb_hiwat) ||
807 clen > so->so_snd.sb_hiwat)
808 snderr(EMSGSIZE);
809 if (space < resid + clen &&
810 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
811 if (so->so_state & SS_NBIO)
812 snderr(EWOULDBLOCK);
813 sbunlock(&so->so_snd);
814 error = sbwait(&so->so_snd);
815 splx(s);
816 if (error)
817 goto out;
818 goto restart;
819 }
820 splx(s);
821 mp = ⊤
822 space -= clen;
823 do {
824 if (uio == NULL) {
825 /*
826 * Data is prepackaged in "top".
827 */
828 resid = 0;
829 if (flags & MSG_EOR)
830 top->m_flags |= M_EOR;
831 } else do {
832 if (top == 0) {
833 m = m_gethdr(M_WAIT, MT_DATA);
834 mlen = MHLEN;
835 m->m_pkthdr.len = 0;
836 m->m_pkthdr.rcvif = (struct ifnet *)0;
837 } else {
838 m = m_get(M_WAIT, MT_DATA);
839 mlen = MLEN;
840 }
841 MCLAIM(m, so->so_snd.sb_mowner);
842 if (sock_loan_thresh >= 0 &&
843 uio->uio_iov->iov_len >= sock_loan_thresh &&
844 space >= sock_loan_thresh &&
845 (len = sosend_loan(so, uio, m,
846 space)) != 0) {
847 SOSEND_COUNTER_INCR(&sosend_loan_big);
848 space -= len;
849 goto have_data;
850 }
851 if (resid >= MINCLSIZE && space >= MCLBYTES) {
852 SOSEND_COUNTER_INCR(&sosend_copy_big);
853 m_clget(m, M_WAIT);
854 if ((m->m_flags & M_EXT) == 0)
855 goto nopages;
856 mlen = MCLBYTES;
857 if (atomic && top == 0) {
858 len = lmin(MCLBYTES - max_hdr,
859 resid);
860 m->m_data += max_hdr;
861 } else
862 len = lmin(MCLBYTES, resid);
863 space -= len;
864 } else {
865 nopages:
866 SOSEND_COUNTER_INCR(&sosend_copy_small);
867 len = lmin(lmin(mlen, resid), space);
868 space -= len;
869 /*
870 * For datagram protocols, leave room
871 * for protocol headers in first mbuf.
872 */
873 if (atomic && top == 0 && len < mlen)
874 MH_ALIGN(m, len);
875 }
876 error = uiomove(mtod(m, void *), (int)len,
877 uio);
878 have_data:
879 resid = uio->uio_resid;
880 m->m_len = len;
881 *mp = m;
882 top->m_pkthdr.len += len;
883 if (error)
884 goto release;
885 mp = &m->m_next;
886 if (resid <= 0) {
887 if (flags & MSG_EOR)
888 top->m_flags |= M_EOR;
889 break;
890 }
891 } while (space > 0 && atomic);
892
893 s = splsoftnet();
894
895 if (so->so_state & SS_CANTSENDMORE)
896 snderr(EPIPE);
897
898 if (dontroute)
899 so->so_options |= SO_DONTROUTE;
900 if (resid > 0)
901 so->so_state |= SS_MORETOCOME;
902 error = (*so->so_proto->pr_usrreq)(so,
903 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
904 top, addr, control, curlwp); /* XXX */
905 if (dontroute)
906 so->so_options &= ~SO_DONTROUTE;
907 if (resid > 0)
908 so->so_state &= ~SS_MORETOCOME;
909 splx(s);
910
911 clen = 0;
912 control = 0;
913 top = 0;
914 mp = ⊤
915 if (error)
916 goto release;
917 } while (resid && space > 0);
918 } while (resid);
919
920 release:
921 sbunlock(&so->so_snd);
922 out:
923 if (top)
924 m_freem(top);
925 if (control)
926 m_freem(control);
927 return (error);
928 }
929
930 /*
931 * Implement receive operations on a socket.
932 * We depend on the way that records are added to the sockbuf
933 * by sbappend*. In particular, each record (mbufs linked through m_next)
934 * must begin with an address if the protocol so specifies,
935 * followed by an optional mbuf or mbufs containing ancillary data,
936 * and then zero or more mbufs of data.
937 * In order to avoid blocking network interrupts for the entire time here,
938 * we splx() while doing the actual copy to user space.
939 * Although the sockbuf is locked, new data may still be appended,
940 * and thus we must maintain consistency of the sockbuf during that time.
941 *
942 * The caller may receive the data as a single mbuf chain by supplying
943 * an mbuf **mp0 for use in returning the chain. The uio is then used
944 * only for the count in uio_resid.
945 */
946 int
947 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
948 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
949 {
950 struct lwp *l = curlwp;
951 struct mbuf *m, **mp;
952 int flags, len, error, s, offset, moff, type, orig_resid;
953 const struct protosw *pr;
954 struct mbuf *nextrecord;
955 int mbuf_removed = 0;
956
957 pr = so->so_proto;
958 mp = mp0;
959 type = 0;
960 orig_resid = uio->uio_resid;
961
962 if (paddr)
963 *paddr = 0;
964 if (controlp)
965 *controlp = 0;
966 if (flagsp)
967 flags = *flagsp &~ MSG_EOR;
968 else
969 flags = 0;
970
971 if ((flags & MSG_DONTWAIT) == 0)
972 sodopendfree();
973
974 if (flags & MSG_OOB) {
975 m = m_get(M_WAIT, MT_DATA);
976 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
977 (struct mbuf *)(long)(flags & MSG_PEEK),
978 (struct mbuf *)0, l);
979 if (error)
980 goto bad;
981 do {
982 error = uiomove(mtod(m, void *),
983 (int) min(uio->uio_resid, m->m_len), uio);
984 m = m_free(m);
985 } while (uio->uio_resid && error == 0 && m);
986 bad:
987 if (m)
988 m_freem(m);
989 return (error);
990 }
991 if (mp)
992 *mp = (struct mbuf *)0;
993 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
994 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
995 (struct mbuf *)0, (struct mbuf *)0, l);
996
997 restart:
998 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
999 return (error);
1000 s = splsoftnet();
1001
1002 m = so->so_rcv.sb_mb;
1003 /*
1004 * If we have less data than requested, block awaiting more
1005 * (subject to any timeout) if:
1006 * 1. the current count is less than the low water mark,
1007 * 2. MSG_WAITALL is set, and it is possible to do the entire
1008 * receive operation at once if we block (resid <= hiwat), or
1009 * 3. MSG_DONTWAIT is not set.
1010 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1011 * we have to do the receive in sections, and thus risk returning
1012 * a short count if a timeout or signal occurs after we start.
1013 */
1014 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1015 so->so_rcv.sb_cc < uio->uio_resid) &&
1016 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1017 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1018 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1019 #ifdef DIAGNOSTIC
1020 if (m == 0 && so->so_rcv.sb_cc)
1021 panic("receive 1");
1022 #endif
1023 if (so->so_error) {
1024 if (m)
1025 goto dontblock;
1026 error = so->so_error;
1027 if ((flags & MSG_PEEK) == 0)
1028 so->so_error = 0;
1029 goto release;
1030 }
1031 if (so->so_state & SS_CANTRCVMORE) {
1032 if (m)
1033 goto dontblock;
1034 else
1035 goto release;
1036 }
1037 for (; m; m = m->m_next)
1038 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1039 m = so->so_rcv.sb_mb;
1040 goto dontblock;
1041 }
1042 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1043 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1044 error = ENOTCONN;
1045 goto release;
1046 }
1047 if (uio->uio_resid == 0)
1048 goto release;
1049 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1050 error = EWOULDBLOCK;
1051 goto release;
1052 }
1053 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1054 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1055 sbunlock(&so->so_rcv);
1056 error = sbwait(&so->so_rcv);
1057 splx(s);
1058 if (error)
1059 return (error);
1060 goto restart;
1061 }
1062 dontblock:
1063 /*
1064 * On entry here, m points to the first record of the socket buffer.
1065 * While we process the initial mbufs containing address and control
1066 * info, we save a copy of m->m_nextpkt into nextrecord.
1067 */
1068 if (l)
1069 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1070 KASSERT(m == so->so_rcv.sb_mb);
1071 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1072 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1073 nextrecord = m->m_nextpkt;
1074 if (pr->pr_flags & PR_ADDR) {
1075 #ifdef DIAGNOSTIC
1076 if (m->m_type != MT_SONAME)
1077 panic("receive 1a");
1078 #endif
1079 orig_resid = 0;
1080 if (flags & MSG_PEEK) {
1081 if (paddr)
1082 *paddr = m_copy(m, 0, m->m_len);
1083 m = m->m_next;
1084 } else {
1085 sbfree(&so->so_rcv, m);
1086 mbuf_removed = 1;
1087 if (paddr) {
1088 *paddr = m;
1089 so->so_rcv.sb_mb = m->m_next;
1090 m->m_next = 0;
1091 m = so->so_rcv.sb_mb;
1092 } else {
1093 MFREE(m, so->so_rcv.sb_mb);
1094 m = so->so_rcv.sb_mb;
1095 }
1096 }
1097 }
1098 while (m && m->m_type == MT_CONTROL && error == 0) {
1099 if (flags & MSG_PEEK) {
1100 if (controlp)
1101 *controlp = m_copy(m, 0, m->m_len);
1102 m = m->m_next;
1103 } else {
1104 sbfree(&so->so_rcv, m);
1105 mbuf_removed = 1;
1106 if (controlp) {
1107 struct domain *dom = pr->pr_domain;
1108 if (dom->dom_externalize && l &&
1109 mtod(m, struct cmsghdr *)->cmsg_type ==
1110 SCM_RIGHTS)
1111 error = (*dom->dom_externalize)(m, l);
1112 *controlp = m;
1113 so->so_rcv.sb_mb = m->m_next;
1114 m->m_next = 0;
1115 m = so->so_rcv.sb_mb;
1116 } else {
1117 /*
1118 * Dispose of any SCM_RIGHTS message that went
1119 * through the read path rather than recv.
1120 */
1121 if (pr->pr_domain->dom_dispose &&
1122 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1123 (*pr->pr_domain->dom_dispose)(m);
1124 MFREE(m, so->so_rcv.sb_mb);
1125 m = so->so_rcv.sb_mb;
1126 }
1127 }
1128 if (controlp) {
1129 orig_resid = 0;
1130 controlp = &(*controlp)->m_next;
1131 }
1132 }
1133
1134 /*
1135 * If m is non-NULL, we have some data to read. From now on,
1136 * make sure to keep sb_lastrecord consistent when working on
1137 * the last packet on the chain (nextrecord == NULL) and we
1138 * change m->m_nextpkt.
1139 */
1140 if (m) {
1141 if ((flags & MSG_PEEK) == 0) {
1142 m->m_nextpkt = nextrecord;
1143 /*
1144 * If nextrecord == NULL (this is a single chain),
1145 * then sb_lastrecord may not be valid here if m
1146 * was changed earlier.
1147 */
1148 if (nextrecord == NULL) {
1149 KASSERT(so->so_rcv.sb_mb == m);
1150 so->so_rcv.sb_lastrecord = m;
1151 }
1152 }
1153 type = m->m_type;
1154 if (type == MT_OOBDATA)
1155 flags |= MSG_OOB;
1156 } else {
1157 if ((flags & MSG_PEEK) == 0) {
1158 KASSERT(so->so_rcv.sb_mb == m);
1159 so->so_rcv.sb_mb = nextrecord;
1160 SB_EMPTY_FIXUP(&so->so_rcv);
1161 }
1162 }
1163 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1164 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1165
1166 moff = 0;
1167 offset = 0;
1168 while (m && uio->uio_resid > 0 && error == 0) {
1169 if (m->m_type == MT_OOBDATA) {
1170 if (type != MT_OOBDATA)
1171 break;
1172 } else if (type == MT_OOBDATA)
1173 break;
1174 #ifdef DIAGNOSTIC
1175 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1176 panic("receive 3");
1177 #endif
1178 so->so_state &= ~SS_RCVATMARK;
1179 len = uio->uio_resid;
1180 if (so->so_oobmark && len > so->so_oobmark - offset)
1181 len = so->so_oobmark - offset;
1182 if (len > m->m_len - moff)
1183 len = m->m_len - moff;
1184 /*
1185 * If mp is set, just pass back the mbufs.
1186 * Otherwise copy them out via the uio, then free.
1187 * Sockbuf must be consistent here (points to current mbuf,
1188 * it points to next record) when we drop priority;
1189 * we must note any additions to the sockbuf when we
1190 * block interrupts again.
1191 */
1192 if (mp == 0) {
1193 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1194 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1195 splx(s);
1196 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1197 s = splsoftnet();
1198 if (error) {
1199 /*
1200 * If any part of the record has been removed
1201 * (such as the MT_SONAME mbuf, which will
1202 * happen when PR_ADDR, and thus also
1203 * PR_ATOMIC, is set), then drop the entire
1204 * record to maintain the atomicity of the
1205 * receive operation.
1206 *
1207 * This avoids a later panic("receive 1a")
1208 * when compiled with DIAGNOSTIC.
1209 */
1210 if (m && mbuf_removed
1211 && (pr->pr_flags & PR_ATOMIC))
1212 (void) sbdroprecord(&so->so_rcv);
1213
1214 goto release;
1215 }
1216 } else
1217 uio->uio_resid -= len;
1218 if (len == m->m_len - moff) {
1219 if (m->m_flags & M_EOR)
1220 flags |= MSG_EOR;
1221 if (flags & MSG_PEEK) {
1222 m = m->m_next;
1223 moff = 0;
1224 } else {
1225 nextrecord = m->m_nextpkt;
1226 sbfree(&so->so_rcv, m);
1227 if (mp) {
1228 *mp = m;
1229 mp = &m->m_next;
1230 so->so_rcv.sb_mb = m = m->m_next;
1231 *mp = (struct mbuf *)0;
1232 } else {
1233 MFREE(m, so->so_rcv.sb_mb);
1234 m = so->so_rcv.sb_mb;
1235 }
1236 /*
1237 * If m != NULL, we also know that
1238 * so->so_rcv.sb_mb != NULL.
1239 */
1240 KASSERT(so->so_rcv.sb_mb == m);
1241 if (m) {
1242 m->m_nextpkt = nextrecord;
1243 if (nextrecord == NULL)
1244 so->so_rcv.sb_lastrecord = m;
1245 } else {
1246 so->so_rcv.sb_mb = nextrecord;
1247 SB_EMPTY_FIXUP(&so->so_rcv);
1248 }
1249 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1250 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1251 }
1252 } else {
1253 if (flags & MSG_PEEK)
1254 moff += len;
1255 else {
1256 if (mp)
1257 *mp = m_copym(m, 0, len, M_WAIT);
1258 m->m_data += len;
1259 m->m_len -= len;
1260 so->so_rcv.sb_cc -= len;
1261 }
1262 }
1263 if (so->so_oobmark) {
1264 if ((flags & MSG_PEEK) == 0) {
1265 so->so_oobmark -= len;
1266 if (so->so_oobmark == 0) {
1267 so->so_state |= SS_RCVATMARK;
1268 break;
1269 }
1270 } else {
1271 offset += len;
1272 if (offset == so->so_oobmark)
1273 break;
1274 }
1275 }
1276 if (flags & MSG_EOR)
1277 break;
1278 /*
1279 * If the MSG_WAITALL flag is set (for non-atomic socket),
1280 * we must not quit until "uio->uio_resid == 0" or an error
1281 * termination. If a signal/timeout occurs, return
1282 * with a short count but without error.
1283 * Keep sockbuf locked against other readers.
1284 */
1285 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1286 !sosendallatonce(so) && !nextrecord) {
1287 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1288 break;
1289 /*
1290 * If we are peeking and the socket receive buffer is
1291 * full, stop since we can't get more data to peek at.
1292 */
1293 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1294 break;
1295 /*
1296 * If we've drained the socket buffer, tell the
1297 * protocol in case it needs to do something to
1298 * get it filled again.
1299 */
1300 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1301 (*pr->pr_usrreq)(so, PRU_RCVD,
1302 (struct mbuf *)0,
1303 (struct mbuf *)(long)flags,
1304 (struct mbuf *)0, l);
1305 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1306 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1307 error = sbwait(&so->so_rcv);
1308 if (error) {
1309 sbunlock(&so->so_rcv);
1310 splx(s);
1311 return (0);
1312 }
1313 if ((m = so->so_rcv.sb_mb) != NULL)
1314 nextrecord = m->m_nextpkt;
1315 }
1316 }
1317
1318 if (m && pr->pr_flags & PR_ATOMIC) {
1319 flags |= MSG_TRUNC;
1320 if ((flags & MSG_PEEK) == 0)
1321 (void) sbdroprecord(&so->so_rcv);
1322 }
1323 if ((flags & MSG_PEEK) == 0) {
1324 if (m == 0) {
1325 /*
1326 * First part is an inline SB_EMPTY_FIXUP(). Second
1327 * part makes sure sb_lastrecord is up-to-date if
1328 * there is still data in the socket buffer.
1329 */
1330 so->so_rcv.sb_mb = nextrecord;
1331 if (so->so_rcv.sb_mb == NULL) {
1332 so->so_rcv.sb_mbtail = NULL;
1333 so->so_rcv.sb_lastrecord = NULL;
1334 } else if (nextrecord->m_nextpkt == NULL)
1335 so->so_rcv.sb_lastrecord = nextrecord;
1336 }
1337 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1338 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1339 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1340 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1341 (struct mbuf *)(long)flags, (struct mbuf *)0, l);
1342 }
1343 if (orig_resid == uio->uio_resid && orig_resid &&
1344 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1345 sbunlock(&so->so_rcv);
1346 splx(s);
1347 goto restart;
1348 }
1349
1350 if (flagsp)
1351 *flagsp |= flags;
1352 release:
1353 sbunlock(&so->so_rcv);
1354 splx(s);
1355 return (error);
1356 }
1357
1358 int
1359 soshutdown(struct socket *so, int how)
1360 {
1361 const struct protosw *pr;
1362
1363 pr = so->so_proto;
1364 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1365 return (EINVAL);
1366
1367 if (how == SHUT_RD || how == SHUT_RDWR)
1368 sorflush(so);
1369 if (how == SHUT_WR || how == SHUT_RDWR)
1370 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1371 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1372 return (0);
1373 }
1374
1375 void
1376 sorflush(struct socket *so)
1377 {
1378 struct sockbuf *sb, asb;
1379 const struct protosw *pr;
1380 int s;
1381
1382 sb = &so->so_rcv;
1383 pr = so->so_proto;
1384 sb->sb_flags |= SB_NOINTR;
1385 (void) sblock(sb, M_WAITOK);
1386 s = splnet();
1387 socantrcvmore(so);
1388 sbunlock(sb);
1389 asb = *sb;
1390 /*
1391 * Clear most of the sockbuf structure, but leave some of the
1392 * fields valid.
1393 */
1394 memset(&sb->sb_startzero, 0,
1395 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1396 splx(s);
1397 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1398 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1399 sbrelease(&asb, so);
1400 }
1401
1402 int
1403 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1404 {
1405 int error;
1406 struct mbuf *m;
1407 struct linger *l;
1408
1409 error = 0;
1410 m = m0;
1411 if (level != SOL_SOCKET) {
1412 if (so->so_proto && so->so_proto->pr_ctloutput)
1413 return ((*so->so_proto->pr_ctloutput)
1414 (PRCO_SETOPT, so, level, optname, &m0));
1415 error = ENOPROTOOPT;
1416 } else {
1417 switch (optname) {
1418
1419 case SO_LINGER:
1420 if (m == NULL || m->m_len != sizeof(struct linger)) {
1421 error = EINVAL;
1422 goto bad;
1423 }
1424 l = mtod(m, struct linger *);
1425 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1426 l->l_linger > (INT_MAX / hz)) {
1427 error = EDOM;
1428 goto bad;
1429 }
1430 so->so_linger = l->l_linger;
1431 if (l->l_onoff)
1432 so->so_options |= SO_LINGER;
1433 else
1434 so->so_options &= ~SO_LINGER;
1435 break;
1436
1437 case SO_DEBUG:
1438 case SO_KEEPALIVE:
1439 case SO_DONTROUTE:
1440 case SO_USELOOPBACK:
1441 case SO_BROADCAST:
1442 case SO_REUSEADDR:
1443 case SO_REUSEPORT:
1444 case SO_OOBINLINE:
1445 case SO_TIMESTAMP:
1446 if (m == NULL || m->m_len < sizeof(int)) {
1447 error = EINVAL;
1448 goto bad;
1449 }
1450 if (*mtod(m, int *))
1451 so->so_options |= optname;
1452 else
1453 so->so_options &= ~optname;
1454 break;
1455
1456 case SO_SNDBUF:
1457 case SO_RCVBUF:
1458 case SO_SNDLOWAT:
1459 case SO_RCVLOWAT:
1460 {
1461 int optval;
1462
1463 if (m == NULL || m->m_len < sizeof(int)) {
1464 error = EINVAL;
1465 goto bad;
1466 }
1467
1468 /*
1469 * Values < 1 make no sense for any of these
1470 * options, so disallow them.
1471 */
1472 optval = *mtod(m, int *);
1473 if (optval < 1) {
1474 error = EINVAL;
1475 goto bad;
1476 }
1477
1478 switch (optname) {
1479
1480 case SO_SNDBUF:
1481 case SO_RCVBUF:
1482 if (sbreserve(optname == SO_SNDBUF ?
1483 &so->so_snd : &so->so_rcv,
1484 (u_long) optval, so) == 0) {
1485 error = ENOBUFS;
1486 goto bad;
1487 }
1488 break;
1489
1490 /*
1491 * Make sure the low-water is never greater than
1492 * the high-water.
1493 */
1494 case SO_SNDLOWAT:
1495 so->so_snd.sb_lowat =
1496 (optval > so->so_snd.sb_hiwat) ?
1497 so->so_snd.sb_hiwat : optval;
1498 break;
1499 case SO_RCVLOWAT:
1500 so->so_rcv.sb_lowat =
1501 (optval > so->so_rcv.sb_hiwat) ?
1502 so->so_rcv.sb_hiwat : optval;
1503 break;
1504 }
1505 break;
1506 }
1507
1508 case SO_SNDTIMEO:
1509 case SO_RCVTIMEO:
1510 {
1511 struct timeval *tv;
1512 int val;
1513
1514 if (m == NULL || m->m_len < sizeof(*tv)) {
1515 error = EINVAL;
1516 goto bad;
1517 }
1518 tv = mtod(m, struct timeval *);
1519 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1520 error = EDOM;
1521 goto bad;
1522 }
1523 val = tv->tv_sec * hz + tv->tv_usec / tick;
1524 if (val == 0 && tv->tv_usec != 0)
1525 val = 1;
1526
1527 switch (optname) {
1528
1529 case SO_SNDTIMEO:
1530 so->so_snd.sb_timeo = val;
1531 break;
1532 case SO_RCVTIMEO:
1533 so->so_rcv.sb_timeo = val;
1534 break;
1535 }
1536 break;
1537 }
1538
1539 default:
1540 error = ENOPROTOOPT;
1541 break;
1542 }
1543 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1544 (void) ((*so->so_proto->pr_ctloutput)
1545 (PRCO_SETOPT, so, level, optname, &m0));
1546 m = NULL; /* freed by protocol */
1547 }
1548 }
1549 bad:
1550 if (m)
1551 (void) m_free(m);
1552 return (error);
1553 }
1554
1555 int
1556 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1557 {
1558 struct mbuf *m;
1559
1560 if (level != SOL_SOCKET) {
1561 if (so->so_proto && so->so_proto->pr_ctloutput) {
1562 return ((*so->so_proto->pr_ctloutput)
1563 (PRCO_GETOPT, so, level, optname, mp));
1564 } else
1565 return (ENOPROTOOPT);
1566 } else {
1567 m = m_get(M_WAIT, MT_SOOPTS);
1568 m->m_len = sizeof(int);
1569
1570 switch (optname) {
1571
1572 case SO_LINGER:
1573 m->m_len = sizeof(struct linger);
1574 mtod(m, struct linger *)->l_onoff =
1575 (so->so_options & SO_LINGER) ? 1 : 0;
1576 mtod(m, struct linger *)->l_linger = so->so_linger;
1577 break;
1578
1579 case SO_USELOOPBACK:
1580 case SO_DONTROUTE:
1581 case SO_DEBUG:
1582 case SO_KEEPALIVE:
1583 case SO_REUSEADDR:
1584 case SO_REUSEPORT:
1585 case SO_BROADCAST:
1586 case SO_OOBINLINE:
1587 case SO_TIMESTAMP:
1588 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1589 break;
1590
1591 case SO_TYPE:
1592 *mtod(m, int *) = so->so_type;
1593 break;
1594
1595 case SO_ERROR:
1596 *mtod(m, int *) = so->so_error;
1597 so->so_error = 0;
1598 break;
1599
1600 case SO_SNDBUF:
1601 *mtod(m, int *) = so->so_snd.sb_hiwat;
1602 break;
1603
1604 case SO_RCVBUF:
1605 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1606 break;
1607
1608 case SO_SNDLOWAT:
1609 *mtod(m, int *) = so->so_snd.sb_lowat;
1610 break;
1611
1612 case SO_RCVLOWAT:
1613 *mtod(m, int *) = so->so_rcv.sb_lowat;
1614 break;
1615
1616 case SO_SNDTIMEO:
1617 case SO_RCVTIMEO:
1618 {
1619 int val = (optname == SO_SNDTIMEO ?
1620 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1621
1622 m->m_len = sizeof(struct timeval);
1623 mtod(m, struct timeval *)->tv_sec = val / hz;
1624 mtod(m, struct timeval *)->tv_usec =
1625 (val % hz) * tick;
1626 break;
1627 }
1628
1629 case SO_OVERFLOWED:
1630 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1631 break;
1632
1633 default:
1634 (void)m_free(m);
1635 return (ENOPROTOOPT);
1636 }
1637 *mp = m;
1638 return (0);
1639 }
1640 }
1641
1642 void
1643 sohasoutofband(struct socket *so)
1644 {
1645 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1646 selwakeup(&so->so_rcv.sb_sel);
1647 }
1648
1649 static void
1650 filt_sordetach(struct knote *kn)
1651 {
1652 struct socket *so;
1653
1654 so = (struct socket *)kn->kn_fp->f_data;
1655 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1656 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1657 so->so_rcv.sb_flags &= ~SB_KNOTE;
1658 }
1659
1660 /*ARGSUSED*/
1661 static int
1662 filt_soread(struct knote *kn, long hint)
1663 {
1664 struct socket *so;
1665
1666 so = (struct socket *)kn->kn_fp->f_data;
1667 kn->kn_data = so->so_rcv.sb_cc;
1668 if (so->so_state & SS_CANTRCVMORE) {
1669 kn->kn_flags |= EV_EOF;
1670 kn->kn_fflags = so->so_error;
1671 return (1);
1672 }
1673 if (so->so_error) /* temporary udp error */
1674 return (1);
1675 if (kn->kn_sfflags & NOTE_LOWAT)
1676 return (kn->kn_data >= kn->kn_sdata);
1677 return (kn->kn_data >= so->so_rcv.sb_lowat);
1678 }
1679
1680 static void
1681 filt_sowdetach(struct knote *kn)
1682 {
1683 struct socket *so;
1684
1685 so = (struct socket *)kn->kn_fp->f_data;
1686 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1687 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1688 so->so_snd.sb_flags &= ~SB_KNOTE;
1689 }
1690
1691 /*ARGSUSED*/
1692 static int
1693 filt_sowrite(struct knote *kn, long hint)
1694 {
1695 struct socket *so;
1696
1697 so = (struct socket *)kn->kn_fp->f_data;
1698 kn->kn_data = sbspace(&so->so_snd);
1699 if (so->so_state & SS_CANTSENDMORE) {
1700 kn->kn_flags |= EV_EOF;
1701 kn->kn_fflags = so->so_error;
1702 return (1);
1703 }
1704 if (so->so_error) /* temporary udp error */
1705 return (1);
1706 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1707 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1708 return (0);
1709 if (kn->kn_sfflags & NOTE_LOWAT)
1710 return (kn->kn_data >= kn->kn_sdata);
1711 return (kn->kn_data >= so->so_snd.sb_lowat);
1712 }
1713
1714 /*ARGSUSED*/
1715 static int
1716 filt_solisten(struct knote *kn, long hint)
1717 {
1718 struct socket *so;
1719
1720 so = (struct socket *)kn->kn_fp->f_data;
1721
1722 /*
1723 * Set kn_data to number of incoming connections, not
1724 * counting partial (incomplete) connections.
1725 */
1726 kn->kn_data = so->so_qlen;
1727 return (kn->kn_data > 0);
1728 }
1729
1730 static const struct filterops solisten_filtops =
1731 { 1, NULL, filt_sordetach, filt_solisten };
1732 static const struct filterops soread_filtops =
1733 { 1, NULL, filt_sordetach, filt_soread };
1734 static const struct filterops sowrite_filtops =
1735 { 1, NULL, filt_sowdetach, filt_sowrite };
1736
1737 int
1738 soo_kqfilter(struct file *fp, struct knote *kn)
1739 {
1740 struct socket *so;
1741 struct sockbuf *sb;
1742
1743 so = (struct socket *)kn->kn_fp->f_data;
1744 switch (kn->kn_filter) {
1745 case EVFILT_READ:
1746 if (so->so_options & SO_ACCEPTCONN)
1747 kn->kn_fop = &solisten_filtops;
1748 else
1749 kn->kn_fop = &soread_filtops;
1750 sb = &so->so_rcv;
1751 break;
1752 case EVFILT_WRITE:
1753 kn->kn_fop = &sowrite_filtops;
1754 sb = &so->so_snd;
1755 break;
1756 default:
1757 return (1);
1758 }
1759 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1760 sb->sb_flags |= SB_KNOTE;
1761 return (0);
1762 }
1763
1764 #include <sys/sysctl.h>
1765
1766 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1767
1768 /*
1769 * sysctl helper routine for kern.somaxkva. ensures that the given
1770 * value is not too small.
1771 * (XXX should we maybe make sure it's not too large as well?)
1772 */
1773 static int
1774 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1775 {
1776 int error, new_somaxkva;
1777 struct sysctlnode node;
1778
1779 new_somaxkva = somaxkva;
1780 node = *rnode;
1781 node.sysctl_data = &new_somaxkva;
1782 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1783 if (error || newp == NULL)
1784 return (error);
1785
1786 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1787 return (EINVAL);
1788
1789 mutex_enter(&so_pendfree_lock);
1790 somaxkva = new_somaxkva;
1791 cv_broadcast(&socurkva_cv);
1792 mutex_exit(&so_pendfree_lock);
1793
1794 return (error);
1795 }
1796
1797 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1798 {
1799
1800 sysctl_createv(clog, 0, NULL, NULL,
1801 CTLFLAG_PERMANENT,
1802 CTLTYPE_NODE, "kern", NULL,
1803 NULL, 0, NULL, 0,
1804 CTL_KERN, CTL_EOL);
1805
1806 sysctl_createv(clog, 0, NULL, NULL,
1807 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1808 CTLTYPE_INT, "somaxkva",
1809 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1810 "used for socket buffers"),
1811 sysctl_kern_somaxkva, 0, NULL, 0,
1812 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1813 }
1814